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Clostridium difficile is the most frequent cause of nosocomial diarrhea worldwide, and recent reports sug-
gested the emergence of a hypervirulent strain in North America and Europe. In this study, we applied
comparative phylogenomics (whole-genome comparisons using DNA microarrays combined with Bayesian
phylogenies) to model the phylogeny of C. difficile, including 75 diverse isolates comprising hypervirulent,
toxin-variable, and animal strains. The analysis identified four distinct statistically supported clusters com-
prising a hypervirulent clade, a toxin A� B� clade, and two clades with human and animal isolates. Genetic
differences among clades revealed several genetic islands relating to virulence and niche adaptation, including
antibiotic resistance, motility, adhesion, and enteric metabolism. Only 19.7% of genes were shared by all
strains, confirming that this enteric species readily undergoes genetic exchange. This study has provided
insight into the possible origins of C. difficile and its evolution that may have implications in disease control
strategies.

Clostridium difficile is a gram-positive, spore-forming anaer-
obic bacterium that is responsible for a variety of gastrointes-
tinal diseases in humans and other animals, collectively re-
ferred to as C. difficile-associated disease (CDAD) (17, 29).
The pathogen is frequently associated with antibiotic treat-
ment, and the severity of CDAD ranges from antibiotic-asso-
ciated diarrhea to the life-threatening pseudomembranous co-
litis (17). Beyond the morbidity and mortality, CDAD is a
severe economic burden, estimated to cost the U.S. health care
system in excess of $1 billion annually (21). More disturbingly,
the reported incidence of CDAD has increased significantly in
the last decade and a new highly virulent strain is causing
outbreaks of increased severity in North America and Europe
(23, 24, 32). The origin of this strain is uncertain, although it
has been proposed that increased use of fluoroquinolones may
provide a selective advantage for this epidemic strain that is
resistant to the newer fluoroquinolones, gatifloxacin and moxi-
floxacin (25).

C. difficile is known to produce a number of factors that
contribute to its virulence, including two related exotoxins,
toxin A (TcdA) and toxin B (TcdB), which are part of a 16-kb
pathogenicity locus (PaLoc) where toxin production is nega-
tively controlled by TcdC (30). A minority of strains produce a

binary toxin (CdtA/CdtB), but its role in disease is unclear (10,
11). However, production of these toxins alone cannot explain
C. difficile pathogenesis. In recent years, increasing numbers of
strains have been reported from several countries with trun-
cated versions of toxin A and/or toxin B (10, 31).

A plethora of techniques has been used to type C. difficile,
many of which have confirmed the transmission of the organ-
ism in hospital environments (1). Commonly used methods are
toxinotyping based upon variations in the PaLoc sequence
(28), pulsed-field gel electrophoresis (PFGE) (9), PCR ribo-
typing (26) and restriction endonuclease analysis (REA) (4).
These methods have generally been efficient at grouping
strains and in particular have been used to distinguish the
recently emerged hypervirulent strains as toxinotype III, North
American PFGE type 1, REA group BI, or PCR ribotype 027
(generally referred to as BI/NAP1/027) (20, 24, 32). However,
these methods have limited discriminatory potential to eluci-
date the phylogenetic relationships of all strains in a given
study. For example, the discriminatory power of PCR ribotyp-
ing is not absolute; ribotype 001, the most commonly occurring
ribotype in humans, can be subtyped by PFGE (8), and 20
distinct BI group types have been found by REA (24). Addi-
tionally, traditional typing systems do not provide information
on the genes/genetic loci specific to strains from different
sources.

Microarray technology, allied to complex mathematical
analysis to determine phylogeny, has provided a sensitive and
robust method to examine the genetic relatedness of bacterial
populations (2, 6). The genetic relationships described by
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TABLE 1. C. difficile strains

Strain Sourcea Genotype Motility locus Motility Clinical data Origin Clade

CD1 DG A� B� Full Asymptomatic Human A� B�

CF1 DG A� B� Full* No data Human A� B�

CF2 DG A� B� Full* CDAD Human A� B�

CF4 DG A� B� Full* CDAD Human A� B�

CF5 DG A� B� Full* Asymptomatic Human A� B�

CG3 DG A� B� Full* Asymptomatic Human A� B�

JGS6042 JGS A� B� Partial Nonmotile Diarrhea Bovine A� B�

JGS6047 JGS A� B� Full Nosocomial diarrhea Equine A� B�

JGS6053 JGS A� B� Partial Motile Nosocomial diarrhea Equine A� B�

JGS6057 JGS A� B� Partial Motile Nosocomial diarrhea Equine A� B�

JGS655 JGS A� B� Partial Nonmotile Neonatal typhlocolitis Swine A� B�

M10 DD A� B� Full* Outbreak Human A� B�

M13 DG A� B� Partial Human A� B�

M17 DD A� B� Full* Outbreak Human A� B�

M20 DD A� B� Full* Outbreak Human A� B�

M23 DG A� B� Partial Human A� B�

M3 DG A� B� Partial Human A� B�

M30 DD A� B� Partial Outbreak Human A� B�

M65 DD A� B� Partial Outbreak Human A� B�

M68 DD A� B� Partial Outbreak Human A� B�

M70 DD A� B� Partial Outbreak Human A� B�

M9 DD A� B� Partial Outbreak Human A� B�

T7 DG A� B� Full Human A� B�

BI-1 DG tcdC Partial Human HY
BI-10 DG tcdC Partial Human HY
BI-11 DG tcdC Partial Human HY
BI-12 DG tcdC Partial Human HY
BI-14 DG tcdC Partial Human HY
BI-15 DG tcdC Partial Human HY
BI-16 DG tcdC Partial Human HY
BI-2 DG tcdC Partial Human HY
BI-3 DG tcdC Partial Human HY
BI-4 DG tcdC Partial Human HY
BI-5 DG tcdC Partial Human HY
BI-6 DG tcdC Partial Human HY
BI-6p DG tcdC Partial Human HY
BI-6p2 DG tcdC Partial Human HY
BI-7 DG tcdC Partial Human HY
BI-8 DG tcdC Partial Human HY
R12087 JB A� B� Partial Human HY
R20291 JB A� B� Partial Human HY
R20352 JB A� B� Partial Human HY
R20928 JB A� B� Partial Human HY
BI-9 DG tcdC Partial Human HA1
B-one DG A� B� Partial Human HA1
J9 DG A� B� Partial Human HA1
JGS355 JGS A� B� Full Diarrheic SCID Mouse HA1
JGS356 JGS A� B� Full Diarrheic SCID Mouse HA1
JGS360 JGS A� B� Full Diarrheic SCID Mouse HA1
JGS6041 JGS A� B� Partial Nosocomial diarrhea Equine HA1
JGS692 JGS A� B� Full Nonmotile Neonatal typhlocolitis Swine HA1
K14 DG A� B� Partial Human HA1
M124 DD A� B� Partial Nonoutbreak Human HA1
M134 DD A� B� Partial Nonoutbreak Human HA1
M135 DD A� B� Partial Nonoutbreak Human HA1
M151 DD A� B� Partial Nonoutbreak Human HA1
M47 DD A� B� Partial Outbreak Human HA1
R10459 JB A� B� Partial Human HA1
R8366 JB A� B� Partial Human HA1
VPI 10463 DG A� B� Partial Human HA1
Y2 DG A� B� Partial Human HA1
AA1 DG A� B� Absent Human HA2
AA2 DG A� B� Absent Human HA2
JGS647 JGS A� B� Absent Nonmotile Neonatal typhlocolitis Swine HA2
JGS652 JGS A� B� Absent Nonmotile Neonatal typhlocolitis Swine HA2
JGS673 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2
JGS674 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2
JGS675 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2

Continued on following page
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Bayesian phylogeny of a DNA-DNA microarray data set can
then be correlated with the known phenotype and ecological
behavior of each bacterial strain in the analysis; this is partic-
ularly useful in studying the epidemiology and host association
of pathogens (6, 16). Comparative genomic DNA microarray
analysis has been used to investigate several bacterial species in
relation to pathogenesis and host specificity. Comparison of
strains isolated from different hosts as well as virulent and
avirulent strains can reveal predicted coding DNA sequences
(CDSs) that may be important for virulence, pathogen-host
interactions, and transmission (2, 6, 16). To date, microarray
analysis of defined cohorts of strains to determine genetic
relatedness has not been undertaken for C. difficile.

In this study, we carried out whole-genome analysis of 75
well-characterized isolates of C. difficile from humans with a
range of disease outcomes and from several animal sources,
using a whole-genome microarray based on the recently se-
quenced genome of C. difficile 630. Combining DNA microar-
ray data with sensitive Bayesian-based algorithms has yielded
new insights into the population structure of C. difficile, reveal-
ing information on the evolution and origin of the pathogen as
well as several potential determinants of survival and virulence.

MATERIALS AND METHODS

Strains. The strains investigated in this study were 55 human isolates (includ-
ing 21 hypervirulent [epidemic BI/NAP1/027 strains], 13 A� B�, 14 A� B�, and
7 A� B� strains) and 20 animal isolates (7 bovine, 6 swine, 4 equine, and 3
murine strains) (Table 1). Prior to microarray analysis, strains of toxinotype III,
PFGE NAP1, REA BI, or PCR ribotype 027 and with heightened disease
severity were designated hypervirulent. Strains were designated A� B� on the
basis of toxinotype or PCR/sequencing analysis of tcdA and tcdB. The microarray
was designed on the sequenced strain C. difficile 630, a virulent and multidrug-
resistant strain that was observed to spread to several other patients in the same
ward (33).

Microarray design. The microarray was constructed using the approach de-
scribed previously to include all 3,688 chromosomal predicted CDSs from strain
630 (excluding 92 additional CDSs annotated since construction of the microar-
ray) (15). Ten pairs of gene-specific primers were designed to each sequence in
the gene pool by using Primer3(27). Primers were 20 to 25 bp and were designed
as previously described (14, 27), with a matched Tm of �60°C, an amplicon size
range from 50 to 800 bp, and an optimum size of 600 bp. Selection was based on
BLASTN analysis of the PCR products against genes; all 10 PCR products for
each target sequence were compared to the sequence of each gene in the gene
pool, and the longest product with the least similarity (or no similarity) to any
other sequence in the gene pool was selected. This approach maximizes sensi-
tivity and minimizes cross-hybridizations. Additionally, multiple reporters were
designed to some genes, including eight for tcdA, seven for tcdB, three for cdtA,
four for cdtB, and two for each gene involved in S-layer formation.

Amplification of microarray reporter elements. PCR primers were synthesized
by MWG Biotech (Ebersberg, Germany) and supplied in a 96-well format to
enable high-throughput amplification using a liquid handling and PCR amplifi-

cation robot (RoboAmp 9600; MWG Biotech). PCRs were performed with 10 ng
DNA template, 5 U HotStar Taq DNA polymerase (QIAGEN), 0.5 �M primers,
1.5 mM MgCl2, and 200 mM deoxynucleoside triphosphates. Thermocycling was
performed using denaturation of 95°C for 15 min, 40 cycles of 95°C for 1 min,
52°C for 1 min, and 72°C for 1 min, followed by a final extension of 72°C for 5
min. Subsequent rounds of PCR amplification with modified conditions were
performed until a single product of predicted size was obtained for all genes that
were not amplified under standard conditions. Additional validation was under-
taken by sequencing 5% of the amplified genes. Microarrays were constructed by
robotic spotting of the PCR products in duplicate on UltraGAPS aminosilane-
coated glass slides (Corning), using MicroGrid II (BioRobotics, United King-
dom) (14). The microarrays were postprint processed according to the slide
manufacturer’s instructions, using hydration and UV irradiation, and stored in a
dark, dust-free environment.

Hybridizations. Hybridizations were performed as previously described (7, 13,
16) with 2 to 3 �g of test genomic DNA labeled with Cy3-dCTP and 2 �g
Cy5-dCTP with labeled C. difficile 630 genomic DNA as a common reference for
all hybridizations. Microarray slides were prehybridized in 3.5� SSC (1� SSC is
0.15 M NaCl plus 0.015 M sodium citrate), 0.1% sodium dodecyl sulfate (SDS),
and 10 mg/ml bovine serum albumin at 65°C for 20 min before a wash in distilled
water for 1 min and a subsequent wash for 1 min in isopropanol. Test strain-
labeled DNA was mixed with reference strain-labeled DNA, purified using a
MiniElute kit (QIAGEN), denatured at 95°C, and mixed to achieve a final
volume of 23 �l hybridization solution of 4� SSC and 0.3% SDS. Using a 22- by
22-mm LifterSlips (Eyrie Scientific), a microarray was hybridized overnight,
sealed in a humidified hybridization chamber (Telechem International), and
immersed in a water bath at 65°C for 16 to 20 h. Slides were washed once in 400
ml 1� SSC and 0.06% SDS at 65°C for 2 min and twice in 400 ml 0.06� SSC for
2 min. Microarrays were scanned using a 418 array scanner (Affymetrix) and
intensity fluorescence data acquired using BlueFuse (BlueGnome). Test strains
were hybridized up to three times on microarrays that have duplicate sets of
reporters representing the C. difficile genome.

Microarray data analysis and comparative phylogenomics. Data were initially
processed and normalized using GeneSpring 7.2 (Silicon Genetics). Values be-
low 0.01 were set to 0.01. The measured intensity for each CDS was divided by
its control channel value in each sample; if the control channel was below 0.01,
then 0.01 was used instead. If both the control channel and the signal channel
were below 0.01, then no data were reported. Data were divided by the 50th
percentile of all genes that had a raw measurement above 0.01 and were not
flagged as low confidence (P � 0.1). The designation of CDSs in each strain as
present, divergent, or absent was determined by the use of GACK software (16).
GACK calculated an estimated probability of presence (EPP) value for each
gene. A gene was designated present if it had a calculated EPP of 100%,
divergent if it had an EPP between 0% and 100%, and deleted if it had an EPP
of 0%. 0% EPP indicates a 0% chance of being falsely assigned as a divergent
gene, and 100% EPP indicates a minimum assurance that a gene was present
(19). The GACK output for all genes was used for phylogeny inference calcu-
lated using a Bayesian phylogenetic algorithm (MrBayes v3.1.1, http://mrbayes
.CSIT.FSU.EDU). MrBayes requires binary data so divergent genes were reclas-
sified as present. The Bayesian model used four-chain Markov chain Monte
Carlo and 16-category gamma distribution with 1 million iterations with a heat of
0.7 as described previously (2). Phylogenetic trees were sampled every 40th
iteration, and tree structure convergence was statistically assessed across all
potential phylogenies (except an initial 10,000 tree burn-in). The final
(1,000,000th) trees produced by separate runs were statistically assessed for

TABLE 1—Continued

Strain Sourcea Genotype Motility locus Motility Clinical data Origin Clade

JGS676 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2
JGS677 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2
JGS679 JGS A� B� Absent Nonmotile Diarrhea Bovine HA2
JGS688 JGS A� B� Absent Nonmotile Neonatal typhlocolitis Swine HA2
JGS691 JGS A� B� Absent Nonmotile Neonatal typhlocolitis Swine HA2
M120 DD A� B� Absent Nonoutbreak Human HA2
M133 DD A� B� Absent Nonoutbreak Human HA2

a DG, Dale Gerding; DD, Denise Drudy; JB, Jon Brazier; JGS, Glenn Songer; HY, hypervirulent clade strains; HA, human and animal isolates (two clades); A�

B�, defective toxin clade; tcdC, A� B� but with an 18-bp deletion in tcdC; full, CD0226-CD0271 present; *, full motility-associated loci except a CD0253-CD0254
deletion; partial, CD0245-CD0271 present only; absent, all loci absent.
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convergence. Phylogeny inference was based on a conservative estimation of
gene loss.

Microarray data accession numbers. Fully annotated microarray data have
been deposited in B�G@Sbase (accession number E-BUGS-41; http://bugs.sgul
.ac.uk/E-BUGS-41) and also ArrayExpress (accession number E-BUGS-41).

RESULTS AND DISCUSSION

Overall phylogeny. A well-characterized collection of 75 C.
difficile isolates was selected for genomic comparisons from
diverse geographical origins comprising 21 hypervirulent, 13
A� B�, 14 A� B�, and 7 A� B� human isolates and 7 bovine,
6 swine, 4 equine, and 3 murine isolates (Table 1). All isolates
were competitively hybridized with the C. difficile 630 DNA
microarray. From these data, the Bayesian phylogeny of the C.
difficile isolates revealed four major clades unequivocally sup-
ported by Bayesian probabilities (Fig. 1). This included a hy-
pervirulent clade with 20 of the 21 hypervirulent isolates (HY),
a defective toxin clade with all 14 A� B� variants (A�B�), and
two clades that had animal isolates intermixed with human
isolates (HA1 and HA2).

Hypervirulent clade and microevolution. Previous studies
using multilocus sequence typing (MLST) analysis on human
isolates recovered from antibiotic-associated disease and

pseudomembranous colitis found that strains did not cluster
into a hypervirulent lineage (22). However, in this study, 20/21
hypervirulent strains clearly clustered into a distinct lineage.
The HY clade consisted of 20 isolates, all of which were clas-
sified as hypervirulent. The 20 strains were from diverse loca-
tions in the United States, Canada, and the United Kingdom,
confirming their transcontinental spread. The United Kingdom
isolate (R20291) was a particularly aggressive strain isolated
from Stoke Mandeville Hospital, while the Canadian strain
(R20352) was a highly transmissible strain from Quebec.

The genomes of strains in the hypervirulent clade charac-
teristically had a number of deletions compared to those of
strain 630, with the exception of BI-9, which appears in clade
HA1. BI-9 does not have a characteristic apparent deletion at
the end of tcdB, specific to the hypervirulent strains and pre-
viously unreported (Fig. 2). Alternatively, substantial diver-
gence in gene sequence can result in loss of hybridization
signal and therefore appear as a deletion on the microarray.
The microarray results may indicate a novel 3� end for tcdB in
these strains. Interestingly, the hypervirulent strains have been
described as high expressors of toxins A and B. This has been
ascribed to a point mutation in tcdC (24). However, this would
not be detected by the microarrays used in this study. Table 2).

FIG. 1. Phylogenetic relationship of strains associated with different clinical outcomes and animal sources represented as four major clades
(HY, A� B�, HA1, and HA2). Strains are designated at the end of the branches and are colored according to the animal source from which the
C. difficile strain was isolated. Black, human; blue, mouse; green, bovine; red, swine; light blue, equine. Branches with ** have a P value of 1.0 and
represent 100% of all phylogenies showing a given topology. * indicates a P value of �0.98.
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shows the genes absent from all hypervirulent strains (by
GACK and McClade analyses), with the exception of BI-14
(HY outlier) and BI-9 (HA1). Given the recent recognition
that gene loss or “black holes” may contribute to increased
virulence in pathogens (pathoadaptation) (5), these deletions
may be significant in terms of the increased virulence of these
strains and therefore are worthy of further investigation.

Close scrutiny of the gene content in this clade suggests
some microheterogeneity that may be chronologically signifi-
cant. It appears that two subgroups were isolated after 2001
(BI-6 onwards). For example, specific fragments of conjugative
transposons CTn2 (CD0404-CD0437) and CTn5 (CD1864-
CD1868) are present in the U.S. strains BI-6, -6p, -6p2, -7, -8,
-10, -12, and -15 as well as R20291 (Stoke Mandeville 027),
R20352 (Canadian 027), and R20928 (USA 027) but are ab-
sent in BI-1, -2, -3, -4, -5, -9, -11, -14, and -16 and R12087
(Popoff 027). BI-1, -2, -3, -4, and -5 are nonepidemic older U.S.
isolates from 1984 to 1993. The role(s) of CTn2 and CTn5 is
unproven, but these loci have genes that may encode ABC

transporter proteins and CD0434 within CTn2 encodes a pro-
tein that has amino acid similarity to MatE, a drug/antiporter
protein (12). The potential impact of the presence of these
conjugative transposons in hypervirulent strains upon clinical
management of patients is unknown. However, prescription of
proton pump inhibitors and fluoroquinolone antibiotics has
been suggested to exacerbate the CDAD and contribute to the
emergence of the hypervirulent strains (25).

Toxin-defective clade. All 14 A� B� strains grouped in a
tight subclade that was part of a larger clade that included
seven other strains, with a subclade of A� B� strains (M3,
M13, and M23) and four animal isolates that were more dis-
tantly related. The A� B� strains were from outbreaks of
CDAD in Ireland, the United Kingdom, and the United States,
again confirming the wide geographical distribution of an ep-
idemic C. difficile clone. Similar observations have been made
when other collections of A� B� strains have been examined
by independent typing methods, such as MLST (22). The hy-
pervirulent and A� B� isolates cluster into two independent
highly homogeneous phylogenetic lineages. Taken together,
these results suggest a low genetic diversity of the hyperviru-
lent and A� B� variant strains and of the wide geographical
spread of these lineages. Also, all 14 A� B� strains have a
version of CTn5 that lacks CD1864. Table 3 shows a list of
genes absent from all A� B� strains except strain CF5.

FIG. 2. Selected gene map on toxin PaLoc (tcdD, tcdB, tcdE, tcdA,
and tcdC). A horizontal bar indicates array competitive genomic hy-
bridization of a single strain, and a vertical color bar represents the
presence (yellow lines) or absence/high divergence (blue lines) of each
gene from CD0659 (tcdD), on the left, to CD0664 (tcdC), on the right.
In the clade blocks, dark blue represents strains in the A� B� clade,
light blue represents strains in the HY clade, yellow represents strains
in the HA1 clade, and red represents strains in the HA2 clade.

TABLE 2. HY-specific deletions

Loci Deletion(s)/divergent genes

CD0630-CD0719...........Methenyltetrahydrofolate cyclohydrolase
CD0630-CD0720...........Putative FolD bifunctional protein (includes

methylenetetrahydrofolate dehydrogenase
and methenyltetrahydrofolate
cyclohydrolase)

CD0630-CD0721...........Conserved hypothetical protein
CD0630-CD0722...........Putative methylenetetrahydrofolate reductase
CD0630-CD0723...........Putative carbon monoxide dehydrogenase/

acetyl coenzyme A synthase complex,
dihydrolipoyl dehydrogenase subunit

CD0630-CD0724...........Putative carbon monoxide dehydrogenase/
acetyl coenzyme A synthase complex,
nickel-inserting subunit

CD0630-CD1744...........Two-component sensor histidine kinase
CD0630-CD1745...........Hypothetical protein
CD0630-CD2013...........TetR family transcriptional regulator
CD0630-CD2599...........Putative general stress protein
CD0630-CD3140...........Putative membrane protein
CD0630-CD3144...........Putative transcriptional regulator
CD0630-CD3145...........Putative serine-aspartate-rich surface-

anchored fibrinogen binding protein

TABLE 3. A� B�-specific deletions (except strain CF5)

Loci Deletion(s)/divergent genes

CD0630-CD3575 ..........................Putative sodium:solute symporter
CD0630-CD3574 ..........................Putative membrane protein
CD0630-CD3573 ..........................Hypothetical protein
CD0630-CD0654a.........................Putative ABC transporter, permease

protein
CD0630-CD0590a.........................Hypothetical protein

a Absent in CF5.
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Human and animal clades. Two further clades distinct from
the hypervirulent and toxin A� B� strains could be distin-
guished. One clade designated HA1 had mainly (14/20) human
isolates, with a single porcine strain, two equine strains, and a
tight subclade of the three murine strains. Human isolates in
clade HA1 include toxinotype 0, REA types B1, J9, and K14
that have caused CDAD outbreaks in U.S. hospitals in Min-
nesota, Illinois, New York, Arizona, Massachusetts, and Flor-
ida, and reference strain VPI 10463, a toxinotype 0 hyperpro-
ducer of toxins A and B (18; D. N. Gerding, personal
communication). The other clade designated HA2 had pre-

dominantly (10/14) pig and bovine isolates and four human
isolates and a preponderance of ribotype A strains (9/9 with
known ribotypes were ribotype A). Analysis of animal isolates
showed that bovine (six of seven in HA2 clade) and murine
(three of three tightly grouped in HA1 clade) strains were
clustered (Fig. 1). By contrast, porcine and equine strains were
distributed across three different clades, in many cases mixing
with clusters of human isolates. Since the comparative phylo-
genomic analysis in this study failed to define any host speci-
ficity, it could be presumed that animals constitute a source for
human infection. CDAD occurs in various forms in domestic

FIG. 3. Whole-genome analysis of all 75 strains. A vertical color bar indicates array competitive genomic hybridization of a single strain, and
a horizontal line represents the presence (yellow lines) or absence/high divergence (blue lines) of each gene from CD0001 (top) to CD3679
(bottom). Selected genomic islands of interest are labeled at the sides. In the clade blocks, dark blue represents strains in the A� B� clade, light
blue represents strains in the HY clade, yellow represents strains in the HA1 clade, and red represents strains in the HA2 clade.
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animals, but only in the pig has its widespread occurrence been
documented; porcine CDAD affects neonates, with significant
economic losses (29). Given that C. difficile is not part of the
normal human flora, one could argue that strains causing
CDAD must ultimately come from some outside source and
pork consumption remains a possibility.

Genes/genomic islands that relate to niche adaptation and
potential virulence. Whole-genome comparisons of all 75
strains revealed several loci that are deleted or are highly
divergent in several strains that could be important in niche
adaptation and potential virulence (Fig. 3). Among these are
flagellin-related genes that are likely to be important in motil-
ity (Fig. 4). In the 630 genome, two loci encode potential
flagellum-associated proteins (CD0226-CD0240 and CD0245-
CD0271), between which lies a third interflagellar locus of four
genes of unknown function (CD0241-CD0244). All A� B�

strains have retained the three flagellum-associated loci (ex-
cluding CD0252-CD0255). The full gene complement was re-
tained in only 7 of the other 62 strains, including three murine
(JGS355, JGS356, and JGS360), two equine (JGS692 and
JGS6047), and two human (CD1 and T7) strains (Fig. 4). All
other strains have lost the first locus (CD0226-CD0240) and
interflagellar locus (CD0241-CD0244). All three loci relating
to potential flagellin biosynthesis are absent in HA2 strains.
These observations on the flagellin gene complements in C.
difficile suggest that motility and chemotaxis are unlikely to be
essential in the survival and virulence of the organism in the
human host.

A 19-gene cluster in C. difficile 630 (CD1906-CD1926) is
likely to be involved in ethanolamine degradation and bears
several hallmarks of a laterally acquired genomic island; the
entire cluster is inserted into and disrupts CD1927, and the last

CDS in the cluster encodes a site-specific recombinase
(CD1905). This ethanolamine degradation protein is highly
similar to those of other enterics, including Salmonella enterica
serovar Typhimurium, Yersinia enterocolitica, and Enterobacter
faecalis. In this study, the ethanolamine degradation island was
completely intact in all strains except the three murine strains
and strains AA1 and AA2. It has been suggested that the use
of ethanolamine by C. difficile may be important for its anaer-
obic gastrointestinal lifestyle, since ethanolamine is a carbon
and nitrogen source provided by the host’s dietary intake. It is
unclear why this island appears to have specifically been dese-
lected in the murine and AA strains, but it may reflect niche
adaptation.

Antibiotic resistance-related genes. C. difficile 630 contains
36 potential drug resistance-associated genes, the majority of
which are common to all strains tested. However, gene absence
generally falls into specific clades. Lantibiotic resistance loci
CD0643-CD0646 and CD1349-CD1352 were absent exclu-
sively from all HA2 strains. The putative antibiotic resistance
ABC transporter gene that encodes daunorubicin resistance
(CD0456) was absent from all HA2 strains and the majority of
HA1 strains (except B-one, K14, and JGS692). However, it was
present in all hypervirulent strains, all A� B� strains, and four
A� B� strains (CD1, M3, M13, and M23). A candidate strep-
togramin A acetyltransferase (CD2226) that may encode strep-
togramin resistance A was present in all strains except BI-9,
the outlier in the hypervirulent clade.

Toxin-related genes. Surprisingly, DNA from all A� B�

strains failed to hybridize with the first two tcdB reporters but
did hybridize with all eight tcdA reporters (Fig. 2). Analysis of
published tcdB sequence from CF2 (A� B�) (29) identifies
numerous point mutations in the region of the first two tcdB

FIG. 4. Selected gene map on flagellin-associated genes. A vertical color bar indicates array competitive genomic hybridization of a single
strain, and a horizontal line represents the presence (yellow lines) or absence/high divergence (blue lines) of each gene from CD0226 (top) to
CD0271 (bottom). F1 indicates flagellar loci CD0226-CD0240, F2 indicates interflagellar loci CD0241-CD0244, and F3 indicates flagellar loci
CD0245-CD0271. In the clade blocks, dark blue represents strains in the A� B� clade, light blue represents strains in the HY clade, yellow
represents strains in the HA1 clade, and red represents strains in the HA2 clade.
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reporters. Therefore, the tcdB apparent deletions may be due
to sequence divergence beyond the specificity of the microar-
ray. Interestingly, CF2 tcdB was virtually identical to tcdB from
C. difficile strain 8864, which has been described as having a 5�
end similar to that of the toxin gene of Clostridium sordellii (3).
The explanation for why the A� B� strains have apparent
intact toxin A genes is unknown. However, all eight strains that
were classified as A� B� clearly lacked evidence for toxin B
(all reporters nonhybridizing) and toxin A (first five reporters
nonhybridizing) (Fig. 2). A� B� strains are represented in
three of the four clades, suggesting that the absence of toxins
is not a feature of clonality and that the PaLoc can readily
be lost.

Core gene set. Using only genes designated present (EPP of
100%), an unusually low core gene content of 19.7% was
derived for all 75 strains. Table 4 gives estimates of the core
gene set for all of the strains represented in the respective
clades. These core genes encode mainly metabolic, biosyn-
thetic, cellular, and regulatory processes. However, many po-
tential virulence determinants are also conserved, indicating
that they are indispensable for C. difficile to cause disease in
humans. These included genes that are likely to encode a
capsule (CD2769-CD2780), a type IV pilus (CD3294-CD3297
and CD3503-CD3513), and fibronectin binding proteins
(CD1304 and CD2592).

Comparative phylogenomics. The comparative phylogenomic
method has previously proven to be useful for highlighting
potential infection sources and identifying potential virulence
determinants in other enteric pathogens (6, 16). In this study,
the method confirmed the clonal nature of the hypervirulent
and A� B� strains; it largely validates and complements exist-
ing typing methods used for C. difficile, such as toxinotyping,
PFGE, REA, PCR ribotyping, and MLST (22). Comparative
phylogenomics has a higher discriminatory power than traditional
typing methods, and features relevant to strain groupings can be
related to gene content.

Given the emergence of hypervirulent strains, the contin-
ued use of broad-spectrum antibiotics (including fluoro-
quinolones), and the rising numbers of immunocompro-
mised and elderly patients, the incidence of CDAD is
unlikely to recede. This study is the first genomic microarray
comparison of multiple C. difficile strains and, through
Bayesian-based algorithms, was able to group strains into
four independent clades. This method has also identified
many genetic loci that contribute to the formation of each
clade, thereby identifying several potential determinants
that may help to explain niche adaptation and the differ-
ences in pathogenicity observed.
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