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Holomorphic Liftings from Infinite
Dimensional Spaces

Seán Dineen, Milena Venkova∗

Summary

We obtain a number of positive solutions to the following holomorphic
lifting problem: if Ω is a domain in a locally convex space E, X and Y are
Banach spaces with Y ⊂ X and quotient mapping π : X −→ X/Y , and
f : Ω −→ X/Y is holomorphic does there exist h : Ω −→ X such that
f = π ◦ h?

1 Introduction

Diverse results on the holomorphic lifting problem have been obtained since
1980. In 1980 Aron [1] proved lifting theorems for entire holomorphic func-
tions of compact type. R. Ryan showed, using monomial expansions, in [23]
that all holomorphic mappings of bounded type from `1(Γ), Γ an arbitrary in-
dexing set, to X/Y could be lifted to a holomorphic function of bounded type
from `1(Γ) to X and in [2] the authors construct, for every pair of Banach
spaces X and Y , a universal space MX,Y , such that all Y -valued holomor-
phic functions of bounded type defined on X and all Y -valued holomorphic
functions defined on a balanced domain in X could be lifted holomorphi-
cally to MX,Y . While investigating the dependence of solutions of operator

∗This work was carried out with the partial support of SFI grant R9317. AMS clasifica-
tion 46G20. Key words: Holomorphic liftings, sheaf cohomology, approximation property,
tensor product.
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equations on a holomorphic parameter in [8] we obtained a positive solution
to the holomorphic lifting problem for arbitrary Banach spaces when Ω is a
pseudo-convex domain in `1.

From the linear theory we know that if, for all pairs of Banach spaces X
and Y , Y ⊂ X, all X/Y -valued linear mappings defined on a Banach space
W can be lifted to linear (or polynomial or holomorphic) mappings from W
to X then W is isomorphic to `1(Γ) for some Γ and in [9] the authors obtain
a similar characterization of L1-spaces using polynomials which are weakly
continuous on bounded sets. Thus positive solutions to the holomorphic
lifting problem for arbitrary separable X and Y , Y ⊂ X, only occur when
Ω is a pseudo-convex subset of `1. To obtain further positive results we let
Ω lie in a locally convex space and consider special combinations of Banach
spaces. We use a sheaf theory approach in section 2, exactness of the functor
⊗ε in section 3 and in section 4 obtain a number of miscellaneous results.

We let X, Y, Z etc. denote Banach spaces and let E,F etc. denote locally
convex spaces, all over the complex numbers C. If X is a Banach space and
Ω is a domain in E let H(Ω, X) denote the set of all holomorphic mappings
from Ω to X. We let L(X, Y ) denote the set of all continuous linear mappings
from X to Y and if X = Y we write B(X) in place of L(X,X). We let E ′

denote the space of all continuous linear mappings from E to C and write
E ′c when this space is endowed with the compact open topology. We refer to
[6, 19] for background information on infinite dimensional holomorphy and
to [4, 24] for tensor products.

2 Short Exact Sequences

The general holomorphic lifting problem may be presented diagrammati-
cally as follows. If Y is a closed subspace of a Banach space X, π : X 7→ X/Y
is the quotient mapping, Ω is a domain in E and f ∈ H(Ω, X/Y ) does there
exist g ∈ H(Ω, X) such that the following diagram:

X
π

""DDDDDDDD

Ω
f

//

g
??�

�
�

�
X/Y

commutes. We find it convenient in this and the following section to use
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short exact sequences. If

0 −→ Y
i−→X q−→Z −→ 0 (1)

is a short exact sequence of Banach spaces and continuous linear mappings
then i is an injective mapping from Y onto the Banach subspace ker(q) of
X and, by the open mapping theorem, we may identify Y with the closed
subspace i(Y ) of X. Furthermore, since q is surjective it is open by the
open mapping theorem and we may identify Z with the quotient space X/Y .
If Y ' i(Y ) = ker(q) is a complemented subspace of X we say that the
sequence (1) splits. In this case Image(q) ' Z is a complement of i(Y ) and,
with these identifications, the sequence (1) can be rewritten as

0 −→ Y
i⊕0−→Y ⊕ Z 0⊕q−→Z −→ 0

If Y ⊥ := {x′ ∈ X ′ : x′(i(Y )) = 0} denotes the polar of Y in X ′, the strong
dual of X, we may identify as Banach spaces Y ⊥ and Z ′ and we obtain the
dual short exact sequence

0←− Y ′
ti←−X ′ tq←−Z ′ ←− 0 (2)

where ti denotes the transpose mapping to i etc. Since the holomorphic
lifting problem has, trivially, a positive solution when Y is a complemented
subspace of X we will only be interested in the short exact sequences (1)
which do not split. However, we shall see later non-trivial examples where
(1) does not split but the dual sequence (2) does split.

If i∗(f) := i◦f for all f ∈ H(Ω, Y ) and q∗(g) := q ◦g for all g ∈ H(Ω, X),
where Ω is a domain in a locally convex space, then it is easily seen that i∗

is injective and Im(i∗) = ker(q∗). This shows that the holomorphic lifting
problem has a positive solution for Ω if and only if the sequence

0 −→ H(Ω, Y )
i∗−→H(Ω, X)

q∗−→H(Ω, Z) −→ 0 (3)

is exact.

The results we prove depend on various hypotheses on X, Y ,Z, E and
Ω and come from different settings. For the reader’s convenience we sum-
marise our main results in the following theorem. Unexplained terms will be
introduced later.

3



Theorem 1 Let

0 −→ Y
i−→X q−→Z −→ 0

denote a short exact sequence of Banach spaces. If Ω is an open subset of
the locally convex space E then the sequence

0 −→ H(Ω, Y )
i∗−→H(Ω, X)

q∗−→H(Ω, Z) −→ 0

is exact, that is the holomorphic lifting problem has a positive solution, if any
of the following conditions hold;

(a) E is a separable Banach space with an unconditional basis, Ω is pseudo-
convex and Y in an M-ideal in X.

(b) E is a log-convex Fréchet space and Ω is pseudo-convex,

(c) E is a DFC space with the approximation property and separable dual
and the dual sequence

0←− Y ′
ti←−X ′ tq←−Z ′ ←− 0

splits.

3 A Sheaf theory approach to liftings

For E a fixed locally convex space and X a Banach space we let OX denote
the sheaf of germs of X-valued holomorphic functions on E. If we are given
the short exact sequence of Banach spaces (1) then (3) are the sections over
Ω associated with the sequence of sheaves

0 −→ OY i∗−→OX q∗−→OZ −→ 0. (4)

If (4) is a short exact sequence of sheaves then we obtain the long exact
sequence

0 −→ H(Ω, Y )
i∗−→H(Ω, X)

q∗−→H(Ω, Z) −→ H1(Ω, Y ) −→ · · · (5)
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where H1(Ω, Y ) is the first cohomology of Ω with values in OY . Thus to
show that (3) is exact it suffices to show that (4) is a short exact sequence
of sheaves and that H1(Ω, Y ) = 0. To show that (4) is exact is equivalent to
showing the existence of local liftings. We call on results of Lempert [14, 16]
to obtain the cohomology result we require. This is the method we used to
prove Proposition 1 in [8].

A separable Banach space has the bounded approximation property if
and only if there exists a sequence (Tm)∞m=1 ⊂ B(X) such that Tm(x) −→ x
for all x ∈ X. A separable Banach space has the bounded approximation
property if and only if it is isomorphic to a complemented subspace of a
Banach space with a Schauder basis. In particular, we see that the bounded
approximation property is inherited by complemented subspaces of separable
Banach spaces with the bounded approximation property. By the Uniform
Boundedness Principle, λ := supm ‖Tm‖ < ∞ and we say that X has the
λ-approximation property.

The following lemma shows how linear liftings (respectively linear liftings
with bounds) can be extended to obtain polynomial liftings (respectively
local holomorphic liftings). Proposition 2.3 and the remarks prior to it in
[10] give counterexamples to the lifting problem when any of the hypothesis
in Proposition 2 are removed.

Lemma 1 If the Banach space X has the λ-approximation property then
⊗̂n,s,πX, the n-fold completed symmetric projective tensor product of X with
itself n times, has the λn-approximation property.

Proof. If (Tm)∞m=1 denotes the sequence defining the λ-approximation
property then T nm := Tm ⊗ · · · ⊗ Tm (n-times) ∈ B(⊗̂π,s,nX) and ‖T nm‖ ≤
‖Tm‖n ≤ λn for all m and n. If x ∈ X, then

‖T nm(⊗nx)−⊗nx‖ ≤ ‖
n∑
j=1

(T j−1
m (⊗j−1x))⊗ (Tm(x)− x)⊗n−j x‖

≤ (n+ 1) sup
1≤j≤n

{‖Tm‖j−1 · ‖Tm(x)− x‖ · ‖x‖n−j}.

Linearity, density, and boundedness of the sequence (‖Tm‖)∞m=1 imply that
T nm(θ) −→ θ for all θ ∈ ⊗̂n,s,πX as m −→∞. This completes the proof.
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A closed subspace Y of a Banach space X is called an M-ideal if there
exists a projection P from X ′ into X ′ with range Y ⊥ such that

‖φ‖ = ‖P (φ)‖+ ‖φ− P (φ)‖
for all φ ∈ X ′. Any closed ideal in a C∗ algebra is an M -ideal, in particular the
Banach space c0 is an M-ideal in `∞, and K(H), the compact linear operators
from a Hilbert space into itself, is an M-ideal in B(H). If 1 < p ≤ q < ∞,
then K(`p, `q), the compact linear operators from `p to `q, is an M-ideal in
L(`p, `q) (by [21] if X and Y are Banach spaces and Y has an unconditional
basis then either K(X,Y ) = L(X,Y ) or K(X, Y ) is an uncomplemented
subspace of L(X,Y )). We refer to [10] for further information on M-ideals.

The following proposition includes part (a) of Theorem 1.

Proposition 1 If W is a separable Banach space with the λ-approximation
property, Y is an M-ideal in the Banach space X, and the sequence (1) is
exact then the sequence (4) is exact for sheaves of holomorphic germs on W .
If, in addition, W has an unconditional basis then the sequence (3) is exact
for every pseudo-convex open subset Ω ∈ W.

Proof. To show exactness at the germ level consider a Z-valued holomor-
phic function f on an open ball centered at the origin. Each such function
has a Taylor series expansion

∑∞
n=0 Pn such that

∑∞
n=0 β

n‖Pn‖ <∞ for some
β > 0. We may identify each Pn with the mappingQn ∈ L(⊗̂n,s,πW ;Z) where
Pn(x) = Qn(x ⊗ · · · ⊗ x) for all x ∈ W . We then have ‖Pn‖ = ‖Qn‖. Since
⊗̂n,s,πW is easily seen to be separable, a result due to Ando, and, indepen-
dently, to Choi an Effros (see [10] p. 59) and Lemma 1 imply that there
exists Rn ∈ L(⊗̂n,s,πW ;X) such that q ◦ Rn = Qn and ‖Rn‖ ≤ λn‖Qn‖. If
Sn(x) = Rn(x⊗ · · · ⊗ x) for x ∈ W then Sn is a n-homogeneous polynomial
from W to X, q ◦Sn = Pn and ‖Sn‖ = ‖Rn‖ ≤ λn‖Pn‖. If 0 < ε < β/λ, then∑∞

n=0 ε
n‖Sn‖ ≤

∑∞
n=0 ε

nλn‖Pn‖ ≤
∑∞

n=0 β
n‖Pn‖ <∞. Hence g :=

∑∞
n=0 Sn

is a holomorphic germ at the origin and, as π ◦ g = f , we have a local lifting
and (4) is exact.

If W has an unconditional basis and Ω is pseudo-convex then H1(Ω;Y ) =
0 and, as noted above, this implies that (3) is exact. This completes the proof.

By [10], p.59, liftings do not always exist, even for linear mappings if
either the λ-approximation property or separability are not assumed.

Part (b) of Theorem 1 is proved in a very similar way.
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Definition 1 [15] A Fréchet space E is log-convex space if there exists
p : R× N 7→ (0,∞) such that the following hold:

(a) log p(·, n) is convex for all n ∈ N,

(b)
E = {(xn)∞n=1 : ‖(xn)∞n=1‖θ <∞} for all in R

where
‖x‖θ :=

∑
n

p(θ, n)|xn|,

(c) the topology on E is generated by the semi-norms (‖ · ‖)θ∈R.

A log-convex Fréchet space has an absolute basis. The Banach space `1

is log-convex and a Fréchet nuclear space with Schauder basis is log-convex
if and only if it has property DN . A result of Vogt [?] says that a Fréchet
nuclear space has DN if and only if it is linearly isomorphic to a subspace
of s (the space of rapidly decreasing sequences). If D is the open unit disc in
C then the space (H(D), τ0) is not log-convex.

Proposition 2 If E is a log-convex Fréchet space, Ω is a pseudo-convex
open subset of E and (1) is exact, then (2) is exact.

Proof. Since log-convex Fréchet spaces are projective limits of `1 spaces,
the existence of local liftings follows from either Lemma 1 or the use of
monomial expansions as in [23] or Proposition 7 below. Hence the sequence
(2) is exact. By [16] the cohomology group H1(Ω;Y ) = 0 and hence we may
apply (5) to complete the proof.

4 Exactness of the ⊗ε functor

Our approach in this section is to establish exactness of the sequence

0 −→ H(Ω)⊗̂εY iΩ−→H(Ω)⊗̂εX qΩ−→H(Ω)⊗̂εZ −→ 0 (6)

in place of (3), where iΩ := IH(Ω) ⊗ i and qΩ := IH(Ω) ⊗ q, and afterwards to
examine the relationship between H(Ω, X) and H(Ω)⊗̂εX. In this case we
are assuming that H(Ω) is endowed with a locally convex space structure.

The following definition and proposition are given in [11].
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Definition 2 A short exact sequence of Banach spaces

0 −→ Y
i−→X q−→Z −→ 0

is an (εL)-triple if for every Banach space W the sequence

0 −→W ⊗̂εY −→ W ⊗̂εX −→ W ⊗̂εZ −→ 0

is exact.

Proposition 3 (a) The short exact sequence of Banach spaces

0 −→ Y
i−→X q−→Z −→ 0

is an (εL)-triple if and only if the dual short exact sequence splits.

(b) If

0 −→ Y
i−→X q−→ Z −→ 0

is an (εL)-triple then the sequence

0 −→ E⊗̂εY iE−→E⊗̂εX qE−→E⊗̂εZ −→ 0

is exact for any Fréchet space E.

Example.

1. If JX denotes the canonical mapping from a Banach space X into its
bidual X ′′ then we have the direct sum decomposition X ′′′ = (JXX)⊥⊕
JX′(X

′) and hence the short exact sequence

0 −→ X
i−→X ′′ q−→X ′′/X −→ 0 (7)

is an (εL)-triple.

2. [11, 13] Let X an Y be Banach spaces and suppose either X ′ or Y has
the bounded approximation property. Let K(X;Y ) denote the space
of compact linear mappings from X to Y and let L(X;Y ) denote the
space of continuous linear mappings from X to Y . Then

0 −→ K(X;Y )
i−→L(X;Y )

q−→L(X;Y )/K(X;Y ) −→ 0 (8)

is an (εL)-triple.
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3. [12] If either Y is a L∞ space, X is a L2 space or Z is a L1 space then

0 −→ Y
i−→X q−→Z −→ 0

is an (εL) triple.

For our next result we need to recall a definition and some known results.
If E and F are locally convex spaces then EεF := Lε(E ′c;F ) is the space
of all continuous linear mappings from E ′c to F endowed with the topology
of uniform convergence on the equicontinuous subsets of E ′. A topological
space is a k space if continuity on compact sets implies continuity. If F is a
Fréchet space and E = F ′c we call E a DFC space.

Proposition 4 (a) ([3, 22]) If E is a complete locally convex space with
the approximation property then E⊗̂εF = EεF .

(b) ([22] Corollary 2.8.) If Ω, an open subset of the locally convex space E,
is a k space and F is a complete locally convex space then (H(Ω, F ), τ0) =
(H(Ω), τ0)εF.

(c) ([18] Theorems 7.4 and 7.6.) If Ω is an open subset of a DFC space E
then Ω is a k space and if E ′c is separable then (H(Ω), τ0) is a Fréchet
space.

(d) ([7] Theorem 4.3.) If Ω is an open subset of the DFC with the approx-
imation property then (H(Ω), τ0) has the approximation property.

Our next result proves part (c) of Theorem 1.

Proposition 5 If E is a DFC space with the approximation property,
E ′c is separable, Ω is an open subset of E and

0 −→ Y
i−→X q−→Z −→ 0

is an (εL)-triple then

0 −→ H(Ω : Y )
i∗−→H(Ω : X)

q∗−→H(Ω : Z) −→ 0

is exact.
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Proof. By Proposition 4(d), (H(Ω), τ0) has the approximation property,
and hence by Proposition 4(a), (b) and (c),

(H(Ω), τ0)⊗̂εW = (H(Ω), τ0)εW = (H(Ω;W ), τ0)

for any Banach space W . By Proposition 4(c), (H(Ω), τ0) is a Fréchet space
and it suffices to apply Proposition 3(b) to complete the proof.

By Theorem 7.2 in [18] the proof in Proposition 5 extends to give the
same result for entire functions on an arbitrary DFC space.

5 Miscellaneous results

A number of results from infinite dimensional holomorphy can be com-
bined with the results of the previous sections to extend the range of positive
solutions to the holomorphic lifting property and, in some cases, to provide
alternative proofs of special cases of results already proved. We confine our-
selves to a few examples.

Proposition 6 Let E denote a locally convex space which is a projective
limit of locally convex spaces (Eα, πα)α∈Γ where Γ is a directed set and each πα
is a surjective open mapping. Let Y denote a closed subspace of the Banach
space X with quotient mapping q : X −→ X/Y . If for each α ∈ Γ, each
pseudo-convex open set Uα ⊂ Eα and each f ∈ H(Uα, X/Y ) there exists
g ∈ H(Uα, X) such that f = q ◦ g then for all U open pseudo-convex in E
and all f ∈ H(U,X/Y ) there exists g ∈ H(U,X) such that f = q ◦ g.

Proof. If Ω is a pseudo-convex open subset of E, f ∈ H(Ω, X/Y ), then
by [6], p.387, there is an α ∈ Γ and fα : πα(Ω) −→ X/Y such that πα(Ω) is
a pseudo-convex open subset of Eα, Ω = π−1

α (πα(Ω)), fα ∈ H(πα(U), X/Y )
and f = fα ◦ πα. By our hypothesis there exists gα ∈ H(πα(Ω), X) such that
fα = q ◦ gα. Hence f = q ◦ gα ◦ πα. This completes the proof.

If, in the previous lemma, E is a Fréchet space and each Eα is a Ba-
nach space then E is called a quojection. The space CN is a quojection and
thus we obtain a positive solution to the holomorphic lifting problem for
any pseudo-convex open subset of CN and any quotient mapping of Banach
spaces. Since H1(CN, X) 6= 0 for any Banach space X [7, 16, 17] this shows
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that vanishing cohomology for pseudo-convex domains, as in Proposition 1,
is not necessary in order to obtain holomorphic liftings. CN×C(N) is another
example in which the hypothesis of Lemma 2 are satisfied since CN × C(N)

is the projective limit of Cn × C(N) ≈ C(N) and Proposition 5 applies to the
DFC space C(N).

A locally convex space E which is reflexive, nuclear and dual nuclear
and which has a (Schauder) basis is called a fully nuclear space with basis.
Fréchet nuclear spaces with basis, their strong duals, and countable products
and sums of fully nuclear spaces with basis are fully nuclear spaces with basis.
The spaces of test functions D(Rn) and E(Rn), with their usual locally convex
topologies, and their strong duals, the spaces of distributions D′(Rn) and
E ′(Rn), and CN×C(N) are fully nuclear with a basis. If Ω is an open polydisc
in a fully nuclear space with basis then the monomials form an absolute basis
for H(Ω) with respect to any of the usual topologies (see [6]). Moreover, if
X is a Banach space and (am)m∈N(N) ⊂ X then

∑
m∈NN amz

m ∈ H(Ω, X)
if and only if for every K compact in Ω there exists V open, K ⊂ V ⊂
Ω, such that

∑
m∈N(N) ‖am|| · ‖zm‖V < ∞. The method of proof used in

the following proposition was used by Ryan in [23] to lift entire functions
of bounded type on `1. The basis hypothesis in the following proposition
can be removed in certain cases for entire functions by using holomorphic
functions of nuclear type as in [8]. Moreover, the method of proof can be
adapted in a straightforward manner to obtain lifting results for other classes
of holomorphic functions on fully nuclear spaces with basis, e.g. holomorphic
functions which are bounded on compact sets (the so called hypo-analytic
functions).

Proposition 7 If Y is a subspace of the Banach space X, π : X −→
X/Y is the quotient mapping, Ω is an open polydisc in the fully nuclear
space with basis E and f ∈ H(Ω, X/Y ) then there exists g ∈ H(Ω, X) such
that π ◦ g = f .

Proof. Let f(z) :=
∑

m∈NN amz
m ∈ H(Ω, X/Y ). For each m ∈ N (N)

choose bm ∈ X such that π(bm) = am and ‖bm‖ ≤ 2‖am‖. The function
g(z) :=

∑
m∈NN bmz

m ∈ H(Ω, X) is the required holomorphic lifting.

The same approach can be used to obtain variations of the result in
Proposition 5. The removal of conditions on the range spaces X and X/Y
in Proposition 5 is replaced in Proposition 8 by additional assumptions on

11



the domain space. A locally convex space in which each closed bounded set
in compact is called Montel and the strong dual of a Fréchet Montel space
is called a DFM space. An entire mapping between Banach spaces is of
bounded type if it is bounded on bounded sets.

Proposition 8 If the DFM space E has an absolute basis, if Y is a
subspace of the Banach space X, π : X −→ X/Y is the quotient mapping,
and f ∈ H(E,X/Y ) then there exists g ∈ H(E,X) such that π ◦ g = f .

Proof. By Example 3.11 in [6] (see also [18, 20]) there exists a mapping
φ : E −→ `1 and a holomorphic mapping of bounded type h1 ∈ H(`1, X/Y )
such that f = h1 ◦ φ. The result of Ryan, [23], quoted in the introduction,
shows that there exists h2 ∈ H(`1, X) such that h1 = π ◦ h2. The mapping
g := h2 ◦ φ is the required holomorphic lifting.

6 Fredholm Operators

In this section we apply the lifting results from earlier sections to Fredholm
operators on a Banach space. This was one of our original motivations for
considering lifting problems. In a further paper on generalised inverses we
obtain extensions of Proposition 9 below by taking a different approach. We
let Φ(X) denote the space of Fredholm mappings from the Banach space X
into itself. The following proposition extends Satz 2.3 in [12].

Proposition 9 Let Ω denote a domain in a locally convex space E and let
X denote a Banach space and suppose that either of the following conditions
are satisfied:

(1) E is a Banach space with an unconditional basis, Ω is pseudo-convex,
and K(X) is an M-ideal in L(X),

(2) E is a DFC space with separable dual and the approximation property,
and X has the bounded approximation property

If f ∈ H(Ω; Φ(X)) then there exists g ∈ H(Ω;L(X)) such that f(z)g(z)−
IX ∈ K(X) and g(z)f(z)− IX ∈ K(X) for all z ∈ Ω.
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Proof. Let π denote the quotient homomorphism from the Banach alge-
bra L(X) into the Calkin algebra L(X)/K(X). Since f(z) is Fredholm for
all z ∈ Ω, π ◦f is a holomorphic mapping from Ω into the invertible elements
in a Banach algebra. Hence g := (π ◦f)−1 is holomorphic. By Theorem 1 (a)
and (c) and our hypothesis there exists h ∈ H(Ω;L(X)) such that π ◦ h = g.
Since

(π◦(f ·h))(z) = π(f(z)·h(z)) = π(f(z))·π(h(z)) = (π◦f)(z)·g(z) = IL(X)/K(X),

f(z)h(z) ∈ IX +K(X). Similarly h(z)f(z) ∈ IX +K(X) and this completes
the proof.

Our previous examples show that the hypothesis on X in the above propo-
sition are satisfied by all `p, 1 < p < ∞. The function g in Proposition 9 is
called a regulariser for f .
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