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ABSTRACT Gait analysis identifies the posture during movement in order to provide the correct actions
for a normal gait. A person’s gait may differ from others and can be recognized by specific patterns.
Healthy individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns.
To better understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait
patterns of healthy individuals. In this research, spatio-temporal parameters were computed using the
concepts of static and dynamic equilibrium to analyze the gait cycle. A relationship was also developed
among static equilibrium, dynamic equilibrium, speed, and body states. A sensing unit was installed on
the designed metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed
based on two variables: the position of the leg in space and the angle of the knee joint measured by using
an inertial measurement unit (IMU) sensor and a rotary encoder. It was acceptable to satisfy the static
conditions when the body was in a fixed orientation, whether lying down or standing. While walking
and running, the orientation was determined by the position and knee angle variables, which fulfill the
dynamic condition. High speed reveals a rapid change in orientation, while slow speed reveals a slow
change in orientation. The proposed encoder-based feedback system successfully determined the flexion
at 47◦, extension at 153◦, and all seven gait cycle phases were recognized within this range of motion.
Computed spatio-temporal parameters may help individuals avoid slipping or falling.

INDEX TERMS Gait analysis, IMU sensor, rotary encoder, spatio-temporal parameters, static and
dynamic equilibrium, body orientation.

I. INTRODUCTION
Clinicians and researchers have always been required to
analyze gait for rehabilitation purposes and it compensates
for the lost mobility of amputees wearing prostheses. The
use of sensing devices is common for monitoring and ana-
lyzing gait. There are significant benefits of both wearable
and non-wearable sensing devices. Wearable sensing devices
are attached to human limbs and may better observe the
behavior of the limbs during movements.

In the past, gait analysis was performed with expensive
equipment, but now wearable sensors facilitate clinicians
and researchers in analyzing the gait with more reliable
results. Both IMUs (inertial measurement unit) and rule-

based methods are the optimal choices for gait analysis [1].
It seems a convenient way of gait analysis to epitomize
the gait constraints like gait parameters, environment, and
the walking persons. The specific walking pattern of a
person differentiates from the others and they can easily be
recognized by their gait. The walking pattern defines human
movement in the environment [2].

An environment and surroundings are the 3D spaces in
which a body can move. The human gait cycle is the interval
between two heel strikes on the same leg. The stance and
swing phases are two major sub-phases of the gait cycle.
The stance phase occurs when the foot is in contact with
the ground while the swing phase is when the foot is in
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the air. According to a new study, about "60%" of the gait
cycle consists of the stance phase, and "40%" of the gait
cycle comprises the swing phase [3]–[5]. For a thorough
understanding of the gait cycle, the secondary phases of gait
are grouped into "7" sub-phases including initial contact or
heel strike, foot flat, toe-off, pre-swing, initial swing, mid
swing, and terminal swing as shown in Figure 1.

It is important to mention that despite the availability
of various parameters, the outcome of the research relies
mainly on the selection of appropriate gait parameters. In
this way, better algorithms and techniques can be chosen for
the classification of gait phases [6], [7]. The spatial-temporal
measures of gait may be affected by small variations in
a person’s weight, height, and age, resulting in deviations
from an ideal gait cycle [8].

Zhang et al. presented a straight-forward linear model to
connect the stride length and typical angular swing speed.
An effective method for estimating the parameters was also
offered to calibrate the model for various themes [9]. Sizhe
et al. offered a useful step-length estimation method that
makes use of bend and inertial wearable sensors. An essen-
tial step in the diagnosis and treatment of various diseases
is gait analysis. Step length and stride lengths, in particu-
lar, offer important information regarding gait quality and
rehabilitation [10]. In order to keep a balanced movement
avoiding falls, spatio-temporal parameters like step width,
step length, stride length, walking speed, cadence, etc. are
essential [11]. Figure 2 explains the temporal measures with
the following variables;

• Gait cycle time (sec): Time between the two successive
heel strikes of the same foot.

• Stance phase (%): Phase in which a foot is in contact
with the ground within a single gait cycle.

• Stance time (sec): Amount of time between the heel
strike and the successive toe-off of the same foot.

• Swing phase (%): Swing phase, during which the foot
does not touch the ground.

• Swing time (s): The time between the toe-off and the
heel strike of the same foot.

• Cadence (steps/min): Number of steps per minute.
• Stride length (m): Distance between the two succes-

sive heel strikes of the same foot.
• Step length (m): Step length is the distance between

the point of initial contact of one foot and the point of
initial contact of the opposite foot.

• Stride width (m): The distance between the heels of
the two feet during double stance.

• Stride velocity (m/s): Defined as the ratio between
stride length and gait cycle time [12].

As a result of a limb loss, an amputee is unable to perform
normal activities without assistance. Amputation is one of
the disabilities that may happen at any stage of life. In order
to compensate for the lost part, a special device is needed.
A prosthesis is a special artificial limb that helps amputees
to overcome the functionalities of the lost limb and also

FIGURE 1. The Figure 1 presents the overall gait cycle consisting of
stance and swing phases which are divided further into "7" different
sub-phases [13].

FIGURE 2. This Figure 2 shows, that spatio-temporal parameters of
functional gait performance include step length, step width, stride
length, and direction of propagation [8].

facilitates them to minimize the dependency [14], [15].
A great effort is put into prosthetic research around

the world to assist amputees with lower limb loss. Due
to evolution and advancement in technologies, there have
been a number of artificial limbs developed that include
active, semi-active, and passive types. However, it still
requires more designs to meet the routine needs of prosthetic
users despite the advancements [16], [17]. For lower limb
amputees who wear a prosthesis, Esmaili et al. created a
wearable gait monitoring system with FSR and IMU sensors
that are directly connected to the customized algorithm.
They evaluated the stance and swing phases of the gait cycle,
as well as the stride length [18]. Gait analysis with a focus
on the lower limbs explores a variety of new ideas about
how to observe the movement of an individual.

This work presents a novel way to analyze the gait
cycle by computing spatio-temporal parameters using static
and dynamic equilibrium conditions as shown in Figure 3.
It comprises a sensing unit installed on a metal-designed
assembly to be mounted on the leg of a healthy individual.
The average trained parameter values enable individuals to
avoid slips or falls while also preventing further injuries.
This also results in the emergence of relationships between
static and dynamic behaviors based on the speed of the
body. As a result, this research work may assist researchers,
engineers, and practitioners to improve the gait pattern of
lower limb prosthetic wearers in order to enhance their
quality of life.

The rest of this paper is structured as follows. Literature
review has been presented in section II, methodology in
section III, & results and discussions in section IV. Section
V describes the conclusion and future work.

2 VOLUME 4, 2016



M. Asif et al.: Analysis of Human Gait Cycle With Body Equilibrium Based on Leg Orientation

FIGURE 3. An overview of current research is provided in Figure 3. It begins on the left side, mentioning a sensing unit, then a controlling unit, and
finally the predicted states of the body. The final predicted states of the body are shown at the bottom right with slow, normal, and high speed walks.
Here, the gait phases have been omitted for convenience. Static and dynamic conditions are shown at top right in the figure.

II. LITERATURE REVIEW
This section presents the literature studied for the research
presented. Background work, importance, and state-of-the-
art are described in detail. Overall, this presents the gait
analysis systems using wearable sensors.

Qiu et al. presented a comprehensive review of wearable
sensors, devices, and their applications. The concept of
multi-sensor fusion for human activity recognition has been
presented. Imbalanced data, complex activities, computa-
tion cost, and were the challenges identified [19]. With
sensor and data fusion, Celik et al. developed a multi-
layer framework for gait analysis. Experimental evaluation
of multimodal fusion strategies in both a lab and free-
living setting is necessary before feature extraction. The
IMU and EMG sensors were utilized for stroke survivors’
rehabilitation to identify their gait characteristics, including
step length and initial contact [20]. According to Santos
et al. individual variables and traces are more relevant for
improving the subject’s gait recognition performance. The
authors investigated the impact of each sensor’s character-
istics on each subject’s performance measure using datasets
from multi-sensors [21].

In any unrestricted setting, it is possible to track the 3D
trajectory of the legs. Ahmadi et al. presented a revolu-
tionary, low-cost, computationally efficient way to precisely
analyze human gait. They used it to quantify the correlation
between computed and measured motions for all joints in
the sagittal plane [22].

Hessfeld et al. explored examples of the wearable sensor
system and type of threshold that are more dependable
in a postural shift scenario. Comparison of three sensing
systems: pressure insoles system (IS), multiple inertial mea-

surement unit systems (IMU), and a combination of both
systems to provide reliable timing for potential biofeedback
applied by a wearable device in daily activities [23]. Saboor
et al. discussed the two slashing technologies that are
essential to contemporary gait analysis. The first was the
use of wearable sensors, which offer a practical, effective,
and affordable method of gathering data for gait analysis.
The second was the use of machine learning techniques,
which enable high precision extraction of features for gait
analysis [5].

Overuse injuries connected to running can be caused by
a variety of intrinsic (like gait biomechanics) and extrinsic
(like running surface) risk factors. It is unknown, never-
theless, how variations in the weather have an impact on
the biomechanical patterns of running stride. Ahamed et al.
concluded that the connection between gait biomechanics
and external meteorological conditions is subject-specific,
complex, and involves special interactions between intrinsic
and extrinsic components [24].

Clinical professionals use gait analysis to provide patients
with impaired gaits with optimal care and treatment. Gait
analysis is one of the standard components of kinesiology
assessments covering movement-related issues of posture
and gait. Gait analysis is also used in the treatment of
musculoskeletal disorders like polio, muscular destruction,
amputation, osteoarthritis, & trauma and neurological disor-
ders like cerebral palsy, stroke, & brain trauma [25]. Lower
limb amputees demand wearable devices with more wearing
time to enhance their quality of life. The features of cost-
effective, bio-compatible, cosmic, and durable are still great
challenges for the research community [26].

Luksys et al. distinguished gait phases for both normal
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persons and patients with Parkinson’s diseases using IMUs.
Their idea was to use the continuous relative phase to
measure the coordination between two joints. The raw
angular velocity signal was filtered using a low-pass But-
terworth filter with a cut-off frequency of 5 Hz [27].
Clinical gait analysis and rehabilitation use two measures
to corroborate clinical decisions about treatment, namely
the level of improvement in gait and the quantification of
body motion. Young people with abnormal gait are receiving
increasing attention for gait evaluation and improvement
[28]. Gait analysis has required complex systems, such as
three-dimensional motion captures and force plates. Using
several infrared cameras in a limited space, 3D motion
analyzers record body motion in real-time by reading the
location coordinate values of sensors attached to the body.

Jung et al. rely on marker-based optical motion cap-
ture (MoCap) systems to achieve high accuracy in bio-
mechanical gait research. During MoCap-based gait anal-
ysis, markers were attached to the lower limbs of subjects,
and their trajectories are used to analyze their gait on a
treadmill. It was possible to walk continuously on a tread-
mill, but the MoCap data repeated in a limited space during
treadmill walking overlap. As a result, most treadmill-based
gait data were analyzed using gait cycle percentages [29].

Han et al. introduced a technique known as the 2-point
error estimation algorithm to estimate the pitch, roll, and
yaw angles using the accelerometer and gyroscope alone
[30]. As sensor technology has advanced, wearable and
soft sensors can now be used to perform cost-effective and
easy analyses [25]. Spatio-temporal and kinematic variables
can be further calculated in gait analysis [31], [32]. The
inertial sensors comprise a gyroscope, an accelerometer, and
a magnetometer, which enable economical measurements of
gravitational force and acceleration. Changes in the Euler
angle, yaw, pitch, and angle of the rolling axis can also
be measured using the gyroscope. Inertial sensors (IMUs)
are being used extensively for gait analysis to detect the
gait phases and measure joint angles as well as the stride
lengths [33], [34]. Cicirelli et al. presented a review on the
gait analysis using IMU sensors due to their low cost and
small size. Gyroscopes are used to measure the position of
that body in the x, y, and z axes. Three-axis magnetometers
measure the earth’s magnetic field strength and its direction
[35]. Amitrano et al. validated the reliability of the wearable
system called SWEET (Smart WEarable E-Textile) for gait
analysis. The wearable sensing unit was equipped with a
pressure sensing sock, a gyroscope, a microcontroller, and
a LiPo battery [36].

Ngamsuriyaroj et al. presented the work to analyze the
walking activities of a disabled person. Wearable FSRs,
an IMU, and an angular encoder were used to control the
assembly of the prosthesis [37]. Gregorio et al. presented
their work for the identification of the gait phases for
different walking conditions with a load sensor for an
active/semi-active prosthesis. Despite advances in prosthetic
design, replacing lower-limb segments with a prosthesis

affects the efficiency of locomotion. Lower-limb prostheses
are designed to minimize the impact of amputation and
make the patient more autonomous [38]. Gait phase recog-
nition was presented in [39] using support vector machines
with different covariate factors. There are also various gait
covariates that can be used to estimate the age of a human,
which is valuable for health-related purposes, security, and
law enforcement [40]. It is also useful to translate multi-age
groups while walking in order to identify and categorize age
groups [41].

XEI et al. reviewed the methods of gait tracker using
inertial sensors in 3D space [42], while Mobbs et al. pre-
ferred a single-point inertial sensor for gait metrics analysis
in space [43]. Liu et al. examined the use of wearable
devices in motion tracking and gait analysis, as well as its
potential to enhance healthcare practices through intelligent
data analysis. Smartphones, wearable sensors (IMUs), and
sensing fabrics were discussed as wearable devices and
their research progress in motion tracking. Wearable devices
monitor basic health data, allowing physicians to detect
health problems early and provide appropriate treatment and
rehabilitation to patients [44].

Hong et al. in [45] estimated and evaluated the human gait
phases for normal and amputated persons. It contributed to
reducing gait detection errors during the heel-strike phase.
Step 1 shows that the thigh angle profile was a phase-shifted
cosine-like function. In step 2 it was like a phase-shifted
sine-like function and phase-shifting increased the linearity
of the phase variable in step 3. And finally, step 4 showed
the phase-shifting implementation, the heel-strike detection
error was also reduced.

A pedestrian dead reckoning (PDR) navigation system
that uses an inertial measurement unit (IMU) attached to
its waist belt instead of GNSS signals or beacons was
demonstrated by Hajati et al. In order to calculate the
appropriate gains, the system first recognizes the walking
pattern of the user. An unscented Kalman filter was then
used to estimate the userś attitude. A step detection method
was then used to determine the userś three-dimensional
position [46].

Ranusa et al. described a better understanding of the
dynamic friction evolution in total knee replacement. Their
study examined the relationship between the coefficient
of friction (CoF) during a gait cycle and its association
with kinematics (slide-roll ratio), applied load, and relative
velocity. As a result of this study, the coefficient of friction
fluctuates with the change in load [13].

Joint coordination was found to be the best method to
analyze the movement of the body in space. In gait analysis,
many researchers preferred goniometers, potentiometers,
and encoders over sensors like (IMUs, soft sensors, etc.)
for the coordination of joints. Tao et al. presented the use
of a flexible electro-goniometer to detect the gait cycle
capable to measure knee movement in multiple planes. It
was also capable to measure movements and postures of
the body being advantageous at noise-free signals when
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direct interfaced on clothes and fabrics [47]. Papi et al.
demonstrated a correlation between sensor signal and bench-
mark knee flexion angles. The ability of a novel wearable
sensor system to determine peak knee sagittal angles during
locomotion was validated using this relationship. This makes
it possible to convert sensor voltage outputs to angular
measurements [48]. Buttner et al. presented work on both
goniometer and potentiometer being the low-cost method to
determine the joint angles of the lower limb. They attached
the potentiometer assembly to the lateral side of the leg.
It performed continuous joint tracking of activities (stair
walking, ground walking, and jogging) based on the relative
motion of joints. For a bio-mechanical analysis of the knee
joint, the potentiometer was implemented on the lateral side
of the leg with a sensing assembly and records continuous
readings of the angle between the knee joint [49].

There are some disadvantages of the potentiometer as-
sembly during gait analysis. Occasionally, rust in the strips
of potentiometers prevents them from detecting small knee
angles during locomotion. Besides using IMUs, the encoders
are capable to measure small angle variations of knee
joints during flexion and extension precisely. According to
the literature review, the stuff is less available for spatio-
temporal parameters. It is required to address the risk of
slipping or falling in gait analysis systems by comput-
ing spatio-temporal parameters during static and dynamic
conditions of equilibrium. It may facilitate both healthy,
and amputees (while wearing the prosthesis in the training
phase) protecting them from slipping or falling.

III. MATERIALS AND METHODS
In this section, a comprehensive description of the proposed
materials and methods is presented, along with a description
of the custom-algorithm that will be used for this work.
Detailed information about the sensors and their installation
is provided in this section. Listed below are the different
subsections of this section.

A. EXPERIMENTAL SETUP
The experimental setup consists of sensors, sensor mounting
assemblies, and a controller board. As part of this research,
these sensors were interfaced with an Arduino microcon-
troller, which was used to record and present the results.
Here we categorized the experimental setup into three main
units enlisted:

• Sensing unit
• Processing unit/Microcontroller unit
• Classified output gait phases

As seen in Figure 4, the primary components of the ex-
perimental setup are explained as well as how the input and
output are related. This experimental assembly is designed
in such a way that the sensing unit can serve as an input
transducer to acquire the data.

As a result, the "controlling unit" calculates output based
on sensor output value by controlling the output electrical

FIGURE 4. This Figure 4 shows the IMU sensor and the rotary encoder
installed on the sensing unit in the experimental setup. Arduino UNO
processes the input signals to classify the gait phases.

signals. In Arduino UNO, signal processing is performed
based on the sensor’s output. An output signal can be
displayed as a graph on a serial plotter, evaluated as numeric
data, and a spreadsheet can be generated as a CSV or excel
spreadsheet.

B. DESCRIPTION OF SENSORS

Sensors based on inertial measurement units are known
for their efficiency and accuracy in capturing complex
movements. The lightweight and small size of this sensor
make it an excellent choice for motion tracking. The sensing
unit consists of two main sensors, an IMU (L3G4200D) and
a rotary encoder (KY-040). The IMU is generally equipped
with an accelerometer, magnetometer, and gyroscope to
measure angular velocity, acceleration, and position of any
object based on the specified parameters. This IMU model
computes the parameters x, y, & z axes to determine the
position of the body in the space.

We are tracking the lower limb in 3D space and evalu-
ating its different phases. We found more suitable for our
work the GY-50 IMU model (L3G4200D) more to achieve
reliable results. The specifications of our IMU sensors are
as follows: operating voltage source is (2.4 → 3.6)V with
sensitivity band variations FS ↪→ (250 dps, 500 dps, 2000
dps) and temperature range is (−40 ∼ +85)◦C.

As the knee joint angle varies during gait, the rotary
encoder can be used to determine the knee angle. The
relative movement of both thigh and shank gives an angle θ
that defines the flexion and extension of the moving leg.
Figure 5 shows how the knee angle changes due to the
relative movement between the thigh and the shank. In one
rotation of the encoder, there are "40" pulses displayed as
a sampling frequency. Following are the specifications of
the rotary encoder; (30x18x30) mm encoder module being
operated on a 5V. When we interfaced the encoder to an
Arduino board, a 2-bit gray code output was observed.
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FIGURE 5. A metal-designed leg mounting assembly with a sensing unit
placed on the lateral side of the leg is used in an experimental setup. The
anatomy of the femur, tibia, and fibula bones of the leg has been shown
in Figure 5. In the hip, knee, and ankle joints, the knee joint requires
special consideration to compute extension and flexion.

C. INSTALLATION OF SENSORS
In the data acquisition phase, sensor placement is one of the
most important and challenging tasks. It is a fact that the
feasible placement of the sensors provides precise results
to be evaluated during experiments. In this work, we have
installed the IMU sensor and rotary encoder as a sensing
unit as shown in Figure 6. After installation, these sensors
were interfaced with the Arduino on the designed metallic
assembly mounted on the leg. Considering IMU’s small size
and lightweight characteristics, it is easy to place and mount.
The placement of IMU on a shank is the best option for
the tracking of the lower limb in 3D space. Therefore, we
attached an IMU sensor on the lateral side of the shank that
gives good results for flexion and extension of the knee.
While the placement of the rotary encoder is a tedious job
because the encoder may not be directly attached to any
object without a supporting assembly. During rotation, the
assembly holds the encoder body, while the knob (shaft) is
attached to the knee angle. The encoder assembly can be
placed on the lower limb at two optimum locations.

The encoder assembly can be attached to the lateral side
of the knee joint, which is most suitable for users when
evaluating the results. Therefore, we attached the encoder
with this assembly on the lateral side of the body. This
assembly also facilitates the user to be useful when in the
squatting position.

D. WORKING OF THE CUSTOM-ALGORITHM
The proposed algorithm of this work is described in this
section. First, we defined the starting and ending nodes
as x1 and x2 for our work to relate the main objectives
followed by the outcomes. At the starting point, a person
is performing activities like walking, sitting, standing, lying

FIGURE 6. Labeling of the entire experimental setup from the front and
lateral sides of a human leg can be seen in Figure 6. In addition to the
IMU attached to the shank, a rotary encoder is mounted on the lateral
side of the knee, supported by a bush assembly.

down, and running in their environment. Then it evaluates
the body’s speed, its state, and the equilibrium conditions.
In Figure 7, the algorithm based on the given parameters
is presented to evaluate the gait and its phases. The IMU
sensor evaluates the first parameter for the complete tracking
of the lower limb in 3D space. The second parameter
describes the knee joint angle to define the relative motion
of the thigh and shank which also serves as feedback in 3D
tracking. In a real-time environment, speed describes the
actual state/activity that a person performs.
The following possible outcomes are evaluated on the basis
of above described parameters, and the body will be in;

• Static condition: When there is no change in relative
position and angle of the knee joint.

• Dynamic condition: When the change of knee joint
angle and 3D movement is observed followed by some
distance travelled by the individual.

• Leg movement while sitting on chair: When a change
of knee joint angle and position are observed while
sitting on a chair.

• Relationship: Developed among speed, angle and body
states (for static & dynamic behaviors).

The dynamic condition describes the complete movement
of a body. It is further evaluated by including the speed
parameters to define the state of the body. When the dynamic
conditions are in action, the flexion and extension of the
body are observed to define the range of motion (ROM).
With the help of knee flexion and extension, the gait phases
are easy to distinguish.

Analyzing gait requires careful consideration of the fac-
tors involved. The factors that may influence the accuracy
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FIGURE 7. The proposed algorithm shown in Figure 7 includes two variables: position and knee angle. The parameters of static and dynamic
equilibrium and leg movement while sitting on a chair were satisfied after computation in a real-world scenario.

of the gait analysis have been discussed in Table 1. If
the step length, step width, and stride length deviate from
the threshold value, the accuracy decreases. Furthermore,
prompt transitions may disrupt sensor responses, thereby
affecting recognition accuracy. In addition to low power
consumption so that batteries can last longer, environmental
conditions such as weather, terrain, and carrying conditions
may also limit the accuracy of gait analysis.

E. COMPUTATION OF THE KEY PARAMETERS
Computing the necessary parameters is a key step in the
method proposed to build a relationship. The following
mathematical relations help to support this work when
considering the variables discussed in the working of the
algorithm. According to the statistical analysis of the body
performing linear path motion, the displacement "d" change
in position is the difference of final position and the initial
position of that body as shown in equation 1 & speed is
shown in equation 2.

d = ∆x = x2 − x1 (1)

And;

Speed =
∆x

t
(2)

On the other hand, angle of knee joint varies with the
change in the leg movement as shown in equation 3.

Similarly;
∆θ = θ2 − θ1 (3)

And; θ can be calculated by given equation.

θ =
P

PPR
× (360◦) (4)

OR;
θ = (resolution)× (P ) (5)

Resolution =
360◦

PPR
=

360◦

40
= 9◦ (6)

In the above equations 4, 5, and 6 the parameters are
defined as:
P = Pulses per angular movement of rotary encoder
PPR = Pulses per revolution of rotary encoder

Speed =
(DPP )× (P )

time
(7)

And;

DPP =
Total distance covered under PPR

PPR
(8)

where;
DPP = Distance per pulse
Total distance covered under PPR = (195.6 cm)
Distance under PPR = 195.6 cm
DPP = 97.8

20 = 4.89 cm
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TABLE 1. Factors and their influence on accuracy of gait analysis

Sr# Factors State of variance Influence on gait accuracy

1 ∆x,∆θ Change in orientation Variation of both factors mutually predict the accuracy of leg orientation.
2 Step width SW > TV < SW Accuracy decreases either the step width increases/decreases.
3 Step length SL > TV < SL Accuracy increases step length decreases.
4 Stride length STL > TV < STL Accuracy increases step length decreases and gait phases are prone to merge.
5 Swift transition Bad response of sensors Prompt transitions temporarily limits the accuracy of gait analysis.
6 Sensors’ Installation Poor installation Poor installation of sensors also impact the gait accuracy.
7 Environment Ground/treadmill Gait analysis on ground may be preferred as the persons have to move on ground

later for daily life activities.
If the step length, step width, and stride length deviate from the threshold value, the accuracy decreases. Furthermore, prompt transitions may disrupt

sensor responses, thereby affecting recognition accuracy. In addition to low power consumption so that batteries can last longer, environmental conditions
such as weather, terrain, and carrying conditions may also limit the accuracy of gait analysis.

Computing the position, and angular movement, we can
easily predict whether the leg is in flexion or extension. It
is a challenge to define a person’s speed while performing
any activity and state of the body by relating both positions
and the knee joint angle of the leg. By using these spatio-
temporal parameters and the relationships, it is now possible
to predict the speed and body state of people walking or
running at different speeds.

Table 2 describes the detail of the key-value pair of all
the major terms used. It summarizes the outcomes computed
after experimentation and discussion in the different cases.

IV. RESULTS AND DISCUSSION
As a result of the experiments being conducted in the real
world, all possible outcomes were successfully observed.
The gait analysis system we developed is equipped with a
sensing unit that recognizes gait while calculating the state
of equilibrium. Kinematic systems record body orientation,
joint angles, linear and angular velocities, and accelerations
during gait analysis. Our work involved tracking the lower
limb in space using an IMU sensor and a rotary encoder to
measure the orientation of the leg. Moreover, the encoder
provides feedback for the relative motion of the thigh and
shank based on the changing position. Static and dynamic
conditions of the body are evaluated using both position and
knee angle variables. We also evaluated the speed and state
of the body based on its dynamic nature.

A. CASE#1: BODY IN STATIC CONDITION
When the resultant of all forces acting on the body is zero
then the body is said to be in static equilibrium. In gait
analysis static condition is achieved when all forces acting
on the body including weight become equal to the ground
reaction force the first condition of equilibrium is satisfied
[50]. And it is depicted:

if

{
d = ∆x = 0 , No movement

∆θ = 0 , No knee deflection

As a result of our proposed methodology in our previous
work, a body is in static equilibrium when the orientation
variables remain constant. There is no change in the orien-
tation of the leg in space in relation to its surroundings.

Due to zero displacement of the body with respect to level
ground, there is no change in the orientation of the body. It
satisfies the static condition for the body to be lying down
or standing.

B. CASE#2: BODY IN DYNAMIC CONDITION
A body is said to be in dynamic condition when the
sum of all forces, torques, and moments is zero. When
the body changes orientation with respect to level ground
with uniform velocity, it is considered to be dynamic. This
condition of equilibrium is satisfied, in our current work.

if

{
d = ∆x ̸= 0 , Body moves

∆θ ̸= 0 , Knee deflects

A graph is plotted between the changing position of the
leg and the time taken by the body as shown in Figure
8. Now, Figure 9 presents the complete analysis of the
gait cycle of the body with all the phases as labeled. The
change in the angle of the knee joint is measured by using
a rotary encoder as shown in Figure 10. In general, the leg
orientation is divided into the position of the leg measured
by the IMU sensor and flexion/extension measured by the
encoder. The stride length, step length, step width, and ROM
for the current work are defined:

Stride length = (97.8± 1) cm
Step length = (48.9 ± 0.5) cm
Step width = (21 ± 2) cm
Range of motion (ROM) = (47◦ ∼ 153◦)

C. CASE#3: LEG MOVEMENT WHILE SITTING ON
CHAIR
Leg movement with no velocity occurs when knee angle
and position variables change while sitting on a chair. It,
therefore, defines the dynamic movement of the moving
legs. While sitting on a chair and moving the leg, it is
observed that the leg is moving in space but without any
acceleration because of the "0" distance. The IMU still
tracks 3 dimensional movement with x, y, and z axes.

The custom benchmark for comparative analysis for the
state-of-the-art is presented. The current work was compared
with those who analyzed gait using wearable sensors on
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TABLE 2. Technical specifications of the proposed gait analysis method

Sr# Parameters Key-Value Pair Description of the key parameters

1 Experimental setup Sensing unit = IMU & rotary encoder Sensing unit is attached on metal-designed leg
Processing unit = Arduino mounting assembly.

2 IMU sensor Biasing voltage = 3 V Module GY-50 known as the digital gyroscope
Measurands = X, Y, & Z axes used to measure the accurate leg position.

3 Rotary encoder Biasing voltage = 5 V Module KY-040 was used for the precise
Output = 2-bit gray code measurement of knee angle.

4 ROM Range = (47◦ ∼ 153◦) ROM (Range of motion) defines flexion and
Flexion & extension extension of the knee.

5 Spatio-temporal parameters Step length = 48.9 cm Both the parameters were computed with the
Step width = 21 cm body in dynamic state.

6 Static and dynamic equilibrium Static = (∆x,∆θ = 0) Analysis of static and dynamic condition of body.
Dynamic = (∆x,∆θ ̸= 0)

7 Speed Speed = max , (TV, TF =max) Analysis of dynamic movement of the body with
Speed = min , (TV, TF =min) respect to speed.

8 State of body Running (speed=max) Outcomes of the different states of the body.
Normal walk (speed=normal)

This table presents a detailed overview of the key parameters along with the description and are used throughout this manuscript.

FIGURE 8. A plot of the IMU data acquired for the normal gait cycle can
be seen in Figure 8. The IMU-based 3D tracking of the leg shows the leg
movement in the x, y, and z planes.

FIGURE 9. This Figure 9 illustrates the normal gait cycle along with
phases and sub-phases for each z-axis plane.

FIGURE 10. According to Figure 10, the rotary encoder measures the
degree of flexion and extension of the knee joint as measured by the
rotary encoder.

able-bodies on single or both legs. We discussed gait param-
eters, stance phase, swing phase, knee angle, position, speed,
equilibrium, and body states. We proposed an encoder-
based feedback system as a special addition. There is no
such circuitry/mechanism found in the research presented
in Table 3.

D. CASE#4: RELATIONSHIP BETWEEN SPEED AND
STATE OF BODY
When a body is in a dynamic state, its position and knee
angle variables change over time. And these variables are
directly related to the speed and state of the body. It defines
the slow, normal, and high speed of the moving body based
on the known variables.

• If the frequency of changing position and knee angle
is high then the speed is also high reflecting the
movement of the body at high speed (running).

• If the frequency of changing position and knee angle
is moderate then the speed is also normal and the body
is moving with normal speed (normal walk).

• If the frequency of changing position and knee angle is
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TABLE 3. Comparative analysis for the able-bodied persons considered for gait analysis using wearable sensors

Ref# Year Sensors Gait Parameters Gait Phases Orientation EQL Speed Body State
Stance Swing Angle Position

[42] 2022 IMU ST, SWT, SL, STL ✓ ✓ ✓ × × S, M, F SW, NW, R
[51] 2022 IMU ST, SWT, C, STL ✓ ✓ ✓ × × GV W
[52] 2022 IMU - ✓ ✓ × ✓ × F R
[53] 2021 IMU + Radar ST, SWT, C, ✓ ✓ ✓ × × M, F NW, R
[27] 2021 IMU STL ✓ ✓ ✓ × × M W
[50] 2021 Potentiometer STL, SWT, ST ✓ ✓ ✓ × ✓ M NW
[36] 2021 SWEET∗ C, SL, ST, SWT ✓ ✓ ✓ × × S, F SW, R
[10] 2021 IMU + Bend Sensor SL, STL ✓ ✓ ✓ × × GV W
[54] 2021 IMU + Mocap SL, C ✓ × × × × - W
[55] 2018 IMU SL, STW ✓ ✓ × × × S, F SW, R
[56] 2018 IMU SL, STT, C ✓ ✓ × ✓ × S, F SW, R
[22] 2016 IMU - ✓ ✓ × ✓ × DV W

Proposed IMU + Encoder STL, STW, SL, ST, SWT ✓ ✓ ✓ ✓ ✓ S, M, F SW, NW, R
This table shows the custom benchmark for comparative analysis for the state-of-the-art presented. The research work was compared with those that

analyzed gait using wearable sensors on able-bodied individuals. We discussed gait parameters, stance phase, swing phase, knee angle, position, speed,
and body state.*SWEET ↪→ Smart Wearable E-Textile, and ↪→EQL=Equilibrium. The abbreviations STT, STW, SWT, STL stands for stride time, step
width, SWT= swing time and stride length respectively. The rest includes, SL=Step length, DV=Drift velocity, GV=Gait velocity, GS= Gait speed, and

ST=Stance time and C=Cadence. There are two subsets reflecting walking mode i.e. [SW,NW,R]=[Slow walk, Normal walk, Running] and
[S,M,F]=[Slow, Moderate, Fast]. The attribute "W" is mentioned in last column where the individuals are moving at fixed speed.

low then the speed is also low and the body is moving
with low speed (slow walk).

if


Speed < TV , Slow speed (slow walk)

Speed = TV , Normal speed (normal walk)

Speed > TV , High speed (running)

Note: TV ↪→ Threshold value

if


∆θ < TF , Slow speed (slow walk)

∆θ = TF , Normal speed (normal walk)

∆θ > TF , High speed (running)

Note: TF ↪→ Threshold frequency

Keeping in view the work in [42], a gait tracker or 3D
tracking and positioning of the lower limb was carried out
by installing different IMUs on the thigh, shank, and hip of
the body. The sensor installation scheme described above
provides a better understanding of gait metrics. Due to
the different data sources of sensors; managing and data
execution can be challenging. The use of multiple sensors
is time taking and requires more time in troubleshooting. As
a result of the work in [43], we can replace different inertial
sensors on different parts of our bodies with a single inertial
sensor mounted on the shank.

It was previously reported that potentiometer assemblies
are being used to maintain the static equilibrium of the
body during a gait cycle in [50], [57]. In the current work,
the potentiometer assembly is replaced with the encoder
assembly. Our custom algorithm identifies the leg’s position
and knee angle to relate them to body states.

By using the above mention case 1, case 2, and case 3
it is summarized that all variables are used for computing

speed and state of the body. Equation 9 shows that both
position and knee angle are directly related to the speed
and state of the body. According to equation 9, when the
orientation of the body occurs as it displaces with respect to
the surrounding then it indicates that the body is in dynamic
conditions of walking and running.

∆x ∝ ∆θ ∝ speed ∝ state of the body (9)

It is essential for individuals to maintain body equilibrium
when they are at risk of slipping or falling. Slipping may
happen when step length keeps on increasing while walking
and there is a danger of falling on the ground when the
step width is zero. Amputees being trained to adjust their
prosthetic devices are at high risk of falling when the gait
analysis model is being tested on them. Consequently, the
equilibrium ensures that gait analysis will be safe for both
healthy and amputees (while wearing prostheses).

V. CONCLUSION AND FUTURE WORK
During gait analysis, spatio-temporal parameters were cal-
culated by incorporating equilibrium conditions at different
speeds. According to the gait analysis, the stride length was
calculated to be 97.8 cm, the step length to 48.9 cm, and
the step width to be 21 cm. The sensing unit attached to a
metal-designed leg mounting assembly proved an excellent
idea due to the feedback system. An encoder-based feedback
system defined by ROM validated the gait phases predicted
by the IMU placed on the shank. The flexion observed
was 47◦ and extension was 153◦ and this ROM proved the
capability to recognize all "7" phases of the gait cycle. The
custom algorithm computes equilibrium conditions based on
the speed using position and knee angle variables received
from the sensing unit.

When performed on able bodies, gait analysis may pre-
vent them from falling or slipping, implementing the equi-
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librium approach. When we test the gait analysis model on
amputees, they may be at high risk of falling. Therefore,
both healthy and amputated persons are safe in equilibrium
conditions.

To relate the gait analysis with the equilibrium, the
variables speed and state of the body were computed first.
Execution of the algorithm validated the static conditions
(case#1, i.e., lying down and standing states) and dynamic
conditions (case#2, i.e., normal walking, running, and slow
walk). The normal walk was observed at (TV, TF), running
with > (TV, TF), and a slow walk with < (TV, TF).
Case#3 presents the observation of leg movement while
sitting on a chair, which is also a form of static condition
as the leg swings with zero velocity. Based on speed, a
direct relationship was found between static and dynamic
behaviors of the body. It is stated that the frequency of
position and knee angle represents the speed and state of
body changes concerning time, leading to the prediction of
sub-phases of the gait.

The limitations of the body’s static and dynamic equi-
librium states subject to the current research work are
described here. The person didn’t carry any special load
when considered for gait analysis for different body states.
Furthermore, the environment was level ground to analyze
the gait of walking persons. Static equilibrium states of the
body are achieved only when the subject is not moving
concerning level ground. All the dynamic states of the body
are restricted unless there is a change in leg orientation.

The individuals may not perform squatting in the current
gait analysis system with the defined ROM. It is suggested
to increase the range of flexion to perform the squatting.
This may be beneficial while in exercise to strengthen the
muscles and to offer prayer. Body equilibrium facilitates
individuals when they are at risk of falling or slipping.

Considering age, gender, weight, and height factors, the
presented experimental setup may be used on a more
significant number of individuals. A more natural gait may
be achieved by collecting datasets with various features.
Passive/active prosthetic knee may be tested after a well-
trained gait. A typical prosthetic knee can be judged based
on its performance compared to a human’s normalized mean
gait curve. It may also transform passive prostheses into
semi-active or active prosthesis devices. The wearers of
lower limb prostheses may benefit from this exercise.
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