GyrA mutations in Fluoroquinolone Resistant Clostridium difficile
PCR 027

Denise Drudy
teaching University Dublin, denise.drudy@tudublin.ie

Lorraine Kyne
Mater Misericordiae University Hospital,

Rebecca O'Mahony
University College Dublin

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/scschbioart

Recommended Citation

This Article is brought to you for free and open access by the School of Biological Sciences at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, ailing.coyne@tudublin.ie, gerard.connolly@tudublin.ie, vera.kilshaw@tudublin.ie.
Authors
Denise Drudy, Lorraine Kyne, Rebecca O’Mahony, and Séamus Fanning

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschbioart/125
gyrA Mutations in Fluoroquinolone-resistant Clostridium difficile PCR-027

To the Editor: Clostridium difficile is the most common cause of bacterial diarrhea in hospitalized patients (1). Antimicrobial drug therapy is the most important risk factor associated with the acquisition of C. difficile, and several antimicrobial agents including clindamycin, amoxicillin, and cephalosporins have been particularly associated with C. difficile infection (2). Acquisition of resistance to clindamycin is considered a mechanism whereby clonal strains emerge and predominate in healthcare environments (3). Historically, fluoroquinolone antimicrobial agents were considered low risk for C. difficile-associated-disease; however, recent studies indicate a shift in the risk associated with their use (4). Furthermore, recent outbreaks in Canada and the United States have been associated with fluoroquinolone exposure (4).

Recently, several C. difficile outbreaks due to PCR ribotype 027 (PCR-027) and associated with increased disease severity and death have been reported worldwide (4). This strain type contains the genes for binary toxin and has an 18-bp deletion and a frameshift mutation in tcdC hypothesized to result in deregulated expression of toxins A and B. These strains produce 16× more toxin A and 23× more toxin B in vitro than toxinoype 0 strains (5). These isolates demonstrate universal high-level resistance to fluoroquinolones in contrast to that of PCR 027 isolates collected before 2001 (4).

We report the mechanism of fluoroquinolone resistance in a cluster (n = 5) of Irish PCR-027 C. difficile isolates that were characterized by using toxinotyping and 16–23S ribotyping. Amplification with PCR and sequencing was used to identify the binary toxin gene (cdtB) and an 18-bp deletion and a frameshift mutation at position 117 in the tcdC gene. Antimicrobial susceptibility to 5 fluoroquinolone antimicrobial drugs was determined with E-tests (AB-Biodisk, Solna, Sweden). The quinolone-resistance–determining region (QRDR) of gyrA and gyrB was amplified by PCR and characterized. The nucleotide sequence data for partial sequences of the gyrA gene were submitted to GenBank and assigned accession nos. DQ821481, DQ821482, DQ821483, and DQ821484.

PCR ribotyping profiles identified 1 cluster of C. difficile PCR-027 with clinical isolates that showed indistinguishable profiles to the control 027 strain. PCR identified the cdtB, an 18-bp deletion, and a frameshift mutation at position 117 in the tcdC gene in all 5 isolates. These strains were universally resistant to the fluoroquinolones tested (ofloxacin, ciprofloxacin, levofloxacin, moxifloxacin, and gatifloxacin, respectively, MIC >32 µg/mL [Table]). Control isolates were susceptible to moxifloxacin and gatifloxacin (MICs 0.3, 0.2 µg/mL, respectively; however, these strains had reduced susceptibility to levofloxacin (MIC 3 µg/mL) and were resistant to ciprofloxacin and oflo-xacin (Table). Sequence analysis determined that all 5 PCR-027 isolates had a single transition mutation (C to T), resulting in the amino acid substitution Thr-82-Ile in gyrA (Table). No amino acid substitutions were found in the QRDR of gyrB (data not shown).

Mutations in the active site or the QRDR of DNA gyrase and topoisomerase IV have been associated with increased resistance to fluoroquinolones in several bacteria (6). This report identifies for the first time a mutation in gyrA that is associated with high-level resistance to fluoroquinolones in C. difficile PCR-027. In Escherichia coli, amino acid substitutions that occur at Ser-83 in gyrA have been associated with fluoroquinolone resistance (6). Thr-82 in C. difficile corresponds to Ser-83 in E. coli. Thr-82-Ile amino acid substitutions corresponding to Ser-83 have been associated with fluoroquinolone resistance in several bacteria, including Pseudomonas aeruginosa, Enterobacter aerogenes, Campylobacter jejuni, and C. difficile (6). Ackermann et al. described 2 mutations in gyrA that resulted in an amino acid substitution corresponding to codon 83 in E. coli. Thirteen of the 18 C. difficile isolates had the Thr-82-Ile substitution, and 1 strain had a Thr-82-Val substitution (7). Dridi et al. described this Thr-82-Ile GyrA substitution in 6 resistant C. difficile strains corresponding to 3 serogroups, H1, A9, and 1C (8).

Early studies investigating fluoroquinolone antimicrobial agents suggested that most C. difficile isolates were susceptible to these drugs.
Antimicrobial drug resistance to this class has increased with fluorquinolone use, and currently these drugs remain the most frequently prescribed antimicrobial agents in the United States and Europe. Acquired resistance to the newer fluorquinolone antimicrobial agents is not restricted to ribotype PCR-027, although different amino acid substitutions in the QRDR of gyrA and gyrB have been described (7–9). Wilcox et al. have described high-level fluorquinolone resistance in PCR ribotype-001, an endemic strain type found in several healthcare settings in the United Kingdom (10). We have previously described the emergence of a fluorquinolone-resistant toxin A–, toxin B–positive strain in Dublin (9).

We report a mutation in gyrA associated with fluorquinolone resistance in C. difficile PCR-027. Antimicrobial drug resistance in C. difficile isolates must be monitored because the emergence of universal fluorquinolone resistance in different C. difficile strain types may be a factor promoting outbreaks in hospitals. As exposure to several different fluorquinolone antimicrobial drugs have been independently associated with C. difficile–associated-disease, restricted use of all fluorquinolones, rather than changing from 1 quinolone to another, may be a necessary step toward preventing and controlling C. difficile outbreaks.

The Health Research Board, Ireland, the Mater Foundation, and the Newman Scholarship Programme–University College Dublin provided financial support.

Denise Drudy,* Lorraine Kyne,† Rebecca O’Mahony,* and Séamus Fanning*

*University College Dublin, Dublin, Ireland; and †Mater Misericordiae University Hospital, Dublin, Ireland

References

Address for correspondence: Denise Drudy, Centre for Food Safety, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; email: denise.drudy@ucd.ie

Instructions for Emerging Infectious Diseases Authors

Letters. Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article’s publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 figure or table and should not be divided into sections. All letters should contain material not previously published and include a word count.

Table. Characterization of representative isolates, Ireland, 2006

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Toxinogenic status</th>
<th>Ribotype</th>
<th>Ciprofloxacin Mic g/mL</th>
<th>Olofoxacin Mic g/mL</th>
<th>Levofloxacin Mic g/mL</th>
<th>Gatifloxacin Mic g/mL</th>
<th>Moxifloxacin Mic g/mL</th>
<th>Amino acid substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1470*</td>
<td>A′B′</td>
<td>017</td>
<td>>32</td>
<td>>32</td>
<td>3</td>
<td>0.38</td>
<td>0.25</td>
<td>Thr-82</td>
</tr>
<tr>
<td>VP10463*</td>
<td>A′B′</td>
<td>D</td>
<td>>32</td>
<td>>32</td>
<td>3</td>
<td>0.38</td>
<td>0.25</td>
<td>Thr-82</td>
</tr>
<tr>
<td>CD 196*</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>3</td>
<td>0.38</td>
<td>0.25</td>
<td>Thr-82</td>
</tr>
<tr>
<td>M216†</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>Thr-82-iso</td>
</tr>
<tr>
<td>C2191†</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>Thr-82-iso</td>
</tr>
<tr>
<td>V6-13†</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>Thr-82-iso</td>
</tr>
<tr>
<td>V6-15†</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>Thr-82-iso</td>
</tr>
<tr>
<td>V6-20†</td>
<td>A′B′</td>
<td>027</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>>32</td>
<td>Thr-82-iso</td>
</tr>
</tbody>
</table>

*Control isolates VP-10463, 1470 CD196.†Clinical 027 isolates from 3 different institutions investigated in this study.