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Abstract

The geodesic equations of a class of right invariant metrics on the semi-direct
product Diff(S1)sDiff(S1) are studied. The equations are explicitly described,
they have the form of a system of coupled equations of Camassa-Holm type and
possess singular (peakon) solutions. Their integrability is further investigated,
however no compatible bi-Hamiltonian structures on the corresponding dual
Lie algebra (Vect(S1)sVect(S1))∗ are found.

Mathematics Subject Classification, Primary: 58D05, 37K65, 58B20; Secondary: 35Q53.

Keywords: Euler equation, Integrable systems, Peakons, Diffeomorphism group of the

circle.

1 Introduction

V.I. Arnold put forward the idea of using geodesic flow in the analysis of the motion
of hydrodynamical systems [1]. He showed that the Euler equations of hydrodynam-
ics (with fixed boundary) can be obtained as geodesic equations of a right invariant
Riemannian metric on the group of volume-preserving diffeomorphisms. This struc-
ture is a prototype for the mathematical treatment of many physical systems when
the configuration space can be identified with a Lie group. Such examples are: the
Euler pegtop as a geodesic equation for the metric1 ⟨ω, Iω⟩ on the SO(3) group;

1Here I : SO(3) → SO(3)∗ denotes the inertia matrix of the body.
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the KdV equation as a geodesic equation for the L2 metric on the Virasoro group;
Camassa-Holm equation [5] as a geodesic equation for the H1 metric on the Virasoro
group (or Diff(S1)) ) etc.

Both KdV and Camassa-Holm (CH) equations are integrable models for propa-
gation of shallow water waves [5, 24, 13, 22, 19]. The CH equation was extensively
studied in the recent years and many of the underlying qualitative aspects (e.g. the
identification of initial profiles that develop into global solutions or into breaking
waves [3, 4, 6, 7, 8, 18] rely on properties arising from its geometric structure as a
geodesic flow equation [27, 21, 10, 11, 12].

There are also examples of hydrodynamic equations which are geodesic flows
for metrics on semidirect products of Lie groups [2, 21, 9, 23, 29], such as the
barotropic fluid equation (see e.g. [2]) and the two-component integrable shallow
water equation of CH type (see e.g. [15, 9, 23, 29]).

In this paper we study the geodesic flow equations of a class of right invariant
metrics on Diff(S1)sDiff(S1). We begin with the general framework for the Euler
equation on a Lie group and introduce the notion of a bi-Hamiltonian Euler equation
in Section 2. Then we extend this construction to a semidirect product of Lie groups
in Section 3. In particular we investigate families of Euler equations on the semi-
direct product of Diff(S1) by itself (twisted by the inner representation) in Section
4. The integrability of the obtained equations is further investigated in Section 5.

2 Euler equation on a Lie group

On a general Riemannian manifold M , the geodesic flow is a Hamiltonian flow for
the canonical symplectic structure on the cotangent bundle T ∗M . The Hamiltonian
is given by the energy functional. When M is a Lie group G, the canonical symplec-
tic structure is invariant (either by left or right translations). It induces a Poisson
structure on the quotient space

T ∗G/G ≃ g∗

called the Lie-Poisson structure

{H,K }(m) = m([dmH, dmK]), H,K ∈ C∞(g∗).

Notice that dmH, dmK are elements of the Lie algebra g so that the preceding
formula is meaningful.

A right invariant metric on G is completely determined by its value at the unit
element e of the group, that is, by an inner product on its Lie algebra g. This inner
product can be expressed in terms of a symmetric linear operator, called the inertia
operator

A : g → g∗.

The (invariant) energy functional generates a reduced Hamiltonian function on
g∗

H(m) =
1

2
(m,A−1m).

Its differential at m is dmH = A−1m ∈ g and its corresponding Hamiltonian vector
field on g∗ is

X(m) = Pm(A−1m), m ∈ g∗
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where P is the Lie-Poisson bivector. The corresponding evolution equation is known
as the Euler equation of the invariant metric.

Sometimes, this Euler equation is in fact bi-Hamiltonian relatively to some mod-
ified Lie-Poisson structure. Under the general name of modified Lie-Poisson struc-
tures, we mean an affine2 perturbation of the canonical Lie-Poisson structure on g∗.
In other words, it is represented by a Poisson bivector

P + Q,

where P is the canonical Poisson bivector and Q is a constant bivector on g∗. Such
a Q ∈

∧2
g∗ is indeed a Poisson bivector, since the Schouten-Nijenhuis bracket [28]

[Q,Q] = 0,

for a constant tensor field on g∗.
The fact that P + Q is a Poisson bivector, or equivalently that Q is compatible

with the Lie-Poisson structure
[P,Q] = 0,

is expressed by the condition

Q([u, v], w) + Q([v, w], u) + Q([w, u], v) = 0, (1)

for all u, v, w ∈ g. In other words, Q is a 2-cocycle of the Lie algebra g.
A special case is when Q is a coboundary. In that case

Q(u, v) = (∂m0)(u, v) = m0([u, v])

for some m0 ∈ g∗ and the expression

{f, g }0(m) = m0([dmf, dmg])

looks like if the Lie-Poisson bracket had been “frozen” at a point m0 ∈ g∗. For this
reason it is sometimes called a freezing structure [2, 25].

3 Semi-direct products of Lie groups

We consider now an abstract Lie group G and its left action on itself by conjugacy:

g · h = ghg−1.

This defines a semi-direct product on G×G:

(g1, h1) ⋆ (g2, h2) =
(
g1g2, h1(g1 · h2)

)
=
(
g1g2, h1g1h2g

−1
1

)
.

The inverse of an element (g, h) is given by:

(g, h)−1 = (g−1, g−1h−1g).

2A Poisson structure on a linear space is affine if the bracket of two linear functionals is an
affine functional.
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The inner action of the semi-direct product GsG on itself is given by:

I(g1,h1)(g2, h2) = (g1, h1) ⋆ (g2, h2) ⋆ (g1, h1)−1

=
(
g1g2g

−1
1 , h1g1(h2g2)(h1g1)−1g1g

−1
2 g−1

1

)
From it, we deduce the adjoint action of GsG on its Lie algebra g⊕ g:

Ad(g1,h1)(u2, v2) =
(

Adg1 u2,Adh1g1 u2 + Adh1g1 v2 − Adg1 u2

)
and the adjoint action of g⊕ g on itself:

ad(u1,v1)(u2, v2) =
(

adu1 u2, adv1 u2 + adu1 v2 + adv1 v2
)
.

in particular, we obtain the Lie bracket on the Lie algebra gsg of the semi-direct
product GsG:

[(u1, v1), (u2, v2)] =
(
[u1, u2], [v1, u2] + [u1, v2] + [v1, v2]

)
(2)

4 Euler equations on Diff(S1)sDiff(S1)

In this section, we apply the theory for G = Diff(S1) the diffeomorphisms group of
the circle. Its Lie algebra Vect(S1) is isomorphic to C∞(S1) with the Lie bracket
given by

[u, v] = uxv − uvx.

Note that it corresponds to the opposite of the usual Lie bracket of vector fields.
The regular dual Vect∗(S1) of Vect(S1) is defined as the subspace of linear func-

tionals of the form

u 7→
∫
S1
mudx

for some function m ∈ C∞(S1).
Let F be a smooth real valued function on C∞(S1). Its Fréchet derivative dF (m)

is a linear functional on C∞(S1). We say that F is a regular function if there exists
a smooth map δF : C∞(S1) → C∞(S1) such that

dF (m)v =

∫
S1
v

(
δF

δm

)
dx, m, v ∈ C∞(S1).

The map δF/δm is the L2-gradient of F . Note that the second derivative of a
regular function is symmetric [17] and therefore the derivative of a gradient is a
L2-symmetric operator.

The canonical Lie-Poisson structure on Vect∗(S1) is given by

{F,G }(m) =

∫
S1

(
δF

δm

)
Pm

(
δG

δm

)
dx

where Pm = − (mD + Dm) and D := d/dx.

The theory extends straightforwardly to the case of (Vect(S1)sVect(S1))∗. The
differential of a regular function F is given by

dF (m,n)(v, w) =

∫
S1

[
v

(
δF

δm

)
+ w

(
δF

δn

)]
dx.
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The canonical Lie-Poisson structure on (Vect(S1)sVect(S1))∗ is given by

{F,G }(m,n) =

∫
S1

(
δF

δm
,
δF

δn

)
P(m,n)

(
δG

δm
,
δG

δn

)
dx

where

P(m,n) =

(
Pm Pn

Pn Pn

)
where Pm = −(mD + Dm).

A right invariant metric on Diff(S1)sDiff(S1) is defined by an inner product a
on the Lie algebra of the group C∞(S1) ⊕ C∞(S1). If this inner product is local, it
is given by

a
(
(u1, v1), (u2, v2)

)
=

∫
S1

(u1, v1)A(u2, v2)dx u, v ∈ C∞(S1),

where

A =

(
A C
C∗ B

)
is a symmetric linear differential operator on C∞(S1)⊕C∞(S1). The corresponding
Euler vector field is given by

X(m,n) = P(m,n)A−1(m,n).

In the sequel, we will suppose that

A = (1 −D2)

(
a c
c b

)
(3)

for some real constants a, b and c such that ab− c2 ̸= 0.

The corresponding Euler equation is then{
mt = −2mux −mxu− 2nvx − nxv

nt = −2n(ux + vx) − nx(u + v)
(4)

where (
m
n

)
= A

(
u
v

)
Introducing new variables M = m− n, V = u + v, U = u and N = n we write

(4) as {
Mt = −2MUx −MxU

Nt = −2NVx −NxV
(5)

In general, we have a linear relation between the variables, i.e.(
M
N

)
= (1 −D2)

(
M0 cosα M0 sinα
N0 sinβ N0 cosβ

)(
U
V

)
(6)

for some real parameters M0, N0, α and β. The consistency with (6) gives

b = N0 cosβ, c− b = N0 sinβ = M0 sinα,
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or (
M
N

)
= (N0 sinβ)(1 −D2)

(
cotα 1

1 cotβ

)(
U
V

)
(7)

With an overall rescaling of M and N by the constant N0 sinβ we can remove
this overall factor from (7) and thus, there are only two parameters, α and β relating
(M,N) and (U, V ). Since the equations (5) allow rescaling of both M and N by a
constant, for convenience we are going to write from now on{

M = cosα(U − Uxx) + sinα(V − Vxx),

N = sinβ(U − Uxx) + cosβ(V − Vxx).
(8)

There are two special subcases of the system (5), (8): If α = β = 0 it reduces
to two independent Camassa-Holm equations; if α = β = π/2 the case is a cross-
coupled Camassa-Holm system, studied in [14]. The cross-coupled system admits
peakon solutions with an interesting behavior, investigated in the above article,
which can be visually described as “waltzing peakons”.

In fact, the system (5), (8) admits peakon solutions for any values of the param-
eters α and β such that α + β ̸= ±π

2 ,±
3π
2 . . .. Indeed, the peakon Ansatz (which is

also a singular momentum map, [20])
M =

K∑
k=1

Mkδ(x− qk),

N =

L∑
l=1

Nlδ(x− rl)

(9)

together with (8)


U =

1

2 cos(α + β)

(
cosβ

K∑
k=1

Mke
−|x−qk| − sinα

L∑
l=1

Nle
−|x−rl|

)
,

V =
1

2 cos(α + β)

(
− sinβ

K∑
k=1

Mke
−|x−qk| + cosα

L∑
l=1

Nle
−|x−rl|

) (10)

gives the following dynamical system for the peakon parameters:
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Ṁk =
Mk

2 cos(α + β)
×(

cosβ
K∑

p=1

Mpe
−|qk−qp|sgn(qk−qp) − sinα

L∑
p=1

Npe
−|qk−rp|sgn(qk−rp)

)
,

q̇k =
1

2 cos(α + β)

(
cosβ

K∑
p=1

Mpe
−|qk−qp| − sinα

L∑
p=1

Npe
−|qk−rp|

)
,

Ṅl =
Nl

2 cos(α + β)
×(

− sinβ
K∑

p=1

Mpe
−|rl−qp|sgn(rl−qp) + cosα

L∑
p=1

Npe
−|rl−rp|sgn(rl−rp)

)
,

ṙl =
1

2 cos(α + β)

(
− sinβ

K∑
p=1

Mpe
−|rl−qp| + cosα

L∑
p=1

Npe
−|rl−rp|

)
.

(11)

Note that the peakon parameters depend only on t and the singular solutions of
the geodesic equations are uniquely determined by these parameters via (9).

5 Integrability

The interesting question is now : is this equation bi-Hamiltonian for some modified
Lie-Poisson structure?

Remark first that a freezing structure on (Vect(S1)sVect(S1))∗ corresponds to
the following operator (

Pm0 Pn0

Pn0 Pn0

)
where m0, n0 are fixed elements of C∞(S1). If m0 and n0 are constant functions,
this operator writes down as (

αD βD
βD βD

)
,

where α, β ∈ R. Notice furthermore that even without computing the whole Gel’fand-
Fuks cohomology [16] of Vect(S1)sVect(S1), we can check that the following skew-
adjoint operator (

γD3 δD3

δD3 δD3

)
where γ, δ ∈ R, is a 2-cocycle; i.e it satisfies the cocycle condition (1). Moreover, it
is not a coboundary [26].

Now, recall the following criterion which is a natural extension to C∞(S1) ⊕
C∞(S1) of a result established in [12] for C∞(S1).

Proposition 1 A necessary condition for a smooth vector field X on C∞(S1) ⊕
C∞(S1) to be Hamiltonian with respect to the Poisson structure defined by a con-
stant linear operator Q is the symmetry of the operator X ′(m,n)Q for each (m,n) ∈
C∞(S1) ⊕ C∞(S1).
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The vector field X(m,n) defined in (4) can be written as

X(m,n) =

(
Pm(u) + Pn(v)
Pn(u) + Pn(v)

)
where Pm(u) = −(2mux + mxu),(

m
n

)
=

(
a b
b c

)(
Λ(u)
Λ(v)

)
,

and Λ = 1 −D2. Therefore, the components of its the Fréchet derivative are given
by

X ′(m,n)[1, 1] =
1

d

(
Pcm−bnΛ−1 − d(Pu + 3Du)

)
X ′(m,n)[1, 2] =

1

d

(
Pan−bmΛ−1 − d(Pv + 3Dv)

)
X ′(m,n)[2, 1] =

1

d

(
P(b−c)nΛ−1

)
X ′(m,n)[2, 2] =

1

d

(
P(b−a)nΛ−1 − d(Pu + Pv + 3Du + 3Dv)

)
where d = ac − b2. We are going to check if there exists m0, n0, γ, δ such that
X ′(m,n)Q is symmetric, where

Q =

(
Pm0 + γD3 Pn0 + δD3

Pn0 + δD3 Pn0 + δD3

)
,

that is
p∗ = p, q∗ = r, s∗ = s (12)

where

p =
(
Pcm−bnΛ−1 − d(Pu + 3Du)

)
(Pm0 + γD3)

+
(
Pan−bmΛ−1 − d(Pv + 3Dv)

)
(Pn0 + δD3),

q =
(
Pcm−bnΛ−1 − d(Pu + 3Du)

)
(Pn0 + δD3)

+
(
Pan−bmΛ−1 − d(Pv + 3Dv)

)
(Pn0 + δD3),

r =
(
P(b−c)nΛ−1

)
(Pm0 + γD3)

+
(
P(b−a)nΛ−1 − d(Pu + Pv + 3Du + 3Dv)

)
(Pn0 + δD3),

s =
(
P(b−c)nΛ−1

)
(Pn0 + δD3)

+
(
P(b−a)nΛ−1 − d(Pu + Pv + 3Du + 3Dv)

)
(Pn0 + δD3).

Taking first u = 1 and v = 0 in p∗ = p and applying to the constant function 1,
we get that m0 = constant and therefore Pm0 = λD for some λ ∈ R.

Similarly, taking u = 0 and v = 1 in p∗ = p and applying to the constant
function 1, we get Pn0 = µD for some µ ∈ R.
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The preceding equations recast thus as

p =
(
Pcm−bnΛ−1 − d(Pu + 3Du)

)
(λD + γD3)

+
(
Pan−bmΛ−1 − d(Pv + 3Dv)

)
(µD + δD3),

q =
(
Pcm−bnΛ−1 − d(Pu + 3Du)

)
(µD + δD3)

+
(
Pan−bmΛ−1 − d(Pv + 3Dv)

)
(µD + δD3),

r =
(
P(b−c)nΛ−1

)
(λD + γD3)

+
(
P(b−a)nΛ−1 − d(Pu + Pv + 3Du + 3Dv)

)
(µD + δD3),

s =
(
P(b−c)nΛ−1

)
(µD + δD3)

+
(
P(b−a)nΛ−1 − d(Pu + Pv + 3Du + 3Dv)

)
(µD + δD3).

Taking then n = 0 in s∗ = s and applying it to the constant function 1 leads to
µ = δ = 0 or b = c. But then we get that r∗(1) = 0 which leads to λ = µ = 0 if
b ̸= c.

If b = c, there are solutions to equations (12), namely

Q = γ

(
DΛ 0
0 0

)
where γ ∈ R. However, for the vector field X to be Hamiltonian with respect to
the Poisson structure defined by the Poisson bivector Q, that is

X(m,n) = QdH(m,n)

for some Hamiltonian function H, it is necessary that X belongs to the range of Q.
This would require that Pn(u + v) = 0, for all m,n ∈ C∞(S1) which is not the case
for values a, b such that d = ab− b2 ̸= 0.

This shows that for there is no non-trivial modified structure given by

Q =

(
Pm0 + γD3 Pn0 + δD3

Pn0 + δD3 Pn0 + δD3

)
,

which makes (4) bi-Hamiltonian.

6 Conclusion

In this paper, we have presented the geometric approach of constructing Euler equa-
tions associated to the metrics on Diff(S1)sDiff(S1) . From the point of view of
mathematical physics this construction leads to a family of coupled peakon equa-
tions, some of which are known to have interesting behaviour e.g. the system of
coupled Camassa-Holm type equations without self-interactions where each of the
two types of peakon solutions moves only under the induced velocity of the other
type. As a result a ’waltzing’ solution behaviour is observed, see for example [14] for
some interesting figures and movies. This example is an indication that the other
equations of the family also have interesting properties that remain to be studied.

An open question remains the integrability of the obtained equations. Our search
for compatible bi-Hamiltonian structures on the dual Lie algebra (Vect(S1)sVect(S1))∗

in Section 5 does not give a positive result, which however does not exclude other
possibilities for compatible bi-Hamiltonian structures.
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