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Abstract 

Attenuated Total Reflectance-Infrared (ATR-IR) spectroscopy is a robust tool for molecular 

characterisation of matter. Applied to semi-solid formulations, it enables rapid and reliable data 

collection without pre-analytical requirements. Based on nanoencapsulated Omegalight®, a skin 

lightening active cosmetic ingredient (ACI), incorporated in a hydrogel, it is first demonstrated that, 

despite the high water content and the chemical complexity of the samples (i.e. number of ingredients), 

the spectral features of the ACI can be detected and monitored. Secondly, with a total of 105 samples 

divided into  a training set (n = 60) and a unknown set (n = 45) covering a 0.5% w/w – 5% w/w 

concentration range, the study further investigates the quantitative performance of ATR-IR coupled with 

Partial Least Squares Regression (PLSR), Through a step by step approach to testing different cross 

validation protocols, accuracy (Root Mean Square Error of Cross Validation – RMSECV) and linearity 

between the experimental and predicted concentrations (R2) of ATR-IR are consistently evaluated to be 

respectively 0.097% (w/w) and 0.995 with a lower LOD = 0.067% (w/w). Subsequently, further 

evaluation of the accuracy (relative error of the predicted concentration compared to the true value, 

expressed as %) of the analysis was undertaken with the 45 unknown samples were defined as and 

analysed by PLSR. The outcome of the analysis demonstrates the ruggedness and the consistency of 

the determination performed using the ATR-IR data. With an average relative error of 2.5% w/w 

and only 5 samples out of 45 blind samples exhibiting relative error above the 5% threshold, high 

accuracy-quantification of the nano-encapsulated ACI can be unambiguously achieved by means of the 

label-free and non-destructive technique of ATR-IR spectroscopy. Ultimately, the study demonstrates 

that the analytical capabilities of ATR-IR hold significant potential for applications in the cosmetics 

industry and although the path remains long; the present study is one step further to support validation 

of the technique, albeit for the specific case of Omegalight®.  

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Fourier Transform Infrared (FTIR) spectroscopy measures the absorption of incident IR radiation 

following interaction with a sample (1) and is a well-established, non-destructive and label free 

characterisation technique enabling collection of specific molecular finger prints from samples (2). It is 

a particularly popular analytical technique in chemistry laboratories, due to the low instrumental costs 

and ease of collection of IR signatures, providing detailed information about the chemical composition, 

useful for monitoring chemical reactions or analysing synthesis end products. (3). Bench top hyper 

spectral imaging FTIR apparatus delivers high performance for analytical applications (2), and, has 

gained interest in cosmetic and pharmaceutical analysis, since they allow to map larger sample area like 

that of products packaging (4), polymer films (5), tablets (6) or biological materials such as tissue 

sections or cells (7).  

The advent of Attenuated Total Reflectance (ATR) accessories has greatly contributed to increasing 

the speed of acquisition and reliability of IR analysis through direct deposition of samples on top of the 

ATR crystal without any particular preparation (8). Despite the low penetration depth of the evanescent 

wave (typically 0.5 – 5 µm) (9) rapid and specific analysis of solid raw material such as powders or 

liquid samples can easily be achieved. (8, 10). Ultimately, ATR-IR spectroscopy is an attractive low 

cost alternative to other gold standards such as High Performance Liquid Chromatography (HPLC) (11), 

the main advantage remaining the minimal sample preparation and lack of requirement for separation 

steps prior to analysis (12).  

Despite the wide range of applications of ATR-FTIR reported in scientific literature, their translation 

to cosmetic research and industry remains limited. Although it is widely accepted that Active Cosmetic 

Ingredients (ACI) or Active Pharmaceutical Ingredients (API) can be detected and characterised using 

their vibrational bands (13), the ATR-IR technique seems to suffer from the lack of recognition as a 

quantitative tool in these particular fields and probably from a widespread assumption that it does not 

allow analysis of liquid samples. Therefore, examples of investigation of liquid samples rather focus on 

the quality control and quantitative analysis performed on particular systems such as essential oils (14) 

and other plants extracts (15, 16), generally lipid based, thus with reduced contribution from water. 

However, it has been recently demonstrated that both sensitivity and specificity of the ATR-IR 

spectroscopy make it suitable for monitoring of ACIs when in semi-solid forms such as hydrogels (17). 

To date, while reported studies of formulation stability show an increasing popularity of the technique in 

the cosmetics field, there has been no in depth investigation of the analytical power of the ATR-IR 

spectroscopy to monitor quality of final cosmetic products (18).  

 

Commercialised cosmetic products are complex systems with various composition and texture, 

depending on the targeted applications. Additionally, new concepts are emerging to achieve improved 

efficacy (19-21), enhanced stability (22, 23) or protection of ACIs against exogenous factors such as 

light (24) by formulating them in nano-carriers (NC). Although not yet implemented in cosmetic 



products, development of coreshell nano-systems is a hot topic, and recent developments in preparation 

protocols are encouraging for rapid transfer to final products in the near future (25), especially for 

dermatological applications (20, 26) However, routine chemical screening of semi-solid formulations 

with encapsulated active ingredients can be challenging. While quantification can be performed with a 

combination of chemical extraction protocols followed by separative analytical techniques such as 

HPLC coupled to mass spectrometry (23, 27), extraction of ACI from nanovectors remains fastidious 

and expensive. In addition, this technique uses large volumes of solvent and consequently generates 

considerable amount of chemical waste which is in conflict with current concerns aiming to develop 

green chemistry alternatives (28). 

The present study has been conducted on Omegalight® (Bioeurope, France) ACI, a commercialised 

lightening agent targeting melanocytes (25), encapsulated in an Alginate Nano-Carrier (ANC) and 

integrated into a typical commercialised hydrogel product (as specified by BioEurope). Semi-solid 

formulations (cream or gel) are largely found in commercialised cosmetic products, offering a 

convenient and pleasing texture for local application on skin. However, considering 1%-2% (w/w) 

Omegalight® is the concentration typically recommended by the providers, the ACI itself remains a 

small fraction of the overall composition. It implies other ingredients, present at higher concentrations, 

dominate the IR spectral signatures collected. The aim of the present investigation was to evaluate the 

analytical power of the ATR-IR technique to quantify the ACI®, but also to overcome some of the most 

common limitations encountered in recent studies (17, 29). The present study therefore includes a large 

number of samples in the training set (n=60) and employs unknown samples for validation of 

observations (n = 45) for the data mining.  

A combination of optimal data pre-processing (30, 31) and multivariate statistical analysis such as 

Partial Least Squares Regression (PLSR) (32) (33) is necessary to provide optimal data mining. In this 

manner, the reliability and ruggedness of the ATR-IR methods was evaluated to highlight and explore 

possible validation of the technique for online screening and monitoring of encapsulated active cosmetic 

during the production process in an industrial environment. Multivariate calibration methods such as 

PLSR applied to spectroscopic data require the method to be trained according to the specific 

formulation analysed, prior to application of the technique to unknown samples. The present study has 

therefore investigated the reliability of the analysis when different batches of unknown samples (3 

independent sets of 15 samples each) were prepared and over a 3 month period, providing additional 

insight about the reproducibility of the approach and the possibility to tailor the method for specific 

ACI/formulations. 

 

2. Materials and methods 

2.1 Preparation and characterisation of Omegalight®-loaded alginate-based 

nanocarriers (ANC_OL) 

2.1.1. Reagents  



Omegalight®, the skin-lightening ACI evaluated in this study, was provided by Bioeurope (Solabia 

group) under collaborative agreement. A number of other ingredients are present, either as part of 

nanocarriers or as additives commonly found in cosmetic products, conferring a high chemical 

complexity to the samples. The ingredients found in the nanocarrier composition are: polysorbate 80 

(Seppic, France), sorbitan monooleate (Seppic, France), sodium alginates (Setalg, France), calcium 

chloride (Fisher Bioblock, France). To prepare cosmetic hydrogels corresponding closely to those 

commercially available, the following cosmetic excipients were mixed: sodium carboxymethyl cellulose 

as gelling agent (Acros organics, France), a mixture of preservatives, dehydroacetic acid and benzyl 

alcohol (Cosgard®, Aroma zone, France) and glycerol as a humectant (Cooper, France). The latter are 

categorised by the term additives, as they are not integrated in the nanocarrier shell. 

 

2.1.2 Preparation of ANC_OL 

Alginate nanocarriers (ANC) are core-shell nano-systems composed of a hydrophobic oily core 

surrounded by a hydrophilic alginate based shell, enabling incorporation of lipophilic ACI in aqueous 

samples such as hydrogels. Protocols used for preparation of ANC_OL are based on previous worked 

published by Miloudi et al. (29). Briefly, ANC_OL were prepared following the method of oil-in-water 

emulsification and ionic gelation, described in detail by Nguyen et al. (23), optimised to provide 

ANC_OL with the oily core containing only the hydrophobic ACI itself. Briefly, sodium alginate is 

placed to soak in ultrapure water until well swollen, followed by stirring to dissolution before filtration 

through a 0.45 µm nylon filter. The 0.6 g/L alginate solution prepared is then supplemented with 

polysorbate 80 (0.04 g/L) to form the aqueous phase of the emulsion. Secondly, the oil phase was 

prepared by mixing Omegalight® and sorbitan monooleate (0.1g/L). Finally, the nano-emulsification is 

achieved by mixing the two phases under sonication (Vibra-cell ultrasonic processor, Sonics, 20 kHz) 

for 3 minutes. The gelation of the surface of the nanocarriers is achieved by addition of a solution of 

calcium ions (1 g/L). 

 

2.1.3. Physico-chemical characterisation of ANC_OL suspensions 

Physico-chemical characterisation was performed based on procedures developed for ANC_OL 

suspensions and described in reference (29). The average hydrodynamic diameter and polydispersity 

index of ANC_OL were assessed by Dynamic Light Scattering (DLS) using a NanoZS instrument 

(Malvern Instruments, UK). A 1/100 dilution in ultrapure water has been applied to each sample prior to 

measurement. The analysis was performed with a 633 nm laser source and a detection angle set at 173°. 

ANC_OL zeta potential (ζ) was measured with the same instrument with a detection angle set at 13°. 

All measurements have been performed in triplicate and at 25°C.  

 

2.1.4 Preparation of Cosmetic product-like models 



The study aims to evaluate ATR-IR spectroscopy as a quality control technique for cosmetic 

products of complex formulation, in this instance, the preparation of samples has been done using the 

formulation of commercialised hydrogel cosmetic products as a base in which the ANC_OL suspension 

is added. For instance, CarboxyMethyl Cellulose (CMC) is one of most commonly used gelling agent in 

hydrogel providing the viscous texture to the product. This ingredient is usually found at concentrations 

of about 1.5% (w/w). Additives such as humectant and preservatives also are common ingredients 

present in formulations. Cosgard® and glycerol were added to samples at final concentrations of 

respectively 1% (w/w) and 20% (w/w), to match the composition of end products. Ultimately, the 

samples analysed throughout this study have been prepared to accurately mirror industrial conditions 

with formulations corresponding to hydrogel cosmetic products currently commercialised.  

To evaluate ATR-IR spectroscopy as quality control tool for complex cosmetic products, sets of 

samples over a range of concentrations for Omegalight® comprised between 0.5% and 5% (w/w) were 

included. Firstly, a training set of 60 samples (Set_01) was prepared by adding different amounts of 

ANC-OL (prepared as described above) into the formulation to reach target concentrations. For clarity, 

the list of samples from Set_01 and corresponding concentrations are summarised in table S1. Due to 

the viscosity of few ingredients, the concentrations provided in the table reflect the exact weight 

introduced during preparation, aiming to be as close as possible to targeted values. Secondly, 3 

unknown sets of 15 samples each have been prepared at month+1, month+2 and month+3 (respectively 

Unknown_Set_01, Unknown_Set_02 and Unknown_Set_03) (Table S2). For each set of samples, 

freshly prepared ANC-OL suspensions were used, possibly exhibiting different properties. 

Unknown_Set_02 and Unknonw_Set_03 were included in the study in an attempt to demonstrate the 

stability of the analysis over time and investigate how the ATR-IR performed when ANC have different 

size and concentration in ACI. The study aims to investigate the final step of production when the ACI 

(ANC_OL) is added to the matrix (gel). Under industrial conditions, these two fractions of the samples 

are prepared independently and it is assumed they are subjected to independent quality analysis prior to 

mixing to obtain the final cosmetic products. Therefore, it has been considered they met quality 

requirements for use and that their compositions (concentrations) have been confirmed. In that context, 

modifications in the matrix composition have not been treated in the present study and PLSR analysis 

has been performed on the basis of a binary ACI-matrix systems. 

 

2.2 ATR-FTIR data collection analysis data handling 

    2.2.1. ATR-FTIR data collection 

IR spectra were acquired using a Frontier spectrometer (Perkin Elmer, France) equipped with a 

Quest single reflection diamond attenuated total reflectance (ATR) accessory (Specac, UK). The 

spectral range was set between 4000-900 cm-1 and the spectral resolution at 4 cm-1. The samples 



prepared are semi-solid hydrogels which are comparable to liquids, but with higher viscosity. Drops of 

200 µL were deposited directly onto the diamond surface and spectroscopic measurements were 

performed without delays. Prior to sample measurement, a background spectrum was recorded in air (4 

scans) and automatically ratioed with the sample spectrum (4 averaged scans) by the software. Between 

each measurement, the ATR crystal has been cleaned with dionised water and tissue paper. For each 

sample, 5 deposits have been measured and 3 spectra per drop have been collected. Hydrogel samples 

behave similarly to liquid, and therefore no pressure was applied for recording of data. Ultimately, 15 

spectra were recorded from each ANC_OL concentration, capturing the inter- and intra-variability 

during measurements. Spectra from pure compounds have also been collected using similar parameters. 

 

 2.2.2 Data Handling 

The data pre-processing and analyses were performed using MATLAB (Mathworks, USA). Analysis 

can be strongly influenced by any interferences (instrumental response, artefact, sample heterogeneity) 

possibly affecting the overall quality of the data collected. Consequently, data pre-processing methods 

are critical in ensuring the best outcome, i.e. precision and accuracy (34). Preliminary studies 

demonstrated that Extended Multiplicative Signal Correction (EMSC) (35) was an appropriate pre-

processing method for this type of sample. It has been applied using the EMSC toolbox for MATLAB, 

freely available from Nofima Data Modelling (https://nofimamodeling.org/software-downloads-list/). 

The toolbox enables data uploading and processing in a user-friendly interface. Full details about the 

correction and the use of the interface can be found in the tutorial published by Asfeth and Kohler (35). 

A basic EMSC model has been applied to the range 2200-900 cm-1 and found to be optimal, with the 

mean spectrum used as reference. The preprocessed data were analysed first using Principal Component 

Analysis then Partial Least Squares Regression (PLSR) (36). Principal Component Analysis (PCA) is a 

multivariate analysis technique that is widely used to simplify a complex data set of multiple 

dimensions (37). It allows the reduction of the number of variables in a multidimensional data set, 

although it retains most of the variation within the data set. The other advantage of this method is the 

derivation of PC loadings which represent the weight of each variable (wavenumber) in the data 

distribution across the scatter plot and for a given PC. Analysis of the loading of a PC can give 

information about the source of the variability inside a data set, derived from variations in the chemical 

components contributing to the spectra. Presently, PCA has been used for data exploration and therefore 

applied to raw spectra. PLSR delivers however an outcome evaluated in terms of ruggedness of the 

regression model and accuracy in predicted concentrations. The 3 parameters used to evaluate the 

quality of the analysis are the linearity between the experimental and predicted concentrations (R2) and 

accuracy (Root Mean Square Error of Cross Validation – RMSECV, relative error of the predictive 



concentration compared to the true value, expressed as %) The RMSECV is determined according to 

(38): 

  

where  is the predicted concentration,  the observed concentration and N the number of 

samples. Additionally, the lower Limit Of Detection (lower LOD) and the limit of quantification 

(LOQ) have been estimated based on the work published by Allegrini et al (39). 

For the purpose of the study, 4 sets of samples are used; Set_01 containing 60 samples as the 

training set, and Unknown_set_01, Unknown_set_02 and Unknown_set_03, each containing 15 

samples each. In order to avoid any bias during the analysis possibly leading to overoptimistic results, 

it is common to implement a Cross Validation (CV) procedure within the PLSR analysis. It implies 

using a calibration set to construct the predictive model, an independent test set to determine the 

optimal number of latent variable and independent sets of unknown samples. The experimental 

design of this study didn’t include separate samples for calibration and test sets, but rather they 

were created by randomly splitting the 60 samples of Set_01. There are a number of different 

methods to randomly split the data into subgroups. In the current study, the Leave K-Out Cross 

Validation (LKOCV) method was used to ensure the 15 spectra collected from each sample are either 

all in calibration or in the test set. Ultimately 40 samples (2/3) of set_01 were randomly selected as 

calibration set, while the remaining 20 samples (1/3) were used as the test set. Once the number of 

latent variables is defined, blind samples, contained in Unknown_set_01, Unknown_set_02 and 

Unknown_set_03, were added to the model to estimate their concentrations. One can see that, 

following this approach, unknown sets are kept independent and don’t have any influence on the 

construction of the PLSR model. Randomly dividing the training Set_01 into calibration and test sets 

requires verification that the outcome of the PLSR is consistent when different samples are selected 

as calibration. In order to include this variability into the results, a 100 fold iteration process was 

applied to the analysis, which is reflected in subsequent figures of the manuscript with error bars. 

 

 

3. Results and discussions 

3.1 Physico-chemical characterisation of ANC_OL suspensions 

 

Average hydrodynamic diameter, polydispersity and ζ value of ANC_OL suspensions are provided 

in table 1. Notably, a polydispersity index below 0.2, indicates a narrow distribution. The physico-



chemical properties are in accordance with those observed in previous studies (23) and comply with use 

of nano-systems in skin cosmetic products.  

 

 

Table 1. Summary of ANC_OL suspensions properties 

[OL] % (w/w) 16.7 

hydrodynamic diameter (nm) 198 ± 3 

polydispersity index 0.12 ± 0.01 

Ζ (mV) -16 ± 1 

 

 

3.2 – Characterisation of spectral variability in data set 

The current study has been performed on hydrogel products which contain CMC as gelling agent 

(see 2. Materials and Methods). However, in order to produce a semisolid form, only 1.5% CMC is 

required, meaning the samples are predominantly composed of water. In addition, additives such as 

glycerol and Cosgard®, commonly found in commercial cosmetic products, have been added, 

respectively in proportions of 20% (w/w) and 1% (w/w), for consistency with final concentrations used 

in the cosmetics industry. Although the 1% (w/w) Cosgard® is expected to have little or no contribution 

to the IR spectra, Glycerol is a polyol with a number of strong features in its IR spectrum which could 

possibly interfere with the quantitative analysis. The ACI studied is a strongly hydrophobic molecule, 

difficult to include in hydrophilic formulations such as hydrogels, except via encapsulation in core–shell 

NC. Alginate is a natural biodegradable polysaccharide extracted from brown algae, and is particularly 

suited to formation of NC shells (40), in order to improve stability and compatibility with homogenous 

suspensions. Although the final encapsulating system is named Alginate Nano-Carriers (ANC), the shell 

contains other ingredients such as sorbitan monooleate and polysorbate 80, which act as surfactants in 

the NC shell.  

Figure 1 presents the 15 raw spectra collected either from the lowest concentration, sample 01 with 

0.5% (w/w), or from the highest concentration, sample 60 with 4.99% (w/w), tested in this study. Only 

the finger print region, 900-1800 cm-1, is presented, which contains the most relevant spectral changes 

(highlighted by black arrows). The underlying signature originates from the water contribution, which is 

constituted by a main broad band centered on 1637 cm−1 (δ OH mode) (11). While the 950-1150 cm-1 

region reflects the presence of glycerol at relatively high concentration, the C=O stretching band at 1739 

cm-1, the C-O stretching at 1111 cm-1 and 1163 cm-1, the C=C stretching of the aromatic ring at 1446 

cm-1 and 1504 cm-1, the C-C stretching at 1493 cm-1, are bands that can be specifically assigned the 

ACI. Other bands at 1039 cm-1 (ν (C-O), ν (C-C)), 1377 cm-1(δ C-C, δ C-C-H) and 1464 cm-1 (δ (CH3), 



δ (CH2) δ (C-C)) are shared with the sorbitan monooleate, but only subtle contributions from this ANC 

shell ingredient are suggested. Another observation that can be made is the high degree of 

reproducibility of the measurements performed. Figure 1 displays the 15 spectra collected from sample 

01 and sample 60 exhibit quite low spectral variability. 5 drops have been deposited on the ATR crystal 

for each sample to ensure the samples containing the ANC_OL have good homogeneity in order to 

avoid interferences in the data analysis. However, due to overlapping spectral signatures originating 

from the different ingredients, and the weak variation of the active cosmetic ingredient, a multivariate 

analysis is required to deliver accurate quantitative analysis. 

 

Figure 1. Raw spectra collected from sample 01 (red) and sample 60 (blue) respectively containing 

0.5% and 4.99% (w/w). Arrows indicate the main features of interest that can be assigned to the 

presence of the ACI. 

 

PCA is a valuable method for data visualisation, enabling identification of the spectral features 

exhibiting the highest variability within the data sets recorded. Figure 2 displays the PCA scatterplot of 

the two extreme concentrations tested in the present study, respectively 0.5% w/w (figure 2 red dots) 

and 4.99% w/w (figure 2 green dots). The two groups of spectra are well separated according to PC1, 

which accounts for 97.4% of the explained variance, while PC2 only accounts for 1.78%. The loading of 

PC1 (figure 3A) has unambiguous similarities with the pure spectrum of Omegalight®, including 

matching peak positions for previously identified features at 1739 cm-1, 1504 cm-1, 1493 cm-1, 1464 cm-

1, 1447 cm-1, 1378 cm-1, 1111 cm-1 and 1039 cm-1. The negative band at 1700-1540 cm-1 indicates that 

changes in water content also affect the IR spectra collected. 



Notably, the use of nano-carriers could also affect the optical properties of samples, influencing the 

overall signal intensity. PCA has been performed on the raw spectra first, while some preprocessing 

could a have significant effect on the scatter plot. Nevertheless, it suggests that an increase in ACI 

would naturally induce noticeable spectral variability and that the loading of PC1 obtained from the 

PCA analysis can be considered as a reference for subsequent quantitative analysis, as it is expected that 

similar features would be identified as most relevant for the construction of PLSR predicted models.    

 

 

Figure 2. PC1 versus PC2 Scatter plot from PCA analysis performed on raw spectra collected from 

ANC_OL samples at 0.5% w/w (Red) and 4.99% w/w (green)  

 

Figure 3. Loading 1 (A) obtained from the PCA analysis compared to pure spectra of ACI (B), glycerol 

(C) and dionised water (D). Spectra are offset for clarity. 



 

     3.3 Leave K-Out Cross Validation (LKOCV)  

a) Construction of regression plot 

 

 

 

 

 

Figure 4 Construction of the predictive model with PLSR. A and C: Evolution of the RMSECV 

according to the latent variable number for respectively raw and EMSC corrected data and B and D: 

PLSR with projection of true concentrations (observation) against experimental concentrations 

(predicted) for respectively raw and EMSC corrected data.  

 

Leave K-out Cross Validation (LKOCV) is widely used for quantitative analysis, to avoid overfitting in 

the results. In order to avoid any bias in the analysis due to the presence of samples represented by 

repetition in both the calibration and test set, the “K-out” is defined as K-groups-out or, more 

specifically for this study, K-samples-out. It means that the 15 spectra collected from a sample are either 

in the calibration or the test set, but cannot be split and found in both. The number of samples K is 

freely defined by the analyst, and presently 40 samples where used as calibration and the 20 remaining 

samples as test. Finally, the objectivity of the analysis is ensured by random selection of the K-samples 

with an iterative routine (n=100) implemented. Raw data deliver a RMSECV of 0.11% (w/w) with a R2 

value of 0.993 with 7 latent variables used for the model (Figure 4A and 4B). The corresponding lower 



LOD and LOQ were respectively calculated to be 0.2% (w/w) and 0.0.6% (w/w).  The outcome of the 

analysis is rather satisfying considering no preprocessing has been applied to data. The number of latent 

variables is defined by the analyst, based on the curve presented in figure 4A. Strictly speaking, the 

minimum RMSECV is reached with 10 latent variables, but it also appears that variations in RMSECV 

are minor above 7. In order to limit the interferences from noise contained in the spectra, it is rather 

advised to limit as much as possible the number of latent variables. Thus it has been preferred to not 

include more than 7 for this study. However, using less than 6 latent variables considerably decreases 

the quality of the predictive model. Ostensibly, the ACI is the only ingredient in the samples whose 

concentration varies, although it is necessary to bear in mind that it is achieved by changing the amount 

of ANC loaded in the formulation. Therefore, modifying the ACI concentration leads to modification of 

the chemical composition including all nano-carriers ingredients. As a result, expression of other 

vibrational modes can also be affected. Decreasing the API concentration would lead to a stronger 

contribution of other constituents in the IR spectra and vice versa (i.e glycerol and water). In addition to 

the modification in spectral features directly linked to the chemical composition, the optical properties 

can also be affected, generating underlying variations in the signatures not necessarily perceived by eye. 

Therefore, it is not surprising that the PLSR model requires an increased number of latent variables to 

deliver its best outcome. After EMSC, PLSR results are slightly improved, yielding RMSECV = 

0.0936% (w/w) and R2 = 0.995, although the difference compared to raw data remains insignificant 

based on those criteria. However, the lower LOD is reduced to 0.067% (w/w) and the LOQ is found to 

be 0.201% (w/w) suggesting the preprocessing of the data increases the reliability of the analysis. The 

LKOCV protocol highlights the ruggedness of the data sets in terms of consistency and reliability of the 

information contained in the spectra. Despite removing 20 concentrations from the training set (1/3 of 

the entire data set), the predictive models appear consistent (errors bars in figure 4A and C).  

To better appreciate the meaning of the value of RMSECV obtained, it can be expressed as percentage 

of the average concentration of the range used for the study (2.75% w/w). For instance, before EMSC 

correction, the RMSECV is found to be 0.106% w/w, which represents a mean error equal to 3.86%. In 

comparison, following EMSC correction, the RMSECV is slightly lower (0.0936% w/w), resulting in a 

mean error of 3.4%. Taking the RMSECV as a parameter to evaluate the quality of PLSR outcome, 

preprocessed and raw data perform similarly.     

 

 

 

 

 



 

 

Figure 5. Regression coefficient obtained from the PLSR with Raw data (A - red) and following 

EMSC (B - blue).  

 

IR spectra are known to be molecular fingerprints of the samples analysed, and therefore the question of 

specificity is often raised when performing advanced statistical analysis. Features used or selected to 

construct the predictive models can be monitored to ensure the analysis is based on relevant information 

contained in the spectra. For instance, the regression coefficient of the PLSR before and after EMSC 

correction (figure 5A and 5B) exhibits a number of positive and negative features over the spectral 

range 1800-900 cm-1. Interestingly the ACI specific features at 1739 cm-1, 1504 cm-1, 1493 cm-1, 1464 

cm-1, 1447 cm-1, 1378 cm-1 and 1039 cm-1, previously identified in the PCA (figure 3A) are also found. 

The broad negative band at 1637 cm-1 is attributed to water and appears negatively correlated with 

increase in ACI concentrations.   

 

 b) Estimation of accuracy  

Evaluation of new analytical tools for quantification of specific molecules in a formulation 

environment requires calibration with reference concentrations which ultimately serve as a comparator 

for experimentally determined (or predicted) concentrations. In the present case, studying cosmetic 

formulations can simplify the process of establishing the calibration set, as the different steps of the 

sample preparation are precisely monitored and all ingredients precisely weighed before introduction to 

the preparation. However, although the RMSECV and the R2 are relevant indicators of the quality of the 

regression model and reflect the overall accuracy of the predictive model, they fail to provide a clear 

estimation of the accuracy of quantification achieved. In order to obtain this information, it is essential 

to consider the samples independently and directly compare the predicted concentration with the true 

concentration.  



This can be achieved using the LKOCV method illustrated above. Due to the high number of samples 

in the data set, it is difficult to provide a graphical representation summarizing the results, but rather 

they are gathered in table 6. The results are expressed as relative error in %, indicating the number of 

samples exhibiting relative errors below 1%, between 1% and 2.5%, between 2.5% and 5% and finally 

above 5%. Additionally, the mean relative error is given and the min-max values provided.        

Before applying EMSC, the PLSR unambiguously delivers the best accuracy in predicted 

concentrations using the raw data, with a mean relative error of 1.82% w/w. It is also interesting to 

compare the sample distribution according to the relative error, by which only 3 samples are seen to be 

above 5% w/w relative error and 26 samples below 1% w/w. After applying EMSC, PLSR is consistent 

with mean relative error of about 2.22% w/w and now 4 samples are above 5% relative error.  

Table 6. Summary of quantitative results for PLSR applied to the training set samples using the 

LKOCV approach. (Before and after applying EMSC) 

 

Pre-processing Relative error (%) 

    

  

<1% 1-2.5% 2.5-5% >5% Mean Min-Max 

PLSR 
Raw data 26 19 12 3 1.82 0.03 - 11.76 

EMSC 18 24 14 4 2.22 0.12 -13.11 

 

Ultimately, a quantitative technique, used as a formulation monitoring tool, should be able to deliver 

accurate concentrations in unknown samples. Reasoning by comparing relative errors provides better 

insights into the reliability of the methods, with surprisingly similar outcomes for raw and EMSC 

corrected data. The spectra collected with ATR-IR contain the specific spectral information sought for 

quantitative analysis of Omegalight® in the model studied. More importantly, the 60 samples of Set_01 

were gathered at the early stage of the study to constitute the training set of data collected to estimate 

concentrations in blind samples. The intrinsic characteristic of multivariate calibration methods, such as 

PLSR, associated with spectroscopic techniques, is the requirement for a reliable training set to 

construct the prediction model. The results obtained with the LKOCV demonstrate the reliability of 

Set_01 and validate the relevancy to use this data set for further investigation on the Unknown_set_01, 

Unknown_set_02 and Unknown_tet_03.  

3.4 – Quantification of Omegalight® in unknown samples  

The final stage of the study is to demonstrate the validity of the quantification of the ACI by means 

of ATR-IR using a number of unknown samples categorized as Unknown_set_01, Unknwon_set_02 and 

Unknown_set_03. In this approach, the 3 additional blind sets (n = 3 x 15 samples) of data have been 

included and considered as unknown samples. Taking the preparation and analysis of Set_01 as T0, 

Unknwon_set_01, Unknwon_set_02 and Unknwon_set_03 have been analysed at respectively T1= 30 

days (month+1), T2= 60 days (month+2) and T3= 90 days (month+3). Set_01 is used as training set for 



the quantitative analysis, while Unknown_set_01, Unknown_set_02 and Unknown_set_03 are then 

input in the models as blind samples. In the conception of the study, no samples were specifically 

identified as calibration or test in Set_01 for the prediction of unknown samples. Therefore, the 

approach proposed is based on a random selection to objectively split the data to avoid adding any bias 

in the outcome of the analysis (i.e. not arbitrary select the best combination of samples). PLSR is 

performed using the Leave-K-out routine described above, with 2/3 of samples of training Set_01 

randomly selected as calibration and the other 1/3 used as test. It is important to stress that the test sets 

are always composed of Unknown_set_01, Unknown_set_02 and Unknown_set_03 (n= 45). The 

number of optimal latent variables to be used is determined by the calibration/test sets, thus optimal 

parameters are fully defined independently from the unknown samples. Once the model is optimized, 

the 45 blind samples are predicted. Set_01 contains 60 samples offering an extremely large number of 

combinations of calibration/test sets which cannot all be computed. In order to provide an overview of 

the results and to maintain objectivity in the use of the algorithm, an iterative routine (n =100) has also 

been implemented in this approach. The 100 loops only concern the reset of the calibration and test sets 

with constant blind sets. It means that for each iteration all the 45 unknown samples are predicted for a 

given model and subsequently 100 different predictive models have been tested. The concentrations 

presented in table 7 are means resulting from the 100 loops. 

Moreover, no noticeable link has been observed between the Unknown_set number (i.e. the time 

parameter) and the accuracy of the analysis outcome when performing PLSR, and therefore the results 

from the 3 blind sets have been merged and summarised in table 7.  

Results from the PLSR following EMSC correction are quite satisfying, yielding mean relative error of 

Out of the 45 unknown samples, only 5 exhibit relative errors above the 5% threshold, with values 

respectively found at 5.52 % w/w (Unknown_set_01, month+1), 7.70% w/w (Unknwon_set_01, 

month+1), 8.69% w/w (Unknwon_set_02, month+2), 9.01% w/w (Unknown_set_02, month+2) and 

13.20% w/w (Unknown_set_01, month+1). Despite a lack of accuracy from a few blind samples, all 

results are encompassed by a reduced window of relative error close to the 5% threshold. Results from 

the raw data remain quite similar with mean relative error of 2.77% and small difference in samples 

distribution, although only 6 are above 5% relative error. The ATR-IR set up is particularly suited for 

analysis of semi-solid formulations. The viscous samples behave as liquids, leading to perfect coverage 

of the ATR crystal, and a constant volume sampled by the evanescent field of the IR radiation 

propagating in the crystal. In such conditions, the IR spectra are strikingly reproducible with relevant 

features from the active ingredients detectable in the range of concentration tested. The similarity 

between raw and EMSC corrected data reflects the reliability of IR measurements of such samples. 

However, the crucial aspect demonstrated in the present study is the potential of ATR-IR spectroscopy 

when spectra collected from 4 sets of samples prepared independently and analysed over a 4 months 

period, in total, are compared and used in the same quantitative model. Using the initial set of 60 



samples (month 0) as training set, the quantification can be achieved with high accuracy for the 

Unknown sets, prepared up to 3 months later. Although the approach for the PLSR is not the most 

conventional for prediction of the unknown samples, the random selection of samples to define the 

calibration and test sets further supports the reliability of the data collected in Set_01. Implementing an 

iterative loop combined to the randomness the algorithm used demonstrate that the outcome of the 

analysis is naturally satisfying without necessarily attempting to optimised the models to reach the best 

accuracy. It also suggests that the freshly made formulations generate IR signatures perfectly compatible 

with the first batch of samples, despite the quite large periods of time separating the data collection. 

Indeed, for numerous industrial analytical protocols, daily or weekly calibrations are performed from 

defined standards to account for the instrumental drift (most common example is for HPLC). However, 

the present study demonstrates that the regression models constructed using an initial dataset, are 

pertinent for the analysis of datasets recorded up to 3 months later, with no model update. This is highly 

encouraging and the consistency of the results obtained highlights the power of ATR-IR for this type of 

application. 

   

Table 7. Summary of results for the 45 test samples with PLSR 

 
Pre-processing 

Relative error (%) 

   
 

  
 

  

   <1% 1-2.5%  2.5-5% >5% Mean Min-Max 

PLSR 

RAW 10 11 18 6 2.77 0.0421 – 8.34 

EMSC 14 15 11 5 2.51 0.08- 13.20 

 

4. Conclusion 

ATR-IR spectroscopy is a reliable technique for label free molecular characterisation of samples. The 

low volume requirements and the reproducibility in the data collected are great advantages for quality 

control of pharmaceutical or cosmetic products. Additionally, the molecular specificity enables to detect 

and quantify the active ingredient in complex mixtures such as semi-solid formulations without 

requirement for pre-analytical protocols. Although the ACI is encapsulated in core-shell nanocarriers, 

IR analysis coupled with advanced data mining methods such as PLSR leads to robust quantitative 

models with RMSECV of 0.097% (w/w) (R2 of 0.995) and lower LOD = 0.067% (w/w). Moreover, the 

results collected from 45 unknown samples clearly demonstrate the accuracy of the approach to predict 

sample concentrations with error below 5%. Considering the number samples included (n = 105) and 



the quality of the results obtained in the present study, the potential of ATR-IR as tool for developing an 

Omegalight® assay in cosmetic product is illustrated. Combined with emerging high throughput 

technologies in the IR field, further developments could lead to short term recognition and adaptation of 

the methodologies in cosmetic and pharmaceutical processing. Validation of a quantitative technique is 

a long process, however, although this study has advanced the field through more extensive 

investigation of large samples set. 
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