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Abstract

Biosensors are analytic devices which detect biochemical and physiological changes

and represent an emerging technology for low-cost, rapid and simple-to-operate biomed-

ical diagnostic tools. Biosensor design and functionality are based on well understood

physical and chemical processes which can be easily translated into mathematical

models involving ordinary and partial differential equations. Using mathematical

and computational modelling techniques to characterize the biosensor response as a

function of its input parameters in a wide range of physical contexts can guide the

experimental work, thus reducing development time and costs.

This thesis is based on a close collaboration with Biochemistry researchers at the

National Centre for Sensor Research (NCSR) and Biomedical Diagnostics Institute

(BDI) at Dublin City University and the mathematical models we develop are rele-

vant to ongoing experimental work in these centres relating to design optimization

of biocatalytic and bioaffinity devices. Our approach is to use numerical solutions as

a first step towards determining the accuracy of these models, since the simulations

successfully reproduce the experimental outcomes; future work can then concentrate

on a more detailed theoretical analysis.
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Chapter 1

Introduction and Background

1.1 Introduction to Biosensors

Biosensors are analytical devices which detect biochemical and physiological changes

and represent an emerging technology for low-cost, rapid and simple-to-operate biomed-

ical diagnostic tools. The level of commercial development in biosensors is significant,

and novel biosensors are continuously being developed to detect different analytes.

For example, protein biomarkers are important indicators of the onset or existence

of different diseases. Other important applications of biosensors are in detection of

toxins and pollutants in air and water environments, food safety [1] and drug discov-

ery [38]. The beneficial impact on society as a result of the availability of such systems

to both personal health and environmental quality is immense. Therefore, investigat-

ing any strategy that could reduce development times and costs, reveal alternative

system designs and subsequently increase the rate at which new devices are brought

to the market, is of utmost importance. In particular, mathematical modelling and
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simulation, the so-called “virtual experimentation” are relatively inexpensive and yet

powerful tools for scientific analysis and prediction.

A biosensor is an analytical device which converts a biochemical reaction into a

measurable signal using an optical or electrochemical transducer. The most impor-

tant component of a biosensor is the biological recognition element, which can be an

enzyme, and antibody, a strand of mucleic acid or even a whole cell or organ. Biosen-

sors can be classified according to their transduction system; two important examples

we encounter in this thesis are electrochemical and optical biosensors. They can also

be classified according to the choice of the biological recognition element which di-

vides them into two broad classes: biocatalytic and bioaffinity. Biocatalytic devices

typically involve enzymes and rely on catalytic reactions that produce or consume

electrons; for this reason such devices use electrochemical transducers. The affinity-

based biosensors, such as immunosensors which rely on antibody-antigen binding use

optical systems as transduction methods. Some performance criteria associated with

biosensors are listed below [47]:

• Specificity. The specificity of a biosensor is it’s ability to measure the concen-

tration of analyte without interference from other components that might be

present in the sample.

• Accuracy. The accuracy of a biosensor describes how well the measured con-

centrations agree with accepted reference values. The accuracy is determined

from measurements made on standard samples in comparison either with the

results of an independent reference assay or with quoted values for the standard.
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• Limit of detection. The limit of detection (LOD) is the lowest analyte con-

centration that can be detected but not necessarily quantitated as an exact

value.

• The lower (and upper) limits of quantitation are the lowest (and high-

est) analyte concentrations that can be measured with suitable precision and

accuracy.

• Linearity. The linearity of an assay refers to the ability of the assay to ob-

tain response values that are related to the analyte concentration by a defined

mathematical function.

• Range. The range of an assay is the interval between (and including) the

upper and lower limits of quantitation, i.e., the range within which the precision,

accuracy and linearity are acceptable.

• Sensitivity. Sensitivity is defined as the assay response per unit analyte con-

centration. This is the slope of the standard curve for the assay.

1.1.1 Enzyme Biosensors

An enzyme biosensor, as shown in Figure 1.1, is an analytical device that combines

an enzyme (as the biological sensing element) with a transducer (which may be am-

perometric, potentiometric, conductimetric, optical, or calorimetric, etc.) to produce

a signal proportional to target analyte concentration. This signal can result from

a change in proton concentration, release or uptake of gases, brought about by the

reaction catalyzed by the enzyme. The transducer converts this signal into a mea-

3



surable response, such as current, potential, temperature change, or absorption of

light through electrochemical, thermal, or optical means. This signal can be further

amplified, processed, or stored for later analysis.

Figure 1.1 – Enzyme based biosensor.

Enzyme biosensors have been applied to detect various substrates, which are selec-

tively oxidised or reduced in enzyme-catalyzed processes depending on the nature of

the substrates and enzymes used (oxidases or reductases) to construct a sensor. Most

enzyme biosensors modelled in this thesis use amperometric techniques [19]. Amper-

ometry is the determination of the intensity of the current crossing an electrochemical

cell under an imposed potential. This intensity is a function of the concentration of

the electrochemically active species in the sample. Oxidation or reduction of a species

is generally performed by a working electrode, and a second electrode acts as a ref-

erence. For example, a glucose-sensitive biosensor that uses glucose oxidase could
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detect either the H2O2 produced by the enzymatic reaction, or the amount of oxy-

gen consumed during the oxidation of glucose [10]. For the repeated use of enzymes,

cells, antibodies, and other biologically active agents in analytical devices, numerous

techniques for fixing them to carrier materials have been developed. Immobiliza-

tion, particularly of enzymes, brings about a number of further advantages for their

application in analytical chemistry. These are:

• in many cases the enzyme is stabilized;

• the enzyme-carrier complex may be easily separated from the sample, i.e., the

latter is not contaminated by the enzyme preparation;

• the stable and largely constant enzyme activity render the enzyme an integral

part of the analytical instrument [40].

1.1.2 Immunosensors

An immunosensor, is an affinity ligand-based biosensor in which the immunochemical

reaction is coupled to a transducer. The fundamental basis of all immunosensors is

the specificity of the molecular recognition of antigens by antibodies and their ten-

dency to form a stable complex.

An antigen is a substance which has the ability to induce an immunological re-

sponse, such as, for example, bacteria, viruses, allergens, etc. An antibody is a

soluble protein produced by the body’s immune system that circulates freely and

exhibits properties that contribute specifically to immunity and protection against
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foreign material [5]. The functionality of immunoassays relies on the following prop-

erties of antibodies (see [46]): their ability to bind to a wide range of natural and

artificial chemicals, cells and viruses; exceptional specificity for certain analytes and

finally, strength of binding. Since the binding between the antibody and antigen does

not generate electrons, immunoassays often require the use of labelled materials in

order to measure the amount of antigen or antibody present. A label is a molecule

that will react as part of the assay, and in doing so produces a signal that can be

measured in the solution. Examples of labels include radioactive compounds or en-

zymes, that can generate colour or create fluorescent or luminescent products that

can be measured by optical or electronic equipment.

The measurement of the analyte using labels is broadly categorized into compet-

itive and non-competitive methods. In competitive formats, unlabelled analyte

in the test sample is measured by its ability to compete with labelled antigen for

a limited number of antibody binding sites [14]. The unlabelled antigen blocks the

ability of the labelled antigen to bind because that binding site on the antibody is

already occupied. Thus, in a competitive immunoassay, less label measured in the

assay means more of the unlabelled (test sample) antigen is present. The amount of

antigen in the test sample is inversely related to the amount of label measured in the

competitive format: i.e., as one increases, the other decreases. Competitive assays

will be studied in Chapter 5 of this thesis.

Results can be either qualitative (for example, the pregnancy test provides a

“positive” or “negative” result), but most often, in mathematical modelling we will
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be concerned with quantitative results, which are provided as numerical results

which give the compound concentration as a function of the (unlabelled) analyte in

the sample taking into consideration the competitive/non-competitive nature of the

device. These results are compared with experimental measurements which are often

presented in the form of calibration curves (also known as dose-response curves).

A calibration curve is constructed by measuring and plotting the biosensor response

against a wide range of initial analyte concentrations and used for future estimations

of the “dose” once the “response” is known.

The high affinity and specificity of avidin-biotin interactions have been exploited

for various applications in immunology and assay preparation. Biotin is a vitamin

(vitamin H) that is present in small amounts in all living cells and is critical for a

number of biological processes, while avidin is a biotin-binding protein that is be-

lieved to function as an antibiotic in the eggs of birds and reptiles. The avidin-biotin

system is modelled in Chapter 5, where it is coupled to a bi-enzyme electrode.

1.2 Measuring Concentrations and Basic Chemi-

cal Kinetics

Any quantitative study of solutions requires that we know the amount of solute dis-

solved in a solvent or the concentration of the solution. Chemists employ several

different concentration measures, each one having advantages and limitations. The

7



use of the solution generally determines how we express its concentration. There

are four concentration units defined: percent by weight, mole fraction, molarity, and

molality. The concentration unit used in this thesis is molarity (M).

A mole is the amount of substance that contains as many atoms, molecules, ions,

or any other entities as there are atoms in exactly 12g of carbon-12. It has been

determined experimentally that the number of atoms per mole of carbon-12 is

NA = 6.0221367× 1023 mol−1,

which is known as the Avogadro constant. The molar mass of a substance is the

mass in grams or kilograms of one mole of the substance. In many calculations, molar

masses are more conveniently expressed as kg/mol [11].

Molar concentration or molarity is defined as the number of moles of solute

dissolved in one litre (L) of solution; that is,

molarity =
number of moles of solute

L of solution
.

Thus, molarity has units moles per litre (mol/L). By convention, we use square brack-

ets [ ] to represent molarity. It is one of the most commonly employed concentration

measures. The advantage of using molarity is that it is generally easier to measure

the volume of a solution using precisely calibrated volumetric flasks than to weigh the

solvent. Its main drawback is that it is temperature dependent, because the volume

of a solution usually increases with increasing temperature. Another drawback is that

molarity does not tell one the amount of solvent present [11].
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A solution of concentration 1 mol/L is also denoted as 1 molar (1 M). In the

numerical simulations throughout the thesis we often use the International System

units of mol/m3 where

1 mol/m3 = 10−3 M = 1 mM.

To understand the mechanism of a reaction or reactions, or to experimentally

determine the rate of a reaction or reactions and its/their dependence on different

parameters, the study of chemical kinetics is essential. Consider the simple reaction

P −→ Q,

and let the concentrations of P and Q at times t1 and t2 be [P ]1, [P ]2 and [Q]1, [Q]2,

where t2 > t1. Then the reaction rate over the time interval t2 − t1 can be expressed

as

reaction rate =
[P ]2 − [P ]1
t2 − t1

= −∆[P ]

∆t
,

since [P ]2 < [P ]1. Alternatively, the rate of reaction can be expressed in terms of the

product Q as

reaction rate =
[Q]2 − [Q]1
t2 − t1

=
∆[Q]

∆t
,

since [Q]2 > [Q]1. In practice, the quantity of interest is not the rate over a certain

time interval, but the instantaneous reaction rate, where ∆t approaches zero, which

is given by

reaction rate = −d[P ]

dt
=
d[Q]

dt
.

This rate has the units of M/s, where M (molarity), has the units moles per liter

(mol/L). For more complicated reactions, the rate of change of the reactant and the
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product may not equal each other. For example, the reaction

2P −→ Q,

(in which two molecules of P combine to yield one molecule of Q) has the rate

expressed as

reaction rate = −1

2

d[P ]

dt
=
d[Q]

dt
,

since the disappearance of the reactant is twice as fast as the product. In general, for

a reaction

aA+ bB −→ cC + dD, (1.1)

where [A], [B], [C] and [D] denote the concentration of the reactants and products

at time t, the rate of the reaction is given by

reaction rate = −1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
.

The relationship between the chemical reaction rate and the concentrations of the

different reactants is complicated and must be determined experimentally. For the

general equation (1.1), the reaction rate can usually be expressed as

reaction rate ∝ [A]a[B]b

which gives the equation

reaction rate = k[A]a[B]b, (1.2)

which is known as rate law or law of mass action. The proportionality constant

k is known as the rate constant. The rate law states that at any given time, t, the

reaction rate is proportional to the concentrations of A and B raised to some powers.
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Note that the rate law is defined in terms of the reactant concentrations, but the

rate constant, k, for a given reaction does not depend on the concentrations of the

reactants. Expressing the rate of a reaction by using the rate law enables us to define

the order of a reaction. In equation (1.2), we say that the reaction is of order a

with respect to A and of order b with respect to B, which gives an overall reaction

order of (a + b). The order of a reaction specifies the empirical dependence of the

rate on concentrations. It may be zero, an integer, or a non-integer.

In what follows, mathematical descriptions in the form of differential equations

are given for the law of mass action in the context of several simple reactions.

First-order reactions

The simplest possible reaction involves the irreversible conversion of a substance X

to Y as in

X −→ Y. (1.3)

The law of mass action can be written as

dx

dt
= −kx,

where k is the rate constant of the reaction, and x denotes the concentration of the

reactant X. This is a first-order reaction since its rate only depends on the first power

of the concentration. In reality, most reactions are not as simple as irreversible reac-

tions since, with accumulation of product, the reverse reaction becomes important.

These reactions are named reversible reactions, where the equilibrium does not lie far
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to one side. For example,

X
k1
�
k−1

Y, (1.4)

where k−1 is the dissociation rate constant. It has the rate equation

dx

dt
= −k1x+ k−1y = −dy

dt
,

where y denotes the concentration of Y .

As stated above, most reactions are not as simple as irreversible reactions since,

with accumulation of product, the reverse reaction becomes important. These reac-

tions are named reversible reactions, where the equilibrium does not lie far to one

side. Consider the reaction

A
k1
�
k−1

B, (1.5)

whose rate of reaction is given by

reaction rate =
d[A]

dt
= −k1[A] + k−1[B].

If we consider the rate equation at equilibrium, we obtain the equilibrium constant

k1/k−1. The relationship between reaction rates and equilibria is rooted in a principle

of great importance in chemical kinetics. The principle of microscopic reversibil-

ity states that, at equilibrium, the rates of the forward and reverse processes are equal

for every elementary reaction occurring. This means that the process A −→ B is ex-

actly balanced by B −→ A.
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Second-order reactions

Many biochemical reactions are not of first-order, but are of second or higher order.

Simple examples of second-order irreversible reactions are

2X
k−→Y

and

X + Y
k−→Z.

The rate of such reactions is proportional to the second power of the concentration,

or product of concentrations, given by

dy

dt
= −1

2

dx

dt
= kx2

and

dz

dt
= −dx

dt
= −dy

dt
= kxy

respectively, where z denotes the concentration of Z. Similarly, a simple example of

second-order reversible reactions is

X + Y
k1
�
k−1

Z,

which has the corresponding rate equation of

dz

dt
= −dx

dt
= −dy

dt
= k1xy − k−1z.

Note that, reaction rates are expressed in mole/litre/second (M/s). The first-order

rate constants have the dimension of time−1 (s−1) and the second-order rate constants

have the dimension of concentration−1 × time−1 (M−1·s−1); zero-order rate constants

have the dimension of concentration × time−1 [28].
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1.3 Enzyme-Substrate Kinetics: The Michaelis-Menten

Model

Enzyme catalysis is one of the most fascinating areas in the study of chemical kinet-

ics. The phenomenon of enzyme catalysis usually results in a very large increase in

reaction rate in the order of 106 to 1018 and high specificity. Specificity means that

an enzyme molecule is capable of selectively catalyzing certain reactants, called sub-

strates, while discriminating against other molecules. An enzyme usually contains

one or more active sites, where reactions with substrate take place. The specificity

of enzymes for substrates varies from molecule to molecule. In the 1890s the Ger-

man chemist, Emil Fischer, (1852-1919) proposed a lock-and-key theory of enzyme

specificity. According to Fischer, the active site can be assumed to have a rigid struc-

ture, similar to a lock. A substrate molecule then has a complementary structure

and functions as a key. The binding of substrate to enzyme results in a distortion

of the substrate into the conformation of the transition state. At the same time, the

enzyme undergoes a change in conformation to fit the substrate. This explains the

flexibility and the phenomenon of cooperativity of the protein. Cooperativity means

that the binding of a substrate to an enzyme with multiple binding sites can alter the

substrate’s affinity for enzyme binding at its other sites.
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1.3.1 The Michaelis-Menten Model

Enzyme reactions do not follow the law of mass action directly. The rate of the re-

action only increases to a certain extent as the concentration of substrate increases.

The maximum reaction rate is reached at high substrate concentrations due to en-

zyme saturation. This is in contrast to the law of mass action, which states that the

reaction rate increases as the concentration of substrate increases [25].

The simplest model that explains the kinetic behaviour of enzyme reactions is the

classic 1913 model of Michaelis and Menten [33] which is widely used in biochemistry

for many types of enzymes. The Michaelis-Menten model is based on the assumption

that the enzyme binds the substrate to form an intermediate complex which then

dissociates to form the final product and release the enzyme in its original form. The

schematic representation of this two-step process is given by

E + S
k1
�
k−1

C
k2−→E + P, (1.6)

where k1, k−1 and k2 are constant parameters associated with the rates of the re-

action. The double arrow symbol � indicates that the reaction is reversible while

the single arrow → indicates that the reaction is irreversible. Based on the princi-

ples of mass action and conservation of mass, the dynamics of different species in

the Michaelis-Menten model can be described by the following system of ordinary
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differential equations

dS

dt
= −k1ES + k−1C, (1.7)

dE

dt
= −k1ES + (k2 + k−1)C, (1.8)

dC

dt
= k1ES − (k2 + k−1)C, (1.9)

dP

dt
= k2C, (1.10)

with initial conditions:

E(0) = E0, S(0) = S0, C(0) = 0, P (0) = 0.

Note that

dE

dt
+
dC

dt
= 0

in system of equations (1.7)-(1.10), and hence E+C = E0. This conservation law will

be used extensively throughout our models, and expresses the fact that the enzyme

only exists in two forms during the reaction: free enzyme and complex-bound enzyme.

We can obtain a second conservation law S+C +P = S0 from equations (1.7)-(1.10)

by the fact that

dS

dt
+
dC

dt
+
dP

dt
= 0.

Then the system of equations reduces to only two equations, which are given in terms

of the substrate concentration, S, and the complex concentration, C, namely

dS

dt
= −k1(E0 − C)S + k−1C, (1.11)

dC

dt
= k1(E0 − C)S − (k2 + k−1)C, (1.12)

with initial conditions

S(0) = S0, C(0) = 0. (1.13)
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In constructing the Michaelis-Menten model, the following simplifying assumptions

are usually made [33]:

• The concentration of substrate vastly exceeds the concentration of enzyme. This

means that the free concentration of substrate is very close to the concentration

that is added, and that substrate concentration is constant throughout the assay.

• Neither substrate nor product acts as an allosteric modulator to alter the en-

zyme velocity.

• Binding of substrate to one enzyme binding site does not influence the affinity

or activity of an adjacent site.

• There is negligible spontaneous creation of product without enzyme.

1.3.2 The Quasi-Steady-State Approximation

In the original Michaelis-Menten model [33], it was assumed that the substrate con-

centration, S, is in instantaneous equilibrium with the enzyme-substrate complex

concentration, C, which gives

k1ES = k−1C.

Then, by using the initial condition, E + C = E0, we find that

C =
E0S

Ks + S
,

where Ks = k−1/k1. If we let V denote the velocity of the reaction, then the rate at

which the product is formed is given by

V =
dP

dt
= k2C =

k2E0S

Ks + S
=

VmaxS

Ks + S
,
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where

Vmax = k2E0 (1.14)

is the maximum reaction velocity, attained when the enzyme is saturated with sub-

strate [25].

An alternative analysis of an enzymatic reaction was proposed by Briggs and Hal-

dane in [7], and forms the basis for most modern descriptions of enzyme reactions.

Their assumption is that the rates of formation and breakdown of the complex are

essentially equal at all times, except at the beginning of the reaction, when the forma-

tion of the complex is very fast. Thus, we have dC/dt ≈ 0. It is simple to determine

the velocity of the reaction with this assumption. From (1.12) we obtain the complex

concentration, C, in terms of the substrate concentration, S, as

C =
k1E0S

k−1 + k2 + k1S
=

E0S

KM + S
. (1.15)

This expression for C does not satisfy the initial conditions specified before, namely

C(0) = 0 and S(0) = S0, as we get

C(0) =
E0S0

S0 +KM

6= 0.

If we insert equation (1.15) into equation (1.11), we obtain

dS

dt
≈ −k2C = − k2E0S

KM + S
. (1.16)

Since the enzyme is traditionally considered to be present in small amounts com-

pared with the substrate (E0 � S0) the assumption is that the substrate concentra-

tion effectively does not change during this initial transient stage. In this case, the
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(approximate) dynamics are governed by equation (1.16) with the initial condition

S(0) = S0. This is known as the quasi-steady-state approximation.

Mathematical studies of the quasi-steady-state approximation typically involve an

elementary singular perturbation analysis of the Michaelis Menten equations (1.11)

and (1.12), where a small parameter, ε, introduced by non-dimensionalisation is

ε = E0/S0 [25], [18]. In this framework, the initial rapid formation of enzyme-

substrate complex can be modelled as a boundary layer near t = 0 while the quasi-

steady-state approximation corresponds to the outer solution.

The quasi-steady-state approximation gives an expression for the velocity of the

reaction which is useful for practical applications. Equation (1.16) implies that

V =
dP

dt
= −dS

dt
=

k2E0S

KM + S
=

VmaxS

KM + S
, (1.17)

where Vmax is defined in (1.14) and

KM =
k−1 + k2

k1
, (1.18)

is referred to as the Michaelis constant. Note that KM has concentration units

and this constant can be easily determined from experimental data if we notice that,

setting

S = KM ,

equation (1.17) implies

V =
Vmax

2
.

This allows us to interpret KM as the substrate concentration at which the velocity

of the reaction is half-maximal and it indicates how efficiently an enzyme selects its
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substrate and converts it to product. The lower the value of KM , the more effective

the enzyme is at low substrate concentrations, and KM is unique for each enzyme-

substrate pair. Consequently, KM values are useful for comparing the activities of

two enzymes that act on the same substrate or for assessing the ability of different

substrates to be recognized by a single enzyme. For practical purposes, it is also

useful to know how fast the enzyme operates after it has selected and bound its

corresponding substrate; that is, how fast does the complex proceed to the product

and free enzyme. This property is characterized by the catalytic constant

kcat =
Vmax

E0

,

and in the Michaelis-Menten scheme, we have kcat = k2. Thus, kcat is the rate con-

stant of the reaction when the enzyme is saturated with substrate (i.e., when C ≈ E0,

V0 ≈ Vmax, where V0 is the initial velocity of the reaction); we have already seen this

relationship in equation (1.14). kcat is also known as the enzyme’s turnover number

because it is the number of catalytic cycles that each active site undergoes per unit

time. It is a first-order rate constant and therefore has units of s−1 [25].

A useful method for experimental determination of the constants KM and Vmax

is given by the Lineweaver-Burk plot. This method consists of plotting the linear

relationship

1

V
=

KM

Vmax

· 1

[S]
+

1

Vmax

(1.19)

which is obtained from equation (1.17) and gives the reciprocal of the reaction veloc-

ity, 1/V , as a function of 1/[S]. Once velocity measurements are made for a range

of substrate concentrations (both higher and lower than KM) and the straight line
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is plotted, Vmax and KM can be easily determined from the observation that the

intercept on the vertical axis is 1/Vmax while the intercept on the horizontal axis is

−1/KM ; see Figure 1.2.

Figure 1.2 – A Lineweaver-Burk Plot.

“The Improved Euler method” is used to solve the system of equations (1.7)-

(1.10) and the numerical solution is shown in Figure 1.3. The equations have been

non-dimensionalised so that the four unknown functions have similar orders of mag-

nitude (note, for example, that the initial non-dimensional values of enzyme and

substrate are both 1).

1.3.3 Reversible Michaelis-Menten Kinetics

The classical Michaelis-Menten reaction scheme (1.6) assumes that the complex dis-

sociation step is irreversible. In reality, there will be some degree of reversibility in

product formation in many chemical reactions. Thus, a more realistic model for the
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Figure 1.3 – Relative concentrations of reactants and product of the standard

Michaelis-Menten kinetics. Typical values for constants used in this simulation are

shown in Table 1.1.

Description Constant Value

Reaction rate constants (m3/mol·s): k1 102

k3 102

Reaction rate constants (s−1): k−1 10−1

k−2 10−2

k−3 10−1

k2 103

k4 10

Initial concentrations:

Total enzyme (mol/m2) e0 1

Substrate (mol/m3=mM) S0 1

Table 1.1 – Typical values for constants.
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Michaelis-Menten kinetics would be

E + S
k1
�
k−1

C
k2
�
k−2

E + P, (1.20)

where k−2 is another reaction rate constant. The dynamics of the system are described

by the following system of nonlinear differential equations by using the law of mass

action:

dS

dt
= −k1ES + k−1C, (1.21)

dE

dt
= −k1ES + (k2 + k−1)C − k−2EP, (1.22)

dC

dt
= k1ES − (k2 + k−1)C + k−2EP, (1.23)

dP

dt
= k2C − k−2EP, (1.24)

with initial conditions E(0) = E0, S(0) = S0, C(0) = 0 and P (0) = 0. The reversible

model was also analyzed in [44] where a dynamical systems analysis revealed that this

model yields qualitatively similar results to those of the standard Michaelis-Menten

model. The only difference consists in slightly different values for the steady-states

(such as, for example, C∗ = 0 in the standard model, while C∗ = O(ε) in the re-

versible model, where ε = E0/S0). For later analysis in this thesis, we will always

work with the standard model, as these small variations are not worth the incon-

venience of dealing with an extra term and having to specify another experimental

constant, k−2.
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1.3.4 Cascade Reactions

A cascade reaction is a sequence of biochemical reactions which have the property

that the product of one reaction is a reactant in the following reaction. We will focus,

in particular, on a cascade scheme which consists of two enzyme-substrate reactions

described by the Michaelis-Menten kinetic models, namely,

E1 + S1

k1
�
k−1

C1
k2−→E1 + S2, E2 + S2

k3
�
k−3

C2
k4−→E2 + P, (1.25)

where E1 is the first enzyme, E2 is the second enzyme, S1 is the first substrate, S2 is

the second substrate in the second reaction and also the product of the first reaction,

C1 and C2 are the complexes and P is the final product, while k1, k−1, k2, k3, k−3 and

k4 are constant parameters which represent the rate of the reactions. This system

will be studied in more detail in Chapter 4.

The differential equations governing the behavior of the relevant chemical species

are:

dS1

dt
= −k1E1S1 + k−1C1, (1.26)

dE1

dt
= −k1E1S1 + (k2 + k−1)C1, (1.27)

dC1

dt
= k1E1S1 − (k2 + k−1)C1, (1.28)

dS2

dt
= k2C1 − k3E2S2 + k−3C2, (1.29)

dE2

dt
= −k3E2S2 + (k4 + k−3)C2, (1.30)

dC2

dt
= k3E2S2 − (k4 + k−3)C2, (1.31)

dP

dt
= k4C2. (1.32)
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Typical initial conditions are:

E1(0) = E0
1 , E2(0) = E0

2 , S1(0) = S0, S2(0) = 0,

C1(0) = 0, C2(0) = 0, P (0) = 0,

and we can also write the following conservation laws

E1 + C1 = E0
1 ,

E2 + C2 = E0
2 ,

S1 + C1 + S2 + C2 + P = S0.

The numerical simulation result of the cascade Michaelis-Menten model is shown in

Figure 1.4. (Again, the numerical integration was performed on a scaled version of

equations (1.26)-(1.32) which is why the initial values of enzymes and first substrate

are 1.)

Chapter 4 deals with an experimental problem involving a cascade reaction, in

which the two enzymes are immobilized on an electrode at the bottom of a flow cell.

It is assumed that the two enzymes fully cover the surface of the electrode and it is

only the total concentration, E, that can be measured experimentally, rather than

the individual concentrations, E0
1 and E0

2 . Hence, we let

E = E0
1 + E0

2 , and ζ =
E0

1

E0
2

, (1.33)

which gives

E0
1 =

Eζ

1 + ζ
, and E0

2 =
E

1 + ζ
.
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Figure 1.4 – Relative concentrations of reactants and product of the cascade reactions.

Typical values for constants used in this simulation are shown in Table 1.1.

1.4 Measuring Electrode Currents

The measured current is accepted as a response of the electrochemical biosensor in

physical experiments. The anodic current depends upon the flux of the product at the

electrode surface. In the case of amperometry, the biosensor current is also directly

proportional to the area of the electrode surface. The anodic current iA(t) of the

amperometric biosensor at time t can be obtained explicitly from the Faraday and

the Fick laws [43],

iA(t) = neFADp
∂P

∂x
|x=0, (1.34)

where ne is the number of electrons involved in a charge transfer, A is the electrode

surface area and F is the Faraday constant, which has a value of

F = 96, 485 C/mol, (1.35)
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and Dp is the diffusion constant. Due to the direct proportionality, the current

is normalized with the area of that surface. Consequently, the density i(t) of the

biosensor current at time t is expressed as

i(t) =
iA
A

= neFDp
∂P

∂x
|x=0. (1.36)

As t→∞, we have

I = lim
t→∞

i(t), (1.37)

where I is taken as the density of the steady state biosensor current.

In an enzyme electrode, the enzyme catalyzed reaction occurs in a localized re-

gion at, or close to, the electrode surface. Consequently there is an interplay and

interaction between the enzyme kinetics and mass transport of material to and from

the electrode surface, [12]. In this project, mass transport obeys Fick’s first and sec-

ond laws. Fick’s first law describes the relationship between flux and concentration

gradient while the second law describes the rate of change of the concentration with

time in terms of a second order partial differential equation.

1.5 Mathematical Modelling Techniques

It is stated in [48] that Mathematical modelling, the process of describing scien-

tific phenomena in a mathematical framework, brings the powerful machinery of

mathematics—its ability to generalize, to extract what is common in diverse prob-

lems, and to build effective algorithms—to bear on characterisation, analysis, and
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prediction in scientific problems. Mathematical models lead to “virtual experiments”

whose real-world analogues would be expensive, dangerous, or even impossible; they

obviate the need to actually crash an airplane, spread deadly virus, or witness the

origin of the universe. Mathematical models help to clarify relationships among a

system’s components as well as their relative significance. Through modelling, specu-

lations about a system are given a form that allows them to be examined qualitatively

and quantitatively from many angles; in particular, modelling allows the detection of

discrepancies between theory and reality.

Biosensors are analytic devices which are well-suited to mathematical and compu-

tational modelling as they rely on continuous physical and chemical processes, such as

reaction kinetics and transport of analytes which can be readily expressed as systems

of ordinary and partial differential equations. Numerical integration of such equa-

tions will allow us to calculate the concentrations of relevant reactants at any point

in space and time, which gives a unique insight into the functionality of the sensing

platforms, not easily obtained from experiments alone.

Diffusion and Convection-diffusion equations

Biosensor models are based on transport of various analytes and we denote a typical

concentration by C(x, y, z, t), where x, y, z are spatial coordinates and t is time. The

main transport partial differential equations are reviewed below for the case of three

spatial variables, although in this thesis we will only consider one and two-dimensional
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models. We can write the following conservation equation

d

dt

∫ ∫ ∫
D

CdV = −
∫ ∫

S

F · dS (1.38)

for any surface S enclosing a region D, where F is the flow rate of analyte. This

equation says that the net rate of change of the amount of C in D equals the flux of

F through S. The minus sign comes from the convention that dS = ndS is chosen

so that n points outward, so that the flux is positive when the analyte is flowing

out through S. Using the divergence theorem, the equation above can be written in

differential form as

∂C

∂t
= −divF. (1.39)

In the case of diffusion alone, when the analyte is not moved by fluid motion,

Fick’s law states that

~F = −k∇C, (1.40)

which means that the flow points in the direction of −∇C, so the analyte moves

from regions of higher concentrations to regions of lower concentrations. The propor-

tionality constant k is known as the diffusion coefficient or diffusivity of the analyte.

Combining Fick’s law with equation (1.40) we get

∂C

∂t
= k∇2C = k

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
, (1.41)

which is known as the diffusion equation or heat equation. If the analyte is also

connected by the fluid sample (as in the case of Fluid Injection Analysis experiments

studied in Chapters 3 and 4) then the flow rate is expressed as

~F = C~v, (1.42)
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which means that the entire quantity of C at a given point is moved by the velocity

vector ~v. The convection equation is the

∂C

∂t
= −div(C~v). (1.43)

For an incompressible flow, such as water, we have div(~v) = 0 and the convection

equation takes the more familiar form

∂C

∂t
+ ~v · ∇C = 0. (1.44)

Combining the effects of diffusion with convection yields

∂C

∂t
+ ~v · ∇C = k∇2C, (1.45)

which is known as the convection-diffusion (or advection-diffusion) equation.

Non-dimensionalisation and Scaling

After a mathematical model of a continuous physical system, which may consist of,

say, a set of differential equations and associated initial and boundary conditions,

has been created, we try to obtain the solutions for this model. Generally, there are

two kinds of solutions: exact analytical solutions and approximate solutions. Ex-

act solutions are obtained by solving equations analytically. Approximate solutions

are obtained by applying some type of approximation to an equation or a system

of equations and solving the resulting system. In order to obtain an approximate

solution, a useful approach is to non-dimensionalise the system. This has the advan-

tage of reducing the number of independent variables in a system and also removing

the various units involved in it. Since real-life problems are often very difficult to
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analyze rigorously, one way to simplify analysis is to apply some kind of asymptotic

reduction, based on the idea that we can neglect certain terms which are small com-

pared with others in the system. After the process of non-dimensionalisation, we

end up with equations with dimensionless variables, rather than equations with a

large number of physical parameters and variables all with dimensional units. The

science of non-dimensionalisation lies in the choice of scales. There is no standard

way to do the scaling - the main principle is to balance the terms in the equation by

choosing self-consistent scales, since the purpose is to make the largest dimensionless

parameter numerically of order one in the attained properly scaled equations. Note

that the process of rescaling may be necessary if the scaling causes inconsistency of

the differential equation. Normally, to check for the consistency of the system, we

use the approximate solution just obtained to evaluate the order of magnitude of the

neglected terms, so as to ensure that they are indeed relatively small. For a more

detailed reference on scaling refer to [29] and [37].

1.6 Numerical Approximation using Finite Differ-

ence Techniques

The idea behind finite-difference methods is to replace the partial derivatives occur-

ring in partial differential equations by approximations based on Taylor series ex-

pansions of functions near the points of interest. For example, the partial derivative
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∂u/∂t may be replaced by the approximation

∂u(x, t)

∂t
=
u(x, t+ ∆t)− u(x, t)

∆t
. (1.46)

This is called a finite-difference approximation because it involves small, but not

infinitesimal, differences of the function u. This particular finite-difference approx-

imation is called a forward difference, since the differencing is in the forward t

direction; only the values of u at t and t+∆t are used. We can also define backward

differences using the formula

∂u(x, t)

∂t
=
u(x, t)− u(x, t−∆t)

∆t
. (1.47)

When applied to the diffusion equation, forward- and backward- difference approx-

imations for ∂u/∂t lead to explicit and fully implicit finite-difference schemes,

respectively.

For second partial derivatives, such as ∂2u/∂x2, we can define a symmetric finite-

difference approximation as the forward difference of backward-difference approxima-

tion to the first derivative. We obtain the symmetric central-difference approxi-

mation

∂2u(x, t)

∂x2
=
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
. (1.48)

To continue with the finite-difference approximation to the diffusion equation we

divide the x-axis into equally spaced nodes a distance ∆x apart, and the t-axis into

equally spaced nodes a distance ∆t apart. This divides the (x, t) plane into a mesh,

where the mesh points have the form (n∆x,m∆t). We then concern ourselves only
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with the values of u(x, t) at mesh points (n∆x,m∆t). We write

umn = u(n∆x,m∆t) (1.49)

for the value of u(x, t) at the mesh point (n∆x,m∆t). For example, the general

diffusion equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, (1.50)

can be approximated by

um+1
n − umn

∆t
=
umn+1 − 2umn + umn−1

∆x2
, (1.51)

which can be rearranged to give the difference equations

um+1
n = αumn+1 + (1− 2α)umn + αumn−1, (1.52)

where

α =
∆t

∆x2
. (1.53)

If, at time step m, we know umn for all values of n we can explicitly calculate um+1
n .

This is why this method is called explicit. It can be shown (see, for example, [41])

that this method is stable if 0 < α ≤ 1
2

and unstable if α > 1
2
. Hence, to ensure

that the explicit method converges we need to choose a sufficiently small time step,

so that

∆t ≤ 1

2
(∆x)2. (1.54)

Implicit finite-difference methods are used to overcome the stability limitations

imposed by the restriction 0 < α ≤ 1
2
, which applies to the explicit method. Implicit

methods allow us to use a large number of x-mesh points without having to take
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extremely small time steps.

One of the best known implicit schemes is the Crank-Nicolson Method, which is

essentially an average of the implicit and explicit methods, and has the form

um+1
n − umn

∆t
=

1

2

(
umn+1 − 2umn + umn−1

∆x2
+
um+1
n+1 − 2um+1

n + um+1
n−1

∆x2

)
. (1.55)

Rearranging, we obtain the system of difference equations

um+1
n − 1

2
α
(
um+1
n−1 − 2um+1

n + um+1
n+1

)
= umn +

1

2
α
(
umn−1 − 2umn + umn+1

)
, (1.56)

where, as before, α = ∆t/∆x2. Note that um+1
n , um+1

n−1 and um+1
n+1 are now deter-

mined implicitly in terms of all the umn , umn+1 and umn−1. This system of equations is

then solved using the techniques of LU decomposition and SOR (Successive Order

Relaxation). It can be shown that the Crank-Nicolson method is both stable and

convergent for all values of α > 0.

1.7 Outline of Thesis

This thesis is motivated by a collaboration with the National Centre for Sensor Re-

search (NCSR) and the Biomedical Diagnostics Institute (BDI) at Dublin City Uni-

versity. We use mathematical and computational modelling techniques to characterize

the biosensor response as a function of its input parameter in a wide range of physical

contexts; it can guide experiments and therefore reduce development times and costs.

Several models of varying complexity are proposed in answer to experimental prob-

lems, usually concerned with optimizing design parameters for biosensors. One main

concern is to simplify the models as much as possible, without the loss of important
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information from the original problem.

Chapter 1 provides some background material, which includes the motivation for

studying biosensors as well as an elementary description of their structure and func-

tionality. This chapter also includes an introduction to basic chemical kinetics and

the well-known Michaelis-Menten model for enzyme-substrate interactions.

In Chapter 2, we describe a method for accurate determination of kinetic rate con-

stants for an immobilized enzyme, based on experimental procedure and statistical

analysis. We then present three simple problems involving immobilized horseradish

peroxidase (HRP) and diffusion of its substrate, hydrogen peroxide, to the reaction

site. The models consist of diffusion equations with reaction boundary conditions.

The experimental work was conducted in parallel with the mathematical and compu-

tational modelling, using precisely determined physical constants, and the two sets of

data are then compared.

Chapter 3 introduces mathematical models for antigen-antibody interactions which

are relevant to immunosensing devices. We first look at the kinetics of the binding

reaction in a direct assay (which is modelled by a system of ordinary differential equa-

tions) and then study the effects of transport. Two simple problems are presented,

namely the diffusion of an analyte in a small cell (which is a simplified model for a

pregnancy testing device) and transport of analyte by convection in a flow channel

(which is relevant to the BIACORE device). In both these problems, the other reac-

tant is surface-bound.
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In Chapter 4, we investigate the problem of optimizing the design of a bi-enzyme

biosensor by binding the ratio of two immobilized enzymes which maximizes signal

amplitude. This problem represents a necessary first step towards modelling the

enzyme-channelling immunoassay.

In Chapter 5, we construct a model for a biosensor based on the same enzyme

coupling in order to detect the immunological reaction between avidin and biotin.

This time we consider a combination of avidin and HRP immobilized on an electrode

and a fluid sample containing biotin and GOX-labelled biotin. The specific avidin-

biotin interaction brings the biotin-GOX conjugate close to the immobilized HRP on

the electrode surface, using a constant biotin-GOX concentration and increasing the

concentration of free biotin, we can construct theoretical calibration curves for biotin

determination.

Finally, a summary of the work from the previous chapters is given, and further

suggestions on modelling biosensor problems are made.
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Chapter 2

Enzyme Substrate Interactions

with Free and Immobilized Enzyme

This chapter investigates the electrochemical response of an immobilized enzyme and

introduces concepts which will be used extensively in Chapters 4 and 5. We present an

experimental and theoretical method for accurate determination of Michaelis-Menten

kinetic rate constants (KM , kcat, and Vmax) for immobilized horseradish peroxidase

(HRP), followed by three simple examples where the experimental work was con-

ducted in parallel with the mathematical and numerical modelling. There is good

agreement between the results of these procedures if precisely determined physical

constants are used for the simulations.
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2.1 Determination of Rate Constants for Free and

Immobilized Enzymes

Immobilized enzymes are used extensively in the manufacturing of electrochemical

biosensors as well as in other scientific fields. In order to characterize the efficiency

of the deposited biological molecule and understand its reaction mechanism it is nec-

essary to determine the kinetic rate constants. However, the calculation of these

constants requires a precise experimental determination of the amount of enzyme im-

mobilized on the solid surface. In this section we summarize a method for accurate

determination of real kinetic rate constants based on the Michaelis-Menten model.

The experimental work was performed by our collaborators at NCSR and the results

of this collaboration can be found in [24].

Recall that the Michaelis-Menten kinetic scheme is given by

E + S
k1
�
k−1

C
kcat−→E + P, (2.1)

and the associated mathematical model was presented in Section 1.3.1 (note that

kcat = k2). We now review some of the kinetic constants in this scheme and their

significance. Recall that the Michaelis-Menten constant KM is defined as the con-

centration of substrate at which the rate of the enzyme reaction reaches half of its

maximum value Vmax. The constant kcat is the catalytic turnover number of the

enzyme. This represents the number of substrate molecules that are converted into

product by an enzyme molecule in a time unit when the enzyme is fully saturated by

the substrate. As discussed in Section 1.3.1, if the total amount of the active enzyme
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is known and the maximum catalytic rate (Vmax) is calculated, the catalytic turnover

number of the enzyme can be calculated from the equation

Vmax =
kcat
KM

[Et], (2.2)

where [Et] represents the concentration of enzyme at time t. The specificity con-

stant, kcat/KM , measures how fast the enzyme binds the substrate and how fast it

converts it to product. This is a very useful kinetic constant as it reflects the speci-

ficity of an enzyme for a particular substrate.

The enzyme used for this problem is horseradish peroxidase (HRP), which be-

longs to the family of heme peroxidases and its catalytic activity has been extensively

studied (see [21], [34]). Although it is well known that HRP follows an irreversible

ping-pong mechanism [14], the Michaelis-Menten scheme has been used extensively

before [21] and found to be a good approximation under certain conditions. HRP is

immobilized on a screen printed carbon electrode modified with electropolymerised

polyaniline/polyvinylsulphonate (PANI/PVS), and its kinetics with the substrate hy-

drogen peroxide (H2O2) is monitored using amperometric I-t curve methods. We refer

the reader to [24] for more details regarding the experimental procedures.

In this study, linear regression analyses were performed using well-known scien-

tific graphing and data analysis software such as Microsoft Excel and SigmaPlot.

Values of the standard deviation, relative standard deviation, confidence intervals

and confidence limits as well as significance tests are determined for the experimental

data derived. As in most scientific literature, the error bars presented in the graphs
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represent the calculated standard deviations about the mean value of the replicates.

However, standard deviations only give a measure of the spread of a set of results

about their mean value and do not indicate the way in which the results are dis-

tributed. Therefore, confidence intervals are graphed to illustrate the precision of the

results obtained. The 99% confidence limit is chosen for this work to increase the level

of certainty that the true value lies on that interval. Relative standard deviations or

standard errors calculated are used for comparing the precision of the results. These

are important in calculations requiring error propagation which cannot be shown by

the confidence intervals or standard deviations. In experimental procedures where

the final result depends on the many variables calculated before, systematic errors as

well as random errors are most likely to affect the true value estimation. In order to

decide if the difference between the measured and standard amounts can be accounted

for by these random errors a simple significance test can be employed. The signifi-

cance of differences in the values of parameters determined for distinct populations of

electrodes is calculated using Analysis of Variance (ANOVA) in Excel with α = 0.01

taken to indicate statistical significance level.

We note again that an essential step towards determining rate constants for immo-

bilized enzymes consists of finding the relationship between the solution concentration

of enzyme and the resulting mass on the electrode. The procedure presented in [24]

(which was based on previous work in [34]) uses a linear regression analysis of two

colorimetric calibration assays with the enzyme in solution and immobilized enzyme
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and the following equation is obtained

Mass of immobilized enzyme = 0.00098[HRP]− 5.26844× 10−6, (2.3)

where [HRP] represents solution concentration (measured in mg/ml). The correla-

tion between the solution concentration and the amount of immobilized enzyme is

plotted in Figure 2.1. Note that this equation is only valid for the linear region of the

assay (the full equation presented in [34] shows a logarithmic dependence of immobi-

lized mass on solution concentration) and that the linear region usually depends on

experimental factors.

Figure 2.1 – Correlation between the concentration of horseradish peroxidase in solu-

tion and the mass of the enzyme immobilized on the electrode surface.

GraphPad prism software [35] was used to perform the non-linear regression anal-

ysis. For the best-fit graph, the enzyme kinetics and Michaelis-Menten options were
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selected, so the polynomial equation used, namely,

Y =
Bmax ·X
kd +X

, (2.4)

had the same form as the Michaelis-Menten equation (see (2.5) below). The goal

of nonlinear regression is to find the best-fit values of the parameters; these were

reported automatically with the best-fit curve and are presented in Table 2.1.

KM (mM) Vmax (mM/s) kcat (s−1) R2

Lineweaver-Burk plot 3.59 (±0.73) 0.0066 (±0.0012) 2899 (±560) 0.9876

Eadie-Hofstee plot 2.87(±0.51) 0.0060(±0.0006) 2643(±264) 0.9143

Hanes plot 2.31(±0.28) 0.0052(±0.0003) 2291(±132) 0.9926

Non-linear 2.52(±1.09) 0.0058(±0.0010) 2537(±441) 0.9696

Table 2.1 – Calculated kinetic constants of a hydrogen peroxide reaction with

horseradish peroxidase in buffer solution (pH= 6.8) (in parentheses are the standard

errors).

In order to determine the enzyme rate constants KM , kcat and maximum velocity

Vmax, linearized models have been used such as Lineweaver-Burk (which was presented

in Section 1.3.2) or alternative methods such as Eadie-Hofstee and Hanes plots. These

models transform the Michaelis-Menten equation

V =
VmaxS

KM + S
(2.5)

into a form that can be graphed as a straight line. Non-linear regression analysis,

for instance, gives good quality results as it fits the best curve in the experimental
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data using all the repetition values and not the mean values, and it does not in-

volve any enlargement of the experimental errors. However, these methods require

good balancing of the parameters and computational software and that is why most

people generally continue to analyze their data using the linear methods. Therefore,

all these different methods are used to calculate the solution phase rate constants of

horseradish peroxidase and all of these results are presented in Table 2.1. All the val-

ues from the linear methods were calculated using linear regression analysis with 99%

confidence intervals. The non-linear regression analysis results were calculated using

95% confidence intervals. The data presented in Table 2.1 and Figure 2.2, especially

the R2 and standard error values, indicate that the linear regression line is close to

the mean experimental values and calculated values for Michaelis-Menten constants

and catalytic turnovers derive a good level of precision since the standard errors

are acceptable. The calculation is performed manually using the regression equation

and its errors. Hanes and Eadie-Hofstee values are close to the values calculated by

the non-linear regression analysis. Additionally, the calculated standard error values

for both the Hanes and Eadie-Hofstee methods are lower than the Lineweaver-Burk

method. These two methods were considered to have good accuracy and precision

compared with the Lineweaver-Burk method. Our values are KM = 2.522 mM and

Vmax = 0.0058 mM/s for hydrogen peroxide as the substrate, and are within the range

of previously reported values and this allowed verification of the experimental pro-

cedure for the calculation of the rate constants and also confirmed the values which

were proven by statistical analysis to show acceptable precision.
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Figure 2.2 – Linearized and non-linearized treatments for calculation of the Michaelis-

Menten rate constants (n = 3, p = 0.01). (a) Lineweaver plot: the reciprocal of reaction

rate is plotted against the reciprocal of the concentration of the substrate; (b) Hanes

plot: the ratio of the concentration of the substrate over the reaction rate is plotted over

the concentration of the substrate; (c) Eadie-Hofstee plot: the reaction rate is plotted

against the ratio of the reaction rate over the substrate concentration; (d) Non-linear

regression fit.
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Measurement of the theoretical enzyme surface concentration:

The enzyme surface concentration has units of mol/L which is derived from the equa-

tion

I =
nFAL[Et]kcatKs[S]

[S] +KsKM

. (2.6)

So after calculating the mass of the enzyme immobilized at the electrode surface with

equation (2.3), the mass has to be converted into a concentration with a volume de-

fined by the area of the electrode and the height of an enzyme monolayer. Assuming

that the enzyme forms a monolayer on the electrode surface and that molecules form

a uniform close packed structure, an approximate volume can be calculated by mul-

tiplying the electrode surface area (A = 7.07× 10−6 m2) with the enzyme’s molecule

diameter (5.2×10−9 m). The volume is calculated to be 3.7×10−14 m3. Consequently,

all the enzyme surface concentrations were calculated and the results are shown in

Table 2.2.

The number of enzyme molecules which would form a monolayer on the defined

electrode area, assuming a flat two-dimensional surface and employing a hexagonal

close-packing sphere model, are calculated to be 9.5 × 1012 molecules. Nevertheless,

this type of theoretical calculation of the molecules can overestimate the real number

which forms a monolayer during immobilization.
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S (mg/ml) E (mM) kcat (s−1) KM (mM) kcat/KM (s−1 (mM)−1)

0.01 2.825 45.514 0.168 270.92

0.025 12.066 15.460 0.501 30.85

0.05 27.149 21.155 0.735 28.78

0.075 42.776 8.625 0.779 11.07

0.1 57.555 11.080 0.610 18.16

0.125 73.486 27.940 6.443 4.34

0.25 148.773 45.725 6.873 6.65

Table 2.2 – Typical values of solution HRP (S) and immobilized enzyme (E) concen-

trations and reaction constants.

2.2 A Model for Free Enzyme Diffusion

In this section we present a mathematical model for an enzyme-substrate reaction

taking place while the reactants are free to diffuse inside a small cell. As usual, the

reaction follows the Michaelis-Menten scheme

E + S
k1
�
k−1

C
kcat−→E + P. (2.7)

Since the reaction takes place throughout the whole cell, it would be difficult (both

experimentally and theoretically) to measure the electrical signal generated. This

problem is therefore of little practical interest for biosensing applications but is in-

cluded here for completeness. We assume that diffusion is one-dimensional so the

physical domain is modelled as the interval [0, L].
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We model the situation where the enzyme is initially distributed uniformly through-

out the cell, while the substrate is introduced at a given concentration near the top

of the cell. The mathematical model consists of the following reaction-diffusion equa-

tions

∂[E]

∂T
= De

∂2[E]

∂X2
+ (k−1 + kcat)[C]− k1[E][S], (2.8)

∂[S]

∂T
= Ds

∂2[S]

∂X2
+ k−1[C]− k1[E][S], (2.9)

∂[C]

∂T
= Dc

∂2[C]

∂X2
− (k−1 + kcat)[C] + k1[E][S], (2.10)

∂[P ]

∂T
= Dp

∂2[P ]

∂X2
+ kcat[C], (2.11)

where E(x, t), S(x, t), C(x, t) and P (x, t) represent the concentration of enzyme,

substrate, complex and product respectively at time t and position x, and Ds, Dp, De

and Dc are the diffusion constants of the reaction. These equations are supplemented

by zero-flux boundary conditions at both ends of the diffusion cell, namely;

∂S

∂x
(L, t) =

∂P

∂x
(L, t) =

∂E

∂x
(L, t) =

∂C

∂x
(L, t) = 0,

∂S

∂x
(0, t) =

∂P

∂x
(0, t) =

∂E

∂x
(0, t) =

∂C

∂x
(0, t) = 0,

with initial conditions as described above,which are;

E(x, 0) = E0, for all x ∈ [0, L], (2.12)

S(x, 0) =

S0, x = L (2.13a)

0, otherwise, (2.13b)

C(x, 0) = P (x, 0) = 0. (2.14)

The system of equations described above is solved numerically using a standard finite

difference scheme. Numerical values for all parameters are shown in Table 2.3 and the
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time evolution of the concentration profiles for all reactants and products is shown in

Figures 2.3, 2.4, 2.5 and 2.6. Note that values for the kinetic constants KM and kcat

are chosen in accordance with our results presented in Section 2.1 (see Table 2.1).

Description Constant Value

Diffusion layer depth (m) L 14× 10−3

Diffusion constants (m2/s):

Substrate Ds 1.5× 10−9

Enzyme Dp 7.05× 10−11

Complex De 7.05× 10−11

Product Dc 2.3× 10−9

Reaction rate constant (m3/mol·s) k1 102

Reaction rate constants (s−1) k−1 10−1

Constant s−1 kcat 45.7

Michaelis-Menten constant (mM) KM 2.52

Initial concentrations:

Total enzyme (mol/m2) E0 7.768× 10−7

Substrate (mol/m3=mM) S0 0.25

Table 2.3 – Typical values for constants.
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Figure 2.3 – Time evolution of enzyme.

Figure 2.4 – Time evolution of substrate.
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Figure 2.5 – Time evolution of complex.

Figure 2.6 – Time evolution of product.
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2.3 Modelling Experimental Configurations Involv-

ing Immobilized Enzymes

In this section we assume that enzyme is immobilized on the surface of an electrode,

which is placed at the bottom of a cell. We are going to examine three models

corresponding to three experiments carried out in this setting, with different initial

conditions. In all three experiments, the physical processes taking place are diffusion

of substrate through the cell, followed by reaction of substrate with the immobi-

lized enzyme at the electrode. The enzyme-substrate interaction is modelled by the

Michaelis-Menten scheme (2.7) and is an example of a so-called surface-volume re-

action, which involves a free moving species and an immobilized one. Note that the

complex once formed, is also surface-bound, while the product P is free to diffuse.

As usual, we assume the rate of formation of product at the electrode is proportional

to the current measured experimentally.

We assume the enzyme forms a monolayer on the electrode, so that all reactions

occur at the lower boundary of the diffusion domain. For simplicity we also assume

the model to be one-dimensional, where the spatial variable measures distance from

the electrode, x = 0 corresponds to the electrode boundary while x = L is the upper

cell surface. The following notations are used:

• E(t) : enzyme concentration;

• S(x, t) : substrate concentration;

• C(t) : complex concentration;
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• P (x, t) : final product concentration.

The mathematical model consists of the following diffusion equations for substrate

and product plus boundary conditions of reactive type at the electrode (i.e., at x = 0):

∂S

∂t
= Ds

∂2S

∂x2
, 0 ≤ x ≤ L, t ≥ 0, (2.15)

∂P

∂t
= Dp

∂2P

∂x2
, 0 ≤ x ≤ L, t ≥ 0, (2.16)

Ds
∂S

∂x
(0, t) = k1ES − k−1C, (2.17)

Dp
∂P

∂x
(0, t) = kcatC(0, t), (2.18)

dE

dt
= −k1ES + (k−1 + kcat)C, (2.19)

dC

dt
= k1ES − (k−1 + kcat)C. (2.20)

In addition, we have the enzyme conservation law E+C = E0, where E0 is the initial

concentration of enzyme. The boundary conditions at x = L and initial conditions

will be different for each of the three experiments we shall consider and they will be

specified later.

2.3.1 Experiment 1: Finite Substrate Addition

The first experiment assumes that a finite amount of substrate is added to the cell

at time t = 0, at a point close to the free surface as shown in Figure 2.7. We model

this situation by adding initial conditions

S(x, 0) =

 S0, if x = L

0, otherwise,

E(0) = E0, C(0) = 0, P (x, 0) = 0, (2.21)

52



Figure 2.7 – A schematic representation of Experiment 1, where substrate is introduced

at a single point in the cell.

and boundary conditions

Ds
∂S

∂x
(L, t) = 0, Dp

∂P

∂x
(L, t) = 0, (2.22)

to the generic diffusion equations and boundary conditions (2.15)-(2.20). Zero-flux

boundary conditions are assumed at the free surface since no chemical species can

leave the solution. A standard finite difference method is used to solve the system

of equations (2.15)-(2.20) and some numerical solutions are shown in Figures 2.8 and

2.9. We use the numerical values displayed in Table 2.4.

Figure 2.8 illustrates the time evolution of the two spatially dependent species,

product and substrate. (The values on the vertical axis represent distance from

the electrode.) Figure 2.9 shows the time evolution of the current intensity as a
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Description Constant Exp. 1 Exp. 2 Exp. 3

Diffusion layer depth

(m) L 14× 10−3 14× 10−3 14× 10−3

Diffusion constants

(m2/s)

Substrate Ds 1.5× 10−9 1.5× 10−9 1.5× 10−9

Product Dp 2.3× 10−9 2.3× 10−9 2.3× 10−9

Reaction rate constant

(m3/mol·s) k1 102 102 102

Reaction rate constants

(s−1) k−1 10−1 10−1 10−1

kcat 45.7 27.9 45.7

Michaelis-Menten constant

(mM) KM 6.78 6.44 6.78

Initial concentrations

Total enzyme (mol/m2) E0 7.87× 10−7 3.768× 10−7 7.87× 10−7

Substrate (mol/m3=mM) S0 0.1− 0.5 0.05− 0.25 0.1− 0.5

Table 2.4 – Typical values for constants.

function of time, from numerical integration of the mathematical model (left) and

experimental measurements (right). The maximum values of these curves are then

plotted as functions of the substrate concentrations in Figure 2.10.
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Figure 2.8 – Product and substrate concentration gradients in Experiment 1.

Figure 2.9 – Current profile as a function of time for different substrate concentrations

(Experiment 1).
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Figure 2.10 – Comparison between the simulation results (top) and experimental data

(bottom) for recorded peak current intensity as a function of substrate concentration

(Experiment 1).
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2.3.2 Experiment 2: Uniformly Distributed Substrate

The second experiment assumes that a finite amount of substrate is uniformly dis-

tributed into the cell at time t = 0 as shown in Figure 2.11. In this experimental

Figure 2.11 – A schematic representation of Experiment 2, where substrate is uni-

formly distributed.

setting, the substrate and enzyme are initially separated by a thin board but after

removing the board, they react with each other and product is formed. We model

this situation using the following initial and boundary conditions:

E(0) = E0, S(x, 0) = S0, C(0) = 0, P (x, 0) = 0, (2.23)

Ds
∂S

∂x
(L, t) = 0, Dp

∂P

∂x
(L, t) = 0. (2.24)

Once again, we use the numerical values displayed in Table 2.4. Figure 2.12 shows

the time evolution of product and substrate concentrations throughout the cell (in

this simulation, we use S0 = 1.). Again, Figure 2.13 shows a comparison between the
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simulation results and experimental data for the time evolution of recorded current

intensity, while Figure 2.14 plots the maximum values of these currents as functions

of initial substrate concentration.

Figure 2.12 – Product and substrate concentration gradients in Experiment 2.

Figure 2.13 – Current profile as a function of time for different substrate concentrations

(Experiment 2).
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Figure 2.14 – Comparison between the simulation results (top) and experimental data

(bottom) for recorded peak current intensity as a function of substrate concentration

(Experiment 2).
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2.3.3 Experiment 3: Flow Injection Analysis

The third experiment is a flow injection analysis (FIA) as shown in Figure 2.15, where

Figure 2.15 – A schematic representation of Experiment 3, a flow injection analysis.

substrate solutions of different concentrations are passed over the electrode and the

corresponding currents are recorded. In this section we do not model the flow effect

and the existence of the convective zone is only reflected by the boundary conditions

imposed at the top of the diffusion layer. A more detailed analysis of a similar

experiment, which includes modelling diffusion and convection, is given in Chapter 4.

The system of equations (2.15)-(2.20) are now supplemented by the following initial

conditions and surface boundary conditions:

S(x, 0) =

 S0, if x = L

0, otherwise,
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E(0) = E0, C(0) = 0, P (x, 0) = 0, (2.25)

S(L, t) = S0, P (L, t) = 0. (2.26)

These boundary conditions express the fact that the substrate concentration at the

top of the diffusion layer is kept constant by the flow, while the product is continu-

ously flushed away, so its surface concentration is zero. The numerical values for all

constants used in simulations of Experiment 3 can be found in Table 2.4. Figure 2.16

shows the time evolution of product and substrate concentrations throughout the cell.

Figure 2.17 shows the time evolution of the recorded current as calculated from the

numerical simulations (left) and measured experimentally (right). The reason why

the curves are different in the two pictures is that, at the time when the experimental

work was carried out, a continuous flow of substrate through the cell could not be

achieved so a finite amount of H2O2 was used instead. As a consequence, the current

profile reaches a peak and then decays (once the flow of substrate is diminished) in

contrast with the model simulation where due to a constant concentration of sub-

strate, the signal steady state is maintained. However, if we compare the maximum

values of these signals, Figure 2.18 shows a reasonable similarity between simulation

and experiment.
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Figure 2.16 – Product and substrate concentration gradients in Experiment 3.

Figure 2.17 – Current profile as a function of time for different substrate concentrations

(Experiment 3).

62



Figure 2.18 – Comparison between the simulation results (top) and experimental data

(bottom) for recorded peak current intensity as a function of substrate concentration

(Experiment 3).
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2.4 Conclusions

We presented a method for determining Michaelis-Menten kinetic constants (KM , kcat

and Vmax) for horseradish peroxidase immobilized at a conduction polymer-modified

electrode, based on experimental work and statistical analysis. It was found that, in

general, immobilized enzyme is much less efficient at converting substrate than en-

zyme in solution. Possible explanations include conformational changes of the enzyme

during deposition or obstruction of its active sites at the polymer-enzyme interface.

The mass of immobilized enzyme was correlated with concentrations derived from

solution-phase enzyme assays and the results presented in Table 2.1 indicated that

this mass has a significant impact on the rate constants. It was also found that the

enzyme efficiency is greater at lower enzyme loadings, possibly because enzyme ac-

tivity is negatively influenced by adjacent molecules on the immobilization surface.

We then presented three simple experimental problems and related mathematical

models. The immobilized enzyme concentration was carefully matched with kinetic

rate constant values, for both experimental work and numerical simulations. The

results show good agreement.
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Chapter 3

Biomolecular Interactions

Biomolecular interactions are central to understanding disease mechanisms and de-

vising safe and effective drugs. In this chapter we introduce mathematical models

for antibody-antigen interactions which are relevant to immunosensors. We look at

the kinetics of the binding reaction in a direct assay and then study two problems

where the antibody is bound to a surface while the antigen is transported by diffusion

alone in a small cell or convected in the BIACORE device. The BIACORE modelling

framework introduced here will be relevant to the flow injection experiment discussed

in Chapter 4.

3.1 Kinetics of Antibody-Antigen Interactions

As mentioned in Section 1.1.2, immunosensors involve a binding reaction between

an analyte and at least one antibody (see Figure 3.1). We begin this chapter by

analyzing the kinetics of this simple reaction which lies at the heart of all (direct,
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Figure 3.1 – Antibody-antigen interactions.

competitive or sandwich) immunoassays.

The antibody-antigen interactions can be expressed symbolically by the following

reaction equation

A+B
k1
�
k−1

P, (3.1)

where A represents the antigen, B represents the antibody, and P represents the prod-

uct of antibody and antigen. Reaction (3.1) has a forward (association) reaction rate

of k1 and a backward (dissociation) reaction rate of k−1, where the forward reaction

rate is very large (approximately 1000 times bigger than the reaction rate constant

k1 in the Michaelis-Menten kinetics) while the backward reaction is very slow and is

therefore often neglected. This fact reflects the high affinity between antigen and its

corresponding antibody.

The dynamics of the system are described by the following system of ordinary

differential equations
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dA

dt
= −k1AB + k−1P, (3.2)

dB

dt
= −k1AB + k−1P, (3.3)

dP

dt
= k1AB − k−1P, (3.4)

with initial conditions A(0) = A0, B(0) = B0 and P (0) = 0, where A0 and B0 are

constants. Note that in the system of equations (3.2)-(3.4),

dA

dt
+
dP

dt
= 0 and

dB

dt
+
dP

dt
= 0;

these together with the initial conditions give the associated conservation laws,

A+ P = A0, B + P = B0. (3.5)

Since the equilibrium values A∗, B∗ and P ∗ can be measured experimentally, we can

determine that

k1
k−1

=
P ∗

A∗B∗
.

Using the above conservation laws, equations (3.2)-(3.4) can be reduced to a single

equation in terms of P and is given as follows,

dP

dt
= k1(A0 − P )(B0 − P )− k−1P. (3.6)

The equilibrium value, P ∗, is given by the smaller root of the quadratic equation

P 2 − P (A0 +B0 +
k−1
k1

) + A0B0 = 0, (3.7)

since we must select the root that satisfies P ∗ < min(A0, B0). This gives the equilib-

rium product, P ∗, as a function of initial antigen concentration A0 (where B0 is fixed)
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and plotting this relationship will produce an increasing calibration curve which is

the characteristic of direct assays.

3.2 A Diffusion Model for Antibody-Antigen In-

teractions

In this section we present a model for a simple experiment where the two species

antibody and antigen are contained within a small cell, which we represent math-

ematically as a one-dimensional spatial domain. More specifically, we consider the

case where the antibody is immobilized on a surface while the antigen is free to dif-

fuse. The interaction of the two species is governed by an equation of type (3.1). A

similar problem was presented in [22] and [23], where it was presented as a simplified

analysis (ignoring competitive effects) of a Fluorescence Capillary-Fill Device, a type

of pregnancy test studied in [3]. The time evolution of the antigen concentration,

A(x, t), can be described by the diffusion equation

∂A

∂t
= D

∂2A

∂x2
, x ∈ (0, L), t ≥ 0, (3.8)

where x = 0 represents the immobilization surface while x = L is the free surface of

the cell. We assume that, initially, the antigen is uniformly distributed throughout

the cell; hence

A(x, 0) = A0. (3.9)

68



The boundary conditions are:

∂A

∂x
(L, t) = 0, (3.10)

D
∂A

∂x
(0, t) = k−1P (t)− k1A(0, t)B(t), (3.11)

where B(t) is the concentration of immobilized antibody and P (t) is the concentration

of product. Note that we also have the kinetic equations

dB

dt
= −dP

dt
= k−1P (t)− k1A(0, t)B(t), (3.12)

with initial conditions

B(0) = B0, P (0) = 0. (3.13)

This model can be written solely in terms of A(x, t) by using the antigen conservation

law ∫ L

0

A(x, t)dx+ P (t) = constant, (3.14)

which gives

P (t) = A0L−
∫ L

0

A(x, t)dx. (3.15)

A similar conservation law for antibody gives

B(t) + P (t) = constant, (3.16)

hence

B(t) = B0 − P (t) = B0 − A0L+

∫ L

0

A(x, t)dx. (3.17)
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Substituting B(t) and P (t) into our original model, yields:

∂A

∂t
= D

∂2A

∂x2
, (3.18)

A(x, 0) = A0, (3.19)

∂A

∂x
(L, t) = 0, (3.20)

D
∂A

∂x
(0, t) = k−1P (t)− k1A(0, t)(B0 − P (t)), (3.21)

P (t) +

∫ L

0

A(x, t)dx = A0L. (3.22)

The model can be non-dimensionalised by introducing the variables

x̄ =
x

L
, t̄ =

Dt

L2
, a(x̄, t̄) =

LA(x, t)

B0

, b(t̄) =
B(t)

B0

, p(t̄) =
P (t)

B0

. (3.23)

As a consequence, equations (3.8) to (3.13) become

∂a

∂t
=
∂2a

∂x2
, x ∈ (0, 1), t ≥ 0, (3.24)

∂a

∂x
(1, t) = 0, (3.25)

∂a

∂x
(0, t) = αp(t)− βa(0, t)b(t), (3.26)

∂b

∂t
(t) = −∂p

∂t
(t) = αp(t)− βa(x, t)b(t), (3.27)

where

α =
k−1L

2

D
, β =

k1LB0

D
, (3.28)

with initial conditions

a(x, 0) = a0 =
A0L

B0

, b(0) = 1, p(0) = 0, (3.29)

where we have dropped the bars for convenience. The equations (3.18) to (3.22)
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become

∂a

∂t
=
∂2a

∂x2
, x ∈ (0, 1), t ≥ 0, (3.30)

∂a

∂x
(1, t) = 0, (3.31)

∂a

∂x
(0, t) = αp(t)− βa(0, t)[1− p(t)], (3.32)

p(t) +

∫ 1

0

a(x, t)dx = a0. (3.33)

A detailed mathematical analysis of this model for antibody-antigen interactions is

given in [30] and [31] for the purpose of proving existence and uniqueness of solutions.

It is also shown that the diffusion equation and associated boundary conditions for

A(x, t) can be written in an equivalent form as a system of coupled Volterra integro-

differential equations involving the unknown functions

φ1(t) = a(0, t), (3.34)

φ2(t) =

∫ 1

0

a(x, t)dx, (3.35)

which are then solved numerically. We now give a numerical solution for this model

by integrating equations (3.8)-(3.13) directly using a finite difference scheme. The

parameter values used in this numerical simulation are supplied by our BDI/NCSR

collaborators and are shown in Table 3.1. Note that the ratio between the associa-

tion and dissociation rates, k1/k−1 is of order 105 m3/mol, which is consistent with

literature values for generic biomolecular interactions.

Figure 3.2 shows the antigen concentration as a function of time and distance from

the reaction boundary. Figure 3.3 shows the time evolution of the bound product for

different values of the initial antigen concentration; the steady-states obtained in

71



Description Constant Value

Diffusion layer depth (m) L 2× 10−3

Diffusion constant (m2/s) Ds 1.5× 10−9

Reaction rate constant (m3/mol·s) k1 102

Reaction rate constant (s−1) k−1 10−3

Initial concentrations:

Antibody (mol/m2) B0 3.768× 10−7

Antigen (mol/m3=mM) A0 0− 10−3

Table 3.1 – Typical values for constants.

Figure 3.2 – Time evolution of the antigen concentration gradient across the cell.

72



Figure 3.3 – Dependence of binding product on time for different A0.

the simulation are subsequently used for constructing the calibration curve shown in

Figure 3.4. Finally, Figure 3.5 shows the time evolution of the functions φ1(t) (the

antigen concentration at the reactive surface) and φ2(t) (the total amount in the cell);

these profiles are similar to those obtained in [22].

3.3 Mathematical Modelling for BIACORE

One of the most widely used optical biosensors is the BIACORE instrument which is

used for real-time determination of reaction rates for biomolecular interactions. The

operation of this instrument is based on an optical phenomenon called Surface Plas-

mon Resonance (SPR) to monitor the interaction between a surface-bound molecule

(called the ligand) and an analyte contained in a solution sample which is passed

over the surface. The SPR response is a measure of the refractive index at the surface
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Figure 3.4 – Calibration curve for antigen.

Figure 3.5 – Time evolution of the functions φ1(t) (blue curve) and φ2(t) (green curve).

of the sensor chip and is therefore directly related to the concentration of analyte

bound to the ligand. The BIACORE system cannot be used for experiments which

involve the two reactants mixed together in the solution. However, many biochemical

74



Figure 3.6 – (a) BIACORE. (b) BIACORE flow channel.

reactions occur between an immobilized reactant and another which is floating freely

in solution. (See [15] for a list of examples.)

The BIACORE device consists of a flow channel through which one of the reactants

(the analyte) is convected from an inlet position, usually represented in the model as

x = 0. The other reactant (the receptor) is immobilized on a sensor surface on the top

of the channel. The time evolution of the binding of these reactants is monitored and

the data is used for the determination of the rate constants. We use the coordinate

system shown in Figure 3.6 (b) where the x-axis is parallel to the flow and the y-axis is

perpendicular to the sensor surface. The channel coordinates are given by 0 ≤ x ≤ l,

0 ≤ y ≤ h, and we assume that the cross section is rectangular. Standard dimensions

for the BIACORE system are l = 0.24 cm, w = 0.05 cm and h = 0.005 cm (see [39]).

We assume that the analyte is convected by a standard two-dimensional Poiseuille

flow so that the velocity profile is parabolic for 0 ≤ x ≤ l, equal to zero at the top

(y = h) and bottom (y = 0) boundaries, and maximal and equal to vc in the centre
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(y = h/2). The velocity v(y) at a height y above the sensor surface is given by

v(y) = 4vc(
y

h
)(1− y

h
). (3.36)

We also make the assumption that the fluid flow is not affected by the presence of

the analyte so the velocity field is given independently of the analyte concentration

equations. In practical contexts it is often the volumetric flow rate, Q, that is

measured experimentally and used to estimate the fluid velocity. The volumetric flow

rate is defined as the volume of fluid which passes through a cross section of the

channel per unit time and has SI units of m3/s. It can therefore be calculated using

the formula

Q =

∫ ∫
A

~v · ~n dA, (3.37)

where A is the cross-sectional area of the flow channel and ~n is the unit normal to

this cross section. In the rectangular geometry described above, this surface integral

can be evaluated to yield a relationship between the volumetric flow rate Q and fluid

velocity vc as follows

Q =

∫ w

0

∫ h

0

v(y) dydz, (3.38)

= w · 4vc
h2

∫ h

0

y(h− y) dy,

=
2hwvc

3
.

As the typical flow rates in the BIACORE system range from 1 to 100 ml/min (see,

for example, [39]), the formula above yields values for the average velocity vc between

6 and 600 cm/min.
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Figure 3.7 – Parabolic flow of analyte.

There have been many modelling strategies for BIACORE presented in the lit-

erature, ranging from simple compartmental models to integro-differential equations

(see, for example, [16], [39] and [32]). Such mathematical models give analysts an

improved understanding of the biomolecular interactions and transport processes and

are often used to obtain theoretical approximations for the underlying rate constants.

In what follows, we present a partial differential equation model for BIACORE, which

describes transport by diffusion and convection, with associated boundary conditions

for describing the reactive surface. We make the simplifying assumption that the

reaction between the convected antigen and the immobilized antibody is confined to

the surface of the flow channel, unlike some previous studies (for example, [39]) where

the reactive zone is modelled as a separate layer of finite depth which is characterized

by a different set of equations. It is also assumed that the antibodies are uniformly

distributed on the sensor surface and that the height of the channel does not influence

the binding kinetics. In the flow channel, the free analyte A(t, x, y) is transported by
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diffusion and convection, which is governed by the following equation

∂A

∂t
= D(

∂2A

∂x2
+
∂2A

∂y2
)− 4vc(

y

h
)(1− y

h
)
∂A

∂x
. (3.39)

At the top of the channel (y = h) we have the zero-flux boundary condition

∂A(t, x, y)

∂y
= 0, at y = h. (3.40)

At the sensor surface (y = 0) the analyte reacts with the immobilized antibody

(according to the kinetic scheme (3.1)) as reflected in the following boundary condition

D
∂A(t, x, y)

∂y
= k1A(t, x, 0)B(t, x)− k−1P (t, x), at y = 0, (3.41)

where P (t, x) is the concentration of bound analyte-receptor complex on the cell sur-

face and B(t, x) = B0 − P (t, x) is the free surface receptor concentration. B0 is the

total receptor concentration, which is constant with respect to both position and time.

The boundary conditions in the flow direction are specified at x = 0 and x = L,

which are the end points of the reacting zone. Typical entrance and exit boundary

conditions for such continuous flow problems are given by the Danckwerts equations

(see [13])

D
∂A

∂x
= v(A− A0), at x = 0, (3.42)

where A0 is (known) upstream analyte concentration, and

∂A

∂x
= 0, at x = L. (3.43)

These boundary conditions are essentially flux balance equations (see [36] for more

detailed discussion) with the exit condition (3.43) suggesting that the analyte concen-

tration in the flow is uniform beyond the reacting zone. The initial condition reflects
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the fact that, at t = 0, there is no antigen in the flow channel, i.e.,

A(x, y, 0) = 0. (3.44)

To nondimensionalise equations (3.39)-(3.43), we use similar scalings to those in

Section 4.1, namely,

a =
A

A0

, p =
P

B0

, b =
B

B0

, x̄ =
x

l
, ȳ =

y

h
, t̄ =

tD

h2
,

which gives the following system (the bars have been omitted for simplicity)

∂a

∂t
= ε2

∂2a

∂x2
+
∂2a

∂y2
− Pe · y(1− y)

∂a

∂x
, (x, y) ∈ (0, 1)× (0, 1), t ≥ 0, (3.45)

∂a

∂y
(x, 1, t) = 0, (3.46)

∂a

∂y
(x, 0, t) = Da · a(1− p)− κp, (3.47)

∂a

∂x
(0, y, t) = v∗(a− 1), (3.48)

∂a

∂x
(1, y, t) = 0, (3.49)

a(x, y, 0) = 0, (3.50)

where

ε =
h

l
, Pe =

4h2

D

vc
l
, Da =

h2

D
k1A0, κ =

h2k−1
D

, v∗ =
vl

D
. (3.51)

The dimensionless parameter, Pe, is called the Peclét number and measures the ratio

of a characteristic diffusion time to a characteristic convection time. Typical BIA-

CORE experiments have relatively large Peclét numbers, Pe = O(102) or O(103),

which reflects the fact that in these experiments convection effects dominate diffusion

effects. Another key parameter is the Damköhler number, Da, which represents the
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ratio of the reaction rate to the diffusion rate.

The Crank-Nicolson method is used to solve the system of partial differential

equations and boundary conditions (3.45)-(3.50) as described in Section 1.6. As we

now deal with two spatial variables, we take a rectangular grid with grid spacing ∆x

in the x-direction and ∆y in the y-direction, with xi = x0 + i∆x, yi = y0 + i∆y

and tn = n∆t (for all i = 0, 1, 2 . . . , ny, n = 0, 1, 2, . . .) and take X = x0 + nx∆x,

Y = y0 + ny∆y. Then equation (3.45) is discretized as

ai,j,n+1 − ai,j,n
∆t

=
ε2

2

(
ai−1,j,n+1 − 2ai,j,n+1 + ai+1,j,n+1

∆x2
+
ai−1,j,n − 2ai,j,n + ai+1,j,n

∆x2

)
+

1

2

(
ai,j−1,n+1 − 2ai,j,n+1 + ai,j+1,n+1

∆y2
+
ai,j−1,n − 2ai,j,n + ai,j+1,n

∆y2

)
−Fy

2

(
ai+1,j,n+1 − ai−1,j,n+1

2∆x
+
ai+1,j,n − ai−1,j,n

2∆x

)
, (3.52)

where Fy = Pe · yi(1− yi).

We let

Sx = ε∆t/∆x2, Sy = ∆t/∆y2, Cx = Fy∆t/∆x,

which simplifies equation (3.52) to

(1 + Sx + Sy)ai,j,n+1 −
(
Sx

2
+
Cx

4

)
ai−1,j,n+1

−
(
Sx

2
− Cx

4

)
ai+1,j,n+1 −

Sy

2
ai,j−1,n+1 −

Sy

2
ai,j+1,n+1

= (1− Sx − Sy)ai,j,n +

(
Sx

2
+
Cx

4

)
ai−1,j,n

+

(
Sx

2
− Cx

4

)
ai+1,j,n +

Sy

2
ai,j−1,n +

Sy

2
ai,j+1,n. (3.53)
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Description Constant Value

Flow cell length (m) l 2.4× 10−3

Flow cell width (m) h 5× 10−4

Diffusion constants (m2/s) Ds 6.7× 10−10

Reaction rate constants (m3/mol·s) k1 102

Reaction rate constants (s−1) k−1 10−3

Initial concentrations:

Antibody (mol/m2) B0 3.768× 10−7

Analytes (mol/m3=mM) A0 0− 10−3

Flow velocity (m/s) v0 10−4

Table 3.2 – Typical values for constants.

Similarly, we can discretize the boundary conditions (3.46)-(3.50), and solve the

system numerically. The concentration profile of the free analyte a(x, y, t) in the flow

channel is shown in Figure 3.8 for the case of diffusion-dominated transport (v = 0).

The effect of convection on the antigen concentration is illustrated in Figure 3.9, where

we take v = 10−4 m/s. Note that the parabolic profile becomes asymmetric due to

the depletion of antigen at the reactive lower boundary of the channel. Finally, the

concentration of bound product p(x, t) is calculated from equation (3.47) and plotted

in Figure 3.10. As expected, this concentration rises initially and reaches a saturation

value when all the available binding sites have been occupied.
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Figure 3.8 – Antigen concentration profile for v = 0.

Figure 3.9 – Antigen concentration profile for v = 10−4 m/s.
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Figure 3.10 – Product at position x̄ = 0.05 cm.

3.4 Conclusions

In this chapter, we presented examples of mathematical models which incorporate

the binding kinetics of antibody-antigen interactions. Specifically, we considered first

the case where the two species are contained within a small cell (represented mathe-

matically as a one-dimensional spatial domain) where the antibody is immobilized on

a surface and the antigen is free to diffuse. The resulting mathematical model can be

used to derive the dependence of the binding product on initial analyte which can then

generate a theoretical calibration curve for the assay under consideration. Secondly,

a modelling strategy was presented for the BIACORE device, which deals with the

reaction between an immobilized ligand and a mobile analyte which is transported

by diffusion and convection. This model is useful for illustrating the behaviour of a

flow injection analysis (FIA) experiment (which will be discussed again in Chapter

4) and introduces relevant fluid dynamics concepts as well as design parameters.
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Chapter 4

An Optimization Problem for a

Bi-enzyme Electrode

In this chapter we investigate the problem of optimizing the design of a bi-enzyme

biosensor by finding the ratio of two immobilized enzymes which maximizes signal

amplitude. A new convection-diffusion model is proposed here as a generalization

to existing models and, after comparing numerical solutions, a discussion is given

regarding the best modelling strategy.

4.1 Experiment Configuration

The problem we study here is motivated by a series of experiments conducted at the

NCSR (DCU) over the past few years by a group of researchers interested in building

a biosensing platform based on a bi-enzyme electrode (see, for example, [2]). Op-

timizing the ratio of the two immobilized enzymes is a necessary first step towards
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modelling an enzyme-channelling immunoassay and we study the full problem in the

next chapter.

This study investigates a model biosensor system which consists of two enzymes

immobilized onto an electrode modified with the conducting polymer PANI/PVS

(polyaniline/polyvinyl-sulphonate). The first enzyme, glucose oxidase (GOX), cat-

alyzes the oxidation reaction of glucose to gluconic acid, with production of hydrogen

peroxide (H2O2). The second enzyme, horseradish peroxidase (HRP), is oxidised

by hydrogen peroxide and then subsequently reduced by electrons provided by the

electrode, as shown in the scheme below

β-D-glucose +O2 +H2O
glucose−→
oxidase

gluconic acid +H2O2, (4.1)

H2O2 + HRP −→ Compound +H2O, (4.2)

Compound + 2e− +H+ −→ HRP +H2O. (4.3)

The use of bi-enzyme systems has brought considerable advantages to the develop-

ment of amperometric biosensors. Cascade schemes, where an enzyme is catalytically

linked to another enzyme, can produce signal amplification and therefore increase

the biosensor efficiency. When using oxidase/peroxidase bi-enzyme systems, the de-

tection principle switches from an electrochemical oxidation to a reduction process

that happens at much lower potentials and improves the selectivity of the device.

HRP and GOX have very different kinetic characteristics which have been studied

extensively. Their substrates and products are produced at different rates and so ob-

taining the optimum performance will depend on the correct ratio of the two enzymes.
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Horseradish peroxidase (HRP) and glucose oxidase (GOX) were immobilized to-

gether in one step on the polymer-modified electrode. Different solutions containing

the two enzymes were prepared at ratios HRP/GOX ranging from 1:7 to 7:1, main-

taining a total concentration of 0.8 mg/ml, and used to immobilize the enzymes on

the electrode. For more details of the immobilization procedure, we refer the reader

to [2] or [31]. After the immobilization, the electrode is inserted in a flow-cell and

an amperometric flow-injection analysis is carried out. Glucose standard solutions at

concentrations between 0.5 and 20 mM are then passed over the electrode and the

signals recorded. The flow injection system is illustrated in Figure 4.1 (reproduced

with permission from [2]) and shows a peristaltic pump, which creates a constant flow

of the reagents over the sensor surface, and a potentiostat interfaced with a PC which

records amperometric measurements.

Figure 4.1 – Experimental set-up for FIA experiments.
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Figure 4.2 (reproduced with permission from [2]) shows a typical amperogram

recording after passing the glucose solutions over the electrode. The mass ratios

HRP/GOX in the solutions used for the immobilization can be more conveniently

expressed as molar ratios in order to visualise approximately the relative molecular

distribution on the electrode surface of the two enzymes. Figure 4.3 (also reproduced

from [2]) shows a comparison between all the sensitivities of the electrodes with

different molar ratios HRP/GOX. It can be clearly seen that the electrode prepared

with HRP/GOX at a molar ratio of 1:1 yields the highest sensitivity.

Figure 4.2 – Amperometric responses of a HRP/GOX bi-enzyme electrode to a range

of glucose concentrations between 0.5 and 20 mM at −0.1 V vs. Ag/AgCl.

It is known that the GOX enzyme used in the experiments has an activity of 1.7

U/mol protein while the activity of HRP is 5.7 U/mol protein. 1 Therefore HRP

is approximately three times more active than GOX and so, it is expected that a

1One unit U of an enzyme is defined as the amount which catalyzes the transformation of one µ

mol of substrate per minute. The enzyme specific activity is a measure of the purity of the enzyme

preparation and is defined as number of enzyme units per mass, U/mg or molar mass, U/mol.
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Figure 4.3 – Comparison of HRP/GOX ratio and sensitivity to glucose. The electrode

prepared immobilizing HRP and GOX at the molar ratio 1:1 yields the highest catalytic

signals and the highest sensitivity. The glucose concentration used in this experiment

is 20 mM.

platform with GOX in excess with respect to HRP would be most efficient. The fact

that the electrode with HRP and GOX present at molar ratio of 1:1 produced the

highest signals is surprising and leads to the hypothesis that other phenomena might

influence the response. For example, the activity of HRP may be reduced dispro-

portionately as a consequence of its immobilization on the electrode surface, and its

reliance on direct electron transfer.

A mathematical modelling strategy is sought which can describe the flow injec-

tion analysis of the bi-enzyme electrode. Numerical simulations could then be carried

out in order to determine the ratio of the two enzymes which would lead to optimal

biosensor performance and enable one to see how this ratio would respond to varia-

tions of the system parameters. The cascade reaction at the electrode represented by
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(4.1)-(4.3) can be simplified to a pair of Michaelis-Menten reactions as follows

E1 + S1

k1
�
k−1

C1
k2−→E1 + S2, (4.4)

E2 + S2

k3
�
k−3

C2
k4−→ E2 + P, (4.5)

where we have used the following notation:

E1(t, x) : first enzyme (Glucose Oxidase) concentration;

E2(t, x) : second enzyme (Horseradish Peroxidase) concentration;

S1(t, x, y) : first substrate (Glucose) concentration;

S2(t, x, y) : second substrate (Hydrogen Peroxide) concentration;

C1(t, x) : first complex concentration;

C2(t, x) : second complex concentration;

P (t, x, y) : final product concentration.

This scheme has been used extensively for modelling glucose-glucose oxidase kinet-

ics and it was also shown to be appropriate for the case of immobilized HRP in [21].

Moreover, we denote by K1
M and K2

M the Michaelis constants associated with the two

reactions, that is

K1
M =

k−1 + k2
k1

; K2
M =

k−3 + k4
k3

. (4.6)

In attempting to construct a mathematical model for this problem, we make the

following simplifying assumptions:

1. The immobilization mechanisms of the two enzymes are equally efficient on the

sensor surface under the conditions employed.
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2. Immobilization of HRP and GOX produces a geometrically close-packed spher-

ical monolayer which is spatially homogeneous.

3. The distribution of immobilized HRP and GOX molecules on the surface of the

electrode is equal in ratio to that of the solution used.

4. The electron transfer process is 100% efficient since this parameter only affects

the magnitude of the signals and not their relative responses.

4.2 Previous Models and Results

Several modelling strategies have already been proposed by our team (see, for exam-

ple, [30], [31] and [44]) to explain the behaviour of the bi-enzyme platform described

in the introduction. We summarize these models below.

Model 1

This model was first proposed in [31] and then further analyzed in [44], where it was

referred to as “the comprehensive model”. It models the flow injection experiment

as a one-dimensional diffusion problem on a domain given by 0 ≤ x ≤ L, where

convective transport effects are neglected and represented only by suitable boundary

conditions at the top of the flow cell. The dimensional equations consist of diffusion

equations for the two substrates, and are given by:

∂S1(x, t)

∂t
= D1

∂2S1(x, t)

∂x2
, 0 ≤ x ≤ L, t ≥ 0,

∂S2(x, t)

∂t
= D2

∂2S2(x, t)

∂x2
, 0 ≤ x ≤ L, t ≥ 0,
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where D1 and D2 are the diffusion coefficients. At the top boundary, S1 is in constant

supply (due to the continuous glucose injection), and S2 is assumed to be flushed away

constantly, which gives the following boundary conditions:

S1(L, t) = S0, t ≥ 0,

S2(L, t) = 0, t ≥ 0.

At the bottom boundary, the boundary conditions reflect the fact that the diffusive

flux of each substrate is equal to the corresponding reaction rate as

D1
∂S1(0, t)

∂x
= k1E1(t)S1(0, t)− k−1C1(t),

and

D2
∂S2(0, t)

∂x
= k3E2(t)S2(0, t)− k2C1(t)− k−3C2(t),

together with

dE1

dt
= −k1E1(t)S1(0, t) + (k−1 + k2)C1(t),

dE2

dt
= −k3E2(t)S2(0, t) + (k−3 + k4)C2(t),

dC1

dt
= k1E1(t)S1(0, t)− (k−1 + k2)C1(t),

dC2

dt
= k3E2(t)S2(0, t)− (k−3 + k4)C2(t).

As before, the time evolution of the current is determined from the equation

dP

dt
= k4C2(t),

and the steady-state of this variable is used in future calculations as a model for the

current amplitude. In accordance with the physical problem described above, the
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following initial conditions are imposed:

E1(0) = E0
1 , E2(0) = E0

2 , C1(0) = 0, C2(0) = 0, P (0) = 0, S2(x, 0) = 0,

S1(x, 0) =

{ S0, if x = L

0, otherwise,

where E0
1 , E0

2 and S0 are constants. We let

ζ =
E0

1

E0
2

,

which implies

E0
1 =

Eζ

1 + ζ
, and E0

2 =
E

1 + ζ
, (4.7)

where E is the total amount of enzyme present on the electrode. We can assume

that E is a constant which corresponds to full coverage of the electrode. This can be

measured experimentally (see, for example, [30]).

Figure 4.4 in [31] shows the dependence of the (steady-state) current on the

GOX:HRP ratio, ζ, for different concentrations of the first substrate, glucose (S1).

The optimal ζ values (the values which yield maximum signals) are then indicated

on each curve. Also, in Figure 4.4, we note that at low glucose concentrations, vary-

ing the ratio of the immobilized enzymes has little effect on the electrode response.

However, as the glucose concentration increases the optimal ratio value becomes more

pronounced and converges to 1 (refer to [31]). The reason for this particular limiting

value lies behind the choice of catalytic conversion constants, k2 = k4. By choosing

k4/k2 = 2, a similar pattern can be observed, where ζ∗ → 2 with increasing glucose

concentrations.
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Figure 4.4 – Dependence of current on ζ (GOX:HRP) for different initial concentra-

tions of glucose. The curves correspond to S0 = 1, 5, 10 and 20 mM from bottom to

top. The maximum value of current is indicated on each curve.

Figure 4.5 (also obtained in [31]) shows the dependence of the current on the

GOX:HRP ratio when the relative speed of the two consecutive reactions k4/k2 is

varied. Note again that, as the value of k4/k2 increases, there seems to be a wider

range of values of ζ associated with an “optimal” biosensor response.

Figure 4.5 – Dependence of current on ζ (electrode GOX:HRP ratio) for different k4/k2

values. The lower curve corresponds to k4/k2 = 0.5 and the upper curve corresponds

to k4/k2 = 8.
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Model 2

This model was first proposed in [30] and a detailed analysis is provided in [44], where

this model is referred to as “the simplified model”. This is a “one-point” model which

ignores all transport phenomena and concentrates only on the kinetic processes. The

unknown functions we deal with have no spatial dependence and represent averaged

quantities at generic points inside the flow cell. The model consists of three ordinary

differential equations, as follows

dS2

dt
= k2C1 − k3(E0

2 − C2)S2 + k−3C2, (4.8)

dC1

dt
= k1(E

0
1 − C1)S0 − (k2 + k−1)C1, (4.9)

dC2

dt
= k3(E

0
2 − C2)S2 − (k4 + k−3)C2, (4.10)

with initial conditions

S2(0) = 0, C1(0) = 0, C2(0) = 0,

where E0
1 and E0

2 are, again, given by (4.7). Due to the relative simplicity of the

model, it was possible to carry out a detailed analytical study of the solutions [44].

It is shown that the long-term behaviour of the three concentrations is given by

lim
t→∞

C1(t) =
k4ζ

k2ζ∗(1 + ζ)
, for all ζ,

lim
t→∞

C2(t) =


ζ

ζ∗(1 + ζ)
, if ζ ≤ ζ∗

1

1 + ζ
, if ζ ≥ ζ∗,

lim
t→∞

S2(t) =


ζK2

M

S0(ζ∗ − ζ)
, if ζ < ζ∗

∞, if ζ ≥ ζ∗.
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These results are easy to interpret in the context of the cascade reactions. If ζ <

ζ∗, there is a relatively small amount of E0
1 compared to E0

2 which means that the

production of S2 in the first reaction is somehow balanced by its consumption in

the second reaction and an equilibrium state can be reached. On the other hand, if

ζ ≥ ζ∗, the relatively large amount of E0
1 can facilitate the production of S2 which is

then not consumed fast enough in the second reaction so its concentration can grow

indefinitely. Moreover, it is possible to deduce an explicit formula for the optimal

GOX:HRP ratio in terms of the system parameters, given by

ζ∗ =
k4
k2

(
1 +

K1
M

S0

)
. (4.11)

This formula validates the observation made in the previous model, namely that the

optimal ratio approaches 1 for high values of the glucose concentration S0, when

k4 = k2. More generally, this formula predicts that for high glucose concentrations

the optimal enzyme ratio is equal to the inverse ratio of the catalytic conversion

rates for the two consecutive reactions, which is close to the experimental intuition.

(For example, a faster second reaction would necessitate a larger amount of the first

enzyme, GOX, for maximum efficiency.) The plot of the current (k4C
∗
2) versus ζ for

different initial concentrations of glucose is as shown in Figure 4.6; if we vary k4/k2

instead, we obtain the graphs in Figure 4.7.

Model 3

This model was first proposed in [44], where it was called “the intermediate model”,

and represents a simplified version of the comprehensive model described above where
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Figure 4.6 – Dependence of current on ζ for different initial concentrations of S0. The

curves correspond to S0 = 0.03, 0.09, 0.2 and 5 mM from the bottom to top. Typical

values for constants used in this simulation are: k1 = 102, k−1 = 10−1, k2 = 10 and

k4 = 10.

Figure 4.7 – Dependence of current on ζ for different values of k4/k2. The curves

correspond to k4/k2 = 0.2, 0.5, 1 and 2 from the bottom to top. Typical values for

constants used in this simulation are the same as in Figure 4.6.
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only one substrate (hydrogen peroxide) diffuses while the other one (glucose) is as-

sumed to be present only at the reaction point (the electrode). This leads to a simpler

system consisting of one diffusion equation with the associated nonlinear boundary

conditions which we do not reproduce here. This simplification was based on the

expectation that the diffusion of glucose to the reaction place will not affect the value

of the system steady-state, although it will affect the time taken to achieve it.

The plot of the current (k4C
∗
2) versus ζ for different initial concentrations of glucose

is shown in Figure 4.8. If we vary k4/k2 instead, we obtain the graphs in Figure 4.9.

Note that the behaviour of the curves is very similar to that shown in Figure 4.4 and

4.5 for Model 1.

Figure 4.8 – Dependence of current on ζ for different initial concentrations of S0. The

curves correspond to S0 = 0.03, 0.09, 0.2 and 5 mM from bottom to top.
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Figure 4.9 – Dependence of current on ζ for different values of k4/k2. The curves

correspond to k4/k2 = 0.2, 0.5, 1 and 2 from bottom to top.

4.3 Convection-Diffusion Model

We now investigate a new modelling strategy which generalizes the models presented

in the previous section, as it explicitly deals with the convective and diffusive

transport of species. The flow cell is modelled as a rectangular spatial domain,

0 ≤ x ≤ L, 0 ≤ y ≤ h where y = 0 describes the electrode at the bottom of the cell,

y = h is the (closed) top of the cell, and x = 0 represents the point where glucose

is introduced into the system (see Figure 4.10). As in the BIACORE model (in

Chapter 3) we assume the substrates are convected by a fully-formed Poiseuille flow,

where the velocity profile across the channel height is parabolic. The evolution of the

concentrations of the two substrates is governed by the following convection-diffusion
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Figure 4.10 – Cascade reaction in a flow cell.

equations:

∂S1

∂t
= D1(

∂2S1

∂x2
+
∂2S1

∂y2
)− 4v(

y

h
)(1− y

h
)
∂S1

∂x
, (4.12)

∂S2

∂t
= D2(

∂2S2

∂x2
+
∂2S2

∂y2
)− 4v(

y

h
)(1− y

h
)
∂S2

∂x
, (4.13)

where D1, D2 represent diffusion rate constants, and v is the velocity of the flow.

Note that a similar diffusion-convection equation holds for the product, P , but we

do not write it here as it is not relevant to the numerical integration. The boundary

conditions associated with these equations are explained below.

• At x = 0, the concentration of glucose is assumed constant as it is continuously

pumped into the system, while hydrogen peroxide has not yet formed; this gives

S1(t, 0, y) = S0, S2(t, 0, y) = 0, t ≥ 0. (4.14)

• At x = l, we assume uniform flow at the end of the channel, so the boundary

conditions are:

∂S1(t, x, y)

∂x
=
∂S2(t, x, y)

∂x
= 0. (4.15)
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• At y = 0 (the electrode surface), we have the reaction-type conditions

D1
∂S1(t, x, 0)

∂y
= k1S1(t, x, 0)E1(t, x)− k−1C1(t, x), (4.16)

D2
∂S2(t, x, 0)

∂y
= k3S2(t, x, 0)E2(t, x)− k−3C2(t, x)− k2C1(t, x), (4.17)

which are supplemented by the following ordinary differential equations describ-

ing the boundary reactions (according to the Michaelis-Menten scheme)

∂E1(t, x)

∂t
= −k1E1(t, x)S1(t, x, 0) + (k−1 + k2)C1(t, x), (4.18)

∂E2(t, x)

∂t
= −k3E2(t, x)S2(t, x, 0) + (k4 + k−3)C2(t, x), (4.19)

∂C1(t, x)

∂t
= k1E1(t, x)S1(t, x, 0)− (k2 + k−1)C1(t, x), (4.20)

∂C2(t, x)

∂t
= k3E2(t, x)S2(t, x, 0)− (k4 + k−3)C2(t, x), (4.21)

∂P (t, x, 0)

∂t
= k4C2(t, x). (4.22)

• At y = h (the top of the flow cell), we impose zero flux boundary conditions,

∂S1(t, x, h)

∂y
=
∂S2(t, x, h)

∂y
= 0. (4.23)

Finally, we specify the initial conditions:

S1(0, x, y) =

S0, if x = 0 (4.24)

0, otherwise, (4.25)

S2(0, x, y) = 0, E1(0, x) = E0
1 , E2(0, x) = E0

2 , C1(0, x) = C2(0, x) = 0. (4.26)

Note that the boundary and initial conditions closely resemble the ones presented in

Chapter 3 for the BIACORE system and are typical for flow injection systems. As

discussed in Section 4.2, we have the additional constraints

ζE0
2 = E0

1 , and E0
1 + E0

2 = E0, (4.27)
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where E0 is the total amount of enzyme present on the electrode. The parameter, ζ,

which measures the ratio of the two enzymes on the electrode, will be investigated

with the aim of determining the value which gives the highest current amplitude.

The current measured at the electrode can be assumed proportional to the rate of

formation of the final product, ∂P/∂t, as given by equation (4.22).

We non-dimensionalise the system by introducing the following non-dimensional

variables:

S̄i(t̄, x̄, ȳ) =
Si(t, x, y)

S0

, Ēi(t̄, x̄) =
Ei(t, x)

E0

, C̄i(t̄, x̄) =
Ci(t, x)

E0

, i = 1, 2.

P̄ (t̄, x̄, ȳ) =
P (t, x, y)

E0

, x̄ =
x

l
, ȳ =

y

h
, t̄ =

D1t

h2
.

This yields the following equations

∂S̄1

∂t̄
= ε2

∂2S̄1

∂x̄2
+
∂2S̄1

∂ȳ2
− εαȳ(1− ȳ)

∂S̄1

∂x̄
, (4.28)

∂S̄2

∂t̄
= β

(
ε2
∂2S̄2

∂x̄2
+
∂2S̄2

∂ȳ2

)
− εαȳ(1− ȳ)

∂S̄2

∂x̄
, (4.29)

with initial conditions

S̄1(0, x̄, ȳ) =

1, if x̄ = 0 (4.30)

0, otherwise, (4.31)

S̄2(0, x̄, ȳ) = 0, Ē1(0, x̄, ȳ) =
ζ

1 + ζ
,

Ē2(0, x̄) =
1

1 + ζ
, C̄1(0, x̄) = 0, C̄2(0, x̄) = 0,

where

ε =
h

l
, α =

4vh

D1

, β =
D2

D1

. (4.32)
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The non-dimensional boundary conditions are as follows: at x̄ = 0,

S̄1(t̄, 0, ȳ) = 1, S̄2(t̄, 0, ȳ) = 0, t ≥ 0, (4.33)

and at x̄ = 1,

∂S̄1

∂x̄
=
∂S̄2

∂x̄
= 0. (4.34)

At the electrode surface, ȳ = 0, we use the non-dimensional conservation laws

Ē1 + C̄1 =
ζ

1 + ζ
,

Ē2 + C̄2 =
1

1 + ζ
,

and the boundary conditions (4.16) and (4.17) simplify to

∂S̄1

∂ȳ
= k1aS̄1Ē1 − k1b (

ζ

1 + ζ
− Ē1), (4.35)

∂S̄2

∂ȳ
= k2aS̄2Ē2 − k2b (

1

1 + ζ
− Ē2)− ke(

ζ

1 + ζ
− Ē1), (4.36)

where we define

k1a =
k1E0h

D1

, k2a =
k3E0h

D2

,

k1b =
k−1E0h

D1S0

, k2b =
k−3E0h

D2S0

, ke =
k2E0h

D2S0

.

The equations (4.18)-(4.22) simplify to:

dĒ1

dt̄
= k1c Ē1S̄1 + k1d(

ζ

1 + ζ
− Ē1), (4.37)

dĒ2

dt̄
= k2c Ē2S̄2 + k2d(

1

1 + ζ
− Ē2), (4.38)

dP̄

dt̄
= kf (

1

1 + ζ
− Ē2), (4.39)
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where we define

k1c =
−k1S0h

2

D1

, k2c =
−k3S0h

2

D1

,

k1d =
(k−1 + k2)h

2

D1

, k2d =
(k−3 + k4)h

2

D1

, kf =
k4h

2

D1

.

Finally, at ȳ = 1, we have

∂S̄1

∂ȳ
=
∂S̄2

∂ȳ
= 0. (4.40)

4.4 Numerical Simulations

A standard finite difference method (implemented in C) is used to solve the system of

partial differential equations and boundary conditions (4.28)-(4.40). Table 4.1 sum-

marizes the values of all physical constants used in the numerical simulations. Figures

4.11 and 4.12 show the time evolution of the non-dimensional current dP̄ /dt̄ as given

by equation (4.39) at various points along the electrode for two values of the flow

velocity, v = 2× 10−5 m/s and v = 0. It is seen that the profiles obtained are similar

as they all tend to the same steady-state value as t → ∞. We conclude that the x

position at which the current is measured should not affect any of the future simula-

tions and we therefore choose the non-dimensional value x̄ = 0.25 (corresponding to a

physical value of x = 0.5×10−3 m). The equilibrium, or steady-state value is recorded

as a measure of the current amplitude and used for future parameter iterations.

The first set of numerical simulations was carried out in order to assess the effect

of varying the initial glucose concentration on the current response and the optimal

GOX:HRP ratio. As described above, the equations (4.28)-(4.40) are integrated for

different values of ζ, the molar enzyme ratio on the electrode, and the current ampli-
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Description Constant Value

Flow cell length (m) l 2× 10−3

Flow cell depth (m) h 2× 10−4

Diffusion constants (m2/s):

First substrate Ds 6.7× 10−10

Second substrate Dp 8.8× 10−10

Reaction rate constants (m3/mol·s) k1 102

k3 102

Reaction rate constants (s−1) k−1 10−1

k−3 10−1

k2 0.2− 10

k4 1

Initial concentrations:

Total enzyme (mol/m2) E0 10−5

Substrate (mol/m3=mM) S0 0.1− 20

Flow velocity (m/s) v 0− 10−4

Table 4.1 – Typical values for constants.

tude recorded. This simulation is then repeated for different values of S0, the initial

glucose concentration, to produce the curves shown in Figure 4.13. This procedure is

carried out twice, for v = 0 and v = 2× 10−5 m/s in order to assess the effect of the

flow on the simulations. The kinetic constants are assumed to be the same for both

reactions, as given by Table 4.1, with k1 = k3 = 102 m3/mol · s and k2 = k4 = 1 s−1.
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Figure 4.11 – Dependence of current on time for different position in the x direction

(from top to bottom x = 0.1, 0.2, 0.5, 1, 1.5× 10−3 m) at v = 2× 10−5 m/s.

Figure 4.12 – Dependence of current on time for different position in the x direction

(from top to bottom x = 0.1, 0.2, 0.5, 1, 1.5× 10−3 m) at v = 0.

We use 50 values for the molar ratio, ζ, between 0 and 5, and values for the glucose

concentration, S0, between 0 and 20 mM. Note that the qualitative behaviour of the

current as a function of the enzyme ratio is very similar to that obtained in the one
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dimensional models reviewed in Section 4.2 and displayed in Figures 4.4 and 4.8.

For each of the curves in Figure 4.13 the optimal molar ratio, ζ, (the value which

yields the highest current amplitude) is recorded and plotted in Figure 4.14 as a

function of the glucose concentration S0. Figure 4.14 shows that, as the glucose

concentration S0 increases, the optimal GOX:HRP ratio, ζ, approaches the value 1, a

phenomenon also observed in the three models summarized in Section 4.2. Recall that,

for these simulations, we chose k4 = k2. To test whether this result holds for other

values of the ratio k4/k2, we repeat these simulations keeping k4 = 1 s−1 constant

and varying k1 between 0 and 5 m3/mol · s. The results for the values k4/k2 = 0.2, 0.6

and 2 are displayed in Figures 4.15, 4.17 and 4.19. For each of these cases (and for

many others we tested) it seems apparent that at high glucose concentrations, the

optimal GOX:HRP ratio approaches the value k4/k2, which is the result predicted

by equation (4.11). Moreover, Figures 4.13-4.20 show that the limiting value k4/k2 is

approached for both v = 0 and v = 2× 10−5 m/s.

The second set of numerical simulations is carried out to determine the dependence

of the current and the optimal enzyme ratio on the ratio k4/k2 of the catalytic turnover

numbers for the two consecutive reactions. The initial glucose concentration is kept

constant at S0 = 1 and again, we take k1 = k3 = 102 m3/mol · s, k−1 = k−3 = 10−1

s−1 as before, and the current steady-state is plotted as a function of the GOX:HRP

ratio and the curves obtained for different k4/k2 values between 0.5 and 4 are shown

in Figure 4.21. We note again the similarity between Figure 4.21 and the results from

the one dimensional models shown in Section 4.2. The following set of numerical
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Figure 4.13 – Dependence of current on GOX:HRP ratio for different initial glucose

concentration S0 in the case k4/k2 = 1. From bottom to top the curves correspond to

S0 = 0.1, · · · , 1 mM, for v = 0 (left) and v = 2× 10−5 m/s (right).

Figure 4.14 – Dependence of optimal GOX:HRP ratio on glucose concentration for

k4/k2 = 1.
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Figure 4.15 – Dependence of current on GOX:HRP ratio for different initial glucose

concentration S0 in the case k4/k2 = 0.2. From bottom to top the curves correspond

to S0 = 0.1, · · · , 1 mM, for v = 0 (left) and v = 2× 10−5 m/s (right).

Figure 4.16 – Dependence of optimal GOX:HRP ratio on glucose concentration for

k4/k2 = 0.2.
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Figure 4.17 – Dependence of current on GOX:HRP ratio for different initial glucose

concentration S0 in the case k4/k2 = 0.6. From bottom to top the curves correspond

to S0 = 0.1, · · · , 1 mM, for v = 0 (left) and v = 2× 10−5 m/s (right).

Figure 4.18 – Dependence of optimal GOX:HRP ratio on glucose concentration for

k4/k2 = 0.6.
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Figure 4.19 – Dependence of current on GOX:HRP ratio for different initial glucose

concentration S0 in the case k4/k2 = 2. From bottom to top the curves correspond to

S0 = 0.1, · · · , 1 mM, for v = 0 (left) and v = 2× 10−5 m/s (right).

Figure 4.20 – Dependence of optimal GOX:HRP ratio on glucose concentration for

k4/k2 = 2.
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Figure 4.21 – Dependence of current on GOX:HRP ratio for different k4/k2. The

lower curve corresponds to k4/k2 = 0.5 and the upper curve to k4/k2 = 4.

simulations is concerned with studying the effect of the flow rate v on the current

amplitude and the optimal ζ ratio. As described in the previous set of simulations,

we first obtain the equilibrium value of the current as a function of ζ whilst keeping

all of the other parameters constant and this integration is then repeated for several

values of v. Again, the parameter values are chosen according to Table 4.1, with

k1 = k3 = 102 m3/mol · s. We use 50 values for ζ ranging between 0 and 5, and 5

values for the flow rate v between 0 and 5×10−5 m/s. The resulting curves are shown

in Figure 4.22, for S0 = 0.4 mM (left) and S0 = 1 mM (right). The optimal molar

ratios are then plotted in Figure 4.23 as functions of the flow velocity v.
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Figure 4.22 – Dependence of current on GOX:HRP ratio for different flow velocities

v in the case k4/k2 = 1. From bottom to top the curves correspond to v = 0, 2, 4, 6, 8×

10−5 m/s for S0 = 0.4 mM (left) and S0 = 1 mM (right).

Figure 4.23 – Dependence of optimal GOX:HRP ratio on glucose flow rate in the case

k4/k2 = 1 for S0 = 0.4 mM (left) and S0 = 1 mM (right).
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4.5 Conclusions

In this chapter we presented a convection-diffusion model for a flow injection analysis

of a bi-enzyme electrode with a view to further investigating the ratio of the two

enzymes which maximizes signal amplitude. This model generalizes previous work by

researchers in our team (see [30], [31] and [44]) by explicitly modelling the flow of the

glucose solution over the electrode while the existing models (which are summarized

in Section 4.2) greatly simplified (or even neglected) the transport of substrates in

the analysis.

Extensive numerical simulations were carried out in order to assess the depen-

dence of the signal amplitude (as measured by the rate of one of the reactions) and

the optimal bi-enzyme ratio on three parameters: the initial concentration of glucose

in the flow, the relative reaction speed k4/k2 and the velocity of the convective flow.

The main result tested for is that the optimal ratio approaches the value k4/k2 in

the limit of large glucose concentrations. This result is analytically proven in [44] for

the case of the simple, one-point model and also observed in numerical simulations

of all the other models reviewed in Section 5.2. It also reinforces the experimental

intuition that the most efficient enzyme ratio is proportional to the inverse ratio of

their catalytic turnover numbers. Analytic verifications have not yet been attempted

for any of the one or two-dimensional spatially extended models and such proofs are

likely to be extremely complicated. Here, we have merely provided a check based on

the behaviour of the numerical solution.
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The experimental results, reviewed in Section 4.1, showed that an electrode with

equal molar ratios of the two immobilized enzymes yields the optimal sensor response,

which seemed to contradict the knowledge that HRP has a higher activity than GOX

(in solution). By contrast, numerical simulations (as well as some theoretical results)

of all four models studied in this chapter indicate that an optimal ratio of 1 occurs

when the two consecutive reactions are equally fast (k2 = k4). This seems to suggest

that the activity of HRP is disproportionately reduced during the immobilization

process, probably because of its reliance on direct electron transfer.

The comprehensive model presented in [31] assumed a one-dimensional geometry

for the experimental configuration where substrate diffuses from the cell surface to the

electrode and the flow injection analysis is approximated by appropriate boundary

conditions at the top of the cell. By contrast, the model presented here uses two

spatial variables (accounting for the cell length and depth) and the flow is explicitly

modelled by including convection terms in the system. Also recall that, in our model,

diffusion of substrate takes place in both x and y directions, while convection occurs

only in the x direction. Given the complexity of the experimental configuration, it is

not clear which of these modelling strategies offers a better geometrical description of

the pump shown in Figure 4.1. On comparing the time evolution of glucose gradients

across the cell, the one and two-dimensional models yield quite different patterns. The

diffusion-only model produces a linear gradient for the glucose concentration across

the cell depth (see Figure 4.26) while the new convection-diffusion model studied here

yields a parabolic profile (Figures 4.24 and 4.25).
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Figure 4.24 – Glucose concentration gradient across channel height (v = 0). The

curves in the right diagram correspond to t = 1, 2, 5, 15, 20 s).

Figure 4.25 – Glucose concentration gradient across channel height (v = 2×10−5 m/s).

The curves in the right diagram correspond to t = 1, 2, 5, 15, 20 s).
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Figure 4.26 – Time evolution of S1 (glucose) and the glucose concentration gradient.

(These graphs are obtained from numerical integration of the equations in Model 1 of

Section 4.2.)

Despite the apparent differences in substrate concentrations across the cell, the

four models investigated yield surprisingly similar results. This could be explained by

the observation that since the optimization problem we are trying to solve involves

equilibrium states, the transport processes that supply glucose to the reaction site

are less important than the subsequent reactions, especially for large concentrations

when all enzymes are optimally engaged.
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Chapter 5

Competition Immunoassay Based

on a Bi-enzyme Electrode

The performance of the bi-enzyme electrode was investigated in Chapter 4 where we

determined which ratio of GOX to HRP resulted in the highest signal amplitude. In

this chapter we construct a model for a biosensor based on the same enzyme coupling

in order to detect the immunological reaction between avidin and biotin. This time

we consider a combination of avidin and HRP immobilized on an electrode and a

fluid sample containing biotin and GOX-labelled biotin. The specific avidin-biotin

interaction brings the biotin-GOX conjugate close to the immobilized HRP on the

electrode surface and the same cascade reaction as in the previous chapter is initi-

ated. Using a constant biotin-GOX concentration and increasing the concentration

of free biotin, we can construct theoretical calibration curves for biotin determination.
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5.1 Introduction

Electrochemical immunosensing is a potential strategy for the development of next

generation diagnostic devices. To achieve the simplicity and low cost required for

high volume point-of-care and self-use devices, strategies must be formulated which

make these devices as basic as possible. For instance, developing an immunosensor

device that is as quick and simple to use as a glucose biosensor is a challenging but

commercially beneficial goal.

Some studies have succeeded in reducing the immunoassay to a single step on

an electrode surface. However, for this to occur, fluid movement is still required by

external devices (pumps) to introduce the assay components to the electrode surface.

Removal of any external physical force would make the device simpler and cheaper.

Any such device would have to rely predominantly on diffusional processes to bring

about the interactions of the assay components on the electrode surface as occurs

with glucose biosensors. Such a principle has not yet been extended to electrochemi-

cal immunosensors.

A theoretical platform, proposed by researchers in the NCSR, is described in the

following paragraphs. This also illustrates the general principle of competition as-

says. Briefly, the platform consists of an electrode surface held at a suitable potential,

modified with a conducting polymer and immobilized antibody (B). In a real-world

application, the analyte or antigen to be measured (A) would be introduced with the

sample liquid (blood, urine etc.) to the vicinity of the electrode. An analogue of this
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antigen connected to an enzyme glucose oxidase (E) and an enzyme substrate (S)

would have been present in an inactive form in the vicinity of the electrode prior to

sample introduction. Following sample introduction, antigen, analogue and substrate

will all be present near the electrode and will all interact with one another in vari-

ous ways. E will consume S in the bulk solution; while E and A will diffuse to the

electrode surface and interact with B forming the complex PE and product P , re-

spectively. When PE is formed, the enzyme is brought close to the electrode surface,

and when it interacts with substrate, its consumption is linked to electron transfer

at the electrode surface and a current measurement is made. The current generated

is dependent on the number of interactions of E with B (which is in turn inversely

proportional to the number of interactions of A and B) and also the concentration of

substrate at the electrode surface.

An argument is made in [2] for improving this platform so that the enzyme la-

bel is catalytically linked to another enzyme so it produces a cascade reaction. The

disadvantage of the first approach is that the specific signal, obtained from labelled

analogue binding to antibody, is very small compared to the nonspecific signal (the

noise) which arises from the conjugate in the bulk solution. The use of an enzyme-

channelling system is known to improve this situation.

As in the previous chapter, the experimental situation we model is that of a

three-dimensional tank where the electrode is placed at the bottom (coated with a

monolayer of HRP and avidin) and the surface is a free boundary. Since the diffusion

process is assumed to be one-dimensional (in the vertical direction only) the shape
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of the tank is irrelevant for the modelling process. The experiment is started with

uniform substrate concentration in the solution and uniform concentration of avidin

and HRP on the electrode. The biotin and GOX-labelled analogue are then released

into the solution at a point near the surface, see Figure 5.1 for a schematic representa-

tion of this biosensing platform. As an additional simplification we also assume that

convection effects are negligible so that transport of species to the electrode occurs

mainly by diffusion. This is similar to the approach we took when we modelled the

flow injection analysis in Section 2.2.3 (Experiment 3). This simplifying assumption

is now justified by the results of Chapter 4 which shows that the dependence of the

optimal enzyme ratio on the system parameters is very similar across the wide range

of models discussed.

Figure 5.1 – Enzyme channeling immunoassay.

The notation we use for this slightly more complicated platform closely resembles
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the notation used in Chapter 4 in the study of the bi-enzyme electrode. Thus, we let

A : immobilized avidin;

B : free biotin;

EB
1 : first enzyme (GOX-labelled biotin);

E2 : second enzyme (Immobilized HRP);

S1 : first substrate (Glucose);

S2 : second substrate (Hydrogen Peroxide);

CB
1 : first complex;

C2 : second complex;

P : compound formed by avidin and biotin;

PE1 : compound formed by avidin and biotin-GOX (EB
1 );

PC1 : compound formed by avidin and complexed biotin (CB
1 );

Pf : final product formed by reduction of H2O2.

As it diffuses through the solution, the enzyme label reacts with its substrate

(glucose), where the reaction scheme is expressed by

EB
1 + S1

K1

�
K−1

CB
1

K2−→EB
1 + S2. (5.1)
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The following reactions take place at the electrode surface

EB
1 + A

K∗
b−→PE1 , (5.2)

B + A
Kb−→P, (5.3)

PE1 + S1

K1

�
K−1

PC1
K2−→PE1 + S2, (5.4)

CB
1 + A

K∗
b−→PC1

K2−→PE1 + S2, (5.5)

S2 + E2

K3

�
K−3

C2
K4−→ E2 + Pf . (5.6)

5.2 Mathematical Model

As explained in the introduction, we will construct a mathematical model to describe

the behaviour of a large number of chemical species, which are subject to diffusion

and chemical reactions in the spatial domain [0, L], where X = 0 denotes the position

of the electrode and X = L is the free surface of the flow cell. As we have chosen to

neglect convection for this problem, the system can now be modelled by the following

reaction-diffusion equations, for X ∈ [0, L], T > 0

∂[B]

∂T
= D

∂2[B]

∂X2
, (5.7)

∂[EB
1 ]

∂T
= D

∂2[EB
1 ]

∂X2
+ (K−1 +K2)[C

B
1 ]−K1[E

B
1 ][S1], (5.8)

∂[S1]

∂T
= D

∂2[S1]

∂X2
+K−1[C

B
1 ]−K1[E

B
1 ][S1], (5.9)

∂[CB
1 ]

∂T
= D

∂2[CB
1 ]

∂X2
− (K−1 +K2)[C

B
1 ] +K1[E

B
1 ][S1], (5.10)

∂[S2]

∂T
= D

∂2[S2]

∂X2
+K2[C

B
1 ], (5.11)

∂[Pf ]

∂T
= D

∂2[Pf ]

∂X2
, (5.12)
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where [ ] denotes the concentration of the species. Given the large number of diffusing

species and the difficulty in obtaining precise diffusion constants for all of them, we

have assumed all these constants to be the same and have denoted this number by

D.

On the free surface (where X = L) we impose zero-flux boundary conditions,

namely;

∂[B]

∂X
(L, T ) =

∂[EB
1 ]

∂X
(L, T ) =

∂[S1]

∂X
(L, T ) = 0,

∂[CB
1 ]

∂X
(L, T ) =

∂[S2]

∂X
(L, T ) =

∂[Pf ]

∂X
(L, T ) = 0.

At the electrode (where X = 0) we have the reaction boundary conditions,

D
∂[B]

∂X
(0, T ) = Kb[B][A], (5.13)

D
∂[EB

1 ]

∂X
(0, T ) = K∗b [EB

1 ][A], (5.14)

D
∂[S1]

∂X
(0, T ) = K1[P

E1 ][S1]−K−1[PC1 ], (5.15)

D
∂[CB

1 ]

∂X
(0, T ) = K∗b [CB

1 ][A], (5.16)

D
∂[S2]

∂X
(0, T ) = K3[S2][E2]−K2[P

C1 ]−K−3[C2], (5.17)

D
∂[Pf ]

∂X
(0, T ) = −K4[C2]. (5.18)

123



In addition, the following evolution equations hold on the boundary;

d[A]

dT
= −K∗b ([EB

1 ] + [CB
1 ])[A]−Kb[B][A], (5.19)

d[C2]

dT
= K3[E2][S2]− (K4 +K−3)[C2], (5.20)

d[PE1 ]

dT
= K∗b [EB

1 ][A]−K1[S1][P
E1 ] + (K−1 +K2)[P

C1 ], (5.21)

d[PC1 ]

dT
= K∗b [CB

1 ][A] +K1[S1][P
E1 ]− (K−1 +K2)[P

C1 ], (5.22)

d[P ]

dT
= Kb[B][A], (5.23)

and the current is calculated as

∂[Pf ]

∂T
= K4[C2]. (5.24)

The initial values are;

[S1](X, 0) = S0, [S2](X, 0) = 0, [CB
1 ](X, 0) = 0,

[E2](0) = E0
2 , [A](0) = A0, [P ](X, 0) = 0,

[PE1 ](X, 0) = 0, [PC1 ](X, 0) = 0, [Pf ](X, 0) = 0,

[EB
1 ](X, 0) =

B∗0 , if X = L

0, otherwise,

[B](X, 0) =

{B0, if X = L

0, otherwise.

As stated at the beginning of this section, the initial concentration of glucose is

uniform throughout the domain while finite amounts of biotin and biotin-GOX are

injected at a point near the surface. Although experimental observations and the

results of Chapter 4 indicate that, in the case of the bi-enzyme electrode, a HRP/GOX
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ratio of 1 leads to the highest signal, we will re-examine this ratio when avidin and

HRP are concerned. In a manner similar to Chapter 4, we let

ζE0
2 = A0, (5.25)

and, if we denote by E0 the total concentration corresponding to full electrode cov-

erage, we have

E0
2 + A0 = E0, (5.26)

which gives

E0
2 =

E0

1 + ζ
, A0 =

ζE0

1 + ζ
. (5.27)

The following variables are used to non-dimensionalise the system,

x =
X

L
, t =

D

L2
T,

a =
[A]

E0

, b =
[B]

B∗0
,

c1 =
[CB

1 ]

B∗0
, c2 =

[C2]

E0

,

e1 =
[EB

1 ]

B∗0
, e2 =

[E2]

E0

,

s1 =
[S1]

S0

, s2 =
[S2]

S0

,

p =
[P ]

E0

, p1 =
[PE1 ]

E0

,

p2 =
[PC1 ]

E0

, pf =
[Pf ]L

E0

.

Note that we usedB∗0 , the initial concentration of labelled biotin, to non-dimensionalise

certain species as this concentration is usually kept constant during experiments while

B0, the initial biotin concentration, is allowed to vary. The non-dimensional reaction-
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diffusion equations are:

∂b

∂t
=
∂2b

∂x2
, (5.28)

∂e1
∂t

=
∂2e1
∂x2

+ (k−1 + k2)c1 − k1e1s1, (5.29)

∂s1
∂t

=
∂2s1
∂x2

+ ηk−1c1 − ηk1e1s1, (5.30)

∂c1
∂t

=
∂2c1
∂x2

+ k1e1s1 − (k−1 + k2)c1, (5.31)

∂s2
∂t

=
∂2s2
∂x2

+ ηk2c1, (5.32)

∂pf
∂t

=
∂2pf
∂x2

, (5.33)

where

k1 =
K1S0L

2

D
, k−1 =

K−1L
2

D
, k2 =

K2L
2

D
, η =

B∗0
S0

.

The non-dimensional form of the boundary conditions on x = 0 is

∂b

∂x
= kbab, (5.34)

∂e1
∂x

= k∗bae1, (5.35)

∂s1
∂x

= k1ϕp1s1 − k−1ϕp2, (5.36)

∂c1
∂x

= k∗bac1, (5.37)

∂s2
∂x

= k3e2s2 − k2ϕp2 − k−3c2, (5.38)

∂pf
∂x

= −k4c2, (5.39)

where

kb =
LKbE0

D
, k∗b =

LK∗bE0

D
, ϕ =

E0

S0L
,

k3 =
LK3E0

D
, k−3 =

LK−3E0

DS0

, k4 =
L2K4

D
,
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and the evolution equations become

da

dt
= −k

∗
bη

ϕ
(e1 + c1)a−

kbη

ϕ
ab, (5.40)

dc2
dt

=
k3
ϕ
e2s2 − (

k−3
ϕ

+ k4)c2, (5.41)

dp1
dt

=
k∗bη

ϕ
ae1 − k1s1p1 + (k−1 + k2)p2, (5.42)

dp2
dt

=
k∗bη

ϕ
ac1 + k1s1p1 − (k−1 + k2)p2, (5.43)

dp

dt
=
kbη

ϕ
ab. (5.44)

The remaining boundary conditions are:

∂b

∂x
(1, t) =

∂e1
∂x

(1, t) =
∂s1
∂x

(1, t) =
∂c1
∂x

(1, t) =
∂s2
∂x

(1, t) =
∂pf
∂x

(1, t) = 0.

Finally, the initial conditions can be written as

a(x, 0) =
ζ

1 + ζ
, s1(x, 0) = 1, e2(x, 0) =

1

1 + ζ
,

c1(x, 0) = s2(x, 0) = p(0) = p1(0) = p2(0) = pf (0) = 0,

e1(x, 0) =

{ 1, if x = 1

0, otherwise,

b(x, 0) =

{ β, if x = 1

0, otherwise,

where we let

β =
B0

B∗0

denote the ratio of biotin to labelled biotin.

The system of differential equations (5.28)-(5.33), together with its boundary and

initial conditions, is integrated numerically, using a standard finite difference scheme.
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Figures 5.2 and 5.3 show the time evolution across the flow cell for some of the

diffusing reactants. Figures 5.4 and 5.5 show the time evolution of the current dp/dt

for different initial biotin to labelled biotin concentration ratios (β). The initial

concentrations used for our numerical simulations are shown in Table 5.1; where

values for reaction rate constants are, again, taken from Table 4.1. The “universal”

diffusion constant for all free species was taken as D = 6.7× 10−10 m2/s. Note that,

as a consequence of starting with a finite amount of glucose, the shape of the signal

is different from that in Chapter 4 (Figure 4.11) where the flow injection analysis

involves a continuous supply of glucose. In this case, the current peaks and then

decays and we use the maximum value of this function as the signal amplitude for

all future calculations. For example, the information contained in Figures 5.4 or 5.5

can be more compactly presented as one of the curves in Figure 5.6 which shows the

dependence of the current peak response on the biotin-analogue ratios.

Figure 5.2 – Time evolution of substrates.
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Figure 5.3 – Time evolution of added analytes.

Figure 5.4 – Dependence of current on time for different biotin to labelled biotin ratios,

β. The ratio of avidin to HRP is 1:1. From bottom to top the curves correspond to

β = 100, 20, 5, 1, 0.
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Figure 5.5 – Dependence of current on time for different biotin to labelled biotin ratios,

β. The ratio of avidin to HRP is 3:1. From bottom to top the curves correspond to

β = 100, 20, 5, 1, 0.

Description Constant Value

Total enzyme (mol/m2) E0 10−5

Glucose (mol/m3=mM) S0 1

Biotin (mol/m3=mM) B0 0− 0.75× 10−5

Labelled biotin (mol/m3=mM) B∗0 0.25× 10−7

Table 5.1 – Typical values for initial concentrations of reactants.

These type of curves are known as calibration curves (or dose-response curves)

and are generally constructed by measuring and plotting the biosensor responses

against a wide range of initial analyte concentrations. Calibration curves can then be

used for future estimations of the “dose” once the “response” is known. Note that, in
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Figure 5.6 – Dependence of maximum current on β, the ratio of biotin to labelled

biotin.

a competitive assay, the analyte (in this case, biotin) competes with a labelled ana-

logue (biotin-GOX) for a limited number of antibody (avidin) binding sites. Since

the signal is generated by the labelled species, it follows that the biosensor response is

inversely proportional to the amount of analyte present. Hence the calibration curve

for a competitive system is always decreasing. Note from Figure 5.6 that the highest

signals are obtained for an avidin/HRP ratio (ζ) of between 1/3 and 1, which is a close

approximation to the result obtained in Chapter 4. A theoretical and computational

optimization study for ζ in the more complex setting of the avidin/HRP platform,

which combines a cascade reaction with a competitive assay, could be attempted, in

the manner of Chapter 4 and the work presented in [44], but is outside the scope

of this thesis and will form the subject of future work. For the time being, we are

treating ζ as a variable so as to allow for different results which may arise from the
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influence of the additional reactants and also because a further optimization issue will

arise in the next section when we consider signal to noise ratio.

5.3 Specific and nonspecific Signals

The performance of a biosensor is often affected by the presence of a nonspecific, or

noisy, component of the recorded signal. In the configuration studied in this section,

the specific signal is generated when biotin-GOX binds to the immobilized avidin and

the enzymatic cascade reaction is initiated close to the electrode. In this instance,

the current is proportional to the catalytic conversion of H2O2 in the second reaction

and is clearly related to the binding between avidin and labelled biotin. However,

hydrogen peroxide can also be generated throughout the cell when the GOX label

reacts with the glucose present in solution. This “stray” hydrogen peroxide reaches

the electrode and reacts with the immobilized HRP thus completing the second step

of the cascade reaction and generating an electrical signal. Clearly, this current arises

in the absence of any relevant binding of avidin and biotin and can therefore be de-

scribed as a noisy (and useless) component of the signal.

It is obviously very difficult to distinguish between specific and nonspecific signals

during the experimentation phase. The experimental method presented in [2] suggests

that the nonspecific signal can be obtained by passing a GOX solution (without the

attached biotin) over the electrode. This is then compared with the total signal which

is recorded for the usual biotin-GOX flow injection system. The assumption that the

signal generated from GOX can mimic the nonspecific interactions associated with
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biotin-GOX could be challenged with the observation that the two enzymes (with

and without biotin) may display different activities.

The modelling approach has the advantage that the evolution of all concentra-

tions can be precisely monitored and hence, in this section, we propose a method

for separating the noise from the good signal. This method is based on the simple

observation that the “good” and “bad” currents can be traced back to the H2O2 gen-

erated at the electrode surface or in the bulk solution. We therefore treat hydrogen

peroxide generated in these different contexts as two different species and keep

track of each of them separately. We denote the H2O2 generated at the electrode (in

the presence of avidin-biotin binding) by S2 as before, while the solution H2O2, which

will ultimately lead to the noisy signal, is denoted by Sn. The reactions (5.1)-(5.6)

are rewritten below.

The reaction taking place in the bulk solution is

EB
1 + S1

K1

�
K−1

CB
1

K2−→EB
1 + Sn, (5.45)

133



and the following reactions take place at the electrode surface

EB
1 + A

K∗
b−→PE1 , (5.46)

B + A
Kb−→P, (5.47)

PE1 + S1

K1

�
K−1

PC1
K2−→PE1 + S2, (5.48)

CB
1 + A

K∗
b−→PC1

K2−→PE1 + S2, (5.49)

S2 + E2

K3

�
K−3

C2
K4−→ E2 + Pf , (5.50)

Sn + E2

K3

�
K−3

Cn
K4−→ E2 + Pn, (5.51)

where C2, Cn denote the second enzyme bound to specific and noisy substrate re-

spectively, while Pf , Pn denote the final products of the system. As before, this

scheme can be expressed as a system of reaction-diffusion equations, for X ∈ (0, L)

and T > 0,

∂[B]

∂T
= D

∂2[B]

∂X2
, (5.52)

∂[EB
1 ]

∂T
= D

∂2[EB
1 ]

∂X2
+ (K−1 +K2)[C

B
1 ]−K1[E

B
1 ][S1], (5.53)

∂[S1]

∂T
= D

∂2[S1]

∂X2
+K−1[C

B
1 ]−K1[E

B
1 ][S1], (5.54)

∂[CB
1 ]

∂T
= D

∂2[CB
1 ]

∂X2
− (K−1 +K2)[C

B
1 ] +K1[E

B
1 ][S1], (5.55)

∂[S2]

∂T
= D

∂2[S2]

∂X2
+K2[C

B
1 ], (5.56)

∂[Sn]

∂T
= D

∂2[Sn]

∂X2
+K2[C

B
1 ], (5.57)

∂[Pf ]

∂T
= D

∂2[Pf ]

∂X2
, (5.58)

∂[Pn]

∂T
= D

∂2[Pn]

∂X2
, (5.59)

where [ ] denotes the concentration of the species. On the free surface (where X = L)
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we impose zero-flux boundary conditions

∂[B]

∂X
(L, T ) =

∂[EB
1 ]

∂X
(L, T ) =

∂[S1]

∂X
(L, T ) =

∂[CB
1 ]

∂X
(L, T ) = 0,

∂[S2]

∂X
(L, T ) =

∂[Sn]

∂X
(L, T ) =

∂[Pf ]

∂X
(L, T ) =

∂[Pn]

∂X
(L, T ) = 0.

At the electrode (where X = 0) we have reaction boundary conditions

D
∂[B]

∂X
(0, T ) = Kb[B][A], (5.60)

D
∂[EB

1 ]

∂X
(0, T ) = K∗b [EB

1 ][A], (5.61)

D
∂[S1]

∂X
(0, T ) = K1[P

E1 ][S1]−K−1[PC1 ], (5.62)

D
∂[CB

1 ]

∂X
(0, T ) = K∗b [CB

1 ][A], (5.63)

D
∂[S2]

∂X
(0, T ) = K3[S2][E2]−K2[P

C1 ]−K−3[C2], (5.64)

D
∂[Sn]

∂X
(0, T ) = K3[Sn][E2]−K−3[Cn], (5.65)

D
∂[Pf ]

∂X
(0, T ) = −K4[C2], (5.66)

D
∂[Pn]

∂X
(0, T ) = −K4[C2]. (5.67)

In addition, the following evolution equations hold on the boundary

d[A]

dT
= −K∗b ([EB

1 ] + [CB
1 ])[A]−Kb[B][A], (5.68)

d[C2]

dT
= K3[E2][S2]− (K4 +K−3)[C2], (5.69)

d[PE1 ]

dT
= K∗b [EB

1 ][A]−K1[S1][P
E1 ] + (K−1 +K2)[P

C1 ], (5.70)

d[PC1 ]

dT
= K∗b [CB

1 ][A] +K1[S1][P
E1 ]− (K−1 +K2)[P

C1 ], (5.71)

d[Cn]

dT
= K3[E2][Sn]− (K4 +K−3)[Cn], (5.72)

d[P ]

dT
= Kb[B][A], (5.73)
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while the specific and nonspecific currents, Is and In, are calculated as

Is =
d[Pf ]

dT
= K4[C2], (5.74)

In =
d[Pn]

dT
= K4[Cn]. (5.75)

The initial values are:

[S1](X, 0) = S0, [S2](X, 0) = 0, [Sn](X, 0) = 0, [CB
1 ](X, 0) = 0,

[E2](0) = E0
2 , [A](0) = A0, [P ](X, 0) = 0, [PE1 ](X, 0) = 0,

[PC1 ](X, 0) = 0, [Pf ](X, 0) = 0, [Pn](X, 0) = 0.

[EB
1 ](X, 0) =

B∗0 , if X = L

0, otherwise,

[B](X, 0) =

{B0, if X = L

0, otherwise.

By using the same non-dimensional variables as in Section 5.2, together with the

following variables

cn =
[Cn]

E0

, sn =
[Sn]

S0

, pn =
[Pn]L

E0

,

the non-dimensional form of equations (5.52)-(5.73) are the same as the non-dimensional

equations (5.28)-(5.44) plus the following non-dimensional reaction boundary condi-

tions for Sn, Pn, and the evolution equation for Cn on the boundary:

∂sn
∂x

= k3e2sn − k−3cn, (5.76)

∂pn
∂x

= −k4c2, (5.77)

dcn
dt

=
k3
ϕ
e2sn − (

k−3
ϕ

+ k4)cn, (5.78)

(5.79)
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with additional zero-flux boundary conditions:

∂sn
∂x

(1, t) =
∂pn
∂x

(1, t) = 0,

and initial conditions:

s2(x, 0) = pn(0) = 0.

As before, the system of non-dimensional equations can be integrated numerically

and the specific and nonspecific signals given by (5.74) and (5.75), are plotted in

Figure 5.7 (when the ratio of avidin to HRP is 1:1) and Figure 5.8 (when the ratio is

3:1). The total signal is then obtained as the sum of the specific and noisy components,

that is;

Itot = Is + In. (5.80)

It is easily seen from this simulation result that for the choice of system parameters

corresponding to Figure 5.7 (S0 = 1 mM, B0 (biotin) = 0, ζ (avidin/HRP) = 1, B∗0

(labelled biotin) = 0.25×10−7 mM), the noisy component seems to be approximately

half the size of the specific current and so, approximately one third of the recorded

signal is due to nonspecific causes. The question now arises whether this platform

can be further optimized where the design parameters are chosen so as to maximize

the specific current to noise ratio. We first investigated how this ratio responds to

changes in the biotin concentration; Figures 5.9 and 5.10 show the time evolution of

the total current to noise ratio for values of β ranging between 0 and 100. (The two

figures correspond to avidin/HRP ratios of 1 and 3.) It is clearly seen that the best

results are obtained in the absence of biotin (β = 0) which is not surprising given the

competitive nature of the system (large amounts of biotin would prevent the binding

137



of labelled biotin to avidin, thus decreasing the specific current component of the

signal).

Figure 5.7 – Dependence of current on time:total, specific and nonspecific signals.

(The ratio of avidin to HRP is 1:1.)

Figure 5.8 – Dependence of current on time:total, specific and nonspecific signals.

(The ratio of avidin to HRP is 3:1.)
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Figure 5.9 – Dependence of ratio of total current to nonspecific current on time for

different ratios of biotin to labelled biotin, β. The ratio of avidin to HRP is 1:1. From

bottom to top the curves correspond to β = 100, 20, 5, 1, 0.

Figure 5.10 – Dependence of ratio of total current to nonspecific current on time for

different ratios of biotin to labelled biotin, β. The ratio of avidin to HRP is 3:1. From

bottom to top the curves correspond to β = 100, 20, 5, 1, 0.
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We therefore keep β = 0 (no free biotin) and study the effect of modifying the

avidin/HRP ratio on the electrode. Figure 5.11 shows the time evolution of the total

current to noise ratio for several values of ζ ranging between 0.1 and 10. The best

results, according to these simulations, seem to be achieved for ζ = 1/3, while ζ = 1

still gives a good signal to noise response.

Figure 5.11 – Dependence of ratio of total current to nonspecific current on time for

different ratios of avidin to HRP.

5.4 Conclusions

The optimized avidin/HRP platform studied in Chapter 4 was now tested for a real-

time biotin determination using a competition assay system, where solutions with free

biotin at different concentrations and biotin-GOX were introduced. A mathematical
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model was constructed which illustrates the competition between biotin and biotin-

GOX for binding with avidin, coupled with an enzymatic cascade reaction at the

electrode. Using numerical simulations we were able to plot the biosensor response

(the maximum current) as a function of the free biotin concentration. We anticipate

that this procedure could be used more widely in biosensor modelling in order to

generate theoretical calibration curves.

A necessary preliminary step before the calculation of a satisfactory calibration

curve is the optimization of the biosensing platform. The problem of maximizing sig-

nal amplitude was approached in Chapter 4 where we analyzed the optimal GOX:HRP

ratio. A similar question regarding the avidin/HRP ratio in the competitive assay

context remains to be investigated. Numerical simulations were performed in order

to assess the effect of the avidin/HRP ratio on the nonspecific interactions, which

are unavoidable in such systems. It was concluded in [2] that the nonspecific signal

which resulted from their experimental assessment of this platform, was unacceptably

high and that a sensitive evaluation in real time of the immunological interaction for

avidin-biotin was not practical. Perhaps, if a mathematical and computational fea-

sibility study is attempted before the experimentation stage in future problems, this

could lead to shorter design times and smaller costs.

141



Conclusions and Future Work

The motivation for this thesis was provided by a collaboration with the National

Centre for Sensor Research (NCSR) and the Biomedical Diagnostics Institute (BDI)

at Dublin City University involving mathematical and computational modelling of

biosensors. Several experimental problems relevant to ongoing research in these cen-

tres were presented which were mostly concerned with optimizing design parameters

for biosensing devices. We modelled these problems mathematically, used numerical

techniques to solve them, and described the behaviour of the solutions, with a view

to providing recommendations for improving experimental practice.

A brief summary of this thesis is given below, together with recommendations

for future work. After reviewing the Michaelis-Menten kinetics scheme for enzyme-

substrate interactions (together with other useful Biochemistry and Mathematics con-

cepts) in Chapter 1. Chapter 2 presented a novel experimental and computational

method for calculating relevant kinetic rate constants in the case of an immobilized

enzyme. (This method was submitted for publication as [24].) Michaelis numbers

and catalytic constants are well known for enzymes in solution, but the difficulty

associated with surface-bound species is that the immobilized mass needs to be pre-
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cisely calculated first. Three simple problems involving immobilized enzymes were

then modelled and the experiments were executed in parallel with the numerical sim-

ulations, both using the kinetic values observed just determined and good agreement

was observed. It would be interesting to investigate whether mathematical, statis-

tical and computational methods could be employed for studying surface deposition

of particles and estimating immobilized concentrations. Extensive experimental data

performed at NCSR for immobilized HRP (see, for example, [34]) would allow verifi-

cation of any such theoretical results.

Chapter 3 reviews mathematical models for biomolecular interactions. Diffusion

of an analyte in a small cell is studied (in the context of a simplified model for a

pregnancy testing device) and fluid convection in a flow channel is introduced while

discussing the BIACORE device.

Chapter 4 investigates the problem of optimizing the design of a bi-enzyme biosen-

sor by finding the ratio of two immobilized enzymes which maximizes signal ampli-

tude. A new convection-diffusion model is proposed which generalizes modelling

strategies already proposed by our team. This model reinforces the result that the

optimal enzyme ratio is inversely proportional to the ratio of their catalytic turnover

numbers.

This represents, however, only a first step towards modelling the theoretical and

experimental platform studied by NCSR researchers which provided the initial moti-

vation. The original experimental setting involves a combination of avidin and enzyme
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(HRP) immobilized on an electrode and a fluid sample containing biotin and biotin-

GOX. The substrate of the enzyme label (i.e., glucose) is also introduced into the

system and the same cascade reaction as in Chapter 4 is initiated. The main problem

to be addressed in this context is to determine initial concentration of pure antigen

in the sample, given the amount of enzyme-labelled antigen and the signal recorded

at the electrode. This competitive immunosensor was studied experimentally in [2]

where it was argued that there are many advantages of coupling the immunological

reaction to an enzyme-channelling scheme such as, for example, increasing the am-

plitude of the specific signal (obtained from labelled antigen binding to antibody)

relative to the noise (given by reactions in the bulk solution). A mathematical model

for this complex system was proposed in Chapter 5 and some preliminary numerical

simulations were performed. We were able to plot the biosensor response as a function

of the free biotin concentration and we also introduced a method for separating the

noise from the total current signal. Constructing analytical and numerical techniques

for tracking specific and nonspecific signals in a wider set of problems could also be

attempted, which should lead to improved design parameter choices and device opti-

mization.

At our collaborators’ suggestion, the computational codes established in this thesis

could be combined into a user-friendly computational platform for simulating enzyme-

substrate and biomolecular interactions under several fluid dynamics and transduction

conditions. The ultimate goal envisaged is to develop a flexible, modular mathemat-

ical model which can be used towards a software platform capable of predicting the

behaviour of a wide range of electrochemical and optical biosensors. Each module
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represents a discrete, definable device subsystem capable of isolated characterisation.

The design process would involve selecting a set of modules from which to simulate a

system with a specific set of characteristics (such as fluidic or transduction processes,

chemical species and labels involved, etc.) Ideally, this simulation would be executed

on a personal computer and controlled by the development scientist via a suitable

user interface. The design of biosensing devices offers a rich source of mathematical

modelling problems and we hope to continue our interdisciplinary collaboration with

NCSR/BDI.
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