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Abstract: An investigation of the polarization dependent loss (PDL) of macrobending 

loss sensitive single fiber (1060XP) is presented theoretically and experimentally. The 

experimental results are in good agreement with the modeling outcomes. Through the 

comparison of experimental results of PDL between 1060XP fiber with coatings and 

bare 1060XP fiber, it is shown that the fiber coating has significant impact on the PDL 

of bend loss sensitive singlemode fiber. 

Keywords: Polarization dependent loss, macrobending loss, singlemode fiber, 

1060XP fiber 

1. Introduction 

PDL has been investigated as an important component in many fiber-optic 
communication applications [1-4]. Polarization dependence is mostly caused by fiber 
bending, dichroism and oblique reflection, and it always increases the error rate in 
fiber-optic transmission systems. Recently, fiber macrobending loss of standard 
Corning SMF28 singlemode fiber was investigated theoretically and experimentally 
and was optimized as an all-fiber edge filter for a rapid wavelength measurement 
application [5]. Low polarization dependence in the macrobending loss transmission 
spectrum is a requirement for such an all-fiber ratiometric wavelength measurement 
system. However, the structure of an SMF28 fiber based edge filter is complex from a 
theoretical perspective for modeling and in addition an SMF28 fiber based filter 
requires a significant number of turns of fiber, for example, 22 turns with bend radius 
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of 11 mm [5], because SMF28 is bend loss insensitive. Therefore, the optimal design 
of a more compact fiber edge filter would benefit from using a bend loss sensitive 
singlemode fiber, and in [6], we proposed a bend loss sensitive singlemode fiber, 
1060XP, for this purpose. 

This paper presents the results of a thorough investigation of the PDL behavior of 
1060XP fiber with different bend radii, including: 1) calculation of the correction 
factor of a bent 1060XP fiber with coating and absorbing layers; 2) theoretical 
modeling and PDL measurements of a bent 1060XP fiber, with coating and absorbing 
layers; 3) PDL measurements of bare bent 1060XP fiber with an absorbing layer. 
Through comparison of PDL results between 1060XP fiber with and without coating, 
the fiber coating layer is shown to have significant effect on PDL performance. 

2. Correction factor for bent 1060XP fiber with coating and absorbing layers 

It is well known, when optical fiber is bent, the presence of the coating layer(s) 
produces a so-called whispering-gallery mode due to the reflection of the radiated 
field at the interfaces of cladding-coating and coating-air layers. To reduce the 
whispering-gallery modes, the 1060XP fiber employed in this investigation is coated 
with an absorbing layer, and the fiber can thus be treated as a fiber 
core-cladding-infinite coating structure, as depicted in Fig. 1; where the z–axis is the 
direction of light propagation. 

 
For 1060XP fiber, selected properties are listed in Table 1: 
 
Following the weak-guidance approximation theory [7], when the fiber is bent, the 

Fourier transform scalar field in the cladding and infinite coating regions (q=2, 3) in 
y-direction can be expressed as: 
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where ζ is the conjugate variable for the Fourier transform in y-direction. Following 
solution by an inverse Fourier transform of the y-field, formula (1) can be treated as 
[8]: 
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functions, respectively. For any two adjacent layers, given the continuous boundary 
conditions of the field, the adjacent fields for the TE mode (polarization direction is 
x-z direction in Fig. 1) is given by [9]: 
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(3) 
By solving the boundary condition using perturbation and scalar approximation 

theory, the bend loss coefficient of the TE mode, defined as TEα , can be calculated. 

In prior work [10, 11], an “effective bend radius” (Reff) was introduced to fit the 
theoretically calculated bend losses to experimentally measured values. Reff is related 
to the measured bend radius (Rexp) by a wavelength-dependent elasto-optic correction 
factor that accounts for the change in refractive index induced by axial bending stress 
[11]. Fig. 2 shows TE-mode bend loss results for 1060XP fiber coated with an 
absorbing layer (to remove reflections at the air-coating interface) measured when 
bend radius was systematically varied between 8.5 and 12.5 mm, at 1550 nm. Figure 2 
also shows the theoretically calculated bend-loss values, both uncorrected (i.e., Reff = 
1) and best-fit. Reasonable agreement between theoretical and experimental results is 
achieved with Reff(1550nm) = 1.276. Consequently, it is suggested that the correction 
factor of 1.276 at 1550nm might be employed in the theoretical macrobending loss 
calculation of 1060XP fiber. 

However, a bend loss based fiber edge filter is designed to cover a range of 
wavelengths. The correction factor varies with wavelength and while it is not practical 
to determine the value of the correction factor at all wavelengths, it was determined at 
10 nm intervals over the wavelength range of interest between 1500 and 1600 nm. 
The correction factor as a function of wavelength is shown in Fig. 3. 

3. Theoretical modeling and experiments of PDL of bent 1060XP fiber with 

coating and absorbing layers 

To solve the different boundary conditions between the fiber’s adjacent layers 
(q=2, 3), the adjacent fields for the TM mode (polarization direction is y-z direction in 
Fig. 1) can be expressed as following: 
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Therefore, the bend loss coefficients, TEα and TMα , and the bend loss values,  

TEBL  and TMBL , of the TE and TM modes can be calculated. To better characterize 

the polarization sensitivity of the bend loss, an absolute value of PDL can be defined 

by TMTE BLBLPDL −= . In our previous works [6], it was found that PDL can induce 

variations in the transmission spectrum, and affect the accuracy of the measured 
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wavelength. 
To verify the modeling results, experimental PDL measurements were carried out 

using the apparatus shown in Fig. 4. In these experiments, the bending radius was 
controlled by wrapping the fiber around a variable-diameter mandrel, as shown in Fig. 
4. Input from a tunable laser was polarization-controlled, and TE and TM responses 
were measured using an optical spectrum analyser and associated data-collection 
software. 

 
As mentioned above using a scalar approximation of the wave equations for the 

analysis of light propagation in singlemode fiber, values of macrobending loss for the 
TE and TM modes are calculated as a function of bend radius and are presented in Fig. 
5(a), while their difference value is shown in Fig. 5(b). The differences between 
calculated TE and TM mode bend losses are largest at 9.2 and 11.3 mm bend radius. 
Measured values are also shown and are generally in reasonable agreement with the 
calculated result. Occasional discrepancies between experimental and theoretical 
results in Fig. 5(b) might be caused by inaccuracy in measuring the bending radius 
and/or approximations made in calculating bend loss. 

 
Fig. 6 shows the measured PDL values for 1060XP fiber at a 10.5 mm bend radius 

(single-turn); calculated results (using the correction factor obtained at 1550nm) are 
also shown. As mentioned in Sec. 2, PDL calculations employed correction factors at 
a limited number of wavelength intervals (10 nm) across the wavelength range 
1500-1600nm. Within this range, calculated and experimental results are in 
semi-quantitative agreement (with some random variations in the experimental data). 
The calculated results agree with experimental values more closely at 1500-1550nm 
than at 1550-1600 nm. The discrepancy between the calculated PDL and measured 
results could be caused by approximations made in the calculations and/or by 
imperfect absorbing layer material coated on the fiber surface. If this layer does not 
absorb all the radiation from the core at the bend then some partial radiation will 
reflect from the fiber coating-air boundary and recouple with the fundamental 
propagation mode, resulting in changes to the polarization states of the fundamental 
mode. 

4. PDL of bare bent 1060XP fiber with an absorbing layer 

According to the boundary equations (3) and (4), a stripped bare 1060XP fiber 
with an absorbing layer (q=1, 2), can be treated as fiber core-infinite cladding 
structure, and the calculated PDL is very small (about 10-12dB at bend radius 10.5 
mm).  

In the experiment, the bare fiber section coated with absorbing layer was bent to 
form a small 360o loop in free space, with the bare fiber ring cross segment protected 
by a polymer jacket for mechanical stability. The fiber ends were connected to a 
polarization controller and an optical spectrum analyzer, respectively. The 
measurement was operated as described in Sec. 3.  
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Experimental PDL values for bare 1060XP fiber with absorbing layer are 
presented in Fig. 7. For comparison, measured PDL values for 1060XP fiber with 
coating and absorbing layers are also shown. PDL values for coated fiber are in 
general greater than for bare fiber. In Fig. 7, as mentioned in Ref. [7], the divergences 
between the experimental and theoretical PDL results (10-12dB) for bare 1060XP fiber 
are most likely caused by the imperfect absorbing layer material. In the PDL 
measurements, it should be noted that there is about 0.02dB variation exists in the 
wavelength measurements due to the Signal-Noise-Ratio (SNR) of the tunable laser 
source, and it effects the polarization dependent loss measurement result as well. 
Overall we can conclude that the use of bare 1060XP fiber, to allow for the 
implementation of compact single-turn fiber edge filter, has a significantly better PDL 
performance by comparison with 1060XP fiber with coating layer and absorbing 
layers. 

5. Conclusion 

In conclusion, both macrobending loss and PDL for bend loss sensitive fiber 
(1060XP) has been investigated theoretically and experimentally. Both theoretical and 
experimental results have shown that the coating layer has a significant influence on 
the polarization dependence of bend loss. It is suggested that the bent bare 1060XP 
fiber with an absorbing layer is more suitable for fiber bend loss edge filter 
applications. 
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Figure Captions: 
 
Fig. 1 Cross section of bent fiber with core-cladding-infinite coating structure 
 
Fig. 2 Calculated and measured macrobending loss for different bending radii at 1550 
nm 
 
Fig. 3 Correction factor as a function of wavelength. 
 
Fig. 4 Schematic configuration of the experimental setup for PDL measurement 
 
Fig. 5(a) Calculated bend loss for TE and TM mode for different bend radii 
(correction factor is 1.276 at 1550nm wavelength); (b) theoretical and experimental 
differences in bend loss between TE and TM mode for 1060XP fiber with different 
bend radii 
 
Fig. 6 Experimental and calculated PDL values for fiber length of one turn and 
10.5mm bend radius, across the wavelength range 1500-1600nm. (For calculated 
results, the correction factors measured which are presented in Fig. 3 are applied 
across this theoretical range.) 
 
Fig. 7 Measured PDLs for bend radius of 10.5 mm (one turn) 
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Table Caption: 
 
Table 1 Parameters of 1060XP fiber (refractive index values defined at 1550nm 
wavelength) 
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Fig.1 Cross section of bent fiber with core-cladding-infinite coating structure
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Fig. 2 Calculated and measured macrobending loss for different bending radii at 1550 nm
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Fig. 4 Schematic configuration of the experimental setup for PDL measurement
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Fig. 5 (a) Calculated bend loss for TE and TM mode for different bend radii (correction 

factor is 1.276 at 1550nm wavelength); (b) theoretical and experimental differences in bend 

loss between TE and TM mode for 1060XP fiber with different bend radii
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Fig. 6 Experimental and calculated PDL values for fiber length of one turn and 10.5mm bend 

radius, across the wavelength range 1500-1600nm. (For calculated results, the correction 

factors measured which are presented in Fig. 3 are applied across this theoretical range.)
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Table 1 Parameters of 1060XP fiber (refractive index values defined at 1550nm wavelength)

Parameters of 1060XP fiber

Refractive index difference 
(between fiber core and cladding)

0.0067

Refractive index of primary coating 1.4975
Refractive index of secondary coating 1.5068

Diameter of fiber core 5.3 ± 0.3 µm
Diameter of fiber cladding

Diameter of primary coating
125 ± 0.5 µm

195 µm
Diameter of secondary coating 245 µm

NA (Numerical Aperture) 0.14
V (Normalized frequency) 1.5035

Page 17 of 17

John Wiley & Sons

Microwave and Optical Technology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	Investigation of Polarization Dependent Loss for a Macrobending Loss
	Recommended Citation
	Authors

	tmp.1353501260.pdf.p__XB

