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Simple Summary: Raman spectroscopy, a light scattering technique which provides the biochemical 

fingerprint of a sample, was used on samples taken from patients with cancer and precancerous 

lesions. This information was then used to build a classifier to identify cancer and the precancerous 

phases. The ability to distinguish cancerous tissue from normal and precancerous tissue is 

diagnostically crucial as it can alter the patients’ prognosis and management. Moreover, as cellular 

changes are often present at the tumour margin, the ability to distinguish these changes from cancer 

can help in preserving more of the tissue and maintaining aesthetics and functionality for the patient.  

Abstract: Early diagnosis, treatment and/or surveillance of oral premalignant lesions are important in 

preventing progression to oral squamous cell carcinoma (OSCC). The current gold standard is 

through histopathological diagnosis, which is limited by inter and intra observer and sampling errors. 

The objective of this work was to use Raman spectroscopy to discriminate between benign, mild, 

moderate and severe dysplasia and OSCC in formalin fixed paraffin preserved (FFPP) tissues. The 

study included 72 different pathologies from which 17 were benign lesions, 20 mildly dysplastic, 20 

moderately dysplastic, 10 severely dysplastic and 5 invasive OSCC. The glass substrate and paraffin 

wax background were digitally removed and PLSDA with LOPO cross-validation was used to 

differentiate the pathologies. OSCC could be differentiated from the other pathologies with an 

accuracy of 70%, while the accuracy of the classifier for benign, moderate and severe dysplasia was 

~60%. The accuracy of the classifier was lowest for mild dysplasia (~46%). The main discriminating 

features were increased nucleic acid contributions and decreased protein and lipid contributions in 

the epithelium and decreased collagen contributions in the connective tissue. Smoking and the 

presence of inflammation were found to significantly influence the Raman classification with 

respective accuracies of 76% and 94%. 

Keywords: Oral cancer, Oral pre-cancer, Oral dysplasia, premalignant lesions, potentially malignant 

lesions, Raman Spectroscopy. 
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1.Introduction 

             Oral cancer (OC) is the 16th most common cancer worldwide, 354,864 new cases and 177,384 

deaths having been reported in 2018 [1]. Over 90% of oral cancers are squamous cell carcinomas 

affecting the tongue, floor of the mouth, lips, gingivae, buccal mucosa and palate. The major risk factors 

for developing oral cancer are smoking and alcohol consumption, which can work synergistically [2-

4]. Premalignant lesions such as leukoplakia (white patch) and erythroplakia (red patch) carry an 

increased risk of malignant transformation [5]. Different degrees of dysplasia can be found in the 

premalignant lesions which are classified into hyperplasia, mild, moderate and severe dysplasia and 

carcinoma in situ, depending on the degree of architectural disturbance and cytologic atypia [5]. 

Generally, 5-25% of oral leukoplakia are dysplastic, while almost all erythroplakia show some degree 

of dysplasia [5]. Despite advances in therapeutic management, there has been no significant 

improvement in the 5 year survival rate of OC, which remains at around 50% [6]. This, in part, is due 

to the fact that over 40% of patients present at an advanced stage, at which nodal involvement and 

distant metastasis have occurred [7]. This highlights the importance of early diagnosis. Currently the 

gold standard for diagnosing OC and dysplasia is through a conventional clinical oral examination, 

followed by a biopsy of any suspicious lesions and their histopathological examination [8]. The issue 

with this method is that it is subjective and prone to inter and intra observer errors [9]. Additionally, a 

biopsy may not be representative of the whole lesion, as studies looking at the histology of tumours 

post operatively and comparing them to the preoperative biopsies have found that, in a significant 

number of cases, a neoplasia or carcinoma in-situ was misdiagnosed [10].  

Raman Spectroscopy is a technique that was developed based on the Raman effect. When electro-

magnetic (EM) radiation interacts with a sample, it may be absorbed, or scattered. While most scattering 

is elastic, named Rayleigh scatter, the Raman effect describes the inelastic scattering that occurs in a 

small number of photons (about 1 in a million), which lose or gain energy by interaction with the 

material vibrations. The Raman scattered light can be collected by a spectrometer and displayed as a 

Raman spectrum, in which the peaks (bands) correspond to Raman frequency shifts (measured in 

wavenumbers cm-1) caused by the characteristic vibrations in the molecules of a sample. There has been 

a lot of interest in the use of Raman spectroscopy in medical diagnostics since its introduction to the 

field almost 30 years ago [11]. Its advantages, such as minimal sample preparation, speed, non-

invasiveness, label free nature, and the fact that it gives both qualitative and quantitative information 

on the molecular content of a sample make it particularly suited to such applications. Over the past 20 

years, there have been numerous studies in the area of Raman spectroscopy for diagnosis of a wide 

range of cancers, including breast, lung, prostate, cervical, oesophageal and colon (reviewed in [12-16].) 

These studies demonstrate that Raman Spectroscopy can be used to distinguish the different stages in 

the progression of a cell from normal to cancerous. Monitoring cancer progression after the withdrawal 

of carcinogens is another avenue that has been explored using Raman Spectroscopy [17].  In addition, 

Raman spectroscopy has recently been shown to have potential for screening for metastases [18, 19] 

and for companion diagnostics [20]. There have been several studies on Raman spectroscopy for oral 

cancer, and the state of the art and challenges have been recently reviewed [21]. Notably, however, 

there has been very little work on oral dysplasia or oral pre-cancer. Using OSCC and dysplastic cell 

lines and comparing them to normal cells, a study has found that Raman spectroscopy could 

discriminate between malignant, dysplastic and normal cells in the fingerprint region based on varying 

nucleic acid, protein and lipid profiles [22]. Similar results were obtained from the high wavenumber 

region of the spectrum [23]. Studies on fresh and frozen tongue tissue sections could classify OSCC 

from normal tissue using Raman spectroscopy with a high degree of accuracy [24-27]. Analysis of the 

water content in the high wavenumber region of spectra obtained in OSCC bone resection margins, 

classified OSCC from healthy tissue with 95% accuracy [28]. Nevertheless, a study looking at surgical 

margins in sections of OSCC found that the accuracy of the Raman classification for dysplastic tissue 

was only 48% [29]. 
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 In the present study, we aimed to assess whether Raman spectroscopy can discriminate between 

benign lesions, different degrees of dysplasia and OSCC from the biopsied tissues of a cohort of patients 

and to evaluate the influence of patient factors and clinical features on the Raman spectra of the tissues.  

 

2. Results 

2.1 Epithelial tissue 

             Figure 1 (A) shows the mean Raman spectra of epithelial tissue in each cohort. Table 1 lists the 

concurrent peak assignments [30]. 

 

 

Figure 1 (A) Mean Raman spectra of benign, mild, moderate and severely dysplastic epithelial tissue. The 

spectra have been offset for clarity and shading denotes standard deviation (B) A plot of the PLSDA scores 

according to LV-1 (C) Mean and standard deviation of PLSDA scores of LV-1 (D) LV-1 of the PLSDA model 

for Epithelial tissue, including all the classes. 

 

 

(A) (B) 

(C) (D) 
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Table 1 Tentative peak assignments, adapted from Movasaghi et al. [30] 

Wavenumber (cm-1) Assignment 

484-90 Glycogen 

599/600 Nucleotide conformation 

666 G,T (ring breathing modes in DNA bases) 

752 Symmetric breathing mode of tryptophan 

782 DNA 

811/12 RNA O-P-O stretch 

814 C-C stretching (collagen assignment) 

838 Deformative vibrations of amine groups  

855 Ring breathing in tyrosine/C-C stretching in proline 

919 C-C stretch of Proline ring/ glucose lactic acid C-C, proline ring 

(collagen assignment) 

934/935 Protein/C-C backbone (collagen assignment) 

937/8 Proline, hydroxyproline (C-C) skeletal of collagen backbone 

1001/2 Phenylalanine ring breathing 

1030-34 Phenylalanine of collagen 

1128/9 Skeletal C-C stretch in lipids 

1131 Fatty acid 

1237 Amide III 

1245-8 Amide III of collagen 

1265 Amide III 

1278 Proteins including collagen I 

1285 Differences in collagen 

1315-17 Guanine 

1333 Guanine 

1336 Polynucleotide chain (DNA purine bases) 

1368 Guanine TRP protein, porphrin, lipids 

1373 T,A,G (ring breathing modes of the DNA/RNA bases) 

1437 CH2 deformation (lipid) 

1441 Wax 

1449/50 C-H vibration lipids 

1460 CH2/CH3 deformation in Lipids 

1554 Amide II 

1572-78 Guanine adenine 

1650 Amide I 

1652-55 Lipid C=C (lipids) / Amide I 

1666-8 Protein / collagen 

1674 C=C stretch in cholesterol 

1700-50 Amino acids aspartic and glutamic acid 

The results of the partial least squares discriminant analysis (PLSDA) classification do not show a very 

good discrimination across the groups (Table 2). The estimated ROC curves are based on predicted 

class for each spectrum. Sensitivity is calculated from the fraction of in-class spectra while the specificity 

is calculated from the fraction of not-in-class spectra for a given threshold. The cross validated ROC 

curves follow the same method, except the class predicted when the spectra are left out during cross 

validation is used. From the ROC curves (Supplementary Error! Reference source not found. 1), it 
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appears that the classifier has the highest accuracy for SCC (AUC=0.71) and lowest for mildly dysplastic 

epithelium (AUC=0.46). 

Table 2 Sensitivity and specificity values obtained from PLSDA classification with LOPOCV*  

 Epithelium Connective Tissue 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

Benign 74 49 81 44 

Mild 67 38 67 46 

Moderate 39 86 42 61 

Severe 69 57 59 67 

SCC 65 76 88 72 

 

LOPOCV*= Leave one patient out cross validation 

To better elucidate the variability between the different classes, their scores on the first latent variable 

(LV-1) were plotted. This shows a large intra-class spread, the greatest spread being observed in the 

moderate group and the smallest in the SCC group (Error! Reference source not found. (B)). Plotting 

the means and standard deviations of the scores on LV-1 (Error! Reference source not found.1 (C)) 

does not show an obvious progression, but it can be assumed from their means that the benign and 

mild are mostly negative for LV-1, while moderate, severe and SCC are mostly positive. LV-1 (Figure 

1 (D)), which is reponsible for 26.23% of the variance, has positive peaks at 783, 1371 and 1576 cm-1, 

which relate to nucleic acids (Error! Reference source not found.1). Negative peaks are observed at 

934, and 1282 cm-1 (relating to protein/collagen) and the amide 1 band at 1650 cm-1.  

2.2 Connective tissue 

             From their mean spectra (Figure 2(A)), the most notable difference between benign, mild, 

moderate, severe and SCC connective tissue appears to be in the regions 800-1000 cm-1 which 

correspond to different  collagen  assignments and 1200-1400 cm-1 which correspond to vibrations in 

lipids, nucleic acid bases, and collagen (Table 1). The results of the PLSDA classification (Table 2) show 

high sensitivities for benign and SCC compared to the dysplasia classes. However, the specificity for 

benign was low, indicating a high false positive rate. The classifier has the best accuracy among the 

classes for SCC according to the ROC curve (Supplementary Figure 2). 
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Figure 2 (A) Mean Raman spectra of benign, mild, moderate severely dysplastic and SCC connective tissue. 

The spectra have been offset for clarity and shading denotes standard deviation (B) A plot of the PLSDA 

scores of LV-1 (C) Mean and standard deviation of PLSDA scores of LV-1 (D) Loading of LV-1 of the PLSDA 

model which included all the classes. 

 

Plotting the scores of LV-1 shows the greatest intra-class spread in the mild group and the smallest in 

the SCC group (Error! Reference source not found. 2 (B)). Plotting the means and standard deviations 

of the scores of LV-1 (2 (C)) shows a progression from benign to SCC on LV-1. The means of the benign 

and mild are negative in LV-1 while those of moderate, severe and SCC are positive.  

Positive peaks of LV-1 can be observed at 1005, 1131, 1218, 1337, 1435 and 1581 cm-1 LV-1 (Error! 

Reference source not found.2 (D)). The peaks at 1005 and 1581 cm-1 relate to phenylalanine, while those 

at 1131, 1218 and 1435 cm-1 relate to lipids and that at 1337 cm-1 relates to nucleic acids. On the other 

hand, negative peaks can be observed at 811, 855, 938, 1241, 1453 and 1672 cm-1. The peaks at 855, 938 

and 1241 cm-1 relate to collagen while 1453 and 1672 cm-1 relate to lipid contributions. 

 

 

(A) (B) 

(C) (D) 
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2.3 Influence of patient factors and clinical features on Raman classification 

Other factors which could have an influence on the Raman classification were assessed. Metadata was 

used to divide all the patients, regardless of histopathological diagnosis, into groups according to 

gender, smoking habits, alcohol consumption, site of lesion and presence of inflammation. Two factors 

were found to influence the Raman classification, namely smoking and the presence of inflammation.  

2.3.1 Smoking 

The patients were divided into 3 groups according to smoking status; non-smoker, ex-smoker (previous 

smokers) and smoker (table 3). 

Table 3 Sensitivity and specificity values from PLSDA with LOPOCV for smoking status in epithelium 

  Non smoker 

(n=13) 

Ex-smoker 

(n=17) 

Smoker 

(n=13) 

Sensitivity (%) 83 81 52 

Specificity (%) 46 38 88 

 

The PLSDA results showed high classification sensitivity for non-smokers and ex-smokers but lower 

specificities. On the other hand, the classification sensitivity was lower for smokers but the specificity 

was higher (Table 3). The ROC curve (Supplementary Figure 3) shows a significant accuracy 

(AUC=0.76) of the classifier for smokers.  

 

 

Figure 3 (A) Scores of Smokers and Non-smoker/Ex-smokers on the latent variables from the PLSDA model. 

(B) Loading of LV-1 from PLSDA of Smokers vs Non-smoker and Ex-smokers in epithelial tissue. 

 

To further understand the source of the variance, non-smokers and ex-smokers were combined and the 

scores of LV-1 and LV-2 were plotted against those for smokers (Figure 3 (A)). While there is some 

(A) (B) 
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overlap, smokers are mainly negative in LV-1, while non-smoker/ex-smokers are mainly positive. 

According to LV-1, negative bands at 667, 784, 1372, and 1573 cm-1 suggest higher levels of nucleic acids 

in the epithelium of smokers. Non-smoker/ex-smokers had a more prominent amide I band at 1651 cm-

1 and protein band at 934 cm-1 (Figure 3 (B)).    

 

2.3.2 Presence of inflammation; 

             All the pathologies were evaluated for the presence of inflammation, indicated by the presence 

of inflammatory infiltrate with chiefly lymphocytes and mast cells. The H&E stained slides were 

evaluated under a bright-field microscope. Table 4 shows the number of inflamed samples per class. 

PLSDA was used to classify inflamed vs non-inflamed for all the pathologies combined. The results 

show that inflamed tissue can be classified from non-inflamed tissue with sensitivity and specificity 

values of 68% and 70%, respectively, in epithelium and 77% and 86%, respectively, in connective tissue. 

The AUCs were significant, 0.72 for epithelium and 0.84 for connective tissue (Supplementary figure 

4).  

Table 4 Number of inflamed samples per class 

Class Benign 

(n=17) 

Mild 

(n=20) 

Moderate 

(n=20) 

Severe 

(n=10) 

SCC 

(n=5) 

Number 

Inflamed 

2 3 9 7 5 

 

To ensure that the results obtained are due to the presence of inflammation rather than the pathology 

(as most of the severe and SCC samples were inflamed, which could skew the results), inflamed vs non-

inflamed was assessed in the moderate category. The results show a very high accuracy in connective 

tissue (AUC=0.94) and, to a lesser extent, in epithelium (AUC=0.69) (Supplementary figure 5). Plotting 

the scores of the latent variables shows a good separation based on LV-1, the majority of inflamed 

spectra have negative scores while the majority of non-inflamed spectra have positive scores on LV-1 

(Error! Reference source not found.). The group of non-inflamed spectra that are outside the 95% 

confidence interval are likely from one patient who was misclassified due to increased variability from 

the rest of the non-inflamed group. The loading of LV-1 (Error! Reference source not found.4(B)) shows 

positive peaks at 813, 855, 939, 1031, and 1245 cm-1 which relate to collagen (Error! Reference source 

not found.), while the negative peaks relate to nucleic acids (1334, 1580 cm-1) and fatty acids (1132, 1438 

cm-1).  
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Figure 4 (A) Scores of inflamed and non-inflamed moderately dysplastic connective tissue on the latent 

variables from the PLSDA model. (B) Loading of LV-1 from the PLSDA model of inflamed vs non-inflamed 

connective tissue. 

 

3. Discussion 

             Raman spectroscopy can uncover a wealth of biochemical information including the lipid, 

protein and nucleic acid content of the tissue, which in turn can reflect the presence and degree of tissue 

pathology. 

The choice to study each part of the tissue (epithelium and connective tissue) independently was made 

in order to better understand/identify the changes taking place in each. While it was expected to find 

discrimination between severe, mild and moderate in the epithelium, as the epithelial cells are 

undergoing morphological and biochemical changes, significant differences in connective tissue 

between the pathologies were not expected.   

Results from the PLSDA show increasing nucleic acid contributions and lower protein and lipid 

contributions as dysplasia progresses in the epithelium. According to the ROC curves, the accuracy of 

the classifier was highest for the SCC class (AUC=0.71), intermediate (AUC ~0.6) for the benign, 

moderate and severe classes, and lowest (AUC=0.46) for the mild, resulting in misclassification with 

benign and moderate. The moderate group had the lowest sensitivity in the PLSDA classification and 

the greatest spread in LV-1, suggesting a higher variability in this group compared to the others. It is 

important to note that these classifications are based on histological grading by one pathologist, 

whereas Raman spectroscopy measures the biochemical composition of the sample. Hence incipient 

biochemical changes before the onset of tissue morphological changes might be influencing the 

classification.  

In connective tissue, nucleic acid peaks were more prominent with progressive dysplasia and collagen 

peaks were less prominent. Connective tissue associated with SCC could be classified from that 

associated with dysplasia and with benign lesions with a high sensitivity and specificity. This is to be 

expected as, due to epithelial mesenchymal transition [31]; the boundary between epithelium and 

connective tissue in SCC is often lost as a result of islands of epithelium invading the connective tissue 

[32]. 

(A) (B) 
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From the results, it is apparent that some factors other than the degree of dysplasia can influence the 

Raman classification. While it has been reported that age related physiological changes can be 

discriminated with Raman spectroscopy [33],[34], most of the patients in this cohort were between 50-

60 years old, and hence there was not enough variation to study age related factors. No discrimination 

based on gender was apparent; the female vs male sensitivity and specificity values in epithelium were 

22% and 77%, respectively. In connective tissue, the sensitivity was 62% and specificity was 44% 

(Supplementary figure 6). Other patient factors and clinical features which have not been considered, 

due to lack of metadata, could potentially have an influence on the Raman classification. These include 

HPV and candida status of the patients, the size of the lesions, and the degree of differentiation in the 

SCC lesions. 

Smoking status was seen to impact on the classification of epithelial tissue (AUC=0.76). This is 

consistent with previous work by Singh et al., who have shown that the oral buccal mucosa of smokers 

is more likely to misclassify with that of premalignant lesions than that of non-smokers [33], [35]. This 

is likely due to the fact that smoking is an aetiological factor in developing oral dysplasia, and hence 

biochemical changes occurring in the mucosa of smokers are similar to those occurring in dysplastic 

lesions. 

The presence of inflammation in connective tissue, however, was found to have a significant influence 

on the Raman classification (AUC=0.94). Reduced collagen features and increased nucleic acid features 

in the Raman spectra of inflamed connective tissue were the main findings and this has been previously 

shown for cervical tissue [36]. The nucleic acid features may be due to increased cellularity caused by 

the inflammatory cells infiltrating the tissue. The reduction of collagen features is likely due to the 

breakdown of collagen by matrix metalloproteinases (especially MMP-8) which are upregulated in 

inflammation [37]. In this study, most of the severely dysplastic and SCC tissue was found to be 

inflamed, which is consistent with a previous study that has shown increasing inflammatory cell 

infiltration with increasing severity of oral dysplasia and SCC [38]. The presence of inflammation in the 

tumour microenvironment has been well documented and is due to multiple factors [39], [40]. The 

environmental factors that prompt carcinogenesis, such as alcohol and smoking, have been shown to 

trigger an inflammatory response [41]. Furthermore, the tumour cells release inflammatory mediators 

which generate an inflammatory microenvironment that promotes cancer growth, invasion and 

metastasis [42]. A study looking at OSCC surgical margins found that inflamed connective tissue was 

more likely to misclassify with SCC than non-inflamed connective tissue [29]. 

4.Materials and Methods 

4.1 Sample Preparation 

             Archival oral formalin fixed paraffin preserved (FFPP) tissues for each patient cohort were 

obtained following ethical approval from St James’ Hospital Ethics Committee and informed written 

consent from patients. The haematoxylin and eosin (H&E) stained sections from the different 

pathologies were examined by a pathologist and the areas of interest were annotated. In total, 57 

patients were included, from which 72 pathologies were identified. 17 benign lesions, 20 mildly 

dysplastic, 20 moderately dysplastic, 10 severely dysplastic and 5 invasive SCC. The FFPP tissue blocks 

and corresponding images were then taken to the laboratory, where 10 µm sections were cut from the 

FFPP tissues and mounted on glass slides. One of the sections from each sample was dewaxed, stained 

with H&E (Figure 5), and a parallel unstained section was used for Raman spectroscopic measurement.  

4.2 Instrumentation 

             A confocal, Horiba Jobin Yvon LabRam HR 800 Raman (upright) spectroscopic microscope 

(Figure 6) was used to record the spectra of the FFPP oral tissue. The microscope has an automated xyz 
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stage and is coupled to a Peltier cooled CCD detector. A 50 mW diode laser of 532 nm wavelength was 

used and the grating was set at 600 grooves/mm, while the confocal hole was set at the recommended 

100 µm. For mapping acquisition, the regions to map were selected using a 100X objective (MPLAN N 

Olympus, Japan, NA=0.9, spot size ~1m), which also collected the backscattered light. The spectra 

were acquired over two accumulations, totalling 20 seconds per spectrum. The step size was set at 10 

µm and the spectral range was 400-1800 cm-1. For every pathology section, 200 spectral points were 

taken from epithelium and the same from connective tissue. 
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Figure 5 Representative H&E images showing (A) the regions of dysplasia marked by the pathologist. (B) 

A magnified region of moderate dysplasia (C) A magnified region of severe dysplasia 

mod 

mild 

Severe 
dysplasia 
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(B) 
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Figure 6 A schematic of a Raman microspectrometer based on the Horiba Jobin Yvon LabRAM HR 800 

4.3 Data Analysis 

             All the data analysis was carried out using Matlab (Mathworks, US) with the PLS-Toolbox 

(Eigenvector Research Inc.) and in-house algorithms. Two quality control steps were employed (Figure 

7). In the first, before processing, spectra with excess scatter/background were eliminated by setting a 

maximum intensity. Subsequent processing involved smoothing with a Savitsky Golay filter (5th order, 

13 points) then correcting the baseline with a rubberband function, and finally vector normalisation. 

The second quality control step involved removing the spectra with excess wax and low biological 

content. This was achieved using k-means clustering which is used to partition data into groups such 

that variation is minimised within groups but maximised between groups. It assigns data points to 

their closest centre points which are changed with each iteration until optimal convergence is met. The 

next step was digitally subtracting the wax and glass backgrounds; which was carried out using the 

non-negatively constrained least squares fitting (NNLS) method. A PCA of the epithelium and 

connective tissue has demonstrated that the primary (~60%) variance of spectra of both FFPP tissue 

types derives from the contribution of the paraffin wax [43]. Therefore, for a detailed analysis of the 

more subtle biochemical origins of potentially malignancy, the contributions of the paraffin to the 

spectra were removed. A matrix of 300 wax and glass spectra were used as inputs for the NNLS along 

with spectra of pure cell components such as DNA and RNA. Using a matrix, instead of a mean 

spectrum, accounts for the inhomogeneity in the wax spectra which is a result of the microcrystalline 

domains being randomly oriented with respect to the laser source [43]. 

Partial least squares discriminant analysis (PLSDA) was used to build the classifier. It is a supervised 

form of multivariate analysis which works as a linear classifier that aims to separate the data into 

groups using a hyperplane. It is a generalisation of multiple linear regression (MLR), in which a set of 

dependent variables y is regressed against independent predictor variables X. Similar to linear 
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discriminate analysis (LDA), it aims to maximise the variance between groups and minimise the 

variance within groups. It is based on partial least Squares Regression (PLSR). Whereas, in classic PLSR, 

y is a matrix of continuous variables, in PLSDA it is categorical and used to assign the observations into 

classes. The data was divided into y classes from 1 to 5, corresponding to benign, mild, moderate and 

severe dysplasia and SCC. Similar y class assignments were made according to gender, smoking status 

etc. The loadings of the discriminate hyperplanes or latent variables (LV)s were plotted to give more 

information on the source of the variance. While it is similar to other statistical methods such as PCA, 

the PLSDA LVs are calculated to maximise the covariance between the spectral variation and 

group/category so that the LVs explain the diagnostically relevant variations rather than the most 

prominent variations in the spectral dataset. Leave one patient out cross validation (LOPOCV) was 

used as a cross validation method to avoid overtraining the model. In LOPOCV, the spectra of all but 

one patient are used as a training set and a prediction is made for the left out patient. This is repeated 

so that the spectra of each patient are left out and predicted once. 

Receiver operating characteristic (ROC) curves were plotted for each class. ROCs are a plot of the true 

positive rate (sensitivity) against the false positive rate (1 - specificity) over a continuous range (from 0 

to 1) of cut off points of a classifier. Each point on the ROC curve represents a sensitivity/specificity pair 

corresponding to a particular decision threshold. Accuracy is measured by the area under the ROC 

curve (AUC), so that, the closer the curve tends to the left and top borders, the more accurate the 

classifier. Conversely, the closer the curve is to the diagonal (baseline), the higher the misclassification 

rate and the lower the accuracy. The baseline is at 0.5, while a perfect classifier would have an AUC of 

1. In general, an AUC of 0.5 is considered to have no discrimination, while 0.7 to 0.8 is considered 

acceptable, 0.8 to 0.9 is considered excellent, while over 0.9 is considered outstanding [44]. Different 

approaches to estimate the ROC curve lead to different estimates of the AUC. Both the estimated AUC 

(using the whole dataset) and cross validated AUC (leaving one patient dataset out in each iteration) 

are shown. 
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Figure 7 Spectral processing steps (A) Raw spectra. (B) Spectra after first quality control step, smoothing, 

baseline correction and normalization. (C) Spectra after k-means grouping; the spectra in red have high wax 

and low biological content while those in blue have higher biological content and less wax. (D) Spectra after 

glass and wax subtraction. 

 

5. Conclusions 

             The finding that Raman spectroscopy can differentiate between cancer and dysplasia is very 

important, as the management and prognosis is different for both. Dysplasia is a common finding in 

tumour borders and regenerative changes which mimic dysplasia can often be found in the margins of 

resected tumours [45]. The balance between being conservative and maintaining as much of the tissue 

as possible, which is important both aesthetically and functionally, and removing enough of the tumour 

to prohibit recurrence is a difficult one in oral cancer surgery. Hence the ability of Raman spectroscopy 

to discriminate between cancerous and dysplastic and/or healthy tissue can be important in striking 

that balance.  The finding that smoking and the presence of inflammation have a significant impact on 

the Raman classification highlights the importance of accounting for these variables in any future 

studies to be able to develop more robust diagnostic algorithms. 

 

(D) (C) 

(A) (B) 



 

Cancers 2020, 12, x FOR PEER REVIEW 16 of 19 

   
   
References 

1. Bray, F.;  Ferlay, J.;  Soerjomataram, I.;  Siegel, R. L.;  Torre, L. A.; Jemal, A., Global 

cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 

cancers in 185 countries. Ca-a Cancer Journal for Clinicians 2018, 68 (6), 394-424. 

2. Pfeifer, G. P.;  Denissenko, M. F.;  Olivier, M.;  Tretyakova, N.;  Hecht, S. S.; Hainaut, 

P., Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated 

cancers. Oncogene 2002, 21 (48), 7435-7451. 

3. Boffetta, P.; Hashibe, M., Alcohol and cancer. Lancet Oncology 2006, 7 (2), 149-156. 

4. Hashibe, M.;  Brennan, P.;  Chuang, S. C.;  Boccia, S.;  Castellsague, X.;  Chen, C.;  

Curado, M. P.;  Dal Maso, L.;  Daudt, A. W.;  Fabianova, E.;  Fernandez, L.;  Wunsch-Filho, 

V.;  Franceschi, S.;  Hayes, R. B.;  Herrero, R.;  Kelsey, K.;  Koifman, S.;  La Vecchia, C.;  

Lazarus, P.;  Levi, F.;  Lence, J. J.;  Mates, D.;  Matos, E.;  Menezes, A.;  McClean, M. D.;  

Muscat, J.;  Eluf-Neto, J.;  Olshan, A. F.;  Purdue, M.;  Rudnai, P.;  Schwartz, S. M.;  Smith, 

E.;  Sturgis, E. M.;  Szeszenia-Dabrowska, N.;  Talamini, R.;  Wei, Q. Y.;  Winn, D. M.;  

Shangina, O.;  Pilarska, A.;  Zhang, Z. F.;  Ferro, G.;  Berthiller, J.; Boffetta, P., Interaction 

between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in 

the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiology 

Biomarkers & Prevention 2009, 18 (2), 541-550. 

5. van der Waal, I., Potentially malignant disorders of the oral and oropharyngeal mucosa; 

terminology, classification and present concepts of management. Oral Oncology 2009, 45 (4-

5), 317-323. 

6. Silverman, S., Demographics and occurrence of oral and pharyngeal cancers - The 

outcomes, the trends, the challenge. Journal of the American Dental Association 2001, 132, 

7S-11S. 

7. Marur, S.; Forastiere, A. A., Head and neck cancer: Changing epidemiology, diagnosis, 

and treatment. Mayo Clinic Proceedings 2008, 83 (4), 489-501. 

8. Poh, C. F.;  Ng, S.;  Berean, K. W.;  Williams, P. M.;  Rosin, M. P.; Zhang, L. W., 

Biopsy and histopathologic diagnosis of oral premalignant and malignant lesions. Journal of 

the Canadian Dental Association 2008, 74 (3), 283-288. 

9. Abbey, L. M.;  Kaugars, G. E.;  Gunsolley, J. C.;  Burns, J. C.;  Page, D. G.;  Svirsky, 

J. A.;  Eisenberg, E.;  Krutchkoff, D. J.; Cushing, M., INTRAEXAMINER AND 

INTEREXAMINER RELIABILITY IN THE DIAGNOSIS OF ORAL EPITHELIAL 

DYSPLASIA. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 

1995, 80 (2), 188-191. 

10. Scully, C., Challenges in predicting which oral mucosal potentially malignant disease 

will progress to neoplasia. Oral Diseases 2014, 20 (1), 1-5. 

11. Puppels, G. J.;  Demul, F. F. M.;  Otto, C.;  Greve, J.;  Robertnicoud, M.;  Arndtjovin, 

D. J.; Jovin, T. M., STUDYING SINGLE LIVING CELLS AND CHROMOSOMES BY 

CONFOCAL RAMAN MICROSPECTROSCOPY. Nature 1990, 347 (6290), 301-303. 

12. Jermyn, M.;  Desroches, J.;  Aubertin, K.;  St-Arnaud, K.;  Madore, W. J.;  De 

Montigny, E.;  Guiot, M. C.;  Trudel, D.;  Wilson, B. C.;  Petrecca, K.; Leblond, F., A review 

of Raman spectroscopy advances with an emphasis on clinical translation challenges in 

oncology. Physics in Medicine and Biology 2016, 61 (23), R370-R400. 

13. Santos, I. P.;  Barroso, E. M.;  Schut, T. C. B.;  Caspers, P. J.;  van Lanschot, C. G. F.;  

Choi, D. H.;  van der Kamp, M. F.;  Smits, R. W. H.;  van Doorn, R.;  Verdijk, R. M.;  Hegt, 

V. N.;  von der Thusen, J. H.;  van Deurzen, C. H. M.;  Koppert, L. B.;  van Leenders, G.;  

Ewing-Graham, P. C.;  van Doorn, H. C.;  Dirven, C. M. F.;  Busstra, M. B.;  Hardillo, J.;  



 

Cancers 2020, 12, x FOR PEER REVIEW 17 of 19 

   
   

Sewnaik, A.;  ten Hove, I.;  Mast, H.;  Monserez, D. A.;  Meeuwis, C.;  Nijsten, T.;  Wolvius, 

E. B.;  de Jong, R. J. B.;  Puppels, G. J.; Koljenovic, S., Raman spectroscopy for cancer 

detection and cancer surgery guidance: translation to the clinics. Analyst 2017, 142 (17), 3025-

3047. 

14. Upchurch, E.;  Isabelle, M.;  Lloyd, G. R.;  Kendall, C.; Barr, H., An update on the use 

of Raman spectroscopy in molecular cancer diagnostics: current challenges and further 

prospects. Expert Review of Molecular Diagnostics 2018, 18 (3), 245-258. 

15. Hiremath, G.;  Locke, A.;  Sivakumar, A.;  Thomas, G.; Mahadevan-Jansen, A., Clinical 

translational application of Raman spectroscopy to advance Benchside biochemical 

characterization to bedside diagnosis of esophageal diseases. Journal of Gastroenterology and 

Hepatology 2019, 34 (11), 1911-1921. 

16. Hubbard, T. J. E.;  Shore, A.; Stone, N., Raman spectroscopy for rapid intra-operative 

margin analysis of surgically excised tumour specimens. Analyst 2019, 144 (22), 6479-6496. 

17. Kumar, P.;  Ingle, A.; Krishna, C. M. In In vivo Raman spectroscopy: monitoring 

cancer progression post carcinogen withdrawal, Conference on Optical Imaging, 

Therapeutics, and Advanced Technology in Head and Neck Surgery and Otolaryngology, San 

Francisco, CA, Feb 02; San Francisco, CA, 2019. 

18. Santana-Codina, N.;  Marce-Grau, A.;  Muixi, L.;  Nieva, C.;  Marro, M.;  Sebastian, 

D.;  Munoz, J. P.;  Zorzano, A.; Sierra, A., GRP94 Is Involved in the Lipid Phenotype of Brain 

Metastatic Cells. International Journal of Molecular Sciences 2019, 20 (16). 

19. Chrabaszcz, K.;  Kochan, K.;  Fedorowicz, A.;  Jasztal, A.;  Buczek, E.;  Leslie, L. S.;  

Bhargava, R.;  Malek, K.;  Chlopicki, S.; Marzec, K. M., FT-IR- and Raman-based biochemical 

profiling of the early stage of pulmonary metastasis of breast cancer in mice. Analyst 2018, 143 

(9), 2042-2050. 

20. Farhane, Z.;  Nawaz, H.;  Bonnier, F.; Byrne, H. J., In vitro label-free screening of 

chemotherapeutic drugs using Raman microspectroscopy: Towards a new paradigm of 

spectralomics. Journal of Biophotonics 2018, 11 (3). 

21. Sahu, A.; Krishna, C. M., Optical diagnostics in oral cancer: An update on Raman 

spectroscopic applications. Journal of Cancer Research and Therapeutics 2017, 13 (6), 908-

915. 

22. Carvalho, L.;  Bonnier, F.;  O'Callaghan, K.;  O'Sullivan, J.;  Flint, S.;  Byrne, H. J.; 

Lyng, F. M., Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. 

Experimental and Molecular Pathology 2015, 98 (3), 502-509. 

23. Carvalho, L.;  Bonnier, F.;  Tellez, C.;  dos Santos, L.;  O'Callaghan, K.;  O'Sullivan, 

J.;  Soares, L. E. S.;  Flint, S.;  Martin, A. A.;  Lyng, F. M.; Byrne, H. J., Raman spectroscopic 

analysis of oral cells in the high wavenumber region. Experimental and Molecular Pathology 

2017, 103 (3), 255-262. 

24. Yu, M. X.;  Yan, H.;  Xia, J. B.;  Zhu, L. Q.;  Zhang, T.;  Zhu, Z. H.;  Lou, X. P.;  Sun, 

G. K.; Dong, M. L., Deep convolutional neural networks for tongue squamous cell carcinoma 

classification using Raman spectroscopy. Photodiagnosis and Photodynamic Therapy 2019, 

26, 430-435. 

25. Jeng, M. J.;  Sharma, M.;  Sharma, L.;  Chao, T. Y.;  Huang, S. F.;  Chang, L. B.;  Wu, 

S. L.; Chow, L., Raman Spectroscopy Analysis for Optical Diagnosis of Oral Cancer Detection. 

Journal of Clinical Medicine 2019, 8 (9). 

26. Cals, F. L. J.;  Schut, T. C. B.;  Caspers, P. J.;  de Jong, R. J. B.;  Koljenovic, S.; Puppels, 

G. J., Raman spectroscopic analysis of the molecular composition of oral cavity squamous cell 

carcinoma and healthy tongue tissue. Analyst 2018, 143 (17), 4090-4102. 

27. Cals, F. L. J.;  Koljenovic, S.;  Hardillo, J. A.;  de Jong, R. J. B.;  Schut, T. C. B.; 

Puppels, G. J., Development and validation of Raman spectroscopic classification models to 



 

Cancers 2020, 12, x FOR PEER REVIEW 18 of 19 

   
   

discriminate tongue squamous cell carcinoma from non-tumorous tissue. Oral Oncology 2016, 

60, 41-47. 

28. Barroso, E. M.;  ten Hove, I.;  Schut, T. C. B.;  Mast, H.;  van Lanschot, C. G. F.;  Smits, 

R. W. H.;  Caspers, P. J.;  Verdijk, R.;  Hegt, V. N.;  de Jong, R. J. B.;  Wolvius, E. B.;  Puppels, 

G. J.; Koljenovic, S., Raman spectroscopy for assessment of bone resection margins in 

mandibulectomy for oral cavity squamous cell carcinoma. European Journal of Cancer 2018, 

92, 77-87. 

29. Cals, F. L. J.;  Schut, T. C. B.;  Hardillo, J. A.;  de Jong, R. J. B.;  Koljenovic, S.; 

Puppels, G. J., Investigation of the potential of Raman spectroscopy for oral cancer detection 

in surgical margins. Laboratory Investigation 2015, 95 (10), 1186-1196. 

30. Movasaghi, Z.;  Rehman, S.; Rehman, I. U., Raman spectroscopy of biological tissues. 

Applied Spectroscopy Reviews 2007, 42 (5), 493-541. 

31. Kalluri, R.; Weinberg, R. A., The basics of epithelial-mesenchymal transition. Journal 

of Clinical Investigation 2009, 119 (6), 1420-1428. 

32. Speight, P. M., Update on Oral Epithelial Dysplasia and Progression to Cancer. Head 

and Neck Pathology 2007, 1 (1), 61-66. 

33. Sahu, A.;  Deshmukh, A.;  Ghanate, A. D.;  Singh, S. P.;  Chaturvedi, P.; Krishna, C. 

M., Raman Spectroscopy of Oral Buccal Mucosa: A Study on Age-Related Physiological 

Changes and Tobacco-Related Pathological Changes. Technology in Cancer Research & 

Treatment 2012, 11 (6), 529-541. 

34. Depciuch, J.;  Sowa-Kucma, M.;  Nowak, G.;  Dudek, D.;  Siwek, M.;  Styczen, K.; 

Parlinska-Wojtan, M., Phospholipid-protein balance in affective disorders: Analysis of human 

blood serum using Raman and FTIR spectroscopy. A pilot study. Journal of Pharmaceutical 

and Biomedical Analysis 2016, 131, 287-296. 

35. Singh, S. P.;  Deshmukh, A.;  Chaturvedi, P.; Krishna, C. M., In vivo Raman 

spectroscopic identification of premalignant lesions in oral buccal mucosa. Journal of 

Biomedical Optics 2012, 17 (10). 

36. Rashid, N.;  Nawaz, H.;  Poon, K. W. C.;  Bonnier, F.;  Bakhiet, S.;  Martin, C.;  

O'Leary, J. J.;  Byrne, H. J.; Lyng, F. M., Raman microspectroscopy for the early detection of 

pre-malignant changes in cervical tissue. Experimental and Molecular Pathology 2014, 97 (3), 

554-564. 

37. Sorsa, T.;  Tjaderhane, L.; Salo, T., Matrix metalloproteinases (MMPs) in oral diseases. 

Oral Diseases 2004, 10 (6), 311-318. 

38. Mashhadiabbas, F.; Fayazi-Boroujeni, M., Correlation of vascularization and 

inflammation with severity of oral leukoplakia. Iranian Journal of Pathology 2017, 12 (3), 

225-230. 

39. Negus, R. P. M.;  Stamp, G. W. H.;  Hadley, J.; Balkwill, F. R., Quantitative assessment 

of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C 

chemokines. American Journal of Pathology 1997, 150 (5), 1723-1734. 

40. Talmadge, J. E., Immune cell infiltration of primary and metastatic lesions: 

Mechanisms and clinical impact. Seminars in Cancer Biology 2011, 21 (2), 131-138. 

41. Takahashi, H.;  Ogata, H.;  Nishigaki, R.;  Broide, D. H.; Karin, M., Tobacco Smoke 

Promotes Lung Tumorigenesis by Triggering IKK beta- and JNK1-Dependent Inflammation. 

Cancer Cell 2010, 17 (1), 89-97. 

42. Feller, L.;  Altini, M.; Lemmer, J., Inflammation in the context of oral cancer. Oral 

Oncology 2013, 49 (9), 887-892. 

43. Ibrahim, O.;  Maguire, A.;  Meade, A. D.;  Flint, S.;  Toner, M.;  Byrne, H. J.; Lyng, F. 

M., Improved protocols for pre-processing Raman spectra of formalin fixed paraffin preserved 

tissue sections. Analytical Methods 2017, 9 (32), 4709-4717. 



 

Cancers 2020, 12, x FOR PEER REVIEW 19 of 19 

   
   

44. Mandrekar, J. N., Receiver Operating Characteristic Curve in Diagnostic Test 

Assessment. Journal of Thoracic Oncology 2010, 5 (9), 1315-1316. 

45. Cankovic, M.;  Ilic, M. P.;  Vuckovic, N.; Bokor-Bratic, M., The histological 

characteristics of clinically normal mucosa adjacent to oral cancer. Journal of Cancer Research 

and Therapeutics 2013, 9 (2), 240-244. 

 


	The Potential of Raman Spectroscopy in the Diagnosis of Dysplastic and Malignant Oral Lesions
	Recommended Citation
	Authors

	tmp.1627911665.pdf.QoM13

