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2 School of Mathematical Sciences, Dublin Institute of Technology,

Kevin Street, Dublin 8, IRELAND

April 20, 2011

Abstract

Several important examples of theN -wave equations are studied. These
integrable equations can be linearized by formulation of the inverse scat-
tering as a local Riemann-Hilbert problem (RHP). Several nontrivial re-
ductions are presented. Such reductions can be applied to the generic N -
wave equations but mainly the 3- and 4-wave interactions are presented
as examples. Their one and two-soliton solutions are derived and their
soliton interactions are analyzed. It is shown that additional reductions
may lead to new types of soliton solutions. In particular the 4-wave equa-
tions with Z2×Z2 reduction group allows breather-like solitons. Finally it
is demonstrated that RHP with sewing function depending on three vari-
ables t, x and y provides some special solutions of the N -wave equations
in three dimensions.

1 Introduction

The theory of solitons and its applications to wave-wave interactions in nonlinear
media is by now a well established topic in today mathematical physics.

It attracted scientists from several different areas of mathematics: spectral
theory, dynamical systems, Lie algebras, Hamiltonian dynamics, differential ge-
ometry, see [23, 20, 26, 27, 1, 4, 12, 3, 24] and the numerous references therein.
These equations attracted also the attention of a number of physicists because
they find important applications in fluid mechanics, nonlinear optics, super-
conductivity, plasma physics etc. As a result many different approaches for
investigating the soliton equations and constructing their Lax representations,
soliton solutions, integrals of motion, Hamiltonian hierarchies etc. were devel-
oped, see [28, 20, 2, 23, 15, 19, 18, 27, 1]. Of course, it is not possible in a short
paper to list all important references that cover the broad topics mentioned
above.
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The inverse scattering method has been applied to many physically im-
portant multidimensional evolution equations including the N -wave equation,
Davey-Stewartson, Kadomtsev-Petviashvilli etc. [25, 15, 16, 17, 26, 27, 28, 18,
19, 5, 22]. They have been treated by nonlocal generalizations of the Riemann-
Hilbert problem and by the ∂̄-method.

Unlike the usual approach, starting with the Lax pair formulation, our start-
ing point is the RHP formulation of the scattering problem. It is an effective
tool for constructing the soliton solutions and analysis of their properties. We
will show also that the RHP gives clearer prospects for multidimensional gen-
eralizations of the Inverse Scattering Method.

Our aim in this paper is to focus on the different types of soliton solutions
of N -wave equations illustrating them by nontrivial examples for N = 3 and
N = 4. At first we do so for the standard soliton theory devised to solve
soliton equations in two-dimensional space-time. Along with the generic soliton
solutions in Section 3 we derive doublet and quadruplet solitons for the 4-wave
equations. Studying their asymptotics for x and t tending to ±∞ allows one
to describe their interactions. In Section 4 we derive the 2-soliton solution of
the 3-wave equations. In the last Section 5 we show how these results can
be generalized to 3-dimensional space-time. We end with brief discussion and
conclusions.

2 Preliminaries

2.1 The RHP and the soliton solutions

We will start with a matrix-valued RHP

ξ+(x, t, λ) = ξ−(x, t, λ)G(x, t, λ), λ ∈ R
lim
λ→∞

ξ±(x, t, λ) = 11.
(2.1)

The second line in (2.1) is known as the canonical normalization condition.
Roughly speaking the RHP consists in the following: Given the sewing function
G(x, t, λ) on the real axis reconstruct the two functions ξ+(x, t, λ) and ξ−(x, t, λ)
analytic for λ ∈ C+ and λ ∈ C− respectively and satisfying the normalization
condition.

We also assume that the sewing function G(x, t, λ) depends on two auxiliary
parameters: t and x, as follows:

i
∂G

∂x
− λ[J,G(x⃗, t, λ)] = 0, i

∂G

∂t
− [f(λ)I,G(x⃗, t, λ)] = 0, (2.2)

where J and I are constant elements taking values in h – the Cartan subalgebra
of g.

The list of integrable NLEE in 2-dimensional space-time starts with the
paradigmatic examples of NLS, N -wave eqs. Each such equation can be re-
lated to a RHP whose sewing function has specific dependence on the auxiliary
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parameters. For example, for these equations we have

N -w i
∂G

∂x
− λ[J,G] = 0, i

∂G

∂t
− λ[I,G] = 0, (2.3)

NLS i
∂G

∂x
− λ[J,G] = 0, i

∂G

∂t
− λ2[J,G] = 0, (2.4)

where for the N -wave case the constant matrices J and I are diagonal ones with
different eigenvalues. For the multicomponent NLS case the matrix J is usually
chosen as J = diag (11k,−11s), where k+s = n – the dimension of the matrices in
the RHP. For the N -waves both J = diag (a1, . . . , an) and I = diag (b1, . . . , bn)
have different eigenvalues, i.e. aj ̸= ak and bj ̸= bk for j ̸= k.

From now on we limit ourselves to the N -wave type NLEE.
The well known Zakharov-Shabat theorem [30, 31] states, that if G(x, λ)

satisfies the equations in (2.3) then the corresponding solution of the RHP will
be common fundamental analytic solution of the operators:

Lξ±(x, t, λ) ≡ i
∂ξ±

∂x
+ [J,Q(x, t)]ξ±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0. (2.5)

Mξ±(x, t, λ) ≡ i
∂ξ±

∂t
+ [I,Q(x, t)]ξ±(x, t, λ)− λ[I, ξ±(x, t, λ)] = 0. (2.6)

Thus to each specific x or t dependence of G one can relate an ordinary
differential operator like (2.5) and (2.6) whose potentials are determined through
the same potential function Q(x, t) = X1(x, t). It is determined by the first
non-trivial coefficient of ξ±(x, t, λ) in its asymptotic expansion over the inverse
powers of λ:

ξ±(x, t, λ) = exp

( ∞∑
a=1

λ−aXa(x, t)

)
= 11 + λ−1X1(x, t) + · · ·

(2.7)

The pair of operators (2.5) and (2.6) provide the Lax pair for the N -wave
eq., i.e., they commute, provided Q(x, t) = X1(x, t) satisfies:

i

[
J,
∂Q

∂t

]
− i

[
I,
∂Q

∂x

]
− [[J,Q], [I,Q(x, t)]] = 0 (2.8)

It is obvious that we can choose Q(x, t) so that its diagonal elements are 0.
The next natural restrictions on Q(x, t) is that it is a hermitian matrix:

Q(x, t) = Q†(x, t), (2.9)

or B-hermitian:

Q(x, t) = BQ†(x, t)B−1, B = diag (ϵ1, . . . , ϵn), (2.10)

where ϵj = ±1. In this way the n × n Lax operator L allows us to solve the
N -wave systems with N = n(n − 1)/2. In particular, for n = 3 and 4 we get
N = 3 and 6.
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One may use additional algebraic constraints on Q(x, t), see [23, 9]. Impor-
tant examples here are: i) the two wave equations n = 3 and

Q(x, t) = −A1Q
T (x, t)A−1

1 , A1 =

 0 0 1
0 −1 0
1 0 0

 , (2.11)

i.e. Q12 = Q23, Q21 = Q32;
ii) the four wave equations n = 4 and

Q(x, t) = −A2Q
T (x, t)A−1

2 , A2 =


0 0 0 1
0 0 1 0
0 ϵ 0 0
ϵ 0 0 0

 , (2.12)

i.e. Q12 = −Q34, Q13 = −ϵQ24, Q14 = −ϵQ14 and Q23 = −ϵQ23;
iii) the four wave equations can be obtained also with n = 5 and

Q(x, t) = −A3Q
T (x, t)A−1

3 , A3 =


0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

 , (2.13)

i.e. Q12 = Q45, Q13 = −Q35, Q14 = Q25, Q21 = Q54, Q31 = −Q53 and
Q41 = Q52.

The reduction in ii) with ϵ = −1 and the reduction iii) have simple algebraic
meaning: they restrict Q in ii) to be an element of the algebra sp(4), while in
the case iii) Q ∈ so(5). These two Lie algebras are isomorphic and therefore the
corresponding 4-wave equations are equivalent.

In [7] one can find a number of additional reductions of the N -wave equa-
tions.

3 One-soliton solution and soliton decay

3.1 Generic one-solton solutions for N-waves

From technical point of view the RHP may be viewed as the most convenient tool
to solve the ISP for the corresponding Lax operator and then to construct the
soliton solutions of the corresponding NLEE. We will start, using the dressing
Zakharov-Shabat method [30, 31] by constructing the one soliton solution of the
N -wave equations.

We can always order the eigenvalues of J so that a1 > a2 > · · · > an, and
also tr J =

∑n
s=1 as = 0. We assume also that similar constraints are valid for

the matrix elements of I: i.e. b1 > b2 > · · · > bn and tr I =
∑n

s=1 bs = 0.
Following [23] we write down the so-called dressing factor for the class of

(2.9) reductions. The simplest of them have simple zeroes and poles in λ which
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are characterized by a rank 1 projector:

u1(x, t, λ) = 11 + (c1(λ)− 1)P1, P1(x, t) =
|n1⟩⟨n†1|
⟨n†1|n1⟩

,

|n1⟩ = ξ+0 (x, t, λ
+
1 )e

−iλ+
1 K |n10⟩, ⟨n1| = ⟨n10|eiλ

−
1 K ξ̂−0 (x, t, λ−1 ),

c1(λ) =
λ− λ+1
λ− λ−1

, K = Jx+ It, i.e. Ks = asx+ bst.

(3.1)
Here by ξ±0 (x, t, λ) we mean regular solution of the RHP corresponding to the

potential Q(0)(x, t) and ξ̂
−
0 (x, t, λ) = (ξ−)−1(x, t, λ).

The new singular solution of the RHP:

ξ+1 (x, t, λ) = u1(x, t, λ)ξ
+
0 (x, t, λ)û

−
1 (λ),

ξ−1 (x, t, λ) = u1(x, t, λ)ξ
−
0 (x, t, λ)û−1 (λ),

(3.2)

where u−1 (λ) = limx→−∞ u1(x, t, λ) possess first order singularities at the points
λ±1 = µ1 ± iν1. They also solve eq. (2.5) but with another potential Q(1)(x, t).
Taking the limit λ→ ∞ in (2.5) we find that Q(1)(x, t) is obtained from:

Q(1)(x, t) = Q0(x, t) + (λ−1 − λ+1 )[J, P1(x, t)]. (3.3)

Thus in order to evaluate Q(1)(x, t) all we need is to fix up the singular points

λ±1 and the initial polarization vector |n10⟩, and to use the specific regular
solution ξ±0 (x, t, λ) of the RHP. In what follows we will use the simplest regular
solution of the RHP corresponding to Q(0)(x, t) = 0, i.e. ξ±0 (x, t, λ) = 11 and

χ±
0 (x, t, λ) ≡ ξ±0 (x, t, λ)e−iλK = e−iλK ,
Analyzing this result one is able to discover a variety of different types of

soliton solutions for the N -wave equations. They will be parametrized by the
two new discrete eigenvalues λ±1 of L and by the polarization vectors used to
determine the projector P1. The typical reduction gives λ−1 = (λ+1 )

∗ and P1 =

P †
1 . For the sake of simplicity we will limit ourselves only by rank-1 projectors;

the more general cases of higher rank projectors and for classification of the
soliton solutions see [8, 9]

In what follows by one-soliton solution we will understand a matrix-valued
solution Q1s rather than the separate components Q1s;jk; the latter we will call
the (j, k)-component of the soliton. From this point of view the generic one-
soliton solution of the N -wave shows non-trivial interactions [20, 23] which can
be viewed as soliton decay or soliton fusion. In particular on figure 1 taking
n = 3, we see the process in which the (1, 3) soliton component decays into (1, 2)
and (2, 3) components. Choosing other initial conditions we may have also the
alternative process of soliton fusion in which the components (1, 2) and (2, 3)
generate the (1, 3) component.
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Figure 1: Generic one-soliton solution of 3-wave interactions. Each of the func-
tions |Qjk| plotted has a maximum along a semi-line, see eq. (3.7)

Indeed, the generic one-soliton solution for the N -wave system is given by:

Q1s;jk(x, t) = −
2iν1(aj − ak)n1;kn

∗
1;j

⟨n†1|n1⟩

= − 2iν1(aj − ak) exp(i(µ1(Kk −Kj) + ϕ10;k − ϕ10;j)∑n
s=1 exp(ν1(2Ks −Kj −Kk) + 2ξ10,s − ξ10,j − ξ10,k)

= − iν1(aj − ak)e
−i(ϕ1;j−ϕ1;k)

cosh(ξ1;j − ξ1;k) +
∑

s ̸=k,j
1
2 exp(2ξ1;s − ξ1;j − ξ1;k)

.

(3.4)

where we have assumed that all components of the polarization vector |n10⟩ are
non-vanishing n10;k = exp(ξ10;k + iϕ10;k) and

ξ1;j(x, t) = ν1Kj(x, t)− ln |n10;j |, ϕ1;j(x, t) = µ1Kj + ϕ10;j . (3.5)
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For n = 3 we have:

Q1s;12(x, t) =
−iν1(a1 − a2)e

−i(ϕ1;1−ϕ1;2)

cosh(ξ1,1 − ξ1,2) +
1
2e

2ξ1,3−ξ1,1−ξ1,2

Q1s;13(x, t) =
−iν1(a1 − a3)e

−i(ϕ1;1−ϕ1;3)

cosh(ξ1,1 − ξ1,3) +
1
2e

2ξ1,2−ξ1,1−ξ1,3

Q1s;23(x, t) =
−iν1(a2 − a3)e

−i(ϕ1;2−ϕ1;3)

cosh(ξ1,2 − ξ1,3) +
1
2e

2ξ1,1−ξ1,2−ξ1,3
.

(3.6)

where we can also assume that ξ1,1 + ξ1,2 + ξ1,3 = 0. Following Zakharov and
Manakov [20] we analyze the asymptotic behavior of the different components
of the generic one-soliton solution for x→ ∞. The results are, see fig. 1:

Q1s;12(x, t) ≃
{
const for ξ1,1 − ξ1,2 = 0 and ξ1,3 → −∞
0 for ξ1,3 → ∞

Q1s;13(x, t) ≃
{
const for ξ1,1 − ξ1,3 = 0 and ξ1,2 → −∞
0 for ξ1,2 → ∞

Q1s;23(x, t) ≃
{
const for ξ1,2 − ξ1,3 = 0 and ξ1,1 → −∞
0 for ξ1,1 → ∞

(3.7)

Thus we find that for t → −∞ only the (1,3) component of the soliton is
nontrivial, which then decays into the (1,2) and (2,3) components.

Note that in this respect the N -wave equations differ from the other soli-
ton equations (e.g., NLS, s-G, KdV, MKdV and many others) with nontrivial
dispersion laws which have stable one-soliton solutions.

3.2 Additional reductions and new types of solitons

As we mentioned above the reductions iii) and reduction ii) with ϵ = −1 lead
to the following 4-wave equations [23]:

i(a1 − a2)Q12;t − i(b1 − b2)Q12;x − κQ13Q
∗
23(x, t) = 0,

ia1Q13;t − ib1Q13;x − κ(Q12Q23(x, t)−Q14Q
∗
23) = 0,

i(a1 + a2)Q14;t − i(b1 + b2)Q14;x − κQ13Q23(x, t) = 0,

ia2Q23;t − ib2Q23;x + κ(Q14Q
∗
13(x, t) +Q13Q

∗
12) = 0,

(3.8)

where κ = b2a1 − a2b1.

Q(x, t) = −A3Q
T (x, t)A−1

3 , Q =


0 Q12 Q13 Q14 0
Q∗

12 0 Q23 0 Q14

Q∗
13 Q

∗
23 0 Q23 −Q13

Q∗
14 0 Q∗

23 0 Q12

0 Q∗
14 −Q∗

13 Q
∗
12 0

 , (3.9)
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The integrability of the 4-wave equations and their physical applications
were discovered by Manakov and Zakharov, see [23]. The derivation of their
soliton solutions was investigated in [14], see also [11, 10].

In order to apply the dressing method to the systems with other reductions
it has to be modified. In particular, the dressing factor must be invariant with
respect to the reduction. This can be achieved as follows:

u1(x, t, λ) = 11 + (c1(λ)− 1)P1 + (c−1
1 (λ)− 1)P̄1, P1(x, t) =

|n1⟩⟨n†1|
⟨n†1|n1⟩

,

|n1⟩ = ξ+0 (x, t, λ
+
1 )e

−iλ+
1 K |n10⟩, ⟨n1| = ⟨n10|eiλ

−
1 K ξ̂−0 (x, t, λ−1 ),

c1(λ) =
λ− λ+1
λ− λ−1

, P̄1(x, t) = A3P
T
1 (x, t)A−1

3

(3.10)
where A3 is the matrix that determine the reductions in eq. (2.13) and the
constant polarization vector |n10⟩ satisfies the constraint ⟨n10|A3|n10⟩. The
corresponding soliton solutions are obtained through:

[J,Q1s] = (λ−1 − λ+1 )[J, P1(x, t)− P̄1(x, t)]. (3.11)

Similar technique can be used also for the other reductions listed in Section 2.
Below we will use the following parametrization of the polarization vector

|n10⟩, that are compatible with the constraint ⟨n10|A3|n10⟩ = 0 and with the
additional restriction n10,1 = n∗10,5, n10,2 = n∗10,4 and n10,3 =

√
2:

n10,1 = n∗10,5 = sinh θ0e
iϕ10,1 , n10,2 = n∗10,4 = cosh θ0e

iϕ10,2 , n10,3 =
√
2.

(3.12)

As a result we get the following generic one-soliton solution:

Q12(x, t) =
iν1 sinh 2θ0
∆1(x, t)

cosh(ν1(K1 +K2))e
−iµ1(K1−K2)+i(ϕ10,1−ϕ10,2),

Q13(x, t) = −2i
√
2ν1 sinh θ0
∆1(x, t)

sinh(ν1K1)e
−iµ1K1+iϕ10,1 ,

Q14(x, t) =
iν1 sinh 2θ0
∆1(x, t)

cosh(ν1(K1 −K2))e
−iµ1(K1+K2)+i(ϕ10,1+ϕ10,2),

Q23(x, t) =
2i
√
2ν1 cosh θ0
∆1(x, t)

cosh(ν1K2)e
−iµ1K2+iϕ10,2 ,

(3.13)

where

∆1(x, t) = 2(sinh2 θ0 cosh(2ν1K1) + cosh2 θ0 cosh(2ν1K2) + 1).

3.3 Doublet solitons

Let the action of Z2 × Z2 in the space of fundamental solutions of the linear
problem is given by [10, 11]:

χ−(x, t, λ) =
(
(χ+)†(x, t, λ∗)

)−1
, χ−(x, t, λ) =

(
(χ+)T (x, t,−λ)

)−1
,

8



Consequently the potential U(x, t, λ) satisfies the following symmetry conditions

U†(x, t, λ∗) = U(x, t, λ), UT (x, t,−λ) = −U(x, t, λ).

Then, in the case of the so(5) algebra we put

Qjk(x, t) = iqjk(x, t). (3.14)

with qjk(x, t) being real valued fields and get the following Z2 × Z2-reduced
4-wave system

(a1 − a2)q12,t(x, t)− (b1 − b2)q12,x(x, t) + κq13(x, t)q23(x, t) = 0, (3.15)

a1q13,t(x, t)− b1q13,x(x, t) + κ(q14(x, t)− q12(x, t))q23(x, t) = 0, (3.16)

(a1 + a2)q14,t(x, t)− (b1 + b2)q14,x(x, t)− κq13(x, t)q23(x, t) = 0, (3.17)

a2q23,t(x, t)− b2q23,x(x, t) + κ(q12(x, t) + q14(x, t))q13(x, t) = 0, (3.18)

where κ = a1b2 − a2b1.
In accordance with what we said above the dressing factor u(x, t, λ) must be

invariant under the action of Z2 × Z2, i.e.(
u†(x, t, λ∗)

)−1
= u(x, t, λ),

(
uT (x, t,−λ)

)−1
= u(x, t, λ). (3.19)

Next we find that the poles of the dressing matrix can be purely imaginary, i.e.

λ±1 = ±iν1, ν1 > 0.

Thus the invariance condition implies that the dressing matrix gets the form

u(x, t, λ) = 11 +
A(x, t)

λ− iν1
+
A3A

∗(x, t)A3

λ+ iν1
, A∗(x, t) = −A(x, t).

where A3 was introduced in eq. (2.13). Following already discussed procedures
we derive in the simplest case that the explicit form of A(x, t) is

A(x, t) =
2iν1|n(x, t)⟩⟨n(x, t)|

⟨n(x, t)|n(x, t)⟩
,

where the vector |n(x, t)⟩ = e−ν1(Jx+It)|n10⟩ is real. Consequently the soliton
solution written in a standard matrix notation is

Qkl(x, t) = (1− δkl)

2iν1

(
nk(x, t)nl(x, t)− (−1)k+ln6−k(x, t)n6−l(x, t)

)
⟨n(x, t)|n(x, t)⟩

(3.20)

In what follows it will be appropriate to use somewhat different parametrization
for the polarization vector:

n10,1 = eδ1 sinh θ0, n10,2 = eδ2 cosh θ0, n10,3 =
√
2,

9



n10,4 = e−δ2 cosh θ0, n10,5 = e−δ1 sinh θ0.

Then the corresponding doublet soliton solution of the 4-wave system (3.15)
takes the form

q12(x, t) =
ν1 sinh 2θ0

∆2
cosh(ν1(K1 +K2) + δ1 + δ2),

q13(x, t) = −2
√
2ν1 sinh θ0
∆2

sinh(ν1K1 + δ1),

q14(x, t) =
ν1 sinh 2θ0

∆2
cosh(ν1(K1 −K2) + δ1 − δ2),

q23(x, t) =
2
√
2ν1

∆2
cosh(ν1K2 + δ2),

∆2(x, t) = sinh2 θ0 cosh 2(ν1K1 + δ1) + cosh2 θ0 cosh 2(ν1K2 + δ2) + 1,

(3.21)

where

δ1 =
1

2
ln
n10,5
n10,1

, δ2 =
1

2
ln
n10,4
n10,2

.

In particular when n10,1 = n10,5 and n10,2 = n10,4 or in other words δ1 = δ2 = 0
we obtain

q12(x, t) =
ν1 sinh(2θ0)

∆D
cosh[ν1(K1 +K2)],

q13(x, t) = −2
√
2ν1 sinh θ0
∆D

sinh(ν1K1),

q14(x, t) =
ν1 sinh(2θ0)

∆D
cosh[ν1(K1 −K2)],

q23(x, t) =
2
√
2ν1 cosh θ0
∆D

cosh(ν1K2),

where θ0 ∈ R and

∆D(x, t) = sinh2 θ0 sinh
2(ν1K1) + cosh2 θ0 cosh

2(ν1K2).

3.4 Quadruplet solitons

There is another way to ensure the Z2 × Z2 invariance of the dressing factor.
This time we consider dressing factors g(x, t, λ) with two more poles. The
requirements (3.19) lead to the following dressing matrix

u(x, t, λ) = 11 +
A(x, t)

λ− λ+1
+
S0A

∗(x, t)S0

λ− (λ+1 )
∗ − S0A(x, t)S0

λ+ λ+1
− A∗(x, t)

λ+ (λ+1 )
∗ . (3.22)

The corresponding soliton solution takes the form:

[J,Q(x, t)] = [J,A+ S0A
∗S0 − S0AS0 −A∗(x, t)]. (3.23)
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Like in previous considerations we decompose the matrix A(x, t) into the factors

A(x, t) = X(x, t)FT (x, t), (3.24)

where:

F (x, t) = eiλ
+
1 K |n10⟩ = (F1, F2, F3, F4, F5)

T

F1,5 = e∓κ1±iΦ1 , F2,4 = e∓κ2±iΦ2 , F3 =
√
2,

κ1,2 = ν1K1,2 + δ1,2, Φ1,2 = µ1K1,2 + iϕ10;1,2.
(3.25)

For the factor X(x, t) we derive an algebraic system of equations (see e.g.
[9, 11]) whose solution is:

X(x, t) =
1

∆(x, t)
(a∗(x, t)F + b(x, t)F ∗ − c(x, t)S0F

∗) (3.26)

where

a(x, t) =
FTF

µ1 + iν1
, b(x, t) =

FTS0F
∗

ν1
, c(x, t) =

FTF ∗

µ1
,

∆(x, t) = |a(x, t)|2 − b2(x, t)− c2.

(3.27)

Inserting the explicit form of F from eq. (3.25) we get:

a =
µ1a0 − ν1a1
µ2
1 + ν21

− i
ν1a0 + µ1a1
µ2
1 + ν21

,

a0 = cosh2 θ0 cosh(2κ2) cos(2Φ2) + sinh2 θ0 cosh(2κ1) cos(2Φ1) + 1,

a1 = cosh2 θ0 sinh(2κ2) sin(2Φ2) + sinh2 θ0 sinh(2κ1) sin(2Φ1),

b =
2

ν1
(cosh2 θ0 cosh(κ1 + κ2) cosh(κ1 − κ2)− sinh2 κ1),

c = − 1

µ1
(sinh2 θ0 cos(2Φ1)− cosh2 κ1 cos(2Φ2)).

(3.28)

Inserting the result for X(x, t) and F (x, t) in (3.23) we obtain the quadruplet
(or breather-like) solution

[J,Qbr(x, t)] =
1

∆
[J,C(x, t)−A3C

T (x, t)A3],

C(x, t) = a∗FFT (x, t)− aF ∗F †(x, t)− ib(F ∗FT (x, t) + FF †(x, t))

+ c(F ∗FT (x, t)A3 +A3FF
†(x, t)), (3.29)

Due to the reductions we have Qbr;jk = iqbr;jk with real valued functions qbr;jk
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given by:

qbr;12(x, t) = −2 sinh(2θ0)

∆
((c sinh(κ1 − κ2) + a0 sinh(κ1 + κ2)) sin(Φ1 +Φ2)

+(a1 cos(Φ1 +Φ2)− b cos(Φ1 − Φ2)) cosh(κ1 + κ2)) ,

qbr;13(x, t) =
4
√
2 sinh(θ0)

∆
((a0 − c) coshκ1 sinΦ1 + (a1 − b) coshκ1 cosΦ1) ,

qbr;14(x, t) = −2 sinh(2θ0)

∆
((c sinh(κ1 + κ2) + a0 sinh(κ1 − κ2)) sin(Φ1 − Φ2)

+(b cos(Φ1 +Φ2)− a1 cos(Φ1 − Φ2)) cosh(κ1 − κ2)) ,

qbr;23(x, t) =
4
√
2 cosh(θ0)

∆
((c− a0) sinhκ2 sinΦ2 + (b− a1) coshκ2 cosΦ2) ,

(3.30)

4 Two-soliton solutions and soliton interactions

Let us now construct the two-soliton solutions for the 3-wave equations by ap-
plying twice the dressing procedure. We can do this in two alternative ways,
but the final results is independent of the order in which we apply the dressing.

u2s;A = u2,1(x, t, λ)u1(x, t, λ), u2s;B = u1,2(x, t, λ)u2(x, t, λ), (4.1)

where

uj(x, t, λ) = 11 + (cj(λ)− 1)Pj , cj(λ) =
λ− λ+j

λ− λ−j
,

Pj(x, t) =
|nj⟩⟨n†j |
⟨n†j |nj⟩

,

(4.2)

and

u2,1(x, t, λ) = 11 + (c2(λ)− 1)P2,1, u1,2(x, t, λ) = 11 + (c1(λ)− 1)P1,2,
(4.3)

Here

P2,1(x, t) =
|n2⟩⟨n†

2|
⟨n†

2|n2⟩
, P1,2(x, t) =

|n1⟩⟨n†
1|

⟨n†
1|n1⟩

,

|n1⟩ = u2(x, t, λ
+
1 )|n1⟩, |n2⟩ = u1(x, t, λ

+
2 )|n2⟩,

(4.4)

where

|n1⟩ = û−2 (λ
+
1 )|n1⟩+ (c2(λ

+
1 )− 1)

κ21
κ22

û−2 (λ
+
1 )|n2⟩,

|n2⟩ = û−1 (λ
+
2 )|n2⟩+ (c1(λ

+
2 )− 1)

κ12
κ11

û−1 (λ
+
2 )|n1⟩,

⟨n†
2|n2⟩ =

4ν1ν2
κ11

Z, ⟨n†
1|n1⟩ =

4ν1ν2
κ22

Z,

Z(x, t) = |λ+2 − λ−1 |2κ11κ22 − 4ν1ν2κ12κ21, κ12 = ⟨n†j |û
−
1 (λ

+
2 )|nk⟩

(4.5)
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The corresponding two-soliton solution is given by:

Q2s(x, t) = (λ−1 − λ+1 )[J, P1] + (λ−1 − λ+1 )[J,P2]

= −2i[J, ν1P1 + ν2P2].
(4.6)

These two results provide the same expression for the two-soliton solution and
are behind the nonlinear superposition principle for the Bäcklund transforma-
tions [3, 12]. Skipping the details the generic two-soliton solution takes the
form:

Q2s(x, t) = − 2i

Z(x, t)
[J,C(x, t)],

C(x, t) = |λ+2 − λ−1 |2
(
ν1κ22|n1⟩⟨n†1|+ ν2κ11|n2⟩⟨n†2|

)
− 2iν1ν2(λ

−
2 − λ+1 )κ12|n1⟩⟨n

†
2|+ 2iν1ν2(λ

+
2 − λ−1 )κ21|n2⟩⟨n

†
1|.

(4.7)

It is of interest also to present the two-soliton solutions with particular
choices for their polarization vectors. If we choose:

|n10⟩ =

 n10,1
0

n10,3

 , |n20⟩ =

 n20,1
n20,2
0

 , (4.8)

and insert them into eq. (4.7) we obtain:

Z̃(x, t) =
{
eν1(K1−K3)+ξ10,1−ξ10,3 cosh(ν1(K1 −K2) + γ1)

+

∣∣∣∣λ+2 − λ−1
λ+2 − λ+1

∣∣∣∣ e−ν1(K1−K3) cosh(ν2(K1 −K2) + γ2)

}
γ1 = ln

∣∣∣∣λ+2 − λ−1
λ+2 − λ+1

∣∣∣∣+ ξ20,1 − ξ20,2, γ2 = ξ10,1 − ξ10,3 + ξ20,1 − ξ20,2,

(4.9)

Q2s;12(x, t) = − i(a1 − a2)(λ
−
2 − λ+1 )ν2

Z̃(x, t)
e−iµ1(K1−K2)+i(ϕ20,1−ϕ20,2)(

(λ+2 − λ+1 )e
ν1(K1−K3)+ξ10,1−ξ10,3 + (λ+2 − λ−1 )e

−ν1(K1−K3)−ξ10,1+ξ10,3
)
,

(4.10)

Q2s;13(x, t) = − i(a1 − a3)(λ
−
2 − λ+1 )ν1

Z̃(x, t)
e−iµ1(K1−K3)+i(ϕ10,1−ϕ10,3)(

(λ−2 − λ+1 )e
ν2(K1−K2)+ξ20,1−ξ20,2 + (λ−2 − λ+1 )e

−ν2(K1−K2)−ξ20,1+ξ20,2
)
,

(4.11)
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Figure 2: Generic two-soliton solution of 3-wave interactions. Now each of the
functions |Qjk| plotted has two maxima along the same semi-lines as in fig. 1.

Q2s;23(x, t) = − i(a2 − a3)(λ
+
2 − λ−1 )ν1ν2

Z̃(x, t)

× exp (−iµ1(K1 −K3) + iµ2(K1 −K2) + i(ϕ10,1 − ϕ20,1 + ϕ20,2 − ϕ10,3))
(4.12)

Next we can evaluate the asymptotics of the two-soliton solution for large t
and x and describe the interaction of solitons. However in the N -wave case the
velocities of the solitons of type (j, k) are all equal to the corresponding group
velocity vjk = (aj − ak)/(bj − bk). One can see from figure 2 that each pair of
(j, k) solitons propagate along the same characteristic directions determined by
the group velocities vjk = (aj − ak)/(bj − bk), compare with fig. 1.

5 The RHP in multi-dimensions and Manakov
rings

Here we consider a RHP with canonical normalization whose sewing function
G(x⃗, t, λ) depends on several auxiliary parameters: t and x⃗ = (x1, . . . , xn)

T .

ξ+(x⃗, t, λ) = ξ−(x⃗, t, λ)G(x⃗, t, λ), λ ∈ R
lim
λ→∞

ξ±(x⃗, t, λ) = 11.
(5.1)
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We intend to show, that by considering n-component vector x⃗ one can treat
NLEE in n+1-dimensional space-time. For simplicity we fix up the dependence
of G(x⃗, t, λ) on t and x⃗ by:

i
∂G

∂xk
= λ[Jk, G(x⃗, λ)]. (5.2)

The first example of Manakov ring was introduced in [29]. It is a special
ring of commuting partial differential operators which was constructed using
nonlocal RHP whose sewing function depended on several auxiliary variables
and on two spectral variables. The ring we use here is more simple and easier
to analyze.

Next we introduce

J±
k (x⃗, λ) = ξ±(x⃗, λ)Jk ξ̂

±(x⃗, λ). (5.3)

Obviously J±
k (x⃗, λ) provide r linearly independent analytic functions taking

values in g which commute between themselves:

[J +
k (x⃗, λ),J +

s (x⃗, λ)] = [J−
k (x⃗, λ),J−

s (x⃗, λ)] = 0 (5.4)

for all k, s = 1, . . . , r.
Next we introduce the first order co-jets as elements of g which are linear in

λ and are defined by:

J (1)
k (x⃗, λ) = (λJk(x⃗, λ))+

= λJk + [Jk, Q(x⃗)].
(5.5)

The subscript + here means that we take the asymptotic expansion of Jk(x⃗, λ)
over the inverse powers of λ and keep only the terms with non-negative powers.

Obviously to each of the co-jets we can relate a Lax operator Lk:

Lkξ
±(x⃗, λ) ≡ i

∂ξ±

∂xk
− λ[Jk, ξ

±(x⃗, λ)] + [Jk, Q(x⃗)]ξ±(x⃗, λ) = 0. (5.6)

As a result the functions J±
k (x⃗, λ) satisfy:

i
∂J±

k

∂xk
= [J (1)

k (x⃗, λ),J±
k (x⃗, λ)]. (5.7)

The fact that all Lk have the ξ±(x⃗, λ) as fundamental analytic solutions
means that they must commute identically with respect to λ, provided Q(x⃗)
satisfies a certain set of PDE’s. To check this fact and to derive those PDE’s
we calculate

∂

∂xk

(
∂ξ±

∂xj

)
− ∂

∂xj

(
∂ξ±

∂xk

)
(5.8)
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and find that the set of PDE’s satisfied by Q(x⃗) take the form:

i

[
Jk,

∂Q

∂xj

]
− i

[
Jj ,

∂Q

∂xk

]
+ [[Jj , Q(x⃗)], [Jk, Q(x⃗)]] = 0, j = 1, . . . , r′. (5.9)

for all 1 ≤ k ̸= j ≤ r. Thus for r > 3 we get an overdetermined system of
r(r − 1)/2 equations for the matrix-valued function Q(x⃗) of r variables.

Let us assume that the number of auxiliary variables r′ exceeds r – the
rank of the algebra g. In this case only r of the Cartan generators Jk can be
linearly independent which means that at most r of the auxiliary variables can
be considered as independent; the rest will be linear combinations of them.

5.1 N-wave resonant interaction in three space-time di-
mensions

This equations were discovered and analyzed at the end of the 1970’s by Cornile
and Kaup [2, 15]. They are obtained as a particular case of our construction as
follows. Choose g ≃ su(3) and fix up x⃗ = (t, x, y)T ,

Q(x⃗) =

 0 q12 q13
q21 0 q32
q31 q32 0

 , J1 = diag (a1, a2, a3),

J2 = diag (b1, b2, b3), J3 = diag (c1, c2, c3),

(5.10)

where Q(x⃗) = Q†(x⃗) the constants aj , bj , cj satisfy trJ1 = trJ2 = trJ3 = 0 and

a1 > a2 > a3, b1 > b2 > b3, c1 > c2 > c3,

Then the PDE takes the form:

2
∂Q

∂t
− (ad−1

J2
adJ1)

∂Q

∂x
− (ad−1

J3
adJ1)

∂Q

∂y
− iad−1

J2
[[J1, Q], [J2, Q(x⃗)]]

−iad−1
J3

[[J1, Q], [J3, Q(x⃗)]] = 0

(5.11)

where for any off-diagonal matrix X

ad J1X)jk ≡ ([J1, X])jk = (aj − ak)Xjk, ad−1
J1
X)jk =

1

aj − ak
Xjk,

and similarly for J2 and J3. In components eq. (5.11) reads

2
∂q12
∂t

− a1 − a2
b1 − b2

∂q12
∂x

− a1 − a2
c1 − c2

∂q12
∂y

+ iκ12q13q
∗
23 = 0,

2
∂q13
∂t

− a1 − a3
b1 − b3

∂q13
∂x

− a1 − a3
c1 − c3

∂q13
∂y

+ iκ13q12q23 = 0,

2
∂q23
∂t

− a2 − a3
b2 − b3

∂q23
∂x

− a2 − a3
c2 − c3

∂q23
∂y

+ iκ23q13q
∗
12 = 0,

(5.12)
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where

κjk = −3

(
akbj − ajbk
bj − bk

+
akcj − ajck
cj − ck

)
.

The coefficient 2 multiplying the t-derivative can be removed by rescaling of t.
In the next example we have again g ≃ sl(3) with the notation

Q(x⃗) = i

 0 q3 q
∗
2

p∗3 0 q1
p2 p

∗
1 0

 (5.13)

and J1, J2, J3 defined as before. But this time we impose a reduction Q(x⃗) =
−BQ†(x⃗)B . In this case B is a constant diagonal matrix with entries B =
diag (σ1, σ2, σ3), σi = ±1. This reduction gives p1 = σ2σ3q1, p2 = σ1σ3q2,
p3 = σ1σ2q3. It acts on the spectral parameter as B(λ) = λ∗ and on the

eigenfunctions of the spectral problem as Bψ†(λ∗)B = ψ̂(λ).
The corresponding PDE (5.11) becomes

2
∂q3
∂t

− a1 − a2
b1 − b2

∂q3
∂x

− a1 − a2
c1 − c2

∂q3
∂y

− κ12σ2σ3q
∗
1q

∗
2 = 0,

2
∂q2
∂t

− a1 − a3
b1 − b3

∂q2
∂x

+
a1 − a3
c1 − c3

∂q2
∂y

+ κ13q
∗
1q

∗
3 = 0,

2
∂q1
∂t

− a2 − a3
b2 − b3

∂q1
∂x

+
a2 − a3
c2 − c3

∂q1
∂y

− κ13σ1σ2q
∗
2q

∗
3 = 0.

(5.14)

This is the example studied by Kaup in [15]. We will present some explicit
solutions of this system, using the dressing method for the underlying RHP. The
one-soliton solution, corresponds to one pair of discrete eigenvalues, which, due
to the chosen reduction are λ+1 = µ1+ iν1 and λ−1 = µ1− iν1. The eigenfunction
for the one-soliton solution is [30, 31, 23]

χ1(x⃗, λ) =

(
1 +

λ−1 − λ+1
λ− λ−1

P

)
χ0(x⃗, λ), χ0(x⃗, λ) = e−iλ+

1 (apt+bpx+cpy),

where

P =
|n⟩⟨m|
⟨m|n⟩

, (5.15)

with |n⟩ = χ0(x⃗, λ̄0)|n0⟩ where |n0⟩ is an arbitrary constant vector. The reduc-
tion on the eigenfunctions necessitates |m⟩ = B|n∗⟩ and

Q1s;jk = −(1− δjk)2iν1Pjk. (5.16)

In this case

q1(x⃗) = 2ν1σ3
n2n

∗
3

∆
, q2(x⃗) = 2ν1σ3

n∗1n3
∆

, q3(x⃗) = 2ν1σ2
n1n

∗
2

∆
(5.17)

where
np(x⃗) = e−iλ+

1 (apt+bpx+cpy)n0p

∆ = σ1|n1|2 + σ2|n2|2 + σ3|n3|2,
(5.18)
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Here n0p are three arbitrary constants. If we choose all σp = 1 then ∆ > 0
and all solutions are finite with decay at infinity. If σp are of different signs then
unstable (blow-up) solutions occur. Actually, in 1 + 1 dimensions this equation
describes plasma with blow-up instability, [23].

Further possible reduction is when the requirement of reality is imposed on
the solutions. The simplest solution of this kind one can obtain by simply taking
µ1 = 0, λ+1 = iν1, purely imaginary eigenvalue.

Similarly one can obtain other generalizations. For example, the generaliza-
tion of (3.8) is the following 4-wave equation:

2Q12;t −
a1 − a2
b1 − b2

Q12;x − a1 − a2
c1 − c2

Q12;y + iκ12Q13Q
∗
23(t, x, y) = 0,

2Q13;t −
a1
b1
Q13;x − a1

c1
Q13;y − iκ13(Q12Q23 −Q14Q

∗
23(t, x, y)) = 0,

2Q14;t −
a1 + a2
b1 + b2

Q14;x − a1 + a2
c1 − c2

Q14;y − iκ14Q13Q23(t, x, y) = 0,

2Q23;t −
a2
b2
Q23;x − a2

c2
Q23;y + iκ23(Q14Q

∗
13 +Q13Q

∗
12(t, x, y)) = 0,

(5.19)

where

κ12 =

(
b2a1 − a2b1
b1 − b2

+
c2a1 − a2c1
c1 − c2

)
, κ13 =

(
b2a1 − a2b1

b1
+
c2a1 − a2c1

c1

)
,

κ14 =

(
b2a1 − a2b1
b1 + b2

+
c2a1 − a2c1
c1 + c2

)
, κ23 =

(
b2a1 − a2b1

b2
+
c2a1 − a2c1

c2

)
.

6 Discussion and conclusions

We have outlined the methods for construction of soliton solutions for the N -
wave equations without and with additional reductions. The additional re-
ductions may lead to new types of solitons which behave like the breathers of
sine-Gordon. We have formulated our results for the 3-wave and 4-wave equa-
tions but there is no difficulty in extending these results to N -wave equations
related to any simple Lie algebra.

Next we showed that these results can be easily extended for N -wave equa-
tions in higher dimensions. Obviously the soliton solutions that we have con-
structed will not be localized in multidimensions. The construction of localized
solutions requires further studies.
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