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Mid-infrared Raman sources based on spontaneous Raman scattering have been demonstrated in a

15-lm diameter glass-clad crystalline germanium optical fiber and in a germanium-wire. A

quantum cascade laser was used as pump at a wavelength of 5.62 lm. Because of their ultra-high

optical nonlinearities and extremely broad transparency window, germanium core fibers offer the

possibility of fabricating compact and efficient mid-infrared sources. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4773884]

Interest in mid-infrared (IR) light sources has increased in

recent years due to their many applications in security, sens-

ing, and the pumping of lasers at even longer wavelengths

(terahertz). The most widespread and inexpensive mid-IR

sources are thermal emitters, which however suffer from inco-

herent and low brightness outputs. Indeed, their emissions

cannot exceed the radiation power of an ideal black body

emitter. While they are suitable for gas detection, they are

inappropriate for long-range light detection and ranging
(LIDAR), heterodyne measurements, or optical pumping of

longer wavelength solid-state lasers, which also require high

brightness. Quantum cascade lasers (QCLs) were demon-

strated in 1994 (Ref. 1) and are the most promising electri-

cally pumped semiconductor lasers for mid- and far-IR light

generation. While QCLs can generate narrowband and high

quality continuous wave (CW) and pulsed beams, they are

narrowband, relatively inefficient,2,3 often require low temper-

ature operation, and are available only at selected wave-

lengths. Active fibers have been proposed as a means to

achieve efficient lasing in the mid-IR, but to date, such fibers

rely on compound glasses, such as chalcogenides,4 which are

transparent in the mid-IR but are not easily available and gen-

erally mechanically fragile. Finally parametric processes,5 for

example, in an optical parametric oscillator, have been widely

used, but these require a nonlinear medium (usually crystals)

and multiple high peak power pumps.

There is thus a need to develop efficient high brightness

sources at long wavelengths, without the disadvantages asso-

ciated with existing sources. In this letter, Raman scattering

is exploited in order to generate light in the mid-infrared
region (at k> 6 lm) using a germanium wire and a glass-

clad germanium core optical fiber.

Germanium (Ge) has a large n2 nonlinearity (�103 times

that of silica6,7), a high optical damage threshold compared

with traditional nonlinear glasses,8 and, most importantly, an

extremely broad transparency window that extends from the

near-infrared well into the mid-infrared (k¼ 2–20 lm) spec-

tral regions.9 Ge-based passive optical components such as

mirrors and lenses have found numerous applications in IR

imaging systems operating in the atmospheric windows

(both 3–5 and 8–13 lm), where natural greenhouse gases do

not exhibit strong absorption. Some active components have

been demonstrated in the near-IR wavelengths such as an

electrically pumped Ge laser operating between 1520 nm and

1700 nm (Ref. 10) and resonance modes observed over the

range of 1500–1675 nm from a resonator fabricated by inte-

grating a Ge light emitting diode with a microdisk cavity.11

However, Ge in the near-IR has strong absorption, which

reduces propagation length and conversion efficiency in non-

linear processes. On the other hand, for k> 1.9 lm, Ge

absorption becomes negligible for propagation lengths of the

order of centimeters and, for example, whispering gallery

modes have recently been observed around k� 2 lm.12 Two-

photon absorption also becomes negligible at k> 4 lm. In

the past, Raman scattering has been used to characterize

semiconductor materials13 and, recently, to generate the
wavelengths in the near-IR region.10,14 Here, we exploit

Raman scattering to generate high output power fiber-based

sources in the mid-IR.

The fiber sample employed here was manufactured at

Clemson University (Clemson, USA) and has a crystalline

Ge core and an amorphous borosilicate cladding with diame-

ters of 15 lm (core) and 150 lm (total fiber diameter),

respectively.15 A microscope image of the fiber is shown in

Fig. 1(a). The fiber had a refractive index difference of

Dn¼ 2.5 and supported multimode operation in the wave-

length range k< 10 lm. Figs. 1(b) and 1(c) present simulated

HE11 modal intensity profiles at the pump and at the borosili-

cate Raman scattering wavelengths, respectively. When light

is launched into the fundamental mode, most of the intensity

is confined to the core. The fraction of power, g, propagating

a)Author to whom correspondence should be addressed. Electronic mail:

pw3y09@orc.soton.ac.uk.
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in the core was calculated to be g¼ 0.999905 at k¼ 5.62 lm

and g¼ 0.999774 at k¼ 7.60 lm, calculated from the Poynt-

ing vector S using the equation of g ¼
Ð

core SdA=
Ð1
�1 SdA:

Fig. 2 shows the optical set-up employed. A distributed

feedback (DFB) QCL (Alpes Lasers, Neuchatel, Switzer-

land) system equipped with a temperature controller (Alpes

Lasers, TC-51), modulated by a QCL pulse switching and

timing module (Alpes Lasers, TPG 128), was operated at a

temperature of 12 �C and modulated at a pulse duration up to

10 ns with a period of 2.5 ls. The pulse amplitude was con-

trolled by an external power supply set up to 16.5 V. Light at

k� 5.62 lm was launched from the QCL into the Ge fiber

with a length of 4 mm via a collimator, an infrared polarizer,

and a ZnSe lens. Light emitted from the distant end of the

Ge fiber was collected by a Fourier transform infrared spec-

trometer (FTIR, Thermo Fisher Scientific, USA) connected

to a personal computer (PC).

Fig. 3 shows the Raman spectrum collected at the Ge

fiber output. In analyzing the Raman spectroscopy, two

major features can be identified at about 300 and 400–

600 cm�1. The Raman peak located at �300 cm�1 can be

attributed to crystalline Ge.13 The broader peak at longer

wavenumbers (400–800 cm�1) can be attributed to the boro-

silicate cladding.16 The bands at 600–800 cm�1 are due to

stretching vibrations of terminal groups of silicon-oxygen

tetrahedrons with a different ratio of bridging and nonbridg-

ing oxygen atoms, while the 530–570 cm�1 band in the

low-wavenumber region, which is the dominant feature in

borosilicate glasses, is primarily due to symmetrical

stretching and to a lesser extent to deformation vibrations of

Si–O–Si bridges. Although a peak around 520 cm�1 might

indicate that crystalline silicon could have separated during

the fabrication of the Ge-core fiber at a high temperature, the

recorded spectrum has a broader feature, consistent with a

borosilicate glass.16 The broadening and asymmetry of the

narrow Raman peaks, when compared to the reference spec-

tra presented in Ref. 16, can be attributed to the relatively

low resolution (�3 cm�1) of the instrument used and possi-

bly to the known polycrystallinity of Ge in the core of the

optical fiber.

In order to verify that the Raman scattering in the region

400–1000 cm�1 is indeed due to the borosilicate cladding,

the Ge-core/borosilicate-glass-cladding fiber was immersed

in a 48% hydrofluoric acid (HF) for 7 min to remove the

cladding and then rinsed in deionized water to remove any

residual HF. As shown in the inset of Fig. 4, the etching pro-

cess provides a Ge wire with a 15 lm diameter. Fig. 4 also

shows the Raman spectrum collected from the Ge wire out-

put for an average input power from the QCL of �8 mW;

only the typical Ge Raman shift at �300 cm�1 is observed,

in contrast to the broadband nature of Fig. 3, confirming that

the Raman scattering in the region 400–1000 cm�1 in the

fiber is due to the borosilicate cladding.

Fig. 5 shows the Raman signal for a low and a high aver-

age powers of �20 lW and 8 mW, respectively, from the Ge

FIG. 1. (a) Optical micrograph of the glass-clad crystalline Ge core fiber and

intensity profiles of the fundamental HE11 mode at (b) k¼ 5.62 lm and (c)

k¼ 7.6 lm.

FIG. 2. Diagram of the experimental set-up for Raman scattering

measurements.

FIG. 3. Raman spectrum of Ge fiber recorded with 20 lW average pump

power.
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optical fiber, along with the output of the Ge wire at 8 mW

only. As expected, the Raman signal increases with increas-

ing pump power. The fiber and the Ge-wire are found to

have the same Raman gain at k � 6.8 lm. The reason for this

is that although the borosilicate glass exhibits an estimated

optical loss in the order of ten dB/mm at k � 5.6 lm,17 the

fraction of the propagating fundamental mode in the borosili-

cate cladding is only (1-g) � 10�4, resulting in an overall

negligible linear loss for typical working lengths of few

millimeters. The Raman scattering generated in the cladding

is detectable because it is coupled into the high refractive

index core, where it is guided and collected at the output.

The working principle of this experiment is similar to that

for attenuated total reflection (ATR) processes commonly

used in Fourier transformed infrared (FTIR) spectroscopy.

If the spectra of Fig. 5 are approximated by Lorentzian

curves, the spontaneous Raman cross section (fraction of

scattered radiation per unit of solid angle per unit length) for

the crystalline Germanium core can be estimated as dr/

dXjGe¼ 3.7� 10�29 cm2/sr. The stimulated Raman gain

coefficient, gs, is derived from the well-known equation18

gs ¼
8pc2xpq

�hx4
s n2ðxsÞDx

dr
dX

; (1)

where c is the speed of light in vacuum, q is the scatterer

density, �h is the reduced Planck’s constant, xp and xs are the

pump and Raman frequency, n(xs) is the refractive index of

the scattering medium at the Raman frequency, and Dx is

the FWHM of the spontaneous Raman line-shape. From Eq.

(1), the Raman gain coefficient for Ge is estimated to be gs

�8.6� 10-12 m/W.

Comparing the estimated Raman gain coefficient for Ge

with published values is difficult because no data are available

in the literature for the spontaneous Raman cross section of

germanium. However, it was found in Ref. 13 that dr/dX jGe

is 1.25–2 times larger than dr/dX jSi. The Raman gain coef-

ficient of silicon was found to be of the order of gs(Si)

� 7.5� 10�11 m/W (Ref. 19) at k � 1.6 lm, which is

2.3� 103 times larger than that of a standard SMF28 silica

fiber. As DxSi � 1.2 DxGe (Ref. 13) and Eq. (1) is dependent

on xs
�4, assuming nGe � 4.02, nSi � 3.42, and dr/dXjGe¼ 2

dr/dXjSi, then the stimulated gain coefficient for Ge at

k� 5.6 lm based on the available data in the literature can be

determined as gs (Ge) � 3.05� 10�12 m/W, comparable with

the estimated value above. Work is presently underway to

increase the power coupling between the source and the Ge

fiber and thus improve the pumping efficiency of the system.

In conclusion, mid-IR sources that exploit the spontane-

ous Raman scattering in semiconductor core optical fibers

have been demonstrated. Specifically, strong and broad spec-

tra were observed from a 15 lm core size glass-clad germa-

nium core fiber with a length of 4 mm and a germanium wire

pumped by a QCL source at 5.62 lm. Although the QCL

pumping source used in the experiments is not low cost,

nevertheless the system provides enhanced power output and

the pumping efficiency of the system can be enhanced by

optimizing both the pumping source and the coupling

method. Finally, it is important to point out that this work

opens an approach to generate high brightness mid-IR radia-

tion using a Ge fiber. Similarly to the case of high power

fiber lasers, low brightness sources can be used to pump

fiberized components to produce a high brightness output.

This technology can expand the uses of silicon/germanium

photonics beyond data communication and into the applica-

tions of trace gas sensing, biomedical, and military systems.
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