
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Science

2013-06-28

The Significance of Requirements in Medical Device Software The Significance of Requirements in Medical Device Software

Development Development

Martin McHugh
Technological University Dublin, martin.mchugh@tudublin.ie

Abder-Rahman Ali
abder.rahman.ali@gmail.com

Fergal McCaffery
Dundalk Institute of Technology, fergal.mccaffery@dkit.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mc Hugh, M., Abder-Rahman, A., & McCaffery, F. The Significance of Requirements in Medical Device
Software Development. European Systems and Software Process Improvement and Innovation
Conference EuroSPI, Dundalk, Ireland, 26-27 June, 2013. doi:10.21427/7ady-5269

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

Funder: Science Foundation Ireland

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

EuroSPI 2013 − 1.1

Abstract

Software to be used in or as a medical device is subject to user requirements. However, unlike
unregulated software, medical device software must meet both the user’s requirements and
the requirements of the regulatory body of the region into which the software will be marketed.
Regulatory requirements are fixed and can be planned for; unfortunately, the same is not true
with user requirements. As many medical device software development organisations are fol-
lowing traditional sequential Software Development Life Cycles (SDLC), they are experiencing
difficulties accommodating changes in requirements once development has begun. Agile
methods and practices offer the ability to overcome the challenges associated with following a
sequential SDLC. Whilst the regulatory requirements are fixed, this paper presents these re-
quirements and shows how they appear to mandate the use of a sequential SDLC. This paper
also explains how agile methods and practices can be successfully adopted in the develop-
ment of medical device software without hindering the process of achieving regulatory ap-
proval.

Keywords

Agile, medical, safety critical, regulated, requirements, FDA, SDLC

1 Introduction

Software is becoming an increasingly important component of medical devices, as it enables often
complex functional changes to be implemented without having to change hardware [1]. Studies in the
medical industry point to the fact that software is one of the most critical factors for cutting edge prod-
ucts. It is expected that, by 2015, that the research and development investment in software in this
area will increase from 25% of the overall budget in 2002, to 33%. As the role of software in the medi-
cal device domain increases, so do the number of failures which arise due to software defects [2].

The subject of software in and as a medical device has become an important topic for the Food and
Drug Administration (FDA). This interest began in 1985 when software in a radiation treatment therapy
device failed as a result of software defects resulting in the administrating of a lethal overdose radia-
tion. The FDA then analysed recalls by fiscal year (FY) to determine how many were caused by soft-
ware problems. In FY 1985, for example, 20% of all neurology device recalls were attributable to soft-
ware problems, while 8% of cardiovascular problems had the same cause [3]. An analysis of medical
device recalls by the FDA in 1996 found that software was increasingly responsible for product recalls.
A German survey on medical device recalls indicated that software was the top cause for risks related
to construction and design defects of medical device products. This analysis, from June 2006, showed
that 21% of the medical device design failures were caused by software defects [2]. This was an in-
creasing trend, as the figures from November 2005 showed software was responsible for 17% of con-

The Significance of Requirements in

Medical Device Software Development

Martin McHugh1, Abder-Rahman Ali2 and Fergal McCaffery1

Regulated Software Research Centre, Department of Computing and Mathematics

Dundalk Institute of Technology, Co. Louth Ireland
1(Martin.McHugh, Fergal.McCaffery)@dkit.ie

2
abder.rahman.ali@gmail.com

Session I: Session title will be inserted by editors

1.2 − EuroSPI 2013

struction and design defects. This continues to be the case, and in the period: 1st January 2010 to 1st
January 2011, the FDA recorded 80 medical device recalls and stated software as the cause [2]. This
type of analysis, along with the results of various corporate inspections, led the FDA to conclude that
some type of regulations was required, especially that the agency's review of medical device reporting
(MDR) incidents and analysis of product recalls has convinced the agency that software is a factor
contributing to practical problems within devices [3].

Since there are many types of software in use by the medical arena, the problem of the best way to
regulate it has become an issue to the FDA. Discussions have centred on what type of software is a
medical device, the type of regulations required for such software, and what could be inspected under
current regulations [3].

Requirements are central to all software development projects. They are used to develop the software
and to demonstrate that the software is performing as intended. However, in medical device software,
requirements play an extended role. Non-regulated software must meet the requirements of the cus-
tomer or end user. Regulated software must also meet the requirements of the regulatory bodies also.
To accompany this, as part of the regulatory requirements, a medical device software development
organisation must be able to trace all stages of development back to the requirements.

2 FDA Stance on Requirements

The FDA regulations impose stringent requirements on the process by which software systems used
in medical devices are developed. These requirements translate into various software artefacts that
must be made available for the software to be FDA compliant [4] and, for medical device software, the
FDA is responsible for assuring that the device utilizing the software is safe and effective [3].

FDA requires medical device manufacturers to submit their device requirements before beginning
development. System and software requirements are taken from the FDA medical device quality sys-
tem regulation [5]. FDA regulations cover all aspects of the medical device product lifecycle, and the
FDA requires medical device manufacturers to submit evidence of product safety and efficacy for FDA
review and clearance before the manufacturer can market, sell, or distribute the product [6]. Thus, it is
critical to obtain information from the FDA on the requirements applicable to the proposed device [7].

Validation compares the final product to the original specifications [8], and is closely related to the
requirements specification. You can validate the user's requirements; this is where ambiguity reigns
most of the time and where formal methods, through the use of specification languages, have the big-
gest strides. There is still a wide gap between what the user wants and what the developer under-
stands that the user wants. Very often this is where one of the causes of initial system failures can be
found [9]. Software validation is the confirmation that all software requirements have been met and
that all software requirements are traceable to the system requirements, provided that it is not possible
to validate software without predetermined and documented software requirements [10]. There are
two major types of validation that come into play with medical devices - design validation and process
validation. Design validation means establishing, by objective evidence, that device specifications
conform to the user's needs and the device's intended uses. Process validation, on the other hand,
means establishing, by objective evidence, that a process consistently produces the desired result or
a product meeting the predetermined specifications [11]. The FDA requires medical device manufac-
turers to submit their device specifications before beginning development [12]. Thus, validation could
come at early stages of development if the user's requirements could be precisely defined, and which
from them the rest of the development derived [12]. Ideally, validation work would be accomplished
while the requirements are being written [9]. Any safety and regulatory requirements for medical de-
vices necessarily call for rigorous software development methods to ensure reliability and to protect
public health. In addition to that, requirements and specifications based on medical practice are need-
ed to help ensure that devices will perform appropriately [6].

The regulatory bodies request that medical device software development organizations clearly dem-
onstrate how they follow a software development life cycle without mandating a particular life cycle
[13]. In order to comply with the regulatory requirements of the medical device industry, it is necessary
to have clear linkages to traceability from requirements through the different stages of the software

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.3

development and maintenance life cycles. Traceability is central to medical device software develop-
ment and essential for regulatory approval. Software traceability refers to the ability to describe and
follow the life of a requirement in both forward and backward direction [13]. FDA for instance states
that traceability analysis must be used to verify that a software design implements all of its specified
requirements [14]. Thus, traceability is particularly important for medical device companies, as they
have to demonstrate this in order to achieve FDA compliance [15].

2.1 Regulations and Software Development Lifecycles

As discussed, if a medical device software manufacturer wishes to develop software, this manufac-
turer must adhere to the regulations of the region into which the device is being marketed. These
regulations do not mandate a Software Development Life Cycle which must be followed in order to
achieve regulatory approval. Initial reading of these regulations and medical device software devel-
opment standards would appear to imply that software developed for use in medical devices should be
developed using a sequential plan driven development lifecycle such as the Waterfall or V-Model.

The FDA Quality System Regulations (QSR) [16] Subpart C – Design Controls provide information as
to the processes which must be adhered to when developing regulatory compliant software. These
include:

• Design & Development Planning; (Specifications);

• Design Output; (Coding)

• Design Review;

• Design Verification; (Was the Product Built Right);

• Design Validation. (Was the Right Product Built).

As mentioned, initial reading of the QSR would suggest completing these stages sequentially for ex-
ample in accordance with the Waterfall Model. However, the FDA Design Control Guidance for Medi-
cal Device Manufacturers [17] states:

“Although the waterfall model is a useful tool for introducing design controls, its usefulness in practice
is limited… for more complex devices, a concurrent engineering model is more representative of the
design processes in use in the industry”

The FDA General Principles of Software Validation (GPSV) [18] continues to further clarify that it does
not mandate the use of a specific SDLC when developing regulatory compliant software:

“this guidance does not recommend any specific life cycle model or any specific technique or method”

Furthermore the GPSV acknowledges that activities such as Requirements Specification are likely to
be performed iteratively and provides guidance on how these iterative development models can be
managed.

“Most software development models will be iterative. This is likely to result in several versions of both
the software requirement specification and the software design specification. All approved versions
should be archived and controlled in accordance with established configuration management proce-
dures”

IEC 62304:2006 [19] is harmonised with the European Medical Device Directive (MDD) [20] and is
approved for use by the FDA. IEC 62304:2006 is a software lifecycle model specific to the develop-
ment of medical device software. As with guidance documents, adherence to IEC 62304:2006 is not
mandatory, however, if a manufacturer chooses not to follow it, they would need to provide a sufficient
explanation behind not following it. IEC 62304:2006 does not address software development lifecycle
models; instead, it defines processes, which consist of activities that should be conducted in each
medical device software development project [21]. As with the QSR, initial reading of IEC 62304:2006
would appear to suggest it should be followed in accordance with a sequential lifecycle model such as

Session I: Session title will be inserted by editors

1.4 − EuroSPI 2013

Waterfall Model. The publishers of IEC 62304:2006 observed that the standard appeared to mandate
following the Waterfall Model and added the following to remove any ambiguity;

“it is easiest to describe the processes in this standard in a sequence, implying a “waterfall” or “once
through” life cycle model. However, other life cycles can also be used”

3 Agile Methods to aid with Requirements Management

The rapidly changing business environment in which most organizations operate is challenging tradi-
tional Requirements-Engineering (RE) approaches. Software development organizations often must
deal with requirements that tend to evolve quickly and become obsolete even before project comple-
tion [22]. Agile methods and practices have advantages in accommodating change due to volatile
requirements, and are most applicable to projects where requirements are ill-defined and fluid, since
they seek to accommodate changes easily [23]. There are different agile practices and methods that
can be used in the area of requirements management:

Face-to-face communication over written specifications; effectively transferring ideas from the cus-
tomer to the development team, rather than creating extensive documentation, where simple tech-
niques (i.e. user stories) are used to define high-level requirements. Here, developers discuss re-
quirements in detail with customers before and/or during development. Thus, customers can steer the
project in unanticipated directions, especially when their requirements change owing to changes in the
environment or their own understanding of the software solution [22]. All agile approaches emphasize
that talking to the customer is the best way to get information needed for development and to avoid
misunderstandings. The CHAOS [24] report showed the critical importance of this customer involve-
ment, as it was found to be the number one reason for project success, while the lack of user involve-
ment was the main reason given for projects that ran into difficulties. A key point in all agile ap-
proaches is to have the customer ’accessible’ or ’on-site’. Agile methods often assume an “ideal”
customer representative: the representative can answer all developer questions correctly, and is
empowered to make binding decisions and able to make the right decisions [25]. This informal
communication with customers obviates the need for time-consuming documentation and approval
processes which are perceived unnecessary especially with evolving requirements [22].

Iterative requirements engineering; requirements here aren’t predefined, instead, they emerge during
development. At each development cycle’s start, the customer meets with the development team to
provide detailed information on a set of features that must be implemented. And, during this process,
requirements are discussed at a greater level of detail. Thus, requirements are clearer and more un-
derstandable because of the immediate access to customers and their involvement in the project
when needed [22].

Requirements prioritization; agile development implements the highest priority features early so that
customers can realize the most business value. The feature lists are prioritized repeatedly during de-
velopment as the customer’s and the developer’s understanding of the project evolves, particularly as
requirements are added or modified [22]. And, to keep priorities up-to-date, prioritization is repeated
frequently during the whole development process [25].

Review meetings; at the end of each development cycle, a meeting with developers, customers, qual-
ity assurance personnel, management, and other stakeholders is held for requirements validation.
During the meeting, the developers demonstrate the delivered features, provide progress reports to
the customers and other stakeholders in the organization, and the customers and QA people ask
questions and provide feedback, even though the meetings’ original purpose is to review the devel-
oped features and get feedback [22].

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.5

4 Integrating Agile and Regulatory Requirements

As discussed previously, cursory reading of medical device software standards and regulations ap-
pears to advocate utilising a plan driven SDLC that should be followed when developing regulatory
compliant software; however, research has shown this not to be the case. Following a plan driven
SDLC can prove successful when developing medical device software once the requirements are fully
established up-front and there is no risk of change to them. Unfortunately, this is rarely the case and
plan driven SDLCs have difficulties accommodating changes. Research has also shown that through
the use of iterative development techniques, changes in requirements can be accommodated easier.

While agile methods appear to solve the problems associated with following a plan driven SDLC, how
well do agile methods align with the objectives of regulatory bodies? Agile methods appear undisci-
plined and to advocate producing none of the necessary deliverables; however, this is not the case.
The agile manifesto states:

Individuals and Interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

It can be seen that statements one and two appear to be contradictory to regulatory requirements, as
firstly, the safety of medical device software is determined through the processes followed during the
development of the software [26], and secondly, comprehensive documentation is a necessity when
seeking regulatory approval. However, as highlighted in the four key principles, agile methods do not
dictate that working software instead of comprehensive documentation, nor does it states individuals
and interaction instead of processes and tools. The key here is the use of the term “over”. For exam-
ple, Robert Martin, a renowned agilest, clarifies this point further with regards to documentation by
stating:

“Produce no documentation unless it is of immediate business value“

In essence, with the development of medical device software, documentation is of business value;
therefore it would still be produced while developing software in accordance with agile development
methods. Even below the four principles on the agile manifesto [27] website, this is clarified:

“While there is value in the items on the right,
We value items on the left more”

To accompany this, an additional reason cited for not being able to adopt agile methods when devel-
oping software, is that prior to development beginning, a medical device software organisation must
register the requirements of the device. This being the case, the key benefit of adopting agile i.e. han-
dle changing requirements, become void as there can be no changes allowed. While it is the case that
a device’s requirements must be registered with regulatory bodies prior to development, regulatory
bodies do not require the organisation to register “nuts and bolts” requirements, rather they are con-
cerned with high level requirements.

4.1 Aligning on Goals

Agile software development methods are concerned with developing software using efficient tech-
niques while meeting the needs of the customer. In the case of medical device software, two custom-
ers exist, the end user and the regulatory bodies. As a result, agile methods can support regulatory
requirements; therefore, agile methods can be supportive of regulatory requirements rather than being
contradictory

To accompany this, a key focus of agile development methods is the development of high quality
software. Agile methods achieve this by increasing product development productivity and predictabil-
ity. While regulatory bodies are also concerned about the development of high quality software, they

Session I: Session title will be inserted by editors

1.6 − EuroSPI 2013

are not concerned with efficiencies used during the development; however, regulatory bodies do re-
quire medical device software organisations to produce objective evidence that the software they have
developed performs exactly as described each and every time it is used. This can be achieved
through the predictability delivered by agile methods.

4.2 Integration

Previous research has shown that it is not possible to wholly follow a single agile methodology when
developing medical device software; however, the same research revealed that combining specific
agile practices taken from multiple agile methods and combing them with a plan driven SDLC can be
the most advantageous to medical device software organisation. Abbott Diagnostics integrated agile
practices with a plan driven SDLC and reported cost savings of between 35% and 50% when com-
pared to a project following a plan driven SDLC. There are a number of instances such as those that
report the benefits of integrating agile practices; however, in each of the instances the organisations
tailored their own SDLC with agile practices creating a proprietary SDLC. No research exists to date to
supply a SDLC which combines agile practices with a plan driven SDLC which can be used by all
medical device software organisation. This research will contribute to the development of such a mod-
el.

4.2.1 Tailored Software Development Lifecycle

When considering tailoring a SDLC, a foundation plan driven SDLC is required. For this purpose, we
chose the V-Model for the following reasons:

• Medical device software organizations typically follow the V-Model to develop medical device soft-
ware [28]. As a result, they are already familiar with the structure and phases of the V-Model and
would be more willing to adopt a hybrid model based upon a SDLC with which they are familiar.

• Medical device software organizations may have received regulatory approval to follow the V-
Model when developing medical device software. If these organizations move to a completely dif-
ferent SDLC, they may need to re-apply for regulatory approval for the new SDLC. This may be a
barrier as organizations could be reluctant to undergo regulatory approval again.

• Whilst none of the regulatory requirements or development standards mandate the use of the V-
Model, it appears to be the best fit with regulatory requirements, as it guides organizations through
the process of producing the necessary deliverables required to achieve regulatory conformance.

Once the foundation model was chosen, an analysis of this model was performed to determine where
agile practices could be integrated to overcome the problems associated with following a plan driven
SDLC. A number of stages remain single pass stages in the tailored model. These stages include
“Requirements Specification”, “System Testing” and “Acceptance Tests”. These stages must remain
single pass stages to remain in line with regulatory requirements. The remaining stages “System
Analysis”, “Software Architecture Design”, “Software Detailed Design”, “Software Unit Implementa-

L9/ �ى�� ي 	 و ي � ي ى
L9/ �ى�� ي 	 و

L9/ �ى�� ي 	 و

L9/ �ى�� ي 	 و ي �

ي ى ي 	 ي ي ي � ي �

Figure 1 IEC 62304 Mapping to Scrum Lifecycle

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.7

tion”, “Software Unit Test” and “Software Integration and Integration Testing” are integrated into a
Scrum SDLC [29] (see figure 1).

IEC 62304 5.1 – Software Development Planning
IEC 62304 5.2 – Software Requirements Analysis
IEC 62304 5.3 – Software Architectural Design
IEC 62304 5.4 – Software Detailed Design
IEC 62304 5.5 – Software Unit & Implementation
IEC 62304 5.6 – Software Integration & Integration Testing
IEC 62304 5.7 – Software System Testing

A mapping study was performed in accordance with [30] which identified instances of where agile
methods have been adopted in the development of medical device software. The mapping study iden-
tified 10 instances of where agile methods have been successfully used over the period of 2002 to
2012. Of these the majority of the organisations involved adopted a Scrum approach with their tradi-
tional plan driven SDLC. In figure 1 the relevant processes, in accordance with IEC 62304, are
mapped to specific stages of the Scrum Lifecycle.

5 Conclusions

Regulatory bodies place a large emphasis on requirements when developing medical device software.
These requirements are used to achieve traceability and to determine if the medical device software is
performing as intended. In an ideal scenario, prior to the development of medical device software, all
of the stakeholders in a development team could agree and sign off on the device requirements. Once
these requirements are agreed, a medical device software development team could adopt a sequenti-
al plan driven SDLC to develop the software effectively. Unfortunately, the ideal scenario rarely exists,
and at times, changes in requirements are unavoidable, and if a development team has begun to de-
velope in accordance with a plan driven SDLC, they can experience great difficulties when introducting
a change.

Agile methods appear to offer the silver bullet to the problem of changing requirements in develop-
ment project. As a project is broken into iterations, a change can be introduced into the iteration cycle
easier than compared to a plan driven SDLC. However, while agile methods appear to be the silver
bullet, there remains reluctance amongst medical device software organisations to adopt them. Re-
search has shown that where agile practices have been adopted, they have proved successful. Where
they have been successfuly introduced, they have been intergrated with the existing plan driven SDLC
resulting in a scenario where the organisation can rely on the stability of following a plan driven SDLC
whilst reaping the benefits of agile methods such as accomodatng changes.

This paper maps stages of medical device software development to a Scrum development lifecycle.
This mapping can be used by any organisation wishing to develop medical device software in accor-
dance with agile methods whilst remaining compliant with regualtory controls.

6 References

[1] F. McCaffery, V. Casey, M. Sivakumar, G. Coleman, P. Donnelly, and J. Burton, "Medical Device
Software Traceability," in Software and Systems Traceability, J. Cleland-Huang, O. Gotel, and A.
Zisman, Eds., ed: Springer-Verlag, 2012.

[2] C. Denger, R. L. Feldman, M. Host, C. Lindholm, and F. Schull, "A Snapshot of the State of Practice in
Software Development for Medical Devices," presented at the First International Symposium on
Empirical Software Engineering and Measurement, 2007. ESEM 2007, Madrid, 2007.

[3] R. C. Fries, Reliable Design of Medical Devices vol. 3rd ed. Boca Raton FL: CRC, 2012.
[4] H. Mehrfard, H. Pirzadeh, and A. Hamou-Lhadj, "Investigating the Capability of Agile Processes to

Support Life-Science Regulations: The Case of XP and FDA Regulations with a Focus on Human Factor
Requirements," presented at the In Proceedings of SERA (selected papers), 2010.

[5] F. Pavese and A. B. Forbes, Data Modeling for Metrology and Testing in Measurement Science:
Birkhäuser, 2009.

Session I: Session title will be inserted by editors

1.8 − EuroSPI 2013

[6] T. H. Faris, Safe And Sound Software: Creating an Efficient And Effective Quality System for Software
Medical Device Organizations: Asq Press, 2006.

[7] J. K. Shapiro, "The Pathway to Market for your Medical Device: A Primer on Obtaining Information from
FDA " FDLI, vol. Update May/June, 2008.

[8] M. S. Sivakumar, V. Casey, F. McCaffery, and G. Colema, "Verification & Validation in Medi SPICE,"
presented at the The 11th International SPICE Conference Process Improvement and Capability
dEtermination, Dublin, 2011.

[9] J. O. Grady, System Requirements Analysis Amsterdam: Elsevier Academic, 2006.
[10] D. Farb and B. Gordon, Pharmaceutical Computer Validation Introduction Guidebook:

UniversityOfHealthCare, 2005.
[11] C. T. DeMarco, Medical Device Design and Regulation: Asq Press, 2011.
[12] A. Dasso and A. Funes, Verification, Validation and Testing in Software Engineering: Idea Group Pub.,

2007.
[13] V. Casey and F. McCaffery, "Med-Trace: Traceability Assessment Method for Medical Device Software

Development.," presented at the European Systems & Software Process Improvement and Innovation
Conference, (EuroSPI). Roskilde, Denmark, 2011.

[14] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, "A machine learning approach for
tracing regulatory codes to product specific requirements," presented at the Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, Cape Town, South Africa,
2010.

[15] F. McCaffery and G. Coleman, "The need for a software process improvement model for the Medical
Device Industry," International Review on Computers and Software, vol. 2, pp. 10-15, 2007.

[16] FDA, "Title 21--Food and Drugs Chapter I --Food and Drug Administration Department of Health and
Human Services subchapter h--Medical Devices part 820 Quality System Regulation," ed: U.S.
Department of Health and Human Services, 2007.

[17] FDA Design Control Guidance for Medical Device Manufacturers, 1997.
[18] FDA, "General Principles of Software Validation: Final Guidance for Industry and FDA Staff," ed: Centre

for Devices and Radiological Health, 2002.
[19] AAMI, "ANSI/AAMI/IEC 62304, Medical device Software - Software life cycle processes," ed. Association

for the Advancement of Medical Instrumentation, 2006.
[20] Directive 2007/47/EC of the European Parliament and of the Council of 5 September 2007, 2007.
[21] M. McHugh, F. McCaffery, and V. Casey, "Standalone Software as an Active Medical Device " presented

at the The 11th International SPICE Conference Process Improvement and Capability dEtermination,
Dublin, 2011.

[22] C. Lan and B. Ramesh, "Agile Requirements Engineering Practices: An Empirical Study," Software,
IEEE, vol. 25, pp. 60-67, 2008.

[23] M. Coram and S. Bohner, "The impact of agile methods on software project management," in
Engineering of Computer-Based Systems, 2005. ECBS '05. 12th IEEE International Conference and
Workshops on the, 2005, pp. 363-370.

[24] Standish Group, "Chaos Report," ed, 1995.
[25] F. Paetsch, A. Eberlein, and F. Maurer, "Requirements engineering and agile software development,"

presented at the Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE
2003. Proceedings. Twelfth IEEE International Workshops on, 2003.

[26] P. L. Jones, J. Jorgens, A. R. T. Jr, and M. Weber, "Risk Management in the Design of Medical Device
Software Systems," Biomedical Instrumentation & Technology: July 2002, vol. 36, pp. 237-266, 2002.

[27] (2001). Manifesto for Agile Software. Available: http://agilemanifesto.org/
[28] M. McHugh, F. McCaffery, and V. Casey, "Barriers to using Agile Software Development Practices within

the Medical Device Industry," in European Systems and Software Process Improvement and Innovation
Conference, EuroSPI Vienna Austria, 2012.

[29] M. Cohn, Succeeding with Agile - Software Development Using Scrum. Upper Saddle River NJ: Addison
Wesley, 2011.

[30] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping Studies in Software
Engineering," presented at the 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE), University of Bari, Italy, 2008.

7 Author CVs

Martin Mc Hugh
Martin received his B.Sc. (Hons.) in Information Technology Management in 2005 and M.Sc. in Com-
puter Science in 2009, from Dundalk Institute of Technology. He is now undertaking research for his
Ph.D. in the area of software process improvement for medical devices with emphasis on the usage of
agile practices when developing medical device software, as part of the Regulated Software Research
Group in Dundalk Institute of Technology.

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.9

Abder-Rahman Ali
Abder-Rahman received his BSc in Computer Science in 2006 from the University of Jordan and MSc
Software Engineering in 2009 from DePaul University. He is interested in applying technology to medi-
cine, and in building computer aided diagnosis systems that aid in diagnosing disease. He is currently
pursuing his Ph.D. degree at Université d'Auvergne in France, as part of the ISIT lab, in the area of fuzzy
clustering and discrete geometry for image analysis of MRI and ultrasound imaging sequences for Hepa-
tocellular Carcinoma (HCC).

Fergal Mc Caffery
Dr Fergal Mc Caffery is the leader of the Regulated Software Research Centre in Dundalk Institute of
Technology and a member of Lero. He has been awarded Science Foundation Ireland funding through
the Stokes Lectureship, Principal Investigator and CSET funding Programmes to research the area of
software process improvement for the medical device domain. Additionally, he has received EU FP7 and
Enterprise Ireland Commercialisation research funding to improve the effectiveness of embedded soft-
ware development environments for the medical device industry.

	The Significance of Requirements in Medical Device Software Development
	Recommended Citation

	Microsoft Word - 383110-convertdoc.input.371373.V7s1S.doc

