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Abstract

This thesis concerns the completeness of scattering states of n d-interacting
particles in one dimension. Only the repulsive case is treated, where there
are no bound states and the spectrum is entirely absolutely continuous, so
the scattering Hilbert space is the whole of L?(R").

The thesis consists of 4 chapters: The first chapter describes the model,
the scattering states as given by the Bethe Ansatz, and the main completeness
problem. The second chapter contains the proof of the completeness relation
in the case of two particless n = 2. This case had in fact already been
treated by B. Smit (1997), [17], but it is useful to include this case as it
clarifies the more general case. In particular, the more algebraic approach
used for the n-particle case is illustrated in this simple example. In Chapter
3 the case n = 3 is examined. This is useful for illustrative purposes as
the scattering states can still be written explicitly term by term and it is
not yet necessary to introduce the complicated notation used in the general
case. On the other hand, this case shows up certain technical difficulties to
do with the non-commutativity of the permutation group (S3) which do not
occur in the 2-particle case. Finally, Chapter 4 contains the proof of the
completeness relation in the general n-particle case. The method used is the
same as in the 3-particle case, but the algebra is much more complicated. In
particular a number of interesting lemmas and one theorem is proved. The
first lemma for 3-particle case and its generalisation - theorem for n-particle
case essentially concerns the Yang-Baxter relation for this model, as first
written by Yang. Indeed, Yang proposed his version of these relations as a
consistency condition for the Bethe Ansatz solution of the model but never
actually gave a complete proof of the consistency given these relations. Here
a complete inductive proof is given. Some algebraic manipulation reduces
the left-hand side of the completeness relation to a simpler form. Another
lemma, which seems to be new, then shows that this expression does not
contain divergent terms and consists of a sum of integrals similar to those
encountered in the 2- and 3-particle cases. Evaluation of these integrals then
leads to the required d-relation.
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Chapter 1

EXPLICIT FORMULA FOR
THE WAVE FUNCTION OF
THE SYSTEM OF 3 AND n
0-INTERACTING
PARTICLES IN ONE
DIMENSION

1.1 Introduction

We describe the scattering of particles by solving the stationary Schrodinger
equation for the wave function of the system:

n

{— 88? + 202 0y — Iu)} Y(x1.n) = EY(r1..20), (1.1)

n=1 K u<v

where x1, ..., z,, are the coordinates of the particles, d(x) is the Dirac delta-
function and ¢ > 0 is the coupling constant for the a repulsive interaction
potential. We assume that:

1) All particles are numbered, and distinguishable as in [20].

2) Interaction potential is the same for all pairs.

3) Due to the local nature of interaction a probability of appearance of 3 or
more particles in one point of z is negligible small (corresponding terms are
6z, —xy) = 0z, —xy) = 0(x, —xy), p # v # n # p) and this leads to
absence of such terms in equation.

With the free Hamiltonian Hy = — " °_the Hamiltonian

pn=1 613 ’

H=Hy+2¢) d(x,— ), (1.2)

pn<v
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is uniquely defined as a self-adjoint operator in the Hilbert space L?(R")
as was shown in [10] with the use of [14]. For that Hamiltonian, a set of
eigenfunctions can be written out explicitly by guessing what it looks like,
namely as a sum of waves with different phases obtained by n! permutations
of n momenta ky, ..., k, with different amplitudes F'(o):

Y(@r.wy | ki) = > F(0)exp (zjigk%ﬁxp).

O'ESTL

This set of the waves is known as the Bethe Ansatz [8], but it was ap-
plied to the Hamiltonian (1.2) in [13]. There are many applications of this
method and its generalisation for solving different problems, for example in
[1, 12, 11, 21], also for the difference equations in the form of the quantum
inverse problem method or matrix Bethe Ansatz [19, 22|, etc. In particular,
the infinite discrete spin chain in [1, 2, 3, 4, 5] provides a model for spin
chain scattering, which has many features of the problem of n d-interacting
particles (due to the assumption that only neighbouring particles can inter-
act in both models). In a number of cases, completeness was proved, notably
scattering completeness for the Heisenberg chain in [2, 3|, and with periodic
boundary conditions in [12, 18], and for the J-interacting Bose gas in [10]
(see also [9] for an improved version).

The case of two particles is well known and can be easily simplified by
changing coordinates of the particles into relative coordinates:

1
X = §(z1 + x9), = (11 — T2).

Hence the motion of two particles is equal to the motion of a combined
particle interacting with a d-potential placed at x = 0, and with the free
Hamiltonian
I 5 o
20X T ou?
If we have an incoming wave in the form (z | k) = €**? from the left (k > 0),
then the solution is a scattering wave-function

ekt 4 Bre—ikz 0 )
(x| k) = Ak ’ , 1.3
Yinle | 1) {_ o (1.3
where ,
ic
By =1—-A;=— T

obtained from the boundary conditions at z = 0, by [13]:

U(x—=0k)=v¢(@+0]k),
Y(@e—0]k)=¢'(x+0]k)+c



We can consider this solution as a combination of transmitted and reflected
waves in each region defined by the relative position of particles (x; < x5
and x; > z for this case).

With the use of notation
[12] := eilhmathezz) 19]] .= eilkemi+hiz2) for the wave phases,

X(12) = x(x; > x2), x(21) := x(z2 > z) for characteristic function of
relative coordinate regions and
1

312:1—A12:—k o
1 — R2

the expression for the wave function is given by [7]:
(@122 | kikz) = x(12)[12] + x(21){A12[12] + B2[21]},

and the scattering wave function is constructed as:

Y(x172 | kiko) Y(woxy | koky)

¢zn($1$2| 1 2) AL Aoy

0(12) + 0(21)

_ {Aim 12y (12) + ([12] + %[21]) X(21)} 6(12)

12

+ {L [12] x(21) + ([12] + ﬁ[ﬂ]) X(lZ)} 0(21), (1.4)
Ao Agy
which is obviously non-symmetric with respect to interchange of coordinates
xr1 and x9, and this two-particle example illustrates the problem considered
in this work.

For bosons the wave function needs to be symmetrized by adding the
following expression with permuted coordinates z; and xo (relative to (1.4)):

12 12

Gin(x21 | kika) = {Ai 21] x(21) + ([21] + %[12}) x(12)} 6(12)
+ {A%l 21] x(12) + ([21] + %[12]) X(21)} 0(21), (1.5)

Adding (1.5) to (1.4) and using relations 1 4+ Byjs = Ay, 1 + By = Aja, we
obtain symmetric scattering wave function for bosonic particles:

Yin syn(T122 | k1ka) = {(% [12] + [21]> x(12) + (% [21] + [12]) X(Zl)} 0(12)

12 12

" {(j_ P+ [121) x(12) + (j— [12] + [211) x<21>} 6(21),

(1.6)



which is not considered in this work.

Scattering completeness for the 2-particle case is proved in [17]. We briefly
recall his approach, which is based on that for potential scattering developed
by Povzner, Ikebe and Simon, see [15, 16]. Scattering completeness is defined
as unitarity of the scattering operator. The scattering operator S is defined
in terms of the wave operators QF as

S=(Q7)Q,
where the latter are defined by (see [4, 15])
OF(H, Hy) = s- lim e e~ p, (Hy),

t—Foo
where P,.(Hp) is the projection onto the absolutely continuous spectrum of
Hy, which in our case is simply the identity. The wave operators, assuming
they exist, are in general isometries onto their ranges. Scattering complete-
ness is then defined as

Ran(Q") = Ran(Q7) = Ran(P,.(H)). (1.7)

In the following we only consider the case of a repulsive interaction, i.e.
c¢ > 0. In that case, there are no bound states and the spectrum is entirely
absolutely continuous, i.e. P,.(H) = L*(R"). The scattering states 1;, (and
the associated 1,,;) are then given by

Yin(z | k) = QFerertothnm) and (x| k) = Q7 elRerttnm)
(1.8)
(Note that this requires justification as Q* f are originally only defined for
f € L) One defines a scattering transform analogous to the Fourier trans-
form, by

PR = s [ £@ Ve TR (19)

(To be precise, the integral has to be interpreted as a limit ’in the mean’
in general.) The main completeness identity can then be formulated as an
orthonormality relation for the scattering waves:

Winy [ ) | Yin(x ] ) = 6"(z —y) (1.10)

(or in the form of (4.1)). From this relation (which has to be interpreted in
distributional sense) it follows that the scattering transform can be inverted:

@) = G | ) bl | D) (1.11)

Next, we prove that

@ H* =71 (1.12)
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where f is the Fourier transform of f € L2. To prove this it suffices to show
that for all f,g € L2,

(F197g) = (f"13).
Indeed, (1.12) follows by replacing f with Q1 f and using the fact that Q7 is
an isometry. Now, the latter identity follows roughly by inserting (1.8):

(f192Fg) = <f ‘ o [ o) 6"'”@%]2/)
_ <f‘ JECECLTE=
- v [ ot 2
_ /g(k) FE(R) d"k = (f# ] §).

The identity (1.12) together with the invertibility of the scattering transform
implies that Ran(Q") = L*(R"). The analogous identity Ran(Q~) = L?(R")
follows from a similar argument using 1,,; instead of v, together with the
symmetry relation

Yout (1 Tn | k1. kp) = Yin (@21 | ke k).

We elucidate this further in the case n = 2 by calculating the scattering
matrix. We have (see [17]):

1 _ikx
—e x <0
in\ L l{?<0—_ out \ L k’>0— Ak - . )

(1.13)
ethe 4 Bro—ikz 0 )
Yin( [k >0) =You(x | K <0) =19, . N '
A—k@ , x>0

Noting that By = —By, B_j, = By, hence A_, = Ay, 1+ |B,|> = |A|*, we
express Yo (2 | k) in terms of combination of 1y, (z | k) and 1, (x | —k) for
all cases of £ > 0,k <0 and x > 0,2 < 0.

1) For k >0
a) x > 0:

‘ By . 11 . By [ . By .
out (T > 0lk) = ezkaz + L thr _ :_ezkx 4 =L (6 ikx + _ezkx)

1 By
(e > 0 1K)+ (e > 0| k)



b) z < 0:

ko _ L (ko Bk - By 1
wout<x < 0 ’ k’) — ik <€ka + _ke—zkx> + :k_e—lkl

1
A:k:e A Ay, Ay, Ay,

1 By
= —thin(z < 0| k) + =Zahin(z < 0 | k).
!kl/) (z <0|k) 1k¢ (z <0[—k)

2) For k<0
a) x> 0:

1 1 /. B, . By 1 .
out (2 > 0l k)= _ezkx - ezkx 4+ L zk:r> L= e ikx
Yout( %) Ay, Ak( A Ay Ay,

| B,
= A—kﬁjm(fﬁ >0 k)+ A—kwm(:v > 0| —k),

b) z < 0:

, B, . 11 . B. [ . By .
out(2 < 0 k) = 67,k13 + e ik _ _:ezkx 4 =F (6 ikx + :ezkx)
Yout( %) Ay, A Ay, Ay, A

1 By,

so that generally we have:

Lipn(z | k) + Loz | k), k>0
out k = Ak o
= L e | 1)+ 2By (| ) (1.14)
|k| Alkl

Now we can insert this into expression for scattering matrix

S(k, k'/> = <wout(kl) ‘ wln(k»

and, using the orthogonality relation

obtain
A / - 1 / W /
S(ka k ) - <wout(kj) ‘ wzn<k)> - < (A_wln(k ) + A:wzn(_k )) wln(k)>

& %]

_ Y N e Bl v iy 1w

= g Wik 1)+ 3 () | ()

L R LIy Ty (1.15)

%] &



Using the formula

S(k — k) 3(k+ )
2 |K'| 2 |K|

5([432 _ k‘lQ) —

and substituting By /A = (—ic/ |K'|)/(1 — (—ic/|K'])) = —ic/(|K'| + ic),
Ajp| + By = 1, we rearrange (1.15) as follows:

Sk K) = —— 6(k — I + "‘“'5(k+k)
Al Ay
/ B|k\ /
:5(k—k)+A [6(k — k') 4+ 6(k + k)]
4
- / 220|k/| 2 12
= 0k = ) = rr 0 — ),

In this work we prove the orthogonality relation explicitly, first for the
2-particle case, then for 3 particles, and finally for the n-particle case with
arbitrary n. The motivation of this work is to consider the case with an
arbitrary number of distinguishable particles for which completeness of ex-
plicit eigenstates has been proved in only very few models. The method of
proof is essentially combinatorial and more direct than other approaches.
Since the scattering wave function vy, (z | k) is defined as a combination of
permutations of the wave functions in all coordinate regions, in the rest of
this chapter we evaluate the explicit form of the wave function for all regions
of the relative positions of the particles, as a preliminary to the scattering
wave-function expressions.

1.2 3-particle case with j)-shape potential of
interaction

In the case of more than two particles the situation is much more complicated
since we have a system of waves with several transmissions and reflections.
We are looking for an explicit formula for the wave function of the n-particle
system with d-interaction, or equivalently: suppose we know an expression
for the wave function in any region defined by the relative positions of the
particles, then we wish to establish a general rule of calculation of that func-
tion in any arbitrary region.

Starting with the 3-particle case, we use the notation of [7]:

[818233] = exp ( Z kﬂ,ﬁp)

- the wave-functions which are eigenfunctions of the corresponding Hamilto-
nian,

10



and x(z,, > Ty > Toy) =: X(010203), for o € S3 - a characteristic function
of an arbitrary coordinate region, defined by the particular relative position
of particles on the z-axis.

Then the following diagrams apply:

(23)

[312] [123]

(13)

(13)

Figure 1.1: The phases of waves in coordinate regions.

The first diagram shows the phases of all waves in the regions (123), (213),
(132), (231) and (312). Each arrow with the number in square brackets rep-
resents the wave of the particular phase in the particular region. However,
some waves are shown twice, representing the different possible ways of re-
alisation of the same wave. The mentioned regions contain combinations of
1, 2, 2, 4 and 4 different waves, respectively. (The round brackets for the
numbers of regions are not shown for simplicity.)

Notation (12), (13), (23) used for the regions boundaries corresponding to
transposition of the pair particles with respective numbers.

Note that reflections and transmissions are possible only for internal bor-
ders between regions of the diagram. It follows directly from the fact that
in one dimension interaction between particles is restricted to only nearest
neighbour particles. Each reflection is in correspondence with momentum

11



transpositions between two particles without coordinate transposition (with
effective change of the wave phase), and each transmission through a bor-
der between regions is in correspondence with simultaneous coordinate and
momentum transpositions for a particular pair of particles (without effective

change of the wave phase).

(13)

(13)

13)

Figure 1.2: The phases of waves in coordinate region (321).

The second diagram shows the phases of waves for the region (321) sep-

arately. There are 9 waves but only 7 of them are
identical waves are shown for symmetry).

12

different (two pairs of



T

T3R;,[213] \

RT3 [321] Ry TisT55[213]

T

2

RT.(20 | o RTT,032]
TRy [132] /

0

Ri3R[317]
\

R,R3Ry[321]

%)

23 —

— =

P« N

Q9

)
1
1
1
1
1
1

— 1

I 1
1

'|:| ]

N I

[ |
1
1
1
1
1
1

R

S_|

S—|

=

N

HES)
B_i
g_‘
N_i
=
N
N

Sy g U |

Figure 1.3: The system of waves in coordinate regions.

The diagram on Figure 1.3 shows the actual relation (including corre-
sponding reflection and transmission coefficients) between the waves in all
regions. The transmission 7}, and reflection R, coefficients are defined by:

1 B,
Ty =-—, R, =-%, where u,v=1,2,3, p<v. (1.16)

A A
Each coordinate region is in correspondence with a combination of elemen-
tary waves with some particular amplitudes. The way of obtaining such

combinations is the following:

1) We assume that incoming wave in the region (z3 > x9 > x;) =: (321) has
the structure expli(k1x1 + kaxo + ksxs)] =: [123]. When this wave is trans-
mitted through the borders (23), (23)(13), (12), (12)(13), it does not change
its phase but changes the amplitudes to respectively Tbs, T13T53, T2, T13T12
for regions (231), (213), (312) and (132), respectively.

The same wave can reach the last region (123) in two ways: either (23)(13)(12)
or (12)(13)(23) with the same result T 9T13T53 = To3T13T12.

13



2) Consider the border (12) between regions (213) and (123). It follows
from A,, + B,, = 1 that T, = 1 + R,, so that the wave reflected from
(12) in the region (213) has amplitude R12T13753 and the phase [213] corre-
sponding to interchanged momenta for incoming wave [123], so that the full
expression for the wave in region (213) is T13723[123] + R12T13723[213].

3) Similarly for the region (132) we get Ti5T12[123] + RysTi3T12[132].

4) For the region (231) there are four waves:

a) transmitted To3[123];

b) its reflection from the border (13), namely Ry3753[321];

c) reflected from (12) in the region (321) wave [123] — R12[213], then trans-
mitted through the border (23) between regions (321) and (231):

R12[213] — Ti3R12[213], where indices 13 represent a pair of interchanging
momenta between corresponding particles #2, 3;

d) its reflection from the border (13) between regions (231) and (213):
Ti3R12[213] — Ro3T13R12[312], where indices 23 is a pair of momenta for the
pair of corresponding particles #1, 3.

Finally, the full expression for the region (231) is:

T23[123] + R13T23 [321] + T13R12[213] + R23T13R12[312].

5) Similarly for the region (312) we get:
T1o[123] + RusT1[321] + TisRos[132] + RisTisRos[231].

6) For the region (123) there are 9, but only 7 different waves:

a) Incoming wave [123].

b) Reflection of [123] from (23) between (321) and (231) regions:

c¢) Reflection of [123] from (12) between (321) and (312) regions:

[123] — Ry2[213].

d) Further reflection of Ry3[132] from (12) between (321) and (312) regions:
R93[132] — R13R23[312], where indices 13 represent a pair of interchanging
momenta between corresponding particles #1, 2.

e) Further reflection of R5[213] from (23) between (321) and (231) regions:
R12[213] — R13R12[231], where indices 13 represent a pair of interchanging
momenta between corresponding particles #2, 3.

f) Repeated reflection of Rj3R23[312] from (23) between (321) and (231) re-
gions: Ry3R93[312] — Ry2R13R23[321], where indices 12 represent a pair of
interchanging momenta between corresponding particles #2, 3.

g) Repeated reflection of Ry3R12[231] from (12) between (321) and (312) re-
gions: Ry3R12[231] — Ra3Ri3R12[321], where indices 23 represent a pair of
interchanging momenta between corresponding particles #1, 2.

Actually, f) and g) are different interpretations of the same wave.

14



h) Transmitted through the border (23) between (231) and (321) regions,

wave Ry3T53[321] — T2 R13T53[321], where indices 12 represent a pair of in-
terchanging momenta between corresponding particles #2, 3.

i) Transmitted through the border (12) between (312) and (321) regions,

wave Ry3T12[321] — T3 R13712[321], where indices 23 represent a pair of in-
terchanging momenta between corresponding particles #1, 2.

Actually, h) and i) are different interpretation of the same wave.

Finally, for the region (123) we get:

[123]4 Ros[132] 4+ Ri[213]+ Rz Ros[312] 4+ Riz Rio[231] 4+ ( Rio Riz Rog + Thia Ru3Tos ) [321].

Assume the amplitude normalisation such that outgoing wave for the
region (123) has unit amplitude. Then multiplying all amplitudes in the
previous table by Aj2A413A423 and using (1.16) we obtain the similar diagram
but in terms of coefficients A,,,B,,, where p,v =1,2,3, p<uwv:

(321) i (231) ] 213) ) i

B | :
By B3 B, [321] Ay Blj[le]
Aoy BljBu [231] A,By [321]\3\ B,,[213]
T | 1 i 2 i

A A;B,,[213] A, A [123]————=> A, [123]
A / \

A AA23] T e

B

_________________ [123] |

LN /

A.ABL132 ! A A, [123]———> A, [123] i
! | l ; ! ;
ABB[312] ! AB[321] 1 = B,[137] |
L P |
B.B.Bs[32L 1 A,B,[132] 5 !
| ! | |

B,[321] | BBJ220 1 o

(321) | (312) E (132) 1) i

___________________________________________________________________

Figure 1.4: The system of waves in coordinate regions, with amplitudes in
terms of A,,,B,,.
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1.3 Transposition matrices for 3-particle case

The wave function for all regions is just the sum over all regions of all wave
combinations in each region:

W(x1x073 | k1koks)

= x(123)[123] + x(213) (A12[123] 4+ B12[213]) + x(132) (A23[123] + Bas[132])
+ x(231) (A12A15[123] + A15B13(321] 4+ As3B12[213] + B12Bas[312])

+ X (312) (A2 A13[123] + A3 B13[321] + A12B3[132] + B2 Bas[231])

+ X (321) (A12A13A53[123] + As3A13B12[213] + A12A13B53(132]

+ Ag3 B13B12[231] + A19B13B23[312] + Bis(1 4+ Bi2Bo3)[321]). (1.17)

For the case of more than 3 particles the diagrams similar to Figures 1.1-1.4
become much more complicated. However, it is possible to evaluate a certain
algorithm for construction of the wave system in any region. We will start
with the same three-particle case.

The wave function of arbitrary region o € S3 can be expressed, in particular,
as a product 1°- G | where I° = (111111),

G is a column of the waves with all possible phases:

GOC

and Aﬁil Bafis] 1S @ corresponding amplitude for the wave with phase [ 205
in coordinate region a. All possible regions of the relative positions for 3
particles are: (123), (213), (231), (321), (312), (132). The order of particles
permutations is taken for convenience in such a way that any two nearest
regions differ from each other by only a pair of nearest particles.

Each border between two coordinate regions represents interchange of posi-
tions of two neighbouring particles transforming the system of waves in one
region to the system of waves in another region, by means of transmission
and reflection of each elementary wave. In fact, we can reduce the number of
different possible transpositions between particles (or, equivalently, transfor-
mations between neighbouring regions) by the following convention: instead
of labeling each transposition by initial numbers of a pair of corresponding
particles, we label them by the relative positions of these particles. Since for
3 particles there are always two pairs of nearest neighbour positions, there
are two matrices each of which represents a transition of the system of waves
through the boundary between classes of regions: for one matrix that is a
transposition of two particles between the first and second current positions,
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and for the second matrix - between particles on the second and third current
positions.

By, 1+ DBy
(0) (0)
1—-DByy, —DBp
Bas 1+ Bog
Q(alaQ) = <O> (0)
1 — Bys —DBas
—Bis 1— B3
(0) (0)
14+ B3  Bis
Bos 0 0 0 0 1+ Bas
0 B3 1+ B3 0
(0)
0 1-— Blg —Blg 0
Q(azag) -
0 —312 1-— 312 0
(0)
0 1+ Bio By 0
1 — Bos 0 0 0 0 — B3

where (0):— (8 8)

and, in particular, Bi3 = — B3y, Bis = —Bo;.

The matrix ()(a,q,) represents transformation of the system of waves on the
boundary between two regions with the first and second positions of particles
transposed, namely (123) — (213), (231) — (321), (312) — (132).

Similarly, the matrix ((a,q,) represents transformation of the system of waves
on the boundary between two regions with the second and third positions of
particles, namely (123) — (132), (213) — (231), (321) — (312).

With the change of phases corresponding to this transformation, the column
of waves in any region can be expressed as a product of a matrix related
to the boundary with previous region and the column of waves in previous
region: GUMNYS = Qg,0,)GM?% and G2 = () (4y0,) G2, Since a
particular order of permutations for regions was chosen, then a particular
order of indices for coefficients Bg,s,, f1 < B2, (1,82 = 1,2,3, occurs in
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the corresponding entries of matrices: in the case §18s — (201 in transition
between two regions, the corresponding coefficient on the upper left position
of smaller matrix 2 x 2 is Bg,g,. However, since inverse order of transposi-
tion B231 — P12 corresponds to the inverse order of indices in Bg,3, which
is also pure imaginary, then Bg,s = Bg,3, = —Bg,5,, and Q(a,as): Q(asas)
can be adjusted by changing signs in corresponding entries in the case of in-
verse transpositions or, generally, in the case of any permutations of regions
different from the initially chosen order. In fact, for the practical purpose
of solving the problem of finding the system of waves for all coordinate re-
gions such non-uniqueness of the order of transformations is not important,
because it suffices to choose only one path between regions with some partic-
ular order of transpositions on the region boundaries, with the corresponding
(Q-matrices, and there is no need to find all other paths and adjust matrices
for other possible orders of permutations (see Theorem (Yang), p.71, Section
4.1). With this remark, which is also true for n-particle case, we can find a
column of waves for all regions in 3-particle case.

Assume such normalisation of the wave in region (123), that

G123 —

O O OO O

Then the expression for each of 6 coordinate regions can be obtained conse-
quently from the previous one:

G123 =1

After substituting explicit forms of G'**, Q(a1as), Q(asas) and applying phase
changes according to transpositions in pairs of particles, we obtain:
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1-[123]
0-[213]
123 _ | 0-[231]
7= o3y |
0-[312]
0-[132]
By, - [213)] Bas - [132]
A - [123] 0-[231]
213 _ 123 _ 0 - [321] 132 _ 123 0-[213]
T Qe gy |0 O T QeSS g g |
0-[132] 0-[321]
0-[312] Ags - [123]
B3 Bis - [312] B2 Bss - [231]
B13A12 . [321] A12323 . [132]
ApsAys - [123] 0-[312]
231 213 13412 312 132 _
S IR NTE I R s BN ST
0-[231] Aps A - [123]
A23812 . [213] BlgAgg . [321]
BioBasBia + A12Bi3 A | - [321]
A1y BosBia + B1aBis A | - [312]
G821 _ Q(a1a2)G231 _ (1.18)

Ba3Ai3Ais - [132]
A23A13A12 : [ ]
AlgAggBlg . [213]
BISAQSBIQ ' [ ]

Using the easily verified equality BisBog = B12B13 + Bi3Bos, the expression
for G321 can be simplified:

Bi2Bo3Bia + A13B13A15 = B12BozBia + (1 — B%) B3
= Bi3 + B12(B12Bas — B1aBi3) = B3 + B1aBi3Bas = B13(1 + B12Bas),

and A12323B12 + B_12313A12 = A12(Bz3312 - Bl2B13) = AIQBI3B23'
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Substituting this in (1.18) we obtain

Bi3(1 4 B12DBs3)[321]
A12313323[312]
A12A13323[132]
A12A13A23[123]
A23A13B12[213]

231]

G321 — Q(QIQQ)G231 — (119)

AQSBI3312 23

Now all G* in (1.18) and (1.19) are in correspondence with the diagram on
Figure 1.4. However, the order of wave phases are different in all columns
G“ due to permutations of pairs of particles at each boundary between co-
ordinate regions. To preserve the same order of phases as in G'?3 in all
coordinate regions G* we need, simultaneously with the transpositions of
particles Q(a;a,,,); J = 1,...,n — 1, to perform a transposition of correspond-

ing momenta applying momentum transposition matrices (Bory By 1) where,
for the 3-particle case there are only two such matrices I(g, g,,) and I(s,, g.,):

(1o © o 00 00

0y
o ()

0 0 0 0

7 N
_= O
S =
—
(an)
N—
Py
=
)

(V)
hey
)

w

|

_ o O o oo

Then, for example, a transposition between regions (123) and (213) with
the boundary (12) achieved by applying the matrix Y9y =: I (5, .,)@Q(a102)
etc. To construct composition Y-matrices corresponding to double and triple
transpositions of relative coordinate positions with the use of available pairs
of @- and [-matrices it is necessary to satisfy the following conditions:

a) Any composition of transpositions in pairs of coordinates has to be ac-
companied by antisymmetric (inverse) composition of transpositions for cor-
responding pairs of momenta, to insure retaining the same phases.

b) Constructed with two pairs Qa as); Q(asas) and LB Boy)s L(Bayfay) the

matrices Y(12), Y(13), Y(23) are different from each other:
Yiz) # Yus) # Ys) # Yoo
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Then, according to these conditions and definition of Y(12) = I(5,, f.,)@(a102);
we obtain:

Y(13)Y(12) = L(8a, Bay) L (Bag B @ (0205) D(0102)
Y(13)Y(23) = L(Buy Bug) L (Bay Barn) @ (@102) @(a203)

Y(23)Y(13) Y(12) = L(Buy Bas) LBy Bag) LBy ) @ (0208) @ (0102) @ (0203)
= (12)}/(13)}/(23) = ](6041BOLQ)[(/Bagﬂag)](ﬁal/BQQ)Q(QIOZQ)Q(CQO&S)Q(OHQQ)'

Using Yiuz) = I(go, oy Qlara) and Ifs 5 o = If5 5 = T, this can be
written as:

Yus)Y2) = [18a, ay) (1(BayBay) Qaras) ) LBe, Bay) ] (LB fug) @laran) )
Y3 Y23) = [1(BuyBe) (1B Bog) Qienrn)) LBy Bg) | LBy ) Ql02rs) ) »

Yio3)Y13)Y(12) = {18, fay) LBy By) (L(Birs ) @0102)) LBy ) | LBy By) |
X (B Bog) LBy o) @0205)) LBy By ) (1(By Bg) Rct102))

= Y2 Y1) Y(23) = {L(BuyBy) [ LBy Bog) LBy ) Qr205)) LBy Brag) | LBy ) }
X LBy By) (1(Bary Boy) @(0102)) LBy By) | (L(Bacy By) @ 012013) )

Comparing these formulas with the definition of Y{j2) = I (Boy 5a2)Q(a1a2) we
conclude that:

Y(12) = L(8, o) Qa102) = L(Bay ) [ LBy o) (1(Bry Bng) @0209)) LBy Bay) [ L By By
}/(23) = I(/Bozgﬁae,)Q(oQaS) = ](ﬂalﬁag) [I(ﬁagxgag) (I(Balﬁag)Q(aloQ))I(ﬁozgﬂag,)]I(ﬂogﬁag)’
Y(13) = ](/Balﬁag) (I(ﬁaQBa;g)Q(aQa?,))I(ﬁalﬁag) = I(Bagﬁag,) (I(ﬁalﬁag)Q(aloQ))I(ﬁoqﬁag)’

(1.20)

where the explicit form of Y{12), Y{23), Y{13) is given by:
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(nowos)— (123)  (213)  (281)  (321)  (312)  (132)  (Gufafa)
4
1—Bi» —Bi (123)
( ) (0) (0)
Bio 14 Bjo (213)
1— Bys —Bog (231)
Y = (0) (0) ’
Bosg 1+ Bog (321)
1+B13 B3 (312)
(0) (0)
—Blg 1-— BlS (132)
(roa05) > (123)  (213)  (281)  (321) (312 (132) (BiBafy)
1
1 — Bo3 0 0 0 0 —Bos (123)
0 1— B3 —Bis 0 (213)
(0)
0 B13 1+ BlB 0 (231)
Yioz) = ’
0 1+Bi2 By 0 (321)
0 ~Biy 1-Bi 0 (312)
Bos 0 0 0 0 1+ Bog (132)
(o10203) — (123) (213) (231) (321) (312) (132)  (B1B25s)
1
1— B3 0 0 —Bi3 0 0 (123)
0 1 — Bo3 0 0 —Bos 0 (213)
0 0 14 Bio 0 0 Bis (231)
}/’(13) - B3 0 0 1+ B3 0 0 (321) ’
0 Bog 0 0 1+ Bog 0 (312)
0 0 —Bio 0 0 1— B | (132)
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Then applying a particular composition of Y(12), Y(23), Y(13),
G can be obtained from G'?3 as follows:

G123 — ]IG1237

G213 = Y1 G123,

G132 —_ Y'(23)G1237

G231 — }/’(13)}/’(12)G123’

G¥12 = Y1) Yoy G,

G*' = Yo Y13 Y12) G = Y(12)Y(13) Y23 G2

1.4 Construction of n-particle wave function
in general form

As it is shown in (1.20), each of Y{12), Y(23), Y(13) can be expressed in different
ways: namely, with the use of Q(a,a,) 0T Q(asas)- Each way of representation
corresponds to a particular order and combination of particles transpositions
and their momenta transpositions but the result for Y(12), ¥(23), ¥(13) is inde-
pendent of the particular way of representation. Also, the matrix form for
Y12), Y(23), Y(13) is independent of the chosen order of phases in G* and each
of that matrices can be transformed to another one by simple permutation
of one or two indices in index pairs: (12) <> (13) <> (23). Therefore, there
exists a general form for all Y-matrices independent of any particular order of
phases in G. For n-particle case (including n = 3) this form is constructed
as follows. Let Yy, where I,m € {1,...,n}, be any arbitrary Y-matrix. Let
Xgo be a characteristic function of an arbitrary entry, where the first index /3
is in correspondence with the row number, the second one o - with the col-
umn number. The positions of the diagonal elements 1 — Bg 3, is defined by
ds,. By convention, we define Bg,g,, in a such way that [ < m, however since
Bg,s,, is pure imaginary, then for [ > m we replace it by —Bg,, 3,. The posi-
tion of any off-diagonal non-zero element Bg g, is defined by such elementary
transposition either of § or o that the [-th and m-th components (in 5 or
o, respectively) are interchanged so that generally the non-zero off-diagonal
entry can be expressed as dg/(m)o, Where all the components of 3'(Ilm) are
the same as in [ except the [-th and m-th which are interchanged relatively
their position in 3. It follows that the expression for any Y(;,)-matrix and
arbitrary [,m = 1,...,n is given by

Yim)= Y D Xoo [560(1 — Bgs,.) + 0p:am)o By | - (1.21)
BES, cESK

In particular, for [ = m, if we define A, = 1, then Y, is equal to identity
matrix.
According to (1.18), the region (1...n) contains only one wave [l...n|, for
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B = (1..n). It follows that the column of waves for that region can be ex-

pressed as Y Xvoo0yooll-] = D Xoyoo0yo, €XP (z > k/gp@,),

YESH YESh

because the first row of this matrix corresponds to § = (1...n), here oq :=
(1...n) is corresponding to only the first one column of this matrix. Apply-
ing (1.21) to this column of waves for the region (1...Im...n), we obtain the
column of waves for the region (1..ml..n), m=101+1,1=1,...,n— 1

YU (g | Ry k) = Yy (| Ry k)

= ) X6e|060(1 = Bap,) + 6srtmoBasn | D XaooOyao XD (2 > ’%%)
p=1

BES, cE€SK - - ~ES,

= > ) X6o|06s(1 — Bag,) + 5/3/(1m)aBﬁzﬁm Xoao0aaq €XP < Zkﬂp%>

BES, 0€Sy -

= D Xiow {5500(1 — Bgp,) + 55’(lm)UoBﬁzb’m} P (Z 2 kﬁp”)' (122)
p=1

BESn

To obtain a general form for the wave function in any given coordinate region,
we have to multiply the matrices Y(;, ;) over some path between the region
(1...n) and this given region o = (ay...cv,). Let j = 1, ..., j(«) be the sequence
of elementary transpositions such that

wa(xl-nxn | klkn) = H Y’(l]mj 1 n)<$1$n | klkn) (123)

.7 7’.]

Then substituting (1.22) in (1.23) we obtain:
wa(l'l...l'n ’ klkn)

< n
= xs |] {5&70(1 — Bp, p,) + 56'(ljmj)aoBﬁljﬁmj} exp <Z > k’ﬁpwp>,
BESH j=1,...,5(a) p=1

(1.24)

and finally, summing over all coordinate regions o with the corresponding
characteristic functions y(«),

Y@y | kkn) = x(@) U (@1 | by k)

aESn
(_

= Z X(Oé) Z XBoo H |:§,300(1 - Bﬁljﬁmj) + 65’(ljmj)UOBﬁlj5mj:| exp (ZZ kﬁpxp>'
p=1

a€Sn BESh i=1,...5(a)

(1.25)
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Chapter 2

COMPLETENESS OF
0-INTERACTING
PARTICLES IN THE
2-PARTICLE CASE

2.1 Transpositions operators, the wave func-
tion in terms of transpositions operators

The fact that the Bethe Ansatz is valid for d-interacting particles in one
dimension means essentially that a system of n interacting particles can be
considered as consisting of independent 2-particle systems with d-interaction.
In order to understand the n-particle case, therefore, it is crucial first to
understand the 2-particle case. This 2-particle case is well known by [17]
but we wish to consider it from a new point of view, which is useful for the
generalisation to the cases of more than two particles. We want to prove the
following completeness relation:

(2%)2 /wm(il?ll"z | k1k2)¢z’n(yly2 | k‘lk‘Q) P’k = 52(1' - y) (2-1)

There are only two possible relative positions of two particles in one
dimension, namely x; > x5 and xy > x;. We associate these positions
with corresponding regions (z; > x3) =: (12) and (x2 > z1) =: (21) and
their characteristic functions x(zy > x2) =: x(12) and x(zy > z1) =: x(21)
respectively. Then, as was shown in the previous chapter, the wave function
of the system of two d-interacting particles has the form

¢($1$2 | kle) = X(12)[12] + X(Ql){A12[12] + 312[21]}, (2-2)
where [12] := eikroithora) [21] := gilkamithizs) and
ic
Bio=1— A = — .
12 12 —
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The terms of (2.2) can be arranged in matrix form such that each row cor-
responds to a particular coordinate region x(o103), where o € Sy, and each
of its columns corresponds to an ordered pair of momenta (k,k,;), where
o' € Sy. Then a wave corresponding to any entry of the matrix has a phase
i(kotTgy + koyTs,) and the wave function ¢ (2179 | ki1ks) is equal to the sum
of all entries of this matrix:

(kika)  (Kak1)

[12] 0 x(12)

B21] An[12]) x(21)

According to the definition of transmission and reflection coefficients, given
by (1.16), assuming normalisation of the amplitude for the wave function
without interaction, this matrix may be rewritten as:

k1>k2 k2>k31

ALIQ[U] 0 Ty > T2
Bz 2] wm>m

This has a clear physical interpretation. As was assumed in the previous
chapter, the initial position (before interaction) of particle #1 is to the left
of the position of particle #2. Positive values of momenta correspond to a
wave moving to the right on the z-axis. Each of four entries corresponds to
a particular combination of relative coordinate sign and relative momentum
sign.

For ky > k; there is no interaction possible between the particles because
particle #1 moves slower than particle #2. It follows that there exists only
a wave with unit amplitude in the region x5 > x; and no wave in the region
1 > g, i.e. the coefficient of the latter equals 0. If k1 > ko, then, as a result
of the interaction of the faster particle #1 and the slower particle #2 there
are a transmitted wave ALU[B] in region x; > x5, with unchanged phase due
to simultaneous transposition of coordinates and momenta, and a reflected
wave 5—3[21] in region xo > x1, with transposed phase due to transposition
of momenta without transposition of coordinates.

It is natural and convenient to introduce the following three operators:

1) Operator of momentum transposition Pjs defined as

P12f(931332; k1k2) = f(ﬂfl-TQ; k‘le)-

26



2) Operator of coordinate transposition Rj5 defined as

Ruaf (w1295 kiky) = f(wom1; kiks).

3) Operator of index transposition 715 defined as

7’12f($1$2; lflk’z) = f(iﬁﬂl; k2k1)~

Obviously, these operators relate as:

PiaRis = RioP1a = T12, T12P12 = P1aTi2 = Rz, T12Ri12 = RiaTi2 = Pro,
and also equal to their inverses:

Py = P! = Pia, Roy = Ryy = Riz, 71 = 733’ = Tia.

Then (2.2) can be rewritten in the form:

¢<l’1x2 | klkg) = {]I + (A12 + Blgplg) 7'12}[12] X(12) (23)

2.2 Construction v;,(r1xo | kiks) in terms of
transposition operators

First and until further notice we consider 1;,(x | k) in the coordinate region
x1 > x9, with characteristic function x(12). Now, we are using the definition
of Y, (x| k) for the 2-particle case,

V(w179 | krks)
AIQ

0k k
A21 (2> 1)7

(2.4)

Yin(T129 | k1ka) = 0(ky > ka) +

with the notation 0(k; > ko) =: 0(12), (ks > k1) =: 6(21). Hence we obtain,
for region y(12),

(2.5)

In operator form, using the relation Pi5, Ri2, 712, and also the d-relation for
characteristic functions of coordinate regions, i.e. x(12)x(21) = 0, this can
be rewritten as:
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Yin (@129 | k1k2) x(12)

1/1($1$2 | kle) 0(12) + 71 1/1($1$2 | klk’z)

— i { ol st LB o) (12) + x(21)

= x(12) {9(12) A%g x(12) + 112 6(12) A%Q(Alz + B1aPr2) 712 x(12)}[12]

—(12) {9(12) Ai +126(12) AL(A12 + BiaPy) m} 12), (2.6)

12 12
with the corresponding matrix
5 (12] 0\ 6(12)

fa1] 12 6(21)

Similar to (2.6), we construct an expression for ©;,(y1y2 | k1k2) x(12). Then
the combined function in the common region x*(12)x¥(12) = x(12) has the
form:

Vin(T172 | kik2)Yin (Y192 | kik2) x(12) (2.7)
= X(l?){@(l?) Aim + T19 0(12) ALH<A12 + B12P12) 7'12}[12](1‘)
» {9(12) -+ 720012) = (A + B 712}[12](—3/),

where all operators act only on corresponding z- or y-components of the
formula. Then using the d-relation for characteristic functions of momentum
regions, in particular (12)6(21) = 0, and relations between Pj3, Ry, T12, this
can be rearranged as:

%n(ﬂﬁl% | k1k2)¢m(yly2 ‘ k1k2) X(12) (2-8)
_ x<12>{9<12> - 12)(0) o= [2(-0)

+ 112 0(12) AL (A12 + BiaPra) 112 [12](2) T12 ;(Alz + B12P1o) 7'12[12](—3/)}>
12 Apg

where all operators still act only on corresponding z- or y-components of the

formula. Further rearrangement brings it into a form where all the operators

act from the left on the complete expression to the right of the operator. To

achieve this we replace Pjo7i9 in z-component of the second term of (2.8) by
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RY,, and similarly Pja7y2 in the y-component by R}, acting only on z- and
y-component respectively. Since the operator 715 in front of each component
in (2.8) acts separately to these components, we leave only one operator 75
in front of the whole second term, now acting to the right on both z- and
y-components, and obtain:

Vin(T122 | k1k2)Yin (Y192 | kika) x(12) (2.9)
— )] - 120)002) 5= 12)-)

12

i - (i + Brafthy) 12](0)0012) 5= (i + Biaithy) 12)() |

12

}H -

The corresponding matrices are:

=[12](—y) 0

5

A%g[m] (7) 0 0(12)

Bui](x)  [12(x)) 601) \ZZ[1)(-y)  [12)(-y)

93

and that can be verified directly with use of (2.9):

x<1z>{Ai12 12/(0) 612) = 12)()
1 — &y
#ria (i + Buafth) 121(0) 012) <= (i + Buafty) [12)-0) |
= B2 g1z + (2 + 22210 ) (11210 + 220211 ) o2

2.3 Modification of integrand:
Vin(w172 | kiko)Vin(y1ye | krke) — Yin(z122, Y132 | k1ks)

We now wish to evaluate the integral of (2.8) over whole momentum space,
i.e. over the two momentum regions #(12) and 6(21). The standard way to
do this is to insert (2.5) for the a- or y-components in (2.1):
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1

(27 /d2’f Yin(@122 | kika)in(y1y2 | kiks) (2.10)

w2+ 22 i) (120 + 2 ) )

21 21

— (2;)2 { /]wk? a2k IALP [12](z — y) + /mkl dzk([u](w —y)

+ % [12](x)[21](—y) + % 21)(x)[12](—y) + % 21) (2 — y)) }

21 21

= Lo (i 120 1)

e[ er(pe -+ T2 02

12

- G [ @ (12— ) + P2 pA@ R ),

with the use of Ay, = Aye, Boy = Bis.

It is clear that we need to apply a change of variables in the last two of four
integrals over the region ko > k; to obtain equal integrands for both regions
ki1 > ko and ko > ky. This method of solving requires special attention to
each term: whether it already has the desired limit of integration or not, and
so whether or not to apply a change of variables. To simplify the procedure
we shall instead aim to express the sum of all integrals in an operator form
that already includes these changes of variable. The following diagram illus-
trates schematically the necessary change in operator formula (2.8):

oo 1 R oo o(efe)\ 3
o(efe) oete) 4 o(efe)) 2
Figure 2.1: Modification of combined scattering wave function for 2-particle
case.

Here the numbers to the right of each matrix are the numbers of integrals for
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each particular row. In fact, we wish to redistribute the integrals between
momentum regions (according to (2.10)) by particular transformation. The
combined z, y-matrix after such transformation we call modified 1;,-matriz,
the transformation we call modification of ¥;,(x1xs | k1ko) Vi (y1ys2 | k1ke)
matriz (and modification of corresponding function) and we use the nota-

tion Y, (T122, 11y | k1k2) for it. In fact, the diagram above does not yet
correspond to the modified matrix, because each entry of the second column
still contains a sum of y-waves with different phases. The change of vari-
ables also reduces the number of different phases from 2 x 2 (two phases
for each z- and y-wave: ([12](x) and [21](z)) x ([12](—y) and [21](—y))) to
only 1 x 2 by changing [21](z) — [12](z). Therefore the resulting combined
matrix contains only 2 different phases: [12](z — y) and [12](x)[21](—y) in
each row (region of momentum). Adjusting each particular element in such a
way that any entry of combined matrix contains only one phase of combined
x,y-wave, and this phase is associated with the position of that entry, gives
the modified matrix as shown in the diagram below:

o
'
9,
—~

8
S~—

VR
5
-
%)
=
—~
|
Nead
S~—

+
T
LAY
S

|
<
S~—
~_
>
—

[N}

—_
N—

(m; + }’j—') 12z —y)  Z2[12)(z)[21](~y) 0(12)

B [12)(x)[21)(~y) [12)(z — y) 8(21)
[12)(z — y) Biaf19)(2)[21)(—y)\ 6(12)
B2 (12](2)[21] (~y) [12)(z — y) 6(21)

The transformation performed on the diagram is precisely the action of the
operator Pjs on off-diagonal element(s) of the initial matrix which clearly
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leaves the integral invariant. To show that, it suffices to consider the integral

/dzk 0(21) ==

where the integrand is the only non-zero off-diagonal element in the upper
matrix above. Then

BQI

21

B21

(- + 12(-n)),

1)) (2

BZI <B21

[ @ pavtzn B2 206e) (32 21 + 12l )

21

= [ ero02) 22 p2)) (i 12)(—y) + [21]<—y>) |

12 12

and this is equal to the change of variables (ky, k2) — (ko, k1) in the integral.
Applying the operator Pjs to the off-diagonal element we rearrange the x-
component for the off-diagonal element as

B B B
Py (m “2Re[12](x )) ( 12312312712) T12[12](2) = ( 12312712) T12[12] ().
A Ay Arz

Also, in order to write the diagonal element of the z-component in a similar
form, we move the operator 715 from the left through the brackets to the
middle. The operator RY,T12712 in front of the y-component acts as Pja7i2
on the whole y-component and this describes exactly a change of variables in
the y-component. However, here we replace = 312 R?{Q by P127'12, and then
use the identity:

1
(A12 + 312P12) Ti2 = T12 (A12 + P12Bl2):
A Aio

The full transformation is expressed as:
Vin(2122 | kiko)Vin (192 | k1k2) x(12)

— x2){ - 12 012) = 2l

12

+ 712 (e + BaRy) [121(2) 0(12)

12

(T + TaRly) [121<—y>} S

N

[\

1

— Yin(@122, 192 | kiks2) x(12) (2.11)

—x12){ - 12108012 <= 2l

12

1 N — 1
A — (A2 + B12R127'12) T2 [12](2) 6(12) T12(A12 + Pi1aBia) =— [12](—y)}-
12 Aqo

After transformation all the elements have the same phase [12](z) of z-
component, according to (2.11), which can therefore be moved to the front
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of the formula. After that, the operator RY,715 acts only on the y-component
of the formula and can be replaced by Ri5712 = Pjo. It follows that

D (129, 1y | Frka) x(12) = x(l?){ 12() 1oy AW 519

A12 A12
12 N — |12|(—
+ [12)(z) (A1 + B1aP12) 712 0(12) 115 (A12 + P1aBia) M},
AIQ A12

and using Ay = Ayo, Boy = By, its evaluation gives:

Dn(arza iy | kuks) x(12) = x<12>{ [ﬁ 0012) + o(21) + 122l 9(12)} 120 - )

| A
+[22002) + 22 o2n)|n2ioz1i-) |

21

- x(12){[12] A [121<x>[21]<—y>}(e<12> o(21))
—(12) ([m(x —y)+ o [12]<x>[211<—y>), (2.13)

which is in correspondence with the result of (2.10) for the integrand.

2.4 Construction of %(az,y | k) for different
regions of coordinate space

We now consider the coordinate region x*(21)x¥(21) = x(21). For this region
it suffices to apply the operator 712 to all components of (2.8) so that (2.13)
transforms into:

TL;z(fL’lﬂUz,ylyz ‘ klk’z)X(Ql)

= 715 x(12) ([12] (z—y)+ % [12](93)[21](—y))

12

B
= @012 - )+ 22 h2ER1) ) 2.14)
__ Next we consider the cases when - and y-components of

Yin(T122, Y12 | k1k2) are in different coordinate regions.

In the case x*(12)x¥(21), using the definition (2.4) but for the y-component
in the coordinate region x¥(21) we obtain, similar to (2.5),

Vin(y192 | kik2) X (21) (2.15)
= en{ S (4 1200) + B [2110) 012) + 5 120 021 |

33



and its complex conjugate in operator form is equal to:

Yin(y1y2 | k1k2) x¥(21)
:mxmz){( 2)

- vz o2

1 [
e T12 9(12) :(A12 + BlQPIQ) 7—12}[12](_y)
A Ao

(A12 + BI2P12) T12 + 712 0(12) A%Q}HZ](_W (2.16)

H\ -

Now we wish to express (2.16) in the form of composition of certain operators
with the y-component of formula (2.8) (for the case x¥(12)). To get this form
we use the properties %BIQ = 0, P12B12 = B_12P12, P12A12 = A_12P12, T122 = ]I,
relation A;3 = 1 — Bjs and also the identity:

(A12 + B12P12) (A_12 + B_12P12)

= A2 A1z + BiaPi2Ars + A13B13Pis + BiaPiaBiaPrs

= (1 — Bi2)(1+ Bi2) + A1sBisPis + A12B12Pis + Bi, Pry

=1— B + Aa(Bia + Bip) Py + B3, = 1L. (2.17)

It follows that the first term of (2.16) in the brackets is
1 — — 1
(9(]_2) :(A12 + Blgplg) T12 = 0(12) —=T12 (A12 + BlgPlQ), (218)
A12 A12
and the second term is
1 1 -
T12 0(12) A: = T12 9(12) A: T12 (A12 =+ Bl2pl2) (A12 + BlZP12) 712 - (219)
12 12

Inserting (2.18) and (2.19) in (2.16) we obtain the terms of each momentum
region transformed by the operator [7’12 (Alg + BlgPlg)],

Vin (1192 | kik2) x¥(21) = Xy(21){ 0(12) ;

12

(712 (A2 + BiaPr2)] - (2.20)

RN

1 - R
+ 112 0(12) T [7'12 (A12 + B12P12)} (A12 + Bl2P12) T12 }[12](—3/),

12

and after use of -relations for characteristic functions of momentum regions,

Y(21) (2.21)

wm(fﬁﬂh \ k1k2)¢m(y1y2 | /fle) ( )
1

= x"(12) x (21){ 1, 0(12) [12](x) T [712 (A12 + Bi2Pi2) | [12](—y)
<7'12 (1 A12 + B12P12) 12 [12](z ))
1 -
( A: 7'12 A12 + B12P12)} (A12 + B12P12) T12 [12]<_?/)) }7

34



where all operators act only on corresponding z- or y-components of formula.
In fact, [712 (A12+ Bi2Pi2) | (A2 + BiaPr2) 712 = 1 in (2.21) because of (2.17)
but we keep it in expanded form to show that expressions for the y-component
in both momentum regions #(12) and 715 #(12) are transformed by the same
operator [712 (Alg + Blgplz)] due to the transformation of coordinate region
for y-component x¥(12) — x¥(21). The significance of this approach will
be more apparent for more than two particles where there are more than
two possible regions of relative coordinate positions. Applying the same
algorithm as for (2.8), to bring (2.21) into a form where all the operators
act from the left on the complete expression to the right of the operator, we
obtain similar to (2.9) but for the case x*(12) x¥(21):

Vin(122 | kiko) Vi (12 | kik2) X (12) x¥(21) (2.22)

2) x
—v(12) xy<21>{  [12](x) 612 % (2 (Aiz + BiaPro)][12)(~)

12

+ T — A12 + BlgRTQ) [12] (I‘) 9(12)

Ar (

<o [ (i + BuaPa)) (T + BiaFia) ma121(-) |

12

Under transformation which was defined as a modification of 1);,-function:

Gin(@15 | krka)Vin (12 | kika) x*(12) x¥(21) = in (@109, 11ya | kiks) X7 (12) x¥(21),

similar to (2.11) and (2.12), we apply the operator Pj; to the elements
with off-diagonal x-component. Also, for convenience, we rewrite the op-
erators for the y-component in a form that enables us to move the operator
[712 (A12 + Blgplg)], common to both terms, outside the brackets, contrary
to the expression in (2.21)-(2.22), where its position is between other opera-
tors. To perform this transformation we need to transpose the y-component
of (2.22) but keep equivalence for each term and with use of inverted identity
(2.17): (A_m + P12B_12) (A12 + P12312) = 1, so that (2.22) transforms into:

@Z;L(xﬂzaylyz | k1ko) X" (12) x¥(21) = x*(12) x¥(21) %{9(12)

+ (A12 + Bi2P12) 112 0(12) 112 (A2 + P12 Bio) } [(Ass + PiaBia) Tis)] [121]4(__1/)
= v een{oa) (402 - + - 52 pa@ Ry
2 @RI ) + 00 - e - )

= x"(12)x"(21) Ailz [12)(z —y). (2.23)
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2.5 Evaluation of integrals

2.5.1 Integration for the case x*(12)x¥(12) = x(12)
The first integral in (2.10) (for coordinate region x(12)) is equal to:

x(12) (2;)2 /ko [12](x — y) (2.24)
= x(12) ﬁ /d2k etk (z1—y1)+ha(z2—y2)) _ x(12) 52(3; — ).

After substituting the value of

By  —ic 1 B —1c e
A12 N kl — kQ 1— (-ZC)/(kl — k’g) N k’l — k‘g +1ic N 2(]1 —|—Z‘C7

where ki1 — ko =: 2¢q, k1 + ko =: 2¢o, and using

k(1 —ya) +ha (w2 —11) = {@[(21—22) + (1 —y2) ]+ q2[(21 + 22) — (31 + v2)]},
the second integral in (2.10) becomes (up to a constant coefficient)

/dq2 exp [i(qQ(($1 +2) — (Y1 + y2>>)] /

where z = (z1 — 22) + (y1 — y2) > 0 in region x(12). Set ¢1 = ¢, ¢/2 = b.
To evaluate the integral

dqleiqz
q +ic/2’

dq e'*
2.25
/ q+1b ( )
we first note that its real part
dq e % gcos(qz) + bsin(gz)
R = dg=0 2.26
/q+ib /oo ¢* + b = (2:26)

because the integrand is an odd function. Next, we find a bound for its
imaginary part:

%/ dq €' _/+°° gsin(qz) — bcos(qz) da. (2.27)

q+ib ) o q? + b2

Note that z > 0 and integrating by parts, we set u = q/(q* + b?),
dv = dgq sin(qz), so that du = dq (b* — ¢*)/(¢* + ¢*)?, v = —(1/z) cos(gz), and

+00 . +o0 +o0 2 _ 2
/ qsm(qz)d 1 gcos(gz) N 1/ (b* —q )cos(qz)d

w G T TP ) (@D

—00

is bounded,

_ 1/*“ (b — ¢*) cos(gz)
i) (@
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+o0 b
/ %dq is bounded too, therefore the integral (2.25) is bounded.
- q

o
Next, we use analytical continuation q + ¢ + ik, where k > 0. Since there
is only one pole which is negative imaginary: ¢ = —ib and x > 0, a shift
of integration contour from the axis k = 0 to the upper half-plane does not
change the result of integration and

da 1% d i(qg+ik)z d iqz
/ qe' Z/L:e“z/ qe. , where 0 < e™"* < 1.
q—+1b q+1b q—+1b

dq eiqz

It follows that / _ (2.28)
q+1b
]_ —
wd / Pl (2129, 19 | Fuko) X(12) = x(12) 2z — ), (2.29)

i.e. (2.1) holds for the coordinate region x(12).

2.5.2 Integration for the cases of different coordinate
regions
In the case of x*(21) x¥(21) = x(21) due to (2.14) and with use of (2.29) the

integral can be expressed as

1

T2 gy / @k Gin(wr129, 9132 | kike) X(12) = 712 X(12) (2 — y) = x(21) 8*(z — ).
(27)

(2.30)

In the case of x*(12) x¥(21) we use the relation A;s = 1 — Bya, so that the
integral of (2.23) becomes

12 v 21
X((2+ /szm 212y | kaka)in(y192 | kika) Ak (2.31)

_%/<1+ii)[1z]( —y) k.

The first integral in (2.31) is

—iF/umx—wszﬁw—y»

(27

In particular, for the region x*(12) x¥(21),

2@ [
o 12— o
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because for that coordinate region if 7y = y;, then zo < 1 = y; < y9 and
hence xy # o, or, similarly if z9 = y5, then 1 > x5 = 3y > y; and hence
r1 # y;. However, since x*(12) x¥(21) 6*(z — y) = 0, we still can formally
write

7(12) (21
) [l - k= 20 ) 2o - ),
After substituting the value of: Biy/A1s = —ic/(2q1 + ic),

where ki — ko =: 2qq, k1 + ko =: 2¢o, and using

ki(z1—u1)+ho(22—12) = {@l(z1—22)+ (2 —y1)|+ @[ (21 + 22) — (1 + 1)1},
the second integral in (2.12) becomes (up to a constant coefficient)

dqleiqz
q +ic/2’

/dqg exp [i(qQ(($1 +2) — (Y1 + y2>>)] /

where z = (21 — 22) + (y2 — y1) > 0 for the region x*(12) x¥(21). Then the
internal integral reduces to (2.25) which is equal 0 as it was proved in the
previous subsection. It follows that

Vin(1m2, 31y | k) X7 (12) X¥(21) = X" (12) x¥(21) 8%(z — p),
i.e. (2.1) holds for coordinate region x*(12) x¥(21).

In the case x*(21) x¥(12), since x*(21) x¥(12) = 12 x"(12) x¥(21) it follows
that

21) x¥(12)
X((2+/¢m T1T2 | k1k2)¢m(y1y2 ‘ k-lk2) 2
(12) x¥(21
= T2 X" ( (2);;2( ) /¢z‘n(l’1$2 | k1ko)Vin(y1ys | kiks) &2k

=712 X" (12) X¥(21) 0*(z — ) = x"(21) XY (12) 712 6 (21 — 1) (w2 — 12)

= X" (21) x¥(12) 8(x9 — ya) (21 — 1) = X" (21) XY (12) *(z — y).

Summing over all four coordinate regions we obtain (2.1).

38



Chapter 3

COMPLETENESS OF
0-INTERACTING
PARTICLES IN THE
3-PARTICLE CASE

3.1 The wave function in terms of transposi-
tion operators

We have an explicit formula for the wave function in the 3-particle case:

W(xyxxs | krkoks) = x (21 > 2o > x3)[123)] (3.1)
+ x(x9 > 21 > x3){A12[123] + B12[213]}
+ x(x1 > 3 > m9){ A23[123] + Ba3[132]}
Fx(z2 > 23 > 21){A12A13[123] + A12B13[321] + As3 B1[213] + BiaBas[312]}
+ x(x3 > 11 > 19){ A3 A13[123] + Ag3B13[321] + A12B23[132] + B1aB23[231]}
+y(wy > 2 > 1) { A1 A3 Ass[123] + Aoy A13B1o[213] + A1p A1 Bos[132]
+ Ay Bi3B1s[231] + A13B13Bas[312] + Bis(1 + BuaBas)[321]},

where

3
[515253] = eXp (Z Z k’ﬁpﬂfp) )
p=1

X(ZTy, > Xy, > Xyy) is the characteristic function of a region in coordinate
space and

ic

B v — T 1
O

uuzl_A M,V:LQ,B, n < v

The terms of ¥(xix9x3 | k1koks) can be arranged in the form of a matrix
such that each row corresponds to a particular coordinate region
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X(ZTg, > Ty > Xyy) =: X(010903) =: x(0), where o € S3; and each column
corresponds to a particular transposition of momenta (o}cho}) =: o/, with
o' € S3. The wave corresponding to any entry of the matrix has a phase
exp [i(Kot Toy + Koy Toy + Koy ¥0y)] and the wave function ¢ (ziwows | kikoks) is
equal to the sum of all entries of the matrix:

« (010503) =

(123) (213) (132) (231) (312) (321) x(010203)
123] 0 0 0 0 0 (1¢23)
Bi»[213] Ai2[123] 0 0 0 0 (213)
Bs3[132] 0 Az3[123] 0 0 0 (132)
B12B23[312]  A1pBi3[321]  AsB12[213]  AinA[123] 0 0 (231)
B12B23[231]  A1oBos[132] Aoy Bia[321] 0 AgArs[123] 0 (312)
Bi3(1 + By A19B13Bo3 As3 B3B3 A12A13 853 As3A13B19 ApA13A23 |(321)

x Bys)[321] x[312] x [231] x[132] x[213] x[123]

In this chapter we prove the following completeness relation for the 3-particle
case:

1
(2m)?

Similar to the 2-particle case, but for all three pairs of particles, we define
transposition operators for each pair of momenta and corresponding pair of
particles. Since

1) every arbitrary permutation of 3 elements can be expressed as a compo-
sition of elementary transpositions of pairs from all 3 elements in such way
that only neighbouring elements are allowed to interchange their positions
and/or momenta in an elementary transposition;

2) each entry of the above matrix corresponds to a particular combination
of momentum and coordinate permutation;

/1/}z‘n($1$2373 | k1k2k3)@/}m(fy1y2y3 | k‘1k‘2k3) d*k = 53@ - y). (3-2)

we define the following elementary transposition operators for each pair of
momenta k;k;, 1 <j, 1,57 =1,2,3.

a) Operators of momentum transposition P;; - numbered by the indices of
transposed momenta:

Py f($1$2953; k1k2k3) = f($1952$3; k2k1]€3),
Py f($1$2$3; k?1k?2k53) = f(I1$2$3; k1k3k’2),
Pi3 f(131I2$3; k1k2k3) = f(I1$29€3; k’3k2/€1)-

(Since elementary transpositions do not depend on the order of the pair of
indices, i.e. P;; = Pj;, there are only three different operators: Pya, Pi3, Pag.)
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b) Operators of coordinate transposition R;;:

ng f(l'lxgl’g; 1{51/{?2]{?3) = f([L'Q(L’lxg,; k‘ﬂi‘gk‘g),
Ro3 f(l’lxﬂs; klkzks) = f($1l’3352; /ﬁkas),
Ri3 f($1$2$3; k1l€2k33) = f($3$2$1; k1k2k3)~

c¢) Operators of index transposition 7;;:

T12 f([lfll'gl'g; k’lkgk?g) = f(l’gil‘lIg; k?gk’lk?,),
T23 f($1$2333; k1k2k3) = f($1$3$2; k1k3k2),
T13 f(fﬂlxﬂs; k1k2k3) = f($396’2$1; k3k2k1)-

Obviously, these operators are related as follows:
PijRij = RijP; = 1y, TP = PyTij = Ryj; 7 Rij = Rijmij = Py
PPy = PPy = PyPy; RiyRjy = RuyRy = RaRij; TiyTy = TaTa = TaTij-

With the help of these operators, the wave function can be expressed in
the following form:

U(z12073 | kikoks) = {1 (3.3)
+ (A2 + B1aPr2) 112

+ (Ags + B3 Pa3) To3

+ (A2 + B12P12)(A1s + Bi3Pi3) Ti3Tio

+ (A2s + BasPa3)(Aus + Bi3Pi3) T137os

+ (A1a + B12Pi2)(Ais + Bi3Pi3)(Aas + BasPa3) TosTi312}[123] x(123).

3.2 Construction of ;,(x1x9x3 | k1koks) in terms
of transposition operators

The scattering wave 1, (z | k) for 3-particle case is defined as follows:

¢(maixaéxaé | koJl koékoé)

Aa’l oh Aai o Aa’z oh

3

¢in($1$2$3 | k1k2k3) = Z

o’'eSs3

9(160/1 > ]{?gé > kgé).

(3.4)
This is a linear combination of the wave functions (3.1) which transforms the
system of wave functions for all regions of coordinate space into a system
of waves in momentum space for all regions of momentum space in a given
region of coordinate space. Since there are at most 3! = 6 different waves in
each of the 6 regions of coordinate space, we construct at most 6 different
waves for each of the 6 regions of momentum space and this is for each of 6
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regions of coordinate space.

From now on and until further notice, we will consider vy, (z1zoxs | k1k2ks)
only in the region x(123) of coordinate space. Arbitrary regions x(o%),
o® € S3 will be considered later.

We make use of the shortened notations

X(ZTy, > Ty > Tyy) =: X(010203) =: x(0) - characteristic function of corre-
sponding region in coordinate space,

O(ko, > koy > ko) =t 0(0y0503) =: 0(0”) - characteristic function of cor-
responding region in momentum space.

In (3.4), vy, is defined in terms of wave functions for the different momen-
tum regions and this can equivalently be expressed in the form of momentum
transpositions, since every momentum region is a momentum transposition
of another region, and eventually of #(123). However, we only have an ex-
pression (3.1) for the wave function ¢ (x x93 | k1koks) in different coordinate
regions x(010203), i.e. in terms of coordinate transpositions of coordinate re-
gions. Therefore we wish to express 1;, in the form of known transpositions
of coordinate regions instead of transpositions of momentum regions. This
can be done with the use of antisymmetric property of transpositions in mo-
mentum and coordinate space. According to (3.4), ¥, for coordinate region
X(123) can be expressed as:

w(maixaéxaé | koJl kaékoé)

@Z)m(ﬂfll'gl‘g | k’lk’gk’g)X(123) = X(123) Z Ao_lo./ Aa./o./ AU/U/ 9(0-/)
o’eSs3 192 193 203
_ Y(x13073 | kikoks)
= x(123) Z 7o 0(123) ApAi3Az3 ’
o’€Ss3

where 7,/ is a permutation of indices, defined by

Tor f(2170273; kikoks) = f(Tg1 00y 2015 kot koyksy) and equal to a particular
composition of elementary transpositions 7;;, ¢ < 7, 4,7 = 1,2, 3.

Since the sum over ¢’ does not depend on the order of summation we can
replace the permutations 7, by their inverse 7;1. Also, we multiply both
sides by T =" o x(0) and use the identity x(123) = 7.,' x(0’). It follows

that
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wm(fﬁxﬂ?, \ k1k2k3)X(123)

_ ¢($1$2$3 \ k’lk'zk‘s)
— (123 16123
x(123) > 7' 6(123) LA > x(o)

o’€Ss3 o€ES3

k1koks)
D> 7 00123) == SR D o)

o’eS3 0ES3
-3 9(123)1”(““:”?’ [ Fukaks) X(0), (3.5)
0€S3 A12A13A23

where we use the d-relation for characteristic functions

x(o") x(o) = x(0)d(c’,0) = x(0) §(74, 75 ), Wwhere T, is defined similar to 7.
Using the identity 719713703 = To3713712, Which is easily verified directly, and
inserting (3.3) into (3.5) we obtain:

6(123)

_— 3.6
A1 A13 A (3.6)

Yin (212923 | kikoks) x(123) = X(123){

0(123)
——Z (A By P
T12 A12A13A23( 12 + BiaPia) T12
€(123)
+ To3 —————(Aoz + By Pos) T
23 A12A13A23( 23 93Ps3) T3
0(123)

AuA—BA%(z‘hz + B2 P12)(A13 + Bi3Pi3) 113712

+ T12713

6(123)

m<A23 + Bos Pos)(A13 + Bi3Prs) Ti3Tos

+ To3T13

0(123)

+ T1oT13To3
A12A13A93

(A12 + B12P12)(A1z + Bi3Pi3)(Agz + B3 Pa3) 7237'13712}[123]-
By moving 7, ! operators on the left through each term to the right we evalu-

ate an explicit form of each term and obtain the corresponding matrix, where

each entry is defined by the combination of momentum region and phase of
wave:
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< (0'10'20'3) —

(123) (213) (132) (231)  (312) (321) 6(c}ohat)
T [123] 0 0 0 0 0 (12¢3)
T 218 g (123] 0 0 0 0 | (213)
(132 0 T [123] 0 0 0 (132)
ToaPE[231] P [321] PR [213] 4-(123] 0 0 (231)

B31B B B 1
Ayleo(312) B3] gEpE] 0 L[23 0 | (1)

Ba1 (14 B21 Bsa) BB B32B B B
—3A21A312;3232 [321] —A31A21[231] —A§§A21[312] A—;’z[132] A—;[213] [123] | (321)

3.3 Modification of the integrand:
 Yin(imaxs | kikoks) )i (y1y2ys | kikoks)
— Yin(T17273, Y13y2y3 | k1kaks)

Similar to (3.6) we construct an expression for ¢y, (y1y2ys3 | k1k2ks), and then,
with the use of a d-relation for characteristic functions of momentum regions
9(0”), a combined function wm(IﬂEQl’g | k1k2k3)¢m(y1y2y3 ’ k?lkzk?)) in the
common coordinate region x¥(123) x*(123) = x(123). After rearrangement,
this combined function has a form similar to (2.8) for the 2-particle case:

44



¢in($1$2$3 ’ k1k2k3)wm<yly293 \ /ﬁkas) X(123) (3'7)

A(123) |
= v(123){ ————— (123 e —
X( ){AHABA% @) =

123 -

+ | T ——7—— A12A13A23 (Am + B12P12) T12 [123]( )) (7'12 —m (A12 + B12P12) 7'12>
+ _OU23) e BasPrg) 7as [123) (2 ))( (A 1 B )
T T T3 —— T

23 T4 a4 A12A13A23 23 2314723) T23 23 A1 Ay 23 234723) T23

123
T1oT
P A1 A3 Ay A12A13A23

(
(
(
X <712713 (A12 + BiaPia)( A1z + Bi3Pi3) 713712)
(
(
(
(

+ (A12 + B1aPi2)(Ass + Bi3Pis) T2 [123](x ))

A12A13A23

0(123)

+ | 2313 T ——
A9 A13A53

Qby+B%P%)th+BBPBﬁBﬁduBK@)

0123)
TosT13 =————— (Agg + BasPa3)(A13 + Bi3P13) 7137'23)
ApAi3As3

X

0(123)

+ | TI2oT13T03
A9 A13A93

(A1g + B12Pi2)(Ass + Bi3Pi3) (Ao + BogPag) TogT13T12[123] ($)>

1
X | T12T13Te3 =——=—== (A12 + Bi12P12)(A13 + Bi3Pi3)(Ass + BagPa3) 7237'13712) }

A12A13A23
x [123](—

where all operators act only on corresponding x- or y-components of the for-
mula. Since the z-component of (3.7) for each region contains terms with
different combinations of P;;, ¢ < j, 4,j = 1,2, 3, rearrangement of (3.7) to a
form where all the operators act from the left on the complete expression to
the right of the operator, needs additional individual adjustment after each
x-term, in front of the y-terms, by the inverse of the combination of F;; in
that particular term, because we cannot separate the action of a momentum
transposition operator P;; on the z- and y-component. It would be possi-
ble to adjust the part of (3.7), in particular the terms for regions 0(123),
T12 0(123), 793 6(123), where there is no more than one elementary transpo-
sition P;; in the same way as it was done in the 2-particle case. However,
for the other regions with compositions of more than one transposition it
is impossible to separate the action of different combinations of P;; on the
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terms of the y-component. Nevertheless, it is still possible to transform (3.7)
to a form where all the operators act from the left on the complete expression
to the right of the operator, but only after a transformation which we call
modification of v;,.

Similar to the 2-particle case, we need to apply a change of variables to
the off-diagonal elements of (3.7) in such a way that the phases of the -
components are transformed into [123](z). Since off-diagonal elements have
generally different phases of z-components, depending on the position of
the entry in the matrix, or according to the formula (3.7), where the phase
[123](x) is transformed by the particular combination of operators on the
left of [123](x), each off-diagonal element has to be transformed by the in-
verse of that combination of operators. Applying the inverse combination
of momentum transposition operators and rearranging the full combination
of operators for each element for all lines in (3.7), we obtain an expression
for all off-diagonal elements. Action of this inverse combination on arbitrary
off-diagonal elements is equal to a corresponding change of variables, i.e. we
have to apply the system of different changes of variables to (3.7). Since each
change of variables also changes the limits of integration, the corresponding
element changes its position (momentum region #(¢’)) in the above matrix.
The following diagram illustrates the resulting change in the form of the ma-
trix due to the required transformation of formula (3.7):

e(e00000)

e(ee0000) e(ee0000)

e(e0e000) e(e0e000)

o(ee00e000) e(eeeec0) e(0ee0eec0) e(eeeeco)

o(e000e0) e(ee0ece0) e(eeeceo) e(eee0e0)
o(e0c0cee) o(0cecce) o(0e0cece) o(000cee) o(0eccce) o(ccccee)

l

e(e00000) e(ee0000) e(ec0e000) e(eeeeco) e(eeecec) e(eeeeee)
e(ee0000) e(eoe000) o(e0e0ce0) e(eceeece)
e(ece0o00) e(eeeeo) CE XX X))

o(e0e0000) e(0ee0ecec) e(eeeece)

o(e0e0ce0) e(eeccee)

o(e0coee)

Figure 3.1: Modification of combined scattering wave function for 3-particle
case.

Black circles outside brackets correspond to the z-component of the entries in
the combined matrix and the modified combined matrix respectively. Black
circles inside brackets correspond to the y-components with non-zero ampli-
tude. White circles correspond to y-components with zero amplitude. The
number to the right of each row is the number of terms in the corresponding
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momentum region and equal to the number of integrals to evaluate. The to-
tal number of integrals is 77 and this is the same for the original matrix and
its modification. As can be seen from (3.7), the number of different terms of
each z- and y-component in the combined matrix is equal to 2* = 8 which
brings the total number of combined terms to 105, but since there are at
most only 3! = 6 different phases, some of the 8 terms have the same phase
and can be reduced in correspondence with the diagram. Transformation of
the diagram is equivalent to the action of such a combination of operators Fj;
on each off-diagonal element of the combined matrix, that brings the z-phase
of that element back to [123](z).

First consider the z-terms of (3.7) for the region 72 6(123) = 6(213):

T12 0(123) (Ai2 + Bi2Pra) 112 [123](2).

1
A1pAi3A93
Applying the operator P to the off-diagonal element only, we obtain the
same phase [123](x) for both elements and can therefore move it to the front
so that, after rearrangement, the modified z-term becomes

[123] (ZL“) (A12 + B12P12) T12 9(123).

1
A2 A13A23

This can be verified directly separately for the diagonal and off-diagonal term:

T100(123) ———— Ao 10 [123](x) = [123](z) —————— Ao 110 0(123
12 023 s Ay, e T 13Ie) = U28l(a) Sy e e 00129
and
Pio1m20(123) ————— B9 P15 119 |123](x) = [123](2) ———— B1oPo 112 0(123).
12712 0/( )A12A13A23 12 P12 112 [123)(z) = [123( )A12A13A23 12P12 112 0(123)

Since we wish to extend the action of all the operators to the whole expres-
sion to the right of the operator, we have to compensate the action of the
operator in the z-term by applying the inverse operator 7;,' = 71 in the
front of y-term. Note that the transposition operator is equal to 1 for the
diagonal term whereas the transposition Pj5 in the off-diagonal term should
not be compensated because, according to the diagram above, the change of
variables applies simultaneously to the z- and y-components. It follows that
the expression for the y-component is

1 .
T12T1) =——— (A12 + B12P12) T12 [123K—y)'
A12A13A93

Then, after moving one of the operators 75 to the right it cancels out with
the 715 on the right and we get

- N N 1
T12 A21A23A13( 21 21 12)[ ]( y) 712( 12 12 12)141214131423 [ ]( y)
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It follows that whole modified expression corresponding to the region
T120(123) = 0(213) is

123|(z) ——
123 )A12A13A23 Ay Ai3As3

Next consider the z-component of (3.7) for the region 7973 0(123) = 6(312):

T12T13 0(123) (A12 + B1aPi2)(Ass + BigPis) Ti3712[123](x).

1
A12A13A23

The diagonal element does not change after modification but can be rear-
ranged into the form

1

T12713 9(123) m

A12A13 T13T12 [123] (SL’)

1

= |123|(x) ———
123K )A12A13A23

A23A13 T13723 9(123)
To achieve the phase [123](x) in the main off-diagonal element it has to be
transformed by the application of the combination Pj3Ps:

Py3P1oT19713 0(123) Bi9 P19 B3 P13T13712[123)(2).

A12A13A23
With the use of the identities P13P12 = P23P13 and T12T13 = T13723 W€ rear-
range it into the form:

1

123|(v) ————
123K )A12A13A23

Ba3 Pa3 B13 P13 T137T23 9(123)-

Since ’7'127'13P13 = P23T127'13 and 7'12T13P12 = P13T127'13, to achieve the phase
[123](x) in the other two off-diagonal elements they have to be transformed
respectively as:

1

P237'127'13 9(123) m
1241134123

A12313P13 T13T12 [123] (ZIZ’)

= [123](x) Bog Pa3 A1z T13723 0(123),

A12A13A23

P13T127'13 9(123) BlgplgAlg 7'137'12[123] (l‘)

A12A13A23

= [123] (13) A23B13P13 T13723 ‘9(123)

A12A13A23
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Summing all four elements we obtain the modified expression for the
x-component in the region 715713 0(123):

[123] (ZE) (Agg + B23P23)(A13 + B13P13) T13723 €(123)

1

A Ai3Azs
Similar to the case of the region 75 60(123), we compensate the action of
the operator 715713 on the y-component by applying its inverse (1y573) ! =
T13T12 = Te3T13 to the whole y-component of (3.7). Then, for each element
of the z-component, the corresponding y-component is transformed by the
same combination of operators, T or Py3Pi3 or Ps3 or Pj3 respectively, and
the y-component becomes equal to

1
(723713)(712713) ﬁ (Alz + 312P12)(A13 + 313P13) T13T12 [123](—9)-
1241134123

Moving the operator 715713 to the right it cancels out with 7375 and we
obtain

1
TogT1y =———— (As1 + B31P13)(As2 + B3aPa3)[123|(—y)
Asg1 Az Avo

S S — S— 1
= To3T13 (A13 + Pi3B13)(Aas + PagBog) =——= [123|(—y).
12413 A3
It follows that whole modified expression corresponding to the region
T12713 0(123) = (T237'13>_1 6(123) = 9(312) 18

[123] (]3) (A23 —+ BQ3P23>(A13 + B13P13) T13T23 9(123)

1
A12A13 423

N 1
XTo3T13 (A1 + P13 B13)(Aas + PasBas) ﬁ [123](—y).
12A13A23

Applying the same algorithm for all other elements in the expressions for
all regions in (3.7) with the simultaneous transformation of x-wave to the
phase [123](z) and extending of action of the operators to the whole expres-
sion on the right to the operator and then adjusting and rearranging the
corresponding y-components, we finally obtain:
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. 123
mammmwwwﬂkmﬁgﬂmwzxa%%i—lﬂ—{wmw (3.8)
f112f413/423

+ (A12 + B2 Pi2) 112 0(123) 112 (A_12 + P1QB_12)

+ (Ags + BagPa3) 23 0(123) To3 (A3 + Pa3Bas)

+ (A2 + B12P12)(Ai1s + Bi3Pi3) 113712 0(123) 119713 (A_13 + Pi3B13)(A1a + PiaBis)

+ (Ags + BagPa3)(Ars + Bi3Pi3) T13723 0(123) To3713 (A_lz + Pi13By3)(Ags + Pa3Bag)
+ (A12 + B12P12)( A1z + B3 Pi3)(Ags + Bog Pag) To3T13T12 6(123)

[123](—y)

% rootisras (s + PosBs) (Ars + PrsBy) (Ama + PlzB—m} Ly,
1241134123

3.4 Construction of %(az,y | k) for different
regions of coordinate space

Now consider another coordinate region such that x*(¢%)x¥(0¥) = x(0),
where 0% = g% = o € S3. It suffices to apply the operator 7, to all compo-
nents of (3.8) so that:

Gin (1293, Y1y2ys | krkaks) x(0) (3.9)
= 1/Jm($1$21‘37y1y2y3 | k1k2k3) TaX(123)a

and this is equal to the same expression as right hand side of (3.8) but with
all indices 1, 2, 3 replaced by o1, 09, 03, respectively.

__ Next consider the cases where the z- and y-components of

Yin(T12223, Y192ys | k1kaks) are in different coordinate regions but assume
that the z-component is in the region (123): x*(123) x¥(co¥).

For example, in the case x¥(213) we can use the equations (2.15)-(2.20) for
the 2-particle case. According to (2.20), the elementary transposition of the
coordinate region x¥(12) — x¥(21) is associated with inserting an additional
factor [712 (A1p + BHPIQ)} in Y, (y | k) for each momentum region. Since
the similar transformation x¥(123) — x¥(213) does not affect particle #3
and this particle does not interact with the other two, we can assume the
same transformation of ©;,(y1y2ys | k1koks) and this is directly verified by

20



the definition (3.4). So, to justify this insertion and obtain an expression
similar to (2.20) but for the 3-particle case, we insert the identity operator
expanded as I = (A5 + By Piy) 712 [7’12 (Ap + Blgplg)] in each of six terms
of the expression similar to (3.6) but for y-component and then apply the
index transposition operator 715 to the whole formula. We obtain

Yin(Y192y3 | k1kaks) x¥(213) (3.10)

1 -
= Xy(213) T12 { ‘9(123) _ (Alg + Blgplg) T12
12A13 23

1 - -
+ T12 9(123) A: <A12 + BlZPIQ) T12 (A12 + BlZP12) T12
1241134123

1 - -
+ 793 6(123) A: (Aas + BagPa3) To3 (A12 + B12Pia) T12
12A413A23

1 -
+ 719713 0(123) ﬁ (A12 + B1aP1a)(A1s + Bi3Pi3) TisTi2 (Aia + B2 Pia) 112
12413 A23

1 -
+ o373 0(123) T (Ags + Bo3Pas)(Ais + BisPi3) Ti3Tes (A1a + B1aPia) T12
1241323

1
+ Ti9T13723 6(123) T i (A12 + BiaPi2) (A1 + BisPi3)(Aas + BagPag)
12413 A23

X To3Ti3T12 (A1a + BiaPi2) 7’12} [7'12 (A + 312P12)] [123](—y).

Since the operator 75 interchanges indices 1 and 2 in the whole formula
(3.10), it also interchanges the order of momentum regions

(123), (213), (132), (312), (231), (321) — (213), (123), (231), (321), (132), (312).
Evaluating the result of application of 75 in (3.10) using the identities
T127237T13 — T23, T12723 — 723713, T13723 = T12713 and then interchanging the
terms to restore the initial order of regions we obtain the new form for each
momentum region. For example, the expression for the momentum region
T12To3T13 0(123) transforms as:
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6(123)
A12A13A23

T12 {7'23713 (Aas + BagPas) (A1 + Bi3Pi3) Ti3Tas (A_m + B_12P12) 7'12}

0(123 - - -
= T93T13713 % (Aas + BagPas) Tos (A12 + B12Pi2) T12 (A2 + B1aPia) Tio
A1pA13A93

p(123) -
= T93 —— (Agg + BQgP )7— .
AnAnAy e

Rearranging similarly the terms for all regions we obtain:

Yin(Y192y3 | k1kaks) x¥(213) (3.11)

1

A12A13A23

1 -
+ Ti2 9(123) A: <A12 + Blgplg) T12
1241134123

1 o
+ 723 0(123) T (Agg + BogPa3) Tog
13423

1
+ 19713 0(123) ﬁ (A12 + B1aP1a) (A1 + BisPis) Ti3Ti2
12A13A23

1
+ 73713 6(123) T (Ags + BosPas)( A1z + BisPi3) Ti3Tos
1241393

1
+ T12T13703 0(123) =—=———== (A12 + B12P12)(A13 + B13P13)(Aas + BazPa3) To3T13T12
A9 A13A93

X [7'12 <A12 + Blgplg)} [123](—y)

Thus we see, as claimed, that (3.11) is in correspondence with the expres-
sion for the y-component in (3.7) for coordinate region x¥(123), but with
an additional factor [7’12 (A2 + BlgPu)] representing the transformation of
coordinate regions x¥(123) — x¥(213). We can now apply the same modi-
fication to (3.11) as to (3.7) to obtain the analogue of expression (3.8) with
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the factor [7’12 (Ap + BHPIQ)} at the end. Then using the identity:

1 1
——— (T2 (A12 -+ B12P12) = (A12 -+ P12B12) T2 | =—/—7——
A9 A13A93 [ } [ ]A12A13A23
we finally obtain for the region x*(123) x¥(213):
1@;(%1%2%37 Y1Y2Ys3 | k1k2k3) Xm(123) Xy(213> (3-12)

[123](x)
A Ay Az, {9(123)

+ (A2 + B2 P12) 112 6(123) 112 (A_m + PlZB_12)

— *(123) \¥(213)

+ (Ags + BagPag) a3 6(123) To3 (A_23 + P23B_23)

+ (A12 + B12P12)(A1s + Bi3Pi3) 113712 0(123) T12713 (A_13 + Pi3By3)(Aia + P12 Bi2)

+ (Ags + BasPa3) (A1 + BisPis) Ti37o3 0(123) o313 (A1 + Pi3Bis)(Ags + PasBas)

+ (Ai2 + B12P12)(Ars + Bi3Pi3)(Aag + BasPa3) TogTi3T12 0(123) 112713723

X (Ags + Pa3Bas)(Ars + Pi3Bis) (A + P1zB_12)} [(A2 + P1aBia) 112]

For coordinate region x¥(213) we define the operator
Z(213> = (A12 + P12BIQ) T12-

To derive a formula similar to (3.12) for the coordinate region x¥(231)
we first apply the operator 713715 to the expression for the y-component for
x¥(123) and insert

I = (A3 + Ba3Pa3)(Ars+ BisPis) Ti37as [7'237'13 (Aus +Bl3P13)(A23+Bz3P23)]

at the end of the formula. Then making rearrangements similar to (3.10)-
(3.12) we insert the expression for each momentum region of the y-component
into the corresponding region of the x-component for x*(123). For example,
the expression for momentum region 75 0(123) transforms as:

0(123)
A12A13A23
6(123)

= T19T13T23 === (A12 + B12P12)(A13 + B13Pi3)(Ass + BogPag) To3T13T12-
A12A13A93

T13T12 {712 (A_12+B_12P12) T12 (A_23+B_23P23)(A_13+B_13P13) 713723}

23

[123](~y)
ApAi3Az3



However, for some of the momentum regions we need to use the identity

(A12+B12Pr2)(A13+BisPis) (Ass+Bas Pas) = (Aaz+Bas Pas) (A13+Bi3Pi3) (A1a+Bia Pro).

This identity (in conjugated form) is proved in the following

Lemma 1
212213223 = 223213712, where Zz'j = Aij + Bijpij; 1< j, Z,j = ]., 2, 3.

Proof

With the use of the easily verified properties
PioPi3 = Pi3Py3 = Po3Pra, Po3Pi3 = Pi3Pia = PiaPas, PiaPi3Ps = P,
B9 By3 = B1sB13 + B13Bs3, we rearrange the expression
21221323 '= (A1z + B1aPra)(A1z + BigPi3)(Aas + BagPas) (3.13)
= A1pA13A93 + A12A13Bo3 Pog + A12B13 P13 Ass + BiaPraA13Ass
+ A12B13 P13 Bog Pa3 + B1aP1aA13Ba3 Poz + B1aP1a B13 P13 Ass + B1aPiaBi3 P13 Bas Pos
= A3 A13A19 + BozPagA13A1a + Aoz A13B12Pia + BiaPiaA13Boz P
+ (A12B13P13Ass + B1a P1a Bi3 P13 Bas Po3) + (A12B13 Pi3 Bag Pog + B1a PiaB13 Pi3 Ags),

and then rewrite the term

BIQP12A13B23P23 = B12P12B23P23A12 = B12313P12P23A12

= (BlZBQ3 - BlBBZS)P23P13A12 = BZBP23Bl3P13A12 - BlBBZ3P13P12A12

= B23P23B13P13A12 - A23BISPIBB21P12 = B23P23B13P13A12 + A23B13P13B12P127
(3.14)

the expression in the first brackets,

A19B13P13Ag3 + B1aPiaB13Pi3Bas Poz = A19A21 B13Pi3 + B1aBo3 B1a Pia Pi3Pas

= (1 — B},)B13Pi3 + B12(B12Bi3 + Bi3Ba3) Pis = Bi3Pi3 + B12B13Bos Py

= (1 — B33)B13Pi3 + Bas(Ba3Bis + Bi3Bia) Pis

= A3 Asp B13 P13 + BagB1y Bog Pas Pi3Pro = Aoz Bi3Pi3Ais + 323P23313T1331)2P12,
3.15

and that in the second brackets,

A12313P13823P23 + BIQP12Bl3P13A23 = A12(313B21P13P23 + BlQBQSP12P13)
= AlQ(_BIQBIB + BIQB23)P23P12 = A12B23B13P23P12 - B23P23A13B12P12~
(3.16)

Substituting (3.14)-(3.16) in (3.13) we obtain:

219213203 = Aoz A13A12 + BosPagA13A19 + AgzA13B12Pro + Bas Poag Bi3 P13 Aqs
+ Aos B3 PisBioPro + A3 Bi3PisAig + BagPas B13 PisB1aPro + Bag PagA13B12Pro
= (Ag3 + BagPa3) (A3 + Bi3Pi3)(Ai2 + B2 Pia) = 293213219. [
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With the use of Lemma 1, for example, the expression for the momentum
region To3713 0(123) transforms as:

6(123)

———— (As3 + B3 Ps3)(A13 + BisPi3) Ti3723
A12A13A93

T137T12 {7'23713

X (Ags + BagPag)(A1s + Bi3Pi3) 7'137'23}

0(123
= T12T23723713 % (Ags + BagPas)(A1s + Bi3Pi3)(Ai2 + BiaPia)
A12A13A93

X (Asa + BsaPag) T13Ta3T13T23

(123
= T127T13 % (A12 + B1aP12) (A1 + BisPis)(Ass + BagPas)
A9 A13A93

X (A32 + 332]323) T12T137T13723

(123
= T12T13 % (A12 + BiaPia) (A1 + Bi3Pi3) Ti3Ti2.
A19A13A93

Then after applying appropriate change of variables to each off-diagonal

element we use the directly verified identity:

1

————— | 793713 (A13 + B13Pi3)(Aag + BasPa3)
A12A13A93 [ }

1

[ 12 12212 13 13413) /13 12:| A12A13A23

and obtain for the region x*(123) x¥(231):
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%($1$2$3yy1y2?/3 | klek?’) XI(123) Xy(231) (3~17)

[123](x)
ApsArs Az, {9<123)

+ (Ai2 + B12Pi2) 112 0(123) 112 (A_12 + P12B_12)

= x"(123) x*(231)

+ (Agz + BosPa3) T23 0(123) To3 (A_z?, + P23B_23)

+ (A2 + B12Pi2)(Avs + Bi3Pi3)T13712 0(123) 712715 (A1s + PisBis)(Arz + P12 Bia)
+ (Ags + BasPas)(Ars + Bi3Pi3) 137 0(123) 703713 (A1s + Pi3Bis)(Ass + PasBas)
+ (A12 + B12Pia)(Ars + Bi3Pi3)(Ags + BosPas) TosTisT12 6(123) Ti2T13723

% (A3 + PysBs) (A + PrsBrs) (A + PHB_@}

[123](—y)

X [(A12 + P13B13)(A13 + Bi3Pi3) 713712] T
124113423

In general, we extend the definition of Z(213) to an arbitrary coordinate
region and define Z(g¥) for all o¥ € Ss, so that

Z(123) = 1, (3.18)
Z(213) = (A1a + P12Bi2) T2,

Z(132) = (Ags + Pa3Bag) Tos,

Z(231) = (A12 + P12 B12)(Asz + Pi3Biz) 13712,

Z(312) = (Ags + Pa3Bas)(A1z + Pi3Bis) Ti37es,

7(321) = (A12 + P13 B12)(Ars + Pi3Bis)(Ags 4 PagBas) TasTisTia.

W(123) = I, (3.19)
W (213) = 712 (A12 + P1aB1a),

W (132) = 7o3 (Ass + Pa3Bas),

W (231) = 112713 (A13 + Pi3Bis)(Ai2 + P12 Bia),

W (312) = 7a3713 (A13 + Pi3Bis)(Ags + PasBas),

W (321) = T1aT13723 (Ags + PagBas)(A1s + PisBis)(Ai2 + P12 Bia).
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With this notation we can describe the above transformation of the y-component
under 773712 in shortened form as:

e 3 % W(o")Z~(231)2(231) [128)(—y) —>
[123](~y)

— 7_010 123 WO'/223]_ E=———
> 7 0(123) W (o) Z( >A12A13A23

o’€Ss3

where the order of summation is modified by applying the operator 7372,
which is allowed because the sum is invariant under this reordering.

For an arbitrary permutation of the y-coordinate region, applying the
general form of such transformation,

EPIE mwmz—%a%zw 123)(—y) —
[123)(—y)

— T 0(123) W (0" Z(0Y) m——t,
> 7 0(123) W (o) Z( )A12A13A23

o’eS3

we obtain the expression for the modified 1;,,-function in case of x*(123) x¥(o¥):

Din(@12923, Y1203 | kikoks) X (123) XY (a¥) (3.20)

[123](x)

= (123) Vo) 5 A 1123)(—y)

W*(0') 0(123) W (0") Z(o¥) =222 Y)
A12A13A23

o/€S3

where W (¢’) is Hermitian conjugate of W (o').
In fact, ¥;,(x,y | k) for all other regions with an arbitrary x*(c®) can be
obtained from (3.20) by acting of 7, from the left. Then due to the d-relation

for momentum regions the corresponding function 7:0; can be expressed again
as a product of its x- and y-components:

@Z;(-leﬂ:;,ylyzy:% | k1kaoks) x* (o) x¥(a¥) (3.21)
[123)( [123]( Y)
X)) T AuABAzg ZS ZS )

Inserting the identity operator T = Z*(¢%)[Z1(0%)]7!, where ZT(0?) is Her-
mitian conjugate of Z(o*), in the z-component of (3.21) we apply a similar
reordering in summation over the terms of x-component as was performed
for the y-component:
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X (0%) Tazﬁfj—gzs Z4H0") Y (25 (")) W (o) 0(123)  (3.22)

o’eS3
[123)(z ;
=X (0") Tpo ————— W (o")6(123).
x) A12A13A23 ZS )

Now the original order of summation over ¢’ is restored, i.e. for both z- and
y-components. Substituting the results for both components in (3.21) and
using the d-relation for momentum regions we obtain:

%($1$2$3yy1y2?/3 | kikoks) X" (o) xY(0Y) = x"(0") x¥(0Y) Tou (3.23)
[123](x) + , [123](—y)
X —— W 123 W Z Y E———
AAnds X; RS vy vy v

and in particular, for the case of 0¥ = g% = ¢ applying the similar transfor-
mations but in inverse order, (3.23) can be reduced to:

%(leﬂ& Y1y2y3 | kikaks) x(o) (3.24)

[123]( [123](—y)
- W+ 123 W ! —
Xy A12A13A23 {Z; ) <0>} Ay Ars Aoy

3.5 Rearrangement of terms in
Vin(T12223, Y192y3 | ki1koks) according to the
regions of momentum space

From the comparison of (3.8), (3.23), (3.24) we can conclude that the central
part of these formulas, » , s W (0') 8(123) W (o'), depends only on trans-
positions of momentum regions in any particular combination of coordinate
regions x*(0%) x¥(c¥). However, each of the six terms in this sum (except
the very first one) contains elements with different combinations of momen-
tum transposition operators so that each of the operators W, W+ (o’) (for
(0") # (123)) splits the wave into waves of a different momentum regions.
This can be clearly seen from the explicit form of the sum:
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9(123) + (A12 + BIQPIQ) T12 6(123) T12 (A_m + PIQB_H) (325)

+ (A23 —+ BQgPQg) T23 9(123) T23 (A_23 + P23B_23)

+ (A2 + B12P12)(Ais + Bi3Pi3) 713712 0(123) 119713 (A_13 + Pi3B13)(A1a + Pi1aBis)

+ (Ags + BagPa3) (A1 + Bi3Pi3) T13723 0(123) To3713 (A_lg + Pi3By3)(Ags + Py3Bas)
+ (A12 + B12P12)( A1z + B13Pi3)(Ags + Bog Pag) To3T13T12 6(123)
X T1aT13Te3 (Agz + PagBas)(A1z + Pi3Bi3) (A1 + PiaBra).

For further integration, we need to express this in a form of the sum over all
momentum regions where each term contains only elements of one particular
momentum region. In order to achieve this we use the identities

ByjPj = —P;Bij, (A + P;Bij) (Aij + P;Byj) = 1 (3.26)
to get

{6(123)(A12 + PiaBis)(A1s + Pi3Bis)(Ass + P Bos) (3.27)
Ay — P1aB12)0(213)(A1s + P13 Bi3)(Ags + P3Bos)
Agsz — Pa3Ba3)0(132)(A13 + Pi3B13) (A2 + P12 Bya)
A1y — P1aBia) (A3 — Pi3B13)0(231)(Ags + Pa3Bos)
Aoz — Py3Bo3)(Arz — Pi3B13)0(312)(A1s + PraBia)
Ay — P1aB1)(A13 — Pi3Bi3)(Ags — Pa3Bs3)0 (321)}
X (Ags + Pa3Bas)(Arz + Pi3Bis)(Arz + PiaBio).
Here the last common factor (Ags+ PagBo3)(A13+ Pi3Bi3) (A2 + PioBis) does
not change the momentum regions because all the characteristic functions
0(o’) of momentum regions in (3.27) are to the left to this factor. Therefore,
we consider and rearrange (3.27) without that factor. First, with the use of
the identity Py, Byt o 0(05010%) = 0(01050%) Pyt 51 Bot o We are grouping all
the terms pairwise:

0(123)(A12 + PiaBi2)(Ais + Pi3Bis)(Ags + PogBas) (3.28)

+ (A1 — P12 B12)0(213)(A1s + Pi3Bis)(Azs + Pa3Bas)

+ (Aoz — Pr3Ba3)0(132)(A1s + Pi3Bis)(Arz + PraBio)
Ajg — P1aBa)(A1z — Pi3B13)0(231)( Az + Pr3Ba3)
Ay — Po3By3)( A1z — P13B13)0(312) (A1 + PiaBia)
A1y — P1aB12)(A13 — Pi3Bi3)(Ags — Pa3Bs3)0(321)

(
(
(
(
(
(

v
+
v
+
+

+(
+
+(
+
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+ (Aaz — Pr3Ba3)[0(132) 4 0(312)] A13( A1z + PraBio)

= A12{[0(123) + 6(213)]} (A13 + Pi3Bis)(Azs + Pa3Bas)
(A23 — P23B23 Am{PQg [0(123) =+ 9(213)]P23}<A12 -+ P12312)
+ (A1 — P1aBi2)(A1s — P13313)A23{P13P12[9(123) + 9(213)]P12P13}~

It follows that there is the same set of terms for (123) as for (213) in (3.28).
If we choose another pairing 0(cj0b0%), 0(chool), such that in each pair two
first indices are interchanged, namely (0(132),60(312)) and (#(231),6(321)),
then since we can express 0(132) + 6(312) = Py3[0(123) + 6(213)] Pag,

6(231) + 6(321) = Pi3P12[0(123) + 6(213)] P12 P13, it follows that the same
statement is also true for such pairs.

Next, with use of identity Py o1 Byyor0(010305) = 0(010503) Pos 1 Boy o,

and also

(A12 £ P1aBia)(A1s £ Pi3Bis)(Ags £ Py Bag) (3.29)
= (Ags & Pa3Bas)( A1z £ Pi3Bis)(Aia £ PiaBia),

verified directly in the proof of Lemma 1, we group all the terms of the first
expression of (3.28) pairwise in a different way:

0(123)(A23 + Po3Ba3)(Az + Pi3Bis)(Awz + P12 Bio) (3.30)
+ (A2 — P12 B12)0(213) (A1 + Pi3Bi3)(Azs + Pa3Bas)
+ (Aaz — Pr3Ba3)0(132)(A1s + Pi3Bis)(Arz + PraBio)

+ (A1 — PiaBa)(A1z — Pi3B13)0(231)(Ags + PasBos)

+ (Ags — Pa3Bas)(A13 — P13B13)0(312) (A1 + P12 Bio)

+ (Aaz — Pr3Bas)(A13 — Pi3Bi3) (A2 — PiaB12)0(321)

= Ay3{[0(123) + 6(132)]} (A3 + Pi3Bis)(A12 + P2 Bia)
(Alg — P12B12 Alg{P12[0(123> + 9(132)]P12}<A23 -+ P23323)
+ (A2s — Pa3Bas)(A1s — P13313)A12{P13P23[9(123) + 9(132)]P23P13}~
Now, since we can express 6(213) + 0(231) = Py5[0(123) + 6(132)] P2,

0(312) 4+ 6(321) = Pi3P3[0(123) + 0(132)] Py3 Py3, the set of terms in (3.30)
is the same for the pairs (0(123),0(132)), (0(213),60(231)), (A(312),6(321)).

60



Comparing with the similar result for the pairs (6(123), 0(213)), (0(132), 0(312)),
(0(231),6(321)) and using the fact that expression in (3.28) is equal to the
expression in (3.30), we conclude that the set of terms for all six regions
O(c’), o’ € Ss, is the same. It suffices therefore to evaluate these elements
for just one of them, and we choose #(321). According to the first expression
of (3.28) or (3.30) and due to d-relations for characteristic functions, there is
only one term for #(321), namely Aj5A413453 and the corresponding expres-
sion in (3.27) inside the brackets (i.e. for z-component) is: Ao A13A493 0(321).

In fact, we can verify explicitly that any region of momentum space has
the same set of waves as region 6(321). For example, to show that this is
true for the regions #(123) and 6(213), we extract all the terms belonging
to these regions, under the combination of transpositions from the left, from
the last expression of (3.28), then using the directly verified equalities
PioPi3 = Pi3Py3 = Py3P1s and  BiaBoz = B1a Bz + B3 Bag,

obtain:

[0(123) + 6(213)]{ A12(A13 + Pi3Biz)(Asz + PasBas)

— Py3By3A13(A1a + PiaBia) + PiaBioPi3BisAgs — A1 PisBisAgs |

= [0(123) + 9(213)]{A12A13A23 + A Pi3Bi3Agg + Ao A13P3Bog + A9 P13 Bi3Po3 Bog
— Py3By3A13A15 — PayBos A13P12B1g + PiaBiaPisBisAgs — A1 PisBisAss )

= [0(123) + 9(213)]{A12A13A23 + A19B31 A9 Pig + A1 A13B50 Pag + A12B31 P13 Poz Bas

- BB2A12A13P23 - BB2A12B31P23P12 + B2IBB2A12P12P13 - AIQB31A21P13}

= [0(123) + 0(213)]{ A12A13A23 + A12(Bs1Bia + Bo1 Bsy — B3y Boy) PasPis }
= [0(123) + 0(213)]{ A12A13As3 + A1o(—Bi3Bis + B12Bas — B3 Bia) PasPia}

= [0(123) + 6(213)]{ A12 413423 },
which is the same as for the region #(321). Since, as was shown, the set of

terms for all regions 0(¢”) is the same, (3.28), and equivalently (3.30), reduces
to Aj9Ai3A03, and (3.25), and equivalently (3.27), reduces to
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A12A13A23(A_23 + P233_23) (A_13 + Pi3Bi3) (A2 + PiaBia), (3.31)

and (3.8) for coordinate region x*(123) x¥(123) = x(123) therefore simplifies
to

%(%xzm,yl%ys | k1k2k3) X(123) (3'32)
123|(—
= X<123) [123] (I‘)(AQ:; + P23ng)(A13 + P13B13>(A12 + PlgBm)[]%.
A9 A13A93
For explicit integration of (3.32) we evaluate the coefficients:
- 1
(A23 =+ P23323)(A13 -+ P13B13)(A12 —+ P12B12): (333)
A9 A13A93
1
= ————— (A2 + B12P12) (A1 + Bi3Pi3)(Aas + BasgPas)
A9 A13A93
By Bos By Bz 1
=14+ —"7P =P — 2 PP -
A, T A, B A, Ay T AL A Ay,

X <A12313P13A23 + B1a P12 B13 P13 Bo3 Pos + A12B13 P13 Bas Pog + B12PIZBI3P13A23>7
where the expression in the brackets is equal to:

|A12|2 Bi3Py3 + BiyBas P + A12B13Ba1 Pi3Pas 4+ A12B12Bos Pio Pi

= [(1 — B},)Bis + Bia(B12Bis + 323313)}33 + A12(Bi12B3 — BiaBi3) Pi3 Pos

= Bi3(1 + B12B13) P13 + A12B13B23 P13 Pas.

In conclusion,

Vin(@1223, Y192y | kikaks) x(123) = x(123) (fy, + fo + fa + fa+ f5 + fo),
(3.34)
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where

=02 =y), fa= 2123 213(-0), fa= ER2I@)]132) ()

B23 BlS BlZ BlS

fa= A—%A—BH%] ()[B12](=y), fs= A—HA—B[123](90)[231](—?J),

fo = Bi3(1 + B2 Bs3)
s =
AjpAy3Ass

[123](2)[321] (=),

and the corresponding modified combined matrix for the case x(123) is

0(616263)

h fo fs fo fs fo (123)
fo i s fo f3 fa| (213)
fs fo i fo fe f5]| (132)
fs fe fo i fo fs| (231)°
fo fs fe fs i fo| (312)
fo fs fo fs fo fi) (321)

For coordinate regions x*(o%) x¥(c¥) = x(0), (3.24) similarly reduces to

%(961%2333, 11Y2ys | k1kaks) x (o) (3.35)

[123](—y)

= Ts X(123) [123](1’) (A23 —|— P23B23)(A13 —f- P13B_13) (A_lg + PlgB_lg> ﬁ,
1241134123

and all the matrix entries obtained by replacing indices 1, 2,3 — o0y, 03, 03,
respectively, in the expressions for the case x(123).

For coordinate regions x*(123) x¥(¢¥), with the use of definition for W (321),
(3.20) similarly reduces to

Yin(T12923, Y112ys | krkoks) X" (123) x¥(0?) (3.36)

[123](—y)

= x"(123) x¥(o¥) [123 WE2)2(0") S
X(128) X1 (0”) [123)(2) msmiama W (321)2(0) S

Using (3.32) and (3.36) we can conclude that for any region with x¥(123)
the transformation of the y-component of the formula has to be equal to the
identity transformation so that:
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Gin (11293, Y1Y2ys | kikaks) x* (%) XY (123)

123|(—
= X"(0") x¥(123) 7= [123] () 752 TosT13T12 W(321) ——[ Iy)
A9 A13A93

[123](—y)

X (") x¥(123) [123] () TosT13712 W ( )A12A13A23

(3.37)

It follows that for the general case of x* (%) x¥(0¥), (3.21) reduces to

%(53196215373/13/23/3 | k1kaks) x* (%) x¥ (oY)
(3.38)
= X" (") x¥(0¥) [123](x) To3713712 W (321) Z (V) %

3.6 Evaluation of integrals

In the case x* (%) x¥(0¥) = x(0) we need to evaluate the integral of (3.35):

1 —~ 1
(2r)? /dgk Vin (217273, Y1Y2y3 | k1kaks) x(0) = 75 x(123) (27)3
(3.39)
_ 123](—
X /dgk [123](1’) (A23 -+ P23B23)(A13 -+ P13B13)(A12 4+ P12B12) H&
A12A13A23
By (3.34), this is equal to
1 By Bos
> x (12 3k (12 1+ =P+ =P 3.4
(1) s [ 23 L+ P+ FE (3.40)
B23 B13 BIZ BIB BIS(1+B12B23)
—= T PiyPys+ —— —— P3Py + Pis|[123](—y).
A Ay Pt g, e Ay, T 1)

The first integral in (3.40) corresponds to the diagonal terms of the matrix
for (3.35) and equals

7, X (123) /d3k [123](z — ) = x(0) 8*(z — ¥). (3.41)

1
(27)?
The second integral in (3.40) reduces to the second integral in (2.10) for the
2-particle case and hence is 0 according to (2.28). Similarly, replacing 23
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in the third integral by 12 we conclude that it is also equal to 0. The fifth
integral in (3.40) equals (up to a constant multiple)

3, B2 Bis
/ Pk S (123](@)[231)(~)

= —¢? / B exp{ilki (21 — ys) + ka(@2 — y1) + ks(23 — 12)]}
(/471 — kg -+ ZC)(k’l — kg + ZC)

After changing of variables

G = k1 — k3, g2 =2ky, g3 =k + k3
=>/f1=%(Q1+Q3)7 k‘QZ%C]Q, k3:%(—611+Q3),

and rearrangement of the exponent,
ki(z1 — y3) + ka(z2 — y1) + k3(23 — y2)

= (1/2)(k1 — k3)[(z1 — 23) + (y2 — ¥3)]
+ (1/2) (k1 + k3)[(z1 + 23) — (Y2 + y3)] + ka(22 — y1)

= (1/2{q[(x1 — 23) + (y2 — v3)] + @sl(z1 + 73) — (y2 + ¥3)] + @2(22 — y1)},

the integral becomes (up to a constant multiple)

[ e s { St + 1 - =)+ -l a2

exp{q[(z1 — x3) + (2 — ys)]}
8 /dch (¢ + g3 — g2 + 2ic) (¢ +ic)

Set ¢ = q and [(x; — 23) + (y2 — y3)] = 2. Then z > 0 because z; > x3,
Y2 > ys3 for the region x(123), respectively, z,, > oy, Yoy > Yo, for the region
X(0). The internal integral becomes

/ ( dge” (3.43)

q+qz — g2+ 2ic)(q +ic)

To evaluate it we note that it is clearly bounded as the denominator is
quadratic in q. We use analytical continuation ¢ — ¢ + ik, where k£ > 0.
Since there are only two poles, both with negative imaginary parts, namely:
q = —ic and ¢ = g — g3 — 2ic, and k > 0, a shift of integration contour
from the axis k = 0 to the upper half-plane does not change the result of
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integration and

/ dq eiqz/Z / d(] ei((q-l-in) )/2
(q+q—q+2ic)(qg+ic) ) (q+ a3 — g2+ 2ic)(q +ic)

k)2 / dq e'72/2
= e - - s
(q+ g3 — q2 + 2ic)(q + ic)

where 0 < e %%/2 < 1. Tt follows that

/ dq eiqz/2 0
(q+qs — @2 + 2ic) (g + ic)

A similar evaluation, but with the poles ¢ = —ic and ¢ = g3 — ¢o — 2ic proves
that the fourth integral in (3.40) is equal to 0.

The last integral in (3.40) becomes, after applying the same change of vari-
ables and rearrangement in the argument of the exponent:

k(1 —y3) + ka(22 — y2) + ks(23 — 11)
= (1/2{a[(x1 — 23) + (y1 — v3)] + @sl(z1 + 73) — (11 + ¥3)] + @2(22 — ¥2)},

/dCJ3dQ2 exp {%[%(ﬁ + 23 — Y1 — y3) + @222 — y1)]} (3.44)

. (1 + @2 — g3)(q1 — g2 + g3) — 47 eXP{%Q1[($1 —x3) + (1 — y3)]}
x (=ic) /dql (@1 + @2 — g3+ 2ic)(q1 — g2 + g3 + 2ic)(q1 + ic) .

Set 1 =¢q, ¢2 —q3 = s, [(x1 — x3) + (11 — y3)] = 2z > 0, then the internal
integral is equal to (up to a constant multiple)

2 _ 2 2
q“ — 5" —4c 22
d R 3.45
/q(q+s+2ic)(q—s+2ic)(Q+ic)e (3.45)

We need only consider the highest order term in the numerator, since the
other terms are cubically convergent and can be shown to be 0 in the same
way as the previous integrals as all poles are in the lower half plane. The ¢
term can be written as

/ g q2(q2 — 5% —4c® — dicq)(q — ic) oi12/2
[(q + 5)* +4¢][(q — 5)* + 4c?](¢* + 2) '

(3.46)

The numerator equals

l(¢* — s*q — 8c%q) — i(5eq* — cs* — 4c®)).
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The real part of (3.46) involves
(¢* — s%q — 8c%q) cos(qz/2) + (5cq* — cs* — 4c3) sin(qz/2) and is therefore an
integral of an odd function and equals 0. The imaginary part is

%/ q QQ(QZ — 5% —4c® — 4ZCQ) (q B ZC) 6z'qz/2
[(q + 5)* + 4c*][(q — 8)* + 4c)(¢* + %)

_ /dq (¢® — s*°q — 8c%q) sin(qz/2) — (5eq? — cs* — 4c?) cos(qz/2)
[(q+5)* +4¢][(q — 5)? + 4c2](¢* + )

The denominator is of order ¢% so all terms in the numerator of order < 4
obviously converge. That leaves the integral

/ d ¢ sin(gz/2) (3.47)

g+ 92 +4[(g— 92 + 42 (@ + 2)

Note that z > 0 and integrating by parts, we set
u = ¢/[(q+ s)® + 4[(q — s)? + 4c%](¢* + ¢*), dv = sin(gz/2), so that
du = dqO(q?), v=—(2/2) cos(gz). Tt follows that

2 q° cos(qz) e 0
2 llg+5)? +4A(q — 5P +4A (@ + )|,
and
2 [T
2| a0t costaz)

is bounded, hence integral (3.47) is bounded too. Since all three poles have a
negative imaginary part, we can again use analytical continuation q — q+ik,
where £ > 0, and similar to the previous cases prove that (3.47) is equal 0
so that the last integral in (3.40) is equal 0 and therefore (3.2) holds for the

case (o).

Next we consider the region x*(123) x¥(0¥). According to (3.38) and
the definitions W (321), Z(o¥), for any y-component region the numerator
of the diagonal term contains one, two or three coefficients A_w identical
to the terms in the denominator. Then these coefficients can be cancelled
out leaving either 1 (for the case x¥(o¥) = x¥(123)) or at least one factor
of the form 1/@, where t¥, t§ defined as: t] := 7,uty, t§ = Tyuty, and
t7 > t4 for this particular coordinate region x¥(c¥) because initial inequality
t1 <ty for the region x¥(123) is transposed by the operator 7,4. In fact, the
pairs of indices and the number of such pairs for these factors are in direct
correspondence with the pairs of indices (0¥ 0¥ ) in 0¥ = (0¥0ycY) such that

r1Ur2

ol > o, for 1y < ry. Since for all pairs (¢]t3), 1/Awy = 1+ (B /Awy) =
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1+ (Btgt?{ /Atgtzlj), it follows that the integral for such case can be expressed
in the form:

ﬁ / Bk (1 + E(Xy(o-y))) exp {Z[k‘t;/ (w4, — yt.;/) + kg (ry, — yt;’) + kpy (2, — yry)]}7

(3.48)

where t] # r¥ #£ 5, x;, > xy, and E(x¥(0?)) is a sum of terms such that each
term contains at least one factor of the form By /Atgt@; and after applying
operators of the form Py» to y-component does not contain such operators
any more.

The first integral in (3.48) is equal to §°(z —y). Since each term of the second
integral contains at least one factor of the form By /Atgt’f we define

ky — ky =: 2q1, kg + kw =: 2go for it, so that Byw/Agy = —ic/(2q + ic).
Then with use of

Ky (2, — yew) + iy (e, — Ysy)
= {Q1[(xt1 - xt2) + (ytg - yti’)] + q2[(xt1 + xtz) - (ytg + yt%)]};

the internal integral for any term of E(y¥(0Y)) is evaluated similar to that for
the corresponding term of (3.40) but with additional poles due to additional
factors of the form

1/(7‘ng) = 1/@ = 1/Atgt?1’ = (ktg — ktﬁf)/(kté’ — ktl{ + iC), where these
poles have negative imaginary part and also z = (z, — @,) + (Y — yw) > 0
in the region x*(123) x¥(c¥), because x;, > xy, for x*(123) since t; < to and
Yy > yw for XY (oY) since t < t{, by the definition of coordinate region. Tt
follows that

1 .
(2m)3 /d3k¢i”(x1$2373,y1y2y3 | kikaks) x*(123) x¥(0¥)
= X"(123) x¥(0") 6% (z — y). (3.49)

Since x¥(o¥) is chosen arbitrary, then applying transposition operator 7,=, for
an arbitrary o®, to x*(123) x¥(¢¥) in (3.49) we obtain the result for all pos-
sible combinations of x*(0®) and x¥(¢¥) so that for any arbitrary coordinate

region x*(0*) x¥(0"),

1 N
e /d3k¢in<xlx2$3ayly2y3 | krkaks) x* (o) x¥(0”)

=X"(0") x"(0%) *(z — y). (3.50)

Summation over all coordinate regions x*(c”) x¥(0¥) gives (3.2).
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Chapter 4

COMPLETENESS OF
0-INTERACTING
PARTICLES IN THE
n-PARTICLE CASE

4.1 The wave function in terms of transposi-
tion operators

We aim to prove the completeness relation

1
(2m)"

Since every arbitrary transposition of n elements can be expressed as a com-
position of elementary transpositions of pairs such that only neighbouring
elements are allowed to interchange their positions in an elementary trans-
position, it is useful, similar to the 3-particle case, to define elementary trans-
position operators for each pair o}, , j = 1,...,n — 1, where 0’ € S, in
the following way.

a) Operators of momentum transposition PU}UQH - indexed by the numbers
of transposed momenta,

f(@oy o, kot kgt kg kot ) = f(Toy - T, kgt K

J Tj+1° j+1

g k)

T304 n
(since elementary transpositions do not depend on the order of the pair of
indices, Pyt = Py o).

Jj i+l J+177
b) Operators of coordinate transposition RJ}U;_H - indexed, not by the posi-
tions of particles but by those of the corresponding momenta:

RU;0;+1f(xal...xUj...m(,j+1...man; kot kor) = [Ty Tosy o Ty Tays Kot Kigr,)
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(again, since elementary transpositions do not depend on the order of the
pair of indices, Ryyr = Ryt 51).

Jjoi+1 J+173
¢) Operators of index transposition Tolal ) - numbered by the numbers of
transposed momenta:

T(,JU]Hf(xol...xgj...xgj+l...q;on; kgi...kgg...kgéﬂ...k%)
= f(xo-l...xo'j+1 ...a:aj...xan; koi'-'kagﬂ'--kag ...kga).
Obviously, Tolol ., = Tol o
Moreover, these operators are related as follows:
P"/"§+1R"§”§'+1 - TU;’”;’-&-l; T”§”§+1P"§”§+1 - RU}C’;H; T”§”§'+1R"§"’§+1 - PU;U;'+1 ete.

Now, for any arbitrary region (z,, > ... > z,,), 0 € S, with character-
istic function x(zy, > ... > x,,) =: x(01...0,), we define the set of all index
pairs which appear in inverted (transposed) order w.r.t. the region x(1...n):

D(o) ={a:=(0,,0,) : 11 <719, 0Op >0n, 11,72€{l,...;n}, o€S,}.

(4.2)
The number of inverted pairs will be denoted [(c) := #D(o). In other
words, the region x(1...n) has a direct order of indices in any pair of indices,
an arbitrary region y(oj...0,,) has a number | < (g) of transposed pairs of
indices. A generalisation of (3.3) to the n-particle case reads

U(xy.xy | k. k Z H (Ao + BoPy) HTa [1...n](x) x(1...n),

0€Sn a€D(0) aeD(o)

(4.3)
where the direction of the arrow above the products corresponds to the order
of multiplication. Since in general there are more than one ways in which
a perrilutation o can be written as a product of transpositions 7, such that
0 = [] 7a, we have to show, that every term in the sum in (4.3) is indepen-

a€D(o)
dent of the order of transpositions but depends only on D(c) which already
determines the permutation o uniquely. The only non-trivial case (inverting
the order of all three pairs) for n = 3 is considered in the previous Chapter
3 in the Lemma 1. A generalisation of Lemma 1 to arbitrary n is due to C.
N. Yang but had not been formally proved yet.
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Theorem (Yang)
Every permutation o is uniquely defined by D(c) and can be written as a
—

product of adjacent transpositions o0 = [| «. Moreover, (4.3) is independent

a€D(o)
i_(i)
of the order of the sequence ay, ...,y of transpositions such that o = ] «,
i=1

where each «; transposes elements in neighbouring positions.
Proof.

1. It is clear that any permutation o is uniquely determined by D(o). In
fact, c71(i) =i+ #{j > i : (ij) € D(o)} — #{j <i: (ji) € D(o)}. This
is proven by induction on [ as follows. Let ¢’ be permutation corresponding
to the composition of [ adjacent transpositions, and o be permutation cor-
responding to the composition of [ 4+ 1 adjacent transpositions such that the
composition of the first [ corresponds to ¢’. Then o = (o(r 4+ 1)o(r))o’ =
(o'(r)o’(r+1))o’ with o'(r) < o’(r+1) for some r € {1,...,n — 1}. We have
to show that if the statement for (¢/)7*(4) is true, then the same statement
for 071(4) is true for all possible position of i relative o'(r),0’(r +1). The
cases i < d'(r), 1 > o'(r+ 1) and o'(r) < i < o'(r + 1) are trivial because
D(o) = D(o") U (¢'(r)o’(r + 1)) hence addition of the pair (¢’(r)o’(r + 1))
with o'(r) # ¢ and o'(r + 1) # 4 does not change the numbers of pairs in
the sets in the right hand side of the statement for o~ (4) relative (/)= (7).
Only non-trivial cases are i = ¢'(r) = o(r + 1) and i = o’'(r + 1) = o(r).

In the first case #{j > i : (ij) € D(0)} = #{j > i: (ij) € D(¢")} + 1,

#{j <i:(ji) e D(o)} =#{j <i: (ji) € D(¢')} (because j =o'(r +1) >
o’(r) = i does not satisfy j < ). It follows that o='(i) = (¢/)7'(i) + 1 but
this is equal to assumption i = o/(r) < (/)7 }(i) =r & (¢/) () +1 =r+1.
In the second case #{j < i: (ji) € D(o)} = #{j <i: (yi) € D(o")} + 1,
#{j >i:(ij) € Do)} = #{j > i : (ij) € D(0')} (because j = o'(r) <
o’(r+1) = i does not satisfy j > 7). It follows that o' (i) = (¢/)" (i) — 1 but
this is equal to assumption ¢ = ¢/(r+1) < (/) 71(i) =r+1 & (/) 1(i)—1 =
r. Hence the statement is true for o, i.e. for [ + 1.

2. For the purpose of the proof we renumber elementary transpositions
«; of the sequence in inverse order relative to the statement of Theorem
so that now ¢ = aj...;. To analyse the case n > 3 we first define a
standard order as follows. In the above procedure of constructing a se-
quence ay,...,aq, we choose at each stage the pair (r,r + 1) with maxi-
mal o(r) and a corresponding pair (o(r 4+ 1)o(r)) with o(r + 1) < o(r).
For example, for the case n = 6, 0 = (563412), the standard order is
(563412) = (36)(46)(16)(26)(35)(45)(15)(25)(14)(24)(13)(23).

Given an arbitrary alternative ordering (s, ..., oy) of the a € D(o) such that
o= Hi(jl) «;, we shall move respective a;’s to the front in standard order.
Let 7; be the smallest index such that «;, contains n, i.e. is of the form
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a;, = (o(r1)n). If n = o(r; —1) then this is the first element of the standard
order, because letting » = r; — 1 we obtain the definition of the standard
order. In that case, there cannot be j < iy such that a; contains o(r1). To

show this, we define o; = Hizz a;, where [(0) = [ for fixed o, and note
that 0;,(r1 —1) = n = o(r; — 1) since «; does not contain n for j < i; by
assumption, hence o;,(r1) = o(r;) and as a result o cannot contain o(r;)
for ] < 1.

Next suppose that a;, is not the first element of the standard order,
and denote the subsequent indices ¢ such that «; contains n, 1; < iy <
. and set o, = (o(rp)n). Let a;, (k > 1) be the first element in the
standard order, so n = o(ry — 1). Suppose that for ¢ < i, «; contains
o(rg). First consider the case of a; = (o(rg)o(r)) for some r < ry, o(r) >
o(rr). Then Ui;l(n) = Uizl(a(rk)) — 1 (because «, transposes o(ry) and n)
and o; '(a(r)) = o; *(o(ry)) — 1 (because q; transposes o(ry) and o(r) by
assumption). But aj_l(n) < aj_l(a(rk)) for j < i, since q, is to the right to
the a; hence already applied before «;. It follows that o; '(n) < o; ' (a(r)).
Then there exists some j < iy (and j > i) such that a; = (o(r)n) contains n,
hence j = ¢, < i) for some p < k and r = r, < r,. But this contradicts our
assumption that a;, is the first element of the standard order, for if j < 7,
aj_l(n) < aj_l(a(rp)) < aj_l(a(rk)). Taking j =1,0, =0 =0 n) <r, <
), contradicting the assumption n = o(r, — 1). It follows that for the case
r < 1, there is no ¢ < ix such that a; = (o(ry)o(r)).

Now suppose that for i < ix, a; = (o(r)o(rg)) with » > 7, hence
o(r) < o(ry). Then for j > i, o;'(o(r)) < o; '(o(ry)) (because the posi-
tion of o () is to the left of the position of o(ry) by assumption, until a; has
been applied). But o; '(n) = 0; ' (c(ry)) — 1 by assumption so
ai_kl(a(r)) < J;Cl(n) < Ui;l(a(rk)). On the other hand, for j = ¢ + 1,
o (o(r)) = o7 (o(r)) — 1 (because position of o(r) is to the left of the
position of o(ry) just before ; has been applied) so there exists j such that
i < j<ig, aj = (o(r)n). Hence j =1, < iy with p < k and r = r,,.

Conversely, suppose r = 1, with p < k. First let r, < r;. We have seen
that assumption of existence i < i, such that a; = (o(ry)o(r,)), leads to
conclusion «; # (o(ry)o(r,)) for @ < ij. Then for j <r,,

Jj_l(n) < le(a(rp)) < aj_l(a(rk)) because (o(rp)), (o(rx)) did not inter-
change their positions. Taking j = 1 we get n < r, < rj contradicting the
assumption n = o(ry — 1). It follows that we cannot have r, < ry.

Now suppose r;, > 1. Let o(r,) > o(ry). Then o ' (o(ri)) < o ' (o(rp))
for all j because o(ry) and o(r,) cannot interchange their relative position
twice. But ail(n) = ail(a(rk)) — 1 because n and o(ry) interchanged by
a;,.. It follows that o '(n) < o5 '(o(ry)) for j < ix. But
aj_l(cr(rk)) < aj_l(a(rp)) = aj_l(n) < Jj_l(a(rp)) — 1. At j = j, this contra-
dicts ai;l(n) = ai’pl(a('r’p)) - 1.

Finally, suppose o(r,) < o(ry), 1, > 1 and a; = (o(rp)o(ry)) for i > i,.
Then for j such that ¢, < 7 <, ajl(a(rk)) < Uj_l(cr(rp)). Since «;, inter-
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changes o(r,) and n, then position of n is the next to the right of o(r,), just
before applying a;,: a;il(n) = a;il(a(rp)) +1=0;'(n) > 0; " (o(r)) for
J > jp. It follows that a;l(n) > U;l(a<7‘k)). But a;l(n) < a;l(a(rk)) for
7 <15 by assumption, hence contradiction.

We conclude that the only possibility such that the relative order of non-
commuting elements in o is: (o(r,)o(r%))...(o(rp)o(n))...(o(rk)o(n)). It now
follows that we can move the factors z,, and z,, to the left adjoining
Zay = Z(o(rp)o(ry))- Subsequently, we can apply the identity derived in the
3-particle case to conclude that

ZoyZai, Bay, = e, Zag, fo-

The resulting expression corresponds to a reordering of the transpositions
a; such that o, is now the k£ — 1-th transposition containing n which equals
the first transposition in the standard order. By induction on k it follows that
Za;, can be moved to the front. The first transposition in the resulting order
then equals that in the standard order and we can replace o by o' = «;, 0,
for which [(¢”) = l(c) — 1. This completes the induction step w.r.t. . O

4.2 Construction of v;,(x;...x, | k1...k,) in terms
of transposition operators

We generalise the definition (3.4) of ¥, (x1xexs | k1koks) to the n-particle
case:

¢<x0-/ :UU% ko”"'kO';.L
wm(xll'n | klk'n) — Z 1 ‘ 1 )

r,s=1,...,n
’ Ao" o
o’'eSn r<s r9s

where 0(01...0,,) = 0(kes > ... > ko) is the characteristic function of a
momentum region.

(4.4) transforms the system of wave function for all regions in coordi-
nate space into a system iy, (z1...x, | ki...k,) of functions in momentum
space for all regions of momentum space. Note that the wave function v
is normalised so that the coefficient of [1...n] is unity in the region x(1...n).
This corresponds to an incoming wave with wave vectors ky, ..., k,, such that
ki > ... > k,, so that particles with coordinates x; > ... > x,, do not interact.
However, this wave function is not symmetric with respect to interchange of
indices. (4.4) achieves this symmetrisation by summing over permuted wave
vectors with the same simultaneous permutations of the particles, and with
the corresponding normalisation for each term in the form of the product of
all A-coefficients with permuted indices.

From now on and until further notice, we will consider ;,(x1...x, |
ky...k,) only in the standard region x(1...n) of coordinate space. Arbitrary
regions x(oy...0,) are considered later. In (4.4), vy, is defined in terms of

0(c)..0l),  (4.4)
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wave functions for the different momentum regions and this can equivalently
be expressed in the form of momentum transpositions, since every momen-
tum region is a momentum transposition of another region, and eventually
of §(1...n). However, we have only an expression (4.3) for the wave function
W(xy...xy, | ky...ky) in different coordinate regions x(oy...0,,), i.e. in terms of
permutations of coordinate regions. Therefore, we wish to express 1, in the
form of the known transpositions of coordinate regions instead of transposi-
tions of momentum regions. This can be done with the use of antisymmetric
property of transpositions in momentum and coordinate space as follows.
According to (4.4), ¢, for coordinate region x(1...n) can be expressed as:

Vin(21.. 2 | k1. k) x(1..0)

Qﬁ(l’gll...l’g% | ka’lmko—g)
= X(Lun) Y e 00 )

/
o'€Sn 1<r<s<n

H Ars ’

1<r<s<n

= x(1..n) Z T, 0(1...n) 4

o'eSy

(4.5)

where 7,/ is defined by
Tor f (X1 s Ky k) = [(Tgr o1 s Kot g ), (4.6)

and can be written in terms of a particular composition of elementary trans-
positions 7;;. Since the sum over o’ does not depend on the order of summa-
tion we can change the sum over ¢’ to a sum over (¢/)~!. We also multiply
both sides by 1=} ¢ x(01...0,) and use the equality

x(1..n) = 7,' x(0}...0%). Tt follows that

Yin(x1.0. | ko) x(1..0)

= X(1.n) Y 7 6(1.n) ‘Z’(‘““ﬂ" | ’Z"‘k’”) 3 Xor00)
o’eSn s oESh

1<r<s<n

_ Z o) (xy... 2 | koK) X(7..0") Z x(o1...00)

o’'eSn 1§r1;[s§n ATS oESy
=3 7 te(.m) Ylarean | kika) ooy (4.7)
H AT’S
oESn 1<r<s<n

because of the d-relation for characteristic functions

x(o...0l) x(o1...00) = x(01...0,) 0(0)...00, 01...04) = x(01...0,) 0(T,r, T,). Since
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the latter relation can be expressed equivalently in terms of ¢’ transpositions,
ie. x(ay...00) x(o1...04) = x(0}...0}) (74, T»), then inserting (4.3) in (4.7)
and using again d-relation for characteristic functions, we obtain:

Vi1 | ki ka) X5 (L) = x"(Lon) Y | [ ] 0(1..n)

o’eS, \ BeD(d’)

1 —
T [ (4s+BsPs) HTB [1...nJ( (4.8)
1<r<s<n i BeD(o’) BeD(a’)

where the notations x*(1...n) and [1...n](x) specify the coordinate region for

the x-component and the phase factor of the z-component, respectively, and
[ defined by

D(c") ={p := (o] oL, 51) 81 < S, O' > 052, s1,80 € {1,...,n}, o € 8S,},
(4.9)

is an elementary transposition in the set D(o’), the order of the product
being as in the Lemma 1 above, i.e.

-
H’Tg and hence, 7,' = H’Tg (4.10)
BeD(a’) BeD(a)

The number of inverted pairs will be denoted I(0”) := #D(o").

4.3 Modification of the integrand:

Similar to (3.7) of Chapter 3, we combine the expression for

Yin(x1... | k... k) with that for ¥y, (y1...yn | k1..-k,) to obtain a combined
function and then apply a modification to change the phase of the x-factor to
[1..n](z). In the common region x*(1...n) x¥(1...n) = x(1...n) the combined
function has the form

=x(l.n) > HTﬁ ﬁ [T (4s+BsPs) HTﬂ [1..n}(z)

o'eS, \BeD(d’) 1<r<s<n BeD(a’) BeD(a’)
0(1..n T — =
X Z H 5 —H 131 H (Ag + BsPs) H 7'[3 [1..n](—y)
o’€Sn \BED(o") 'S BeD(o’) BED(o

(4.11)
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Here all operators act only on the corresponding x- or y-components of the
formula. Applying the d-relation for the characteristic functions of momen-
tum regions, this simplifies to

Uin(x1.. 2y | kreokn)Vin (Y1 Y | k1ekn) x(1..0)

_>
= x(1..n) Z HTB H (Ag + B Pp) HTlg
0'€Sn peD(a’) 1<r<s<n ’BED(UI) peD(o
— 1 —
BED() | 1 ilecn | BED() BeD(a")

(4.12)

where all operators still act only on corresponding x- or y-components of the
formula. To affect the modification of the integrand as in the 2- and 3-particle
cases, we need to apply appropriate permutation operators to individual
terms as before. We expand the product [[5c p(,(As+BsFs) into individual
terms given by subsets Dy C D(0’) where Az is selected:

.
[T (As+Bsks)= > H (Aslp, + BsPslp,),
BeD(c’) DoCD(o’) BeD(c”)

where Dy = D(0’) \ Dy. To the term corresponding to D;, we must then
apply the operator

ﬁrﬁ (ﬁ P5> Hrﬁ : (4.13)

BeD(a") BeDy BeD(o

which is in fact equal to identity for any 8 € Dy. This same operator must
also be applied to the y-factor, so that the modified integrand becomes

76



Vi (T1.- T, Y1 Yn | Krken) x(1

em Y Hm Hpﬁ> I~ Hm

o'€Sn DocD(a/) BeD(o BeD BeD(o") BeD(o
X 9(171) H— H (A,BlDo —I—Bﬁpﬁlpl) H’Tﬁ 1 TL Q?
1<r<s<n " pen(o) peD(a’)
-
X H 7'/3 ( H Pﬁ) H 7'5 H T3
BeD(o’ BeD; BeD(o BeD(a")
1 —
X As + BgP, 75 | [1...n]( : 4.14
T H/(ﬂ 5P5) H/B —Y) (4.14)
\<r<s<n  PED(@) BeD(o")
—
Obviously, the factors H T3 H 75 | cancel. We now prove by in-
BeD(a’) BeD(a’)

duction that we can rewrite the xz-factor as follows:

Lemma 2
For any function f(ky,...,k,) and any permutation o' € S, we have

(H PB) f(kla "'7kn> H (AﬁlDo + BﬂpﬂlDJ

BeDy BeD(a’)
(_
= [[ (Aslp, + PsBslp,) f(ky, ... k (H Pﬁ> (4.15)
BeD(o) BeD,

where Dy = D(o”) \ Do.
Proof

The statement is obviously true if D; = (). Assuming that it is true for
#D; =m — 1 we let (3, be the last element of D; and set D} = Dy \ {5}
Moreover, let D' be the set D(¢’) with the elements 8 to the right of 3,
(inclusive) omitted. We write

<H Pﬁ) f(klaakn) H (AngO—FBﬁPﬁlDl)

BeD; BeD(c")
— — —
=P, | I] Po | f(k1, k) ] (Aslp, + BsPslpy)Bs, Ps, IT 4
BeD] peD’ BeD (" )\(D'U{Bm})

7



Since — —

peD] peD’

we can move the last product to the front of whole expression, then also Bg,,
through the operator

— —
II 7 <H Png/l) — 1,

BeD), BeD’
so that
— —
<H P[g) fky, o kn) H (Aglp, + BsPslp,)
BeD; BeD(a")
— —
- I A4:s|Ps.Bs. HPB f(ky, oo k) [ ] (Aslp, + BsPslpy) ¢ P,
BeD (o' )\(D'U{Bm}) BeD] BeD’

Substituting the statement of Lemma 2 for m — 1 we interchange order of
the factors in the brackets, then

<H PB) f(klaakn) H (AngO—FBﬁPﬁlDl)

BeD; BeD(a")
— — —
= I A4s|Ps.Bs.S [ (Aslo, + PsBslp) f(kr, k) | [ Ps | ¢ P
BED(\(D'U{Bm}) BeD’ BeD;
(;
= ] (Aslp, + PsBslp,)f(ky, .. ( 11 PB> O
BED(0’) BeDy

Applying this to the z-factor in 12}; of (4.14) we have

%(ml...xn, Yi-Yn | k1. kn) x(1...m)

— “—
=x(1.n) > > 17| II (Asin, + PsBsin,)
0'€Sn DoCD(o") BeD(a’) BeD(o’)
x 0(l.n) ———— (H PB) HTB [1...n](x)
BED, BeD(c")

1<r<s<n

— —
1 -
BeD(o BeDy l<r<a<n TS BeD(o) BeD(o

(4.16)
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We now observe that, due to the insertion of the operator (4.13), there is
effectively no operator acting on [1...n](x). Therefore this phase factor can
be moved to the front. This is in exact correspondence with our aim to
modify the full expression in such a way to obtain only n! different phases
of waves for i, (x,y | k) instead of n! x n! phases for ¥, (z | k)i (y | k).
Moreover, it also follows that we may assume that all operators now act on
the full expression to the right, upon which we can cancel the Pz and 75
products. The result is:

@E;l(xl...mn, Y1--Yn | k1. kn) x(1..m)

<+

:X(l..n Z Z HTﬁ H (A51D0+P5351D1)

0'€Sn DoCD(0") BeD(c BeD(a’)

(4.17)

can be com-

1 1
Finally, we observe that the factors and

II 14TS II f4rs

1<r<s<n 1<r<s<n

1
bined to ——=—————, which is invariant under permutations of indices and

[T 1A

1<r<s<n
can therefore also be moved to the front. Resumming over D, we get

%(a:l...xn, Yi-Yn | k1. kn) x(1..n)

= x(1..n) [1...n](x)ﬁ > HTB I (As+ PsBy)
l<rcacn L 0'€Sn BED(o BeD(o”)
.
x 0(1.n) [] (As+ BsPs) Hrﬁ [1..n](—y). (4.18)
BeD(a’) BeD(o

This expression needs to be integrated over ky, ..., k,. For this, we determine
the contributions from the various regions of momentum space. In fact, in
the Section 5 we show that the integrand is the same in all regions as was
the case for 2 and 3 particles.

4.4 Construction of %(aj,y | k) for an arbi-
trary region x*“(0")xY(0?) of coordinate space

Using the definitions of transformation operators for coordinate and momen-
tum regions respectively, given by (3.18) and (3.19) for 3-particle case, we
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generalise them to n-particle case. However, application of the statement of
Lemma 2 to the z-factor in 1, of (4.14) in previous section transformed the

-1
expression for v, to the form with the factor { I |Ar5|2} ; and defi-

1<r<s<n
nitions of transformation operators for this particular form of 1), are chosen
to be conjugated to the similar (3.18) and (3.19), for convenience:

— —
Z(o) = H (Ay + PaBa) HTa )
a€D(o) a€D(o)
(4.19)
— —
W(o') = | 11 (As+ PsBy),

BeD(c’) BeD(c’)

where o and 3 are defined by (4.2) and (4.9) respectively. Then generalising
the expression given by (3.23), we obtain for n-particle case and arbitrary
coordinate regions of z- and y-components:

%(:ﬁlxn,ylyn | ]{?1]{33) Xx(gz) Xy(O'y) — Xx<0.ac) Xy(gy) %
1<r<s<n

x Z(o") | Y W(o")0(1..n) WH(o")| ZF(0¥) [L..n](—y)

a’'eS,

o aray wl oy [1...n](x) - S =
—X(U)X(U)WZ Il @G+PB)| []7

1<r<s<n o’'eSp | aeD(0%) a€D(o%)
— — _ -
< || TI7] T (As+ PsBs)6(tom) [ (A5 + BsP) -
peb(o’) J peDlen) BeD(o") BeD(o")

+—

x| JI7| ] (Aa+BaPa) p[L.nl(-y). (4.20)

aeD(a¥) a€D(oY)

According to (4.20), the transformation of the system of waves between
regions of momentum space is separated into the group of transformations
within region x(1...n) of coordinate space (the central part of (4.20) in square
brackets) and group of transformations between regions of coordinate space
(outside the brackets). The transformation within given region of coordi-
nate space leads to the redistribution of waves between different regions of
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momentum space by the sum of operators

— —

Z W(U,) = Z 7'5 H (A5+P535) (4.21)
(o))

o’'eSn o’'€Sn \BeD(o’ BeD(o”)

acting on region #(1...n). All the terms of (4.21) include different combina-
tions of P transforming the region #(1...n) into generally different momen-
tum regions.

4.5 Rearrangement of the terms of ;D;L(a:', y | k)
according to the regions of momentum
space for coordinate region y(1...n)

In order to determine the contributions for a given region of momentum space
we first need to rearrange (4.18) by moving the 7g-operators to combine with
the corresponding 2z operators.

We claim:

! l
— — —

!
T8i H(Aﬁz + PﬁiBﬁi) = H[T%.(A%. + P’YiB%)L (422)
1

= i=1 1=1

where
Vi = 515171(51)
This follows immediately by induction from the relation

B1B2 = B1(B2) b1,
where 3((ij)) = (8(:)8(j)). Note that although

0
—_
— -

Vi = Bir...0i—1(Bs),
i=1 i=1

this is no longer a decomposition in elements of D(¢’). For example, if
0'(1234) = (3421), then D(o’) = {(12), (13), (23), (14), (24)},

o’ = (24)(14)(23)(13)(12) and (¢/)~' = (12)(13)(23)(14)(24) but the trans-
formed version is (¢/)7' = (23)(34)(12)(23)(12). Thus, in this case, (4.22)
reads:

T12T137T23T14T24224214223213%212 = (723223) (7'34234) (7'12212) (7'23223) (7'12212)-

Obviously, we have a similar formula for the right-hand factor by conjugation,
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and obtain

—~ 1..nj(z
Yin(T1. Ty Y1 Y | krekn) x(1oon) = x(1...n) % (4.23)
1<r<s<n "
l l
X Z H (7—51~--5i71(51')'2/31---/32;1(52')) 0(1...n) H (Zg_l,,,IBi,1(ﬁi)Tﬁlnﬁi—l(ﬁi)> [1..n](—y)
o'eS, | i=1 i=1

Here z, = A, + P,B, and zj = A, + B,P,. Clearly, the operators Pj in 75
change the momentum region and we need to add all contributions for a given
region. We now prove that the contributions to all regions are the same. For
this, it obviously suffices to show that the contributions of momentum regions
that differ by a single transposition are the same. We therefore subdivide
the permutations into two groups differing by a transposition.

Given i < n, let T'; be the set of permutations o such that o=1(3) < o71(i+1),
ie. (i,i+ 1) ¢ D(o). There is clearly a 1-to-1 correspondence between I';
and S,\T; ={0€S,: 07'(i) >0 (i+1)} given by o — o((¢)(: +1)). For
a given o € I';, we now add the corresponding term in (4.23) and the term
corresponding to o(()(i 4 1)):

(o) (o)
H (T,81~~~Bi—l(6i)Zﬁlmﬁi—l(ﬁi)) (9(171) H (Zérl,,ﬂi_l(6i)7-51~ﬂi—1(ﬁi)> [1n](_y)
i=1 =1

I

q

)

(T/Blmﬁi—l(ﬂi)zﬁlv--ﬂifl(ﬁi)) Ti,i+1<Ai,i+1 + Pi,i-l—lBi,i-l—l) 9(1"'n)

+

=1
l(j
« Ay + B Prssr) 7o 2+ oo o) [Lon](—=y)
1,041 i,0+14L0,0+1) Ti5+1 Bi...Bi—1(Bs) B1...8i—1(B:) )
=1

In the first term we insert the identity
Tiyi+1 (Ai,i-l-l + Bi,i-i—llji,i-i-l)(Ai,i-l-l + Bi,i+1Pi,i+l) Tiyi+1
to the rlght of (9(177/) and remark that Ti,i—i—lBi,i—‘rlPi,i-i-l = _Ti,i—i-lpi,i-i-lBi,i-i-l

commutes with 6(1...n) and cancels 7; ;41 P; ;+1B; 41 in the second part of the
formula (corresponding to o((#)(i + 1)) ). The result is:
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(o)

H (Tﬁl~~~Bifl(ﬁi)Zﬁlmﬁifl(ﬁi)) [9(1'--”) Tiit1Aiir1 + Tii1 Aiin 9(1---n)]
=1
(o)

X (Aiiy1 + Bii1 Pii1) Tiin H (z[;..ﬂiq(ﬂi)TrBl"'51‘*1(51')) [L..n](=y)
i=1

U

Q

)

(Tﬁl-nﬁifl(Bi)zﬂlmﬁifl(ﬁi)) [9(1...71)7'1',1‘4_1 + Tii4+1 9(1TL)] Ai,i+1

—

=1
l(_o’))
X (Ajiv1+ Biiv1Priv1) Tis zt Toy . 818 ) [1---n](—y).
3,041 ta+1445+1) Tai+1 B1...Bi—1(Bi) B1...Bi—1(Bs) ()
=1

This shows that permutations differing by a transposition of the form
((¢)( + 1)) must have the same contribution. Since all permutations differ
by a sequence of such transpositions, all have the same contribution.

We now determine the contribution from (n...1). Since there is only one
way of obtaining this permutation, namely by choosing all 7, (r < s), where
(rs) =: 8 € D,, and D,, := D(n...1), we have, after moving the first product
to the right and cancellation with the last product,

— - —
H Trs H A,s0(1..n) H(ATS + B,sP,) H Trs [1..n](—y)
r<s r<s r<s r<s
—
=0(n..1) [ Ars [[(Ars + BroPrs) [1..0] (=)
r<s r<s

=0(n..1) [ 4s [] (As + BsPs) [1...0)(—).

BEDn BEDR

Since the same contribution is for all momentum regions, then substituting
this to (4.23) and summing over all momentum regions we obtain

%(xl...xn, Y1--Yn | k1.kn) x(1..n)

— (1) [Ln] () Hl o Ry Lonc). (421)
BeDy, BED,

The product in the numerator of (4.24)

— — —
[T (45 + BsPs) = [ (T—Bs+ BsPs) = [[ (I— Bs(L— Py)) (4.25)
BEDy, BEDy, BEDny

is equal to the sum of terms of the form [[ [-Bg(1 — P3)].
BErCDn
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For further rearrangement of (4.24) first we need is to prove for the last
term in (4.25) the next

Lemma 3
The following identity holds:

I Bjm- (HBU> > (-nip,, (4.26)

1<i<j<n 1<j o'€Sn

where B;; = —Bj;, Bij(Bjk — By) = BBy,
and Py is defined by: Py f(x1...00; k1. kn) = f(21..205 kgt - Kgr, ).

n

Proof

For n = 2 this is trivial. We proceed by induction on n and write

IIWMH—PM}:< II-&J E:(—UMﬂri@Mﬂ—ﬂﬁ-

1<i<j<n 1<i<j<n—1 0E€Sn_1 j=1

n—1
Since ( II Bl-j) = ( II Bij> (H Bjn> we need to prove
1<i<j<n 1<i<j<n—1 j=1

> (—1)'”PaﬁBjn(H—En = (H Bjn> > (=1)p,.

oESH_1 o'eSy

Notice that upon expanding the product [[=; ! Bj(1— P;,), the terms where
Py, is the first P-operator selected correspond to permutations with

o'(k) = n. We now combine terms pairwise according to whether Py, is
selected or not. Thus

> (=1FIp, ﬁ B

0ESH_1

n—1 n—1k—1 n—1
= Z |"|P {H By, H Bijn Brn Prn H B (1 — Pjn)}

€S- j=1 k=1 j=1 j=k+1

n—1 k—

BjannPkn H Bjn

1
k=1 j=1 i>k

n—2 n—1 k-1
+3 > TIBinBinPin H B Bin P H B, (1 — P;,) } (4.27)

k=1 I=k+1 j=1 j=k+1 j=l+1

- 3 o[-

oESH—-1
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The sum of the second and the third terms of (4.27) is

n—1 k—1
> (-1FIp, {ZHBWBMPMHBW

0ESH_1 k=1 j=1 7>k
n—2 n—1 k-1 -1

> > 1IBinBenPin [ BinBinPin [ Bin(1 - Pjn)} . (4.28)
k=1 I=k+1 j=1 j=k+1 >l

We replace o by the composition o(kl). That does not affect the sum be-
cause the result of summation over ¢ € S,,_; does not depend on order of
summation. After moving of P, in the last term to the front through Py,
it transforms to P, = Py and combines with P,, then we move Py, in both
terms to the right and get

> 0 {35 (I ) o T[ Bre

0ESn_1 >k
n—2 n—1

_Z Z (H BJ") Bin H BJlBleng (I — Py Pkn}- (4.29)
k=1 I=k+1 = j=k+1 §>1

For fixed k consider the terms [ =k + 1,k + 2.

k-1
(H Bjn> {Bi+1,n Bk j+1Brr2x(1 — Py jt2) + BironBit1 kr2Brpro}
=1

X H k I[ ij P}m

j>k+2

In the Py jio-term we replace o by the composition o(k,k + 2) and after
moving Py 42 to the front and changing of the sign for this term due to
additional transposition (k, k 4 2), the last two term become

k-1
(H Bjn) {Bi+1,nBr+2.+1 Bk k+2 + BrtonBit1 k+2Br g2}

i=1

x |[ Biw(L = Py)Prn

k2
k—1 n—1

(H Bjn) Biet1,nBri2,n B j+2 H ik (L — Prj) Prn.
j=1 j=k+3

Next add the I = (k + 3)-term to (k + 1, k + 3)-term:

k-1 n—1
<H Bjn) B30 Bt k+3Brt2,k+3Br k43 H Bjr(I — Pyj) Py,
j=1

j=k+4

k—1 n—1
( B]n) Bi1,0Br i1 Bk Br gy 3Pk k3 H k(L = Prj) Pren.

Jj=1 j=k+4
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Replacing o by o(k, k 4+ 3) and moving Py 43 to the front we get

(H Bjn) (Bi+3n — Brt1,0)Brt1,k+3Br+2,k+3Br it 3 H Bjx(I — Pyj) Piy,
- j>h+3

k-1
= <H Bjn) Bri1n Br43nBit2,k+3Bk k43 H B (I — Pyj) Pry,.
j=1 j>k43

In general, we combine the (k + 1, m)-term with the [ = m-term:

<EB> . ( II B”") B 1 Bt PR

j=k+1 j=m+1

i=1 j=k+3 j=m+1

and after moving Py, to the front we get

k—1 m—1 n—1
(H Bjn) (an - Bk+1,n)Bk+1,m ( H Bjm) Bkm H B]k; ]I Pk:j)Pkn
j=1

Jj=k+2 j=m+1

k—1
<HB]n> Bk+1n mn ( H Bjm) Bk’m H B]k ]I Pk])Pk’n

J=1 Jj=k+2 j=m-+1

We now have, summing over all [ and &:

k=1 \j=1 I=k+1 j=k+1 Jj=l+1 k=1

n—1 n—1 -1 n—1
X {Bk+1,an,k+1 H Bji, + Z By 1,0 Bin ( H le) By H B (T — Py;)

j=k-+2 I=k+2 j=k+2 j=l+1

(4.30)

The first term in (4.30) combines with the first term in the brackets in (4.29)
(except kK =mn — 1) to give:

2 [k-1 o1
Z (H Bjn) (B+1.n — Bin) Br k1 H B Pyn,

k=1 j=1 J=k+2

k—1 n—2 [k+1 n—1
Z (H Bjn> Bin Bis1n H Bjx Pin = Z (H Bjn) I BiPen.
=1 \j=1

k=1 j=k+2 j=k+2

3
|

The second term is identical to the second term in (4.29) except that it stands
at | = k+ 2 and has a factor By, instead of Byi1;. We can thus repeat

36

k-1 m—1 n—1
- (H Bjn) Bis1mBrks1 Braok ( 11 Bjk) BukPim [[ Bir(T = Pij) Pin,
J

"i (1:[ Bm) ni By ( 1T B]z> By H (1 — Py) Py = ni (ﬁ B,

} P



the same procedure with k£ + 1 replaced by k + 2, etc. Hence

-2 k—1 n—1 -1 n—1
(H Bjn> Biyin Y B ( 11 Bﬂ> By [ Bis(I = Pry) Pen
1

k=1 \j= I=k+2 j=k+2 j=l+1

n2 kol n—1
Z (H Bjn> Byt {BkJrg,an’kH H Bj

k=1 \j=1 j=k+3
n

-1 -1 n—1
+ Y Bii2nBun ( 11 le) By [] Bn(1- ij)} Py

I=k+3 j=k+3 j=l+1

3

Again, the first term combines with the reminder of the second term of (4.29)
to yield

n—2 [k+2 n—1
(HBJH> I BiPen.

k=1 j=k+3

We repeat the procedure for [ = k + 3, etc. After the stage [ = n — 2 we
n—1
are left with the first term corresponding to k =l =n—2and [[ By for
j=k+1
n—1

j=k+1=mn—1and the second term corresponding to [[ Bjn:

i) i (1))

j=n—1

n—2 n—2 n—1
= { (H B]n> anl,k + (H B]n) ( H B]n) Bk,nl} Pkn
k= j=1 j=1 Jj=k+1

k—1 n—2
= Z ( B]n> ( H B]n) Bk,n—l(Bn—l,n - Bk,n)Pkn

j=k+1

k—1 n—2 n—2 /n—1
(H B]n) Bkn ( H B]n) Bn—l,nPkn - Z (H Bjn) Pkn
k=1 \j=1

=1 j=k+1

The complete result is thus

n—1 n—2 n—2 (/n—1
Z (_1>|U|Pa {H Bjn - H Bjan—l,nPn—l,k - Z (H Bgn) Pkn}

0ESn_1 k=1 \j=1

(HBJ,L> > (=nFlp, {1—2%} = (ﬁBjn> > (-ylp,. O

gESH_1 7j=1 o'eSy
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After getting the result of Lemma & for the last term of
—

[T (I — Bs(I — P3)), we need a similar statement for an arbitrary term.
BEDr
This can be achieved by an arbitrary choice of only g such that 3 € I' C D,

because any factor corresponding 8 € D, \I is equal 1. Now we extend the
result of Lemma & to all terms in (4.25) and construct the following gener-
alisation, which we have so far not been able to prove:

Lemma 4
For any m < (g),

S I[Bs(m—Po)= ) (H BB) > ()R, (431)

I'CD,,: Bl MCDpn: \BeM =
|Tl=m | M]=m o'€Sn: o'=I17,
~yeEMND(o')

where the order of adjacent transpositions v in the product for o' in the right
hand side is independent of the chosen order of 5 € I' in the left hand side.

We are not able to prove this statement directly. However, it appeared to
hold for any particular example for 3- and 4-particle cases and we have to
leave it as a conjecture. We illustrate that the statement of Lemma 4 holds
on non-trivial case n = 3, m = 2.

For this case, we have to evaluate the sum of operators in the right hand side
for each of three possible sets of two index pairs.

1) M ={(12),(13)} : ¢’ = I = D(¢')N M = ;
o' = (12)(123) = (213) = D(0') N M = {(12)};
o' = (13)(12)(123) = (231) = D(¢') N M = {(12), (13)}.

Since any of other combinations of (12),(13), namely (13) and (12)(13) are
not adjacent, then the full sum of operators is T — Py + Pi3Ps.

2) M ={(12),(23)} : o' =1T= D(o') N M = 0;
(12)(123) = (213) = D(o') N M = {(12)};
)

12
(23)(123) = (132) = D(o’) N M = {(23)}.

/
g
/
g
!
g

Since any of other combinations of (12), (23), namely (12)(23) and (23)(12)
are not adjacent, then the full sum of operators is T — Py — Pag.
3) M ={(13),(23)} : o' =1 = D(¢')N M = 0

o' =(23)(123) = (132) = D(¢') N M = {(23) };

o' = (13)(23) = (312) = D(d') N M = {(13),(23)}.

Since any of other combinations of (13),(23), namely (13) and (23)(13) are
not adjacent, then the full sum of operators is T — Po3 + Pi3Ps3.
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According to (4.31), the left hand side is equal to

Bio(T— Pia) Bi3(1— Py13)+ Bia (11— P12) Boz (11— Pa3) + B3 (1 — Pr3) Bas (11— Pa3).
According to recent evaluations, the right hand side is equal to:

B1oB13(1— Pia+ P13 Pra) + Bia Bos (1 — Piy — Pa3) + Bi3Bos (1 — Pi3 + P13 Pa3).

After cancellation of some pairs of the same terms for both sides we deduce
the right hand side from the left hand side to get:

| — B1aP1o Bug(T— Pi3) — Biy Bi3 Pis— B1 Pra Bos (11— Pag) — Bia Pis Bos (11— Pas)]

+ [3123131312 — B12B13P13P1a + B12Bag Pra + 313323]313]323]

Grouping the terms with the same transposition operators, we rearrange the
expression and then use the equalities

BIQ = _B217 BIQB23 = BIZB13+B13B237 P12P13 = P13P237 P12P23 - P13P12

to obtain:

(—B12B13P13—B13Bo1 P13)+(—B12Bog Pioa— B12 B13 Pio+B12 B13 Pio+B12 By Pr2)
+(B12Ba3 P1a P13+ B13 By Pi3 Pas— B13Bag Pi3 Pas )+ (B2 B13 Pio Pys— B12 Bi3 P13 Pro) = 0.

The possible way of proving Lemma 4 in future is similar to the proof of
Lemma 3 by induction on n.

Using (4.25) we get

Corollary of Lemma 4
The following identity holds:

.
[T (@-Bs(am—ps)) = > > (H B7> IT 4. | ;P
BEDy, o'eSy, rco,: U,:ﬁ% ~el’ ag¢D(d)

~yeT'ND(o”)

(4.32)

We illustrate that the statement of Corollary of Lemma 4 holds, as follows.
According to (3.33), the corresponding expression for n = 3, reads:

—

H (Ag + BgPs) = A19A13A93 + BiaA13A23P1o + BosA13A12 Py (4.33)
BeD3

+ BogB13A12 P13 Py + B1aBi3Ass PisPia + Bis(1 + B12Bas) Pis
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Comparing this with (4.32) we conclude that (4.32) holds at least for n = 3.

The diagonal element of (4.24) corresponds to o/ = 1 = ' = ) =
D(o’) = 0 in (4.32). It follows for this case [[,¢p,n Aa = [laep, Aa and
cancels out with the denominator [[4., Ap of (4.24). Now consider coeffi-
cient for an arbitrary off-diagonal term of (4.24). According to (4.32) it is
equal (up to the sign) to:

(J}BOH(“Z%”AQ) e (%)

BED, BE(D(a")\T)

(4.34)

because all the coefficients in the numerator are different, so that for each pair
of indices in the numerator it is the same pair of indices in the denominator.
For D(o’) # () there is at least one pair of indices v =: (ror1) € ', 15 < 7y, in
the last product of (4.34), such that also some P, and hence P, transposes
that indices in y-wave. Substituting this result in (4.24) we obtain

@E;(xl...xn,yl...yn | k1...kn) x(1..n) = x(1...n) {[ln](w ) (4.35)

o'€Sn: — yel
; PCDy: o'=[1v, BE(D(c")\I'
D(O’ )#@ ’YEFQD(U/)

+ Z Z ﬁ (H i—:) [1..n)(x) P, [1n](—y)}
)

4.6 Rearrangement of the terms of ¢Nm(x, y | k)
according to the regions of momentum
space for an arbitrary coordinate region
x"(a") x"(a")

To extend the result given by (4.24) for x(n...1) to an arbitrary coordinate
region x*(0”)x¥(c¥) we insert it and also (with use of (4.19)) substitute
Z* (oY) in (4.20):
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%(ml...xn,yl...yn | k1.kn) X5 (0) xY(0Y) = X (0%) x¥(0?) [1...n](x)

— — —

IT@s+BsP) | I 7| T[] (Ae+ BaPa)[1m](—y)

Hn A’B BEDn, aeD(aY¥) a€eD(oY)

— —

I] 45+ BsPs) J[ (Aa+BaPa)[1...0)(-y),

a€D(a¥)

(4.36)

because the operator ] 7, does not change the phase of y-wave but re-
aeD(oY)

verses the order of indices in each pair a = (o« ) and Aajai = m =A,.
For further rearrangement of (4.36) we consider combined transformation
over B € D,, and o € D(0¥) as follows.
1) Transformation from initial region x¥(1...n) to any arbitrary region x¥(o¥)
performed as a sequence of elementary transformations over a € D(c¥) with
#D(oV) = l(0Y). For given o¥ we can choose and fix any inverse order-
ing [, ..., 1 of coordinate transpositions I'(¢¥) := ...y within restriction on
transpositions of only adjacent coordinate pairs. Applying IV(0') := B,,...01
for momentum transpositions such that 5; = a; up to m = I(0¥), and with
the pairs of only adjacent momenta, we perform transformation from initial
momentum region ¢(1...n) to some momentum region 6(o’) and then a fur-
ther transformation #(¢’) — 6(n...1). The idea of such choice is that the first
[ elementary transpositions of 3 are in inverse order to all [ elementary trans-
positions of «. This choice is always possible due to the choice of I'(n...1),
as it follows from (4.24).
2) We decompose the maximal set of all transposed pairs:
—

D,, = D(0¥%(n...1)) U D(0¥), where 0¥ =[] Ta-

aeD(oY)
For example, if n =5, 0¥ = (35)(12)(45), D(0o¥) = {(12), (35), (45)},
D, = D(54321) = {(12), (13), (14), (15), (23), (24), (25), (34), (35), (45)}, then
D(o¥(n...1)) = D((12)(35)(45)(54321)) = D(43512)
= {(13),(14), (15),(23), (24), (25), (34)} = D(54321)\D(a?).
As a result of this consideration we replace

— - —
I] 45+ BsPs) [] (Aa+BaFa) by ] (As+ BsPp),
geD, aeD(ov) BeD(o¥(n...1))

because (Ag + BsPs)(Ay + BoP,) = 1 for 8 = a, so that everything outside
the set D(o¥(n...1)) is canceled out by this identity.
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It follows that
Yin(T10 Xy Y1 Yn | k1o Kn) X (0F) XY ()

= x"(e") x"(0") [1..n](x) NI [T A5+ BsPs) [1..n](—y)

A
ﬂgn B seD(ov(n..1))

—

1 1
[T As II 45 H (Ag + BsPs) [1...n](—y).
BeD(0Y) BeD(o¥(n...1)) BeD(c¥(n...1))

= x"(e") x"(0") [1..n)(x)

(4.37)

Since in the case of x(1...n), D(o¥) = 0, then comparing the result of
(4.37) with (4.24) we observe that in the case of arbitrary z- and y-coordinate

regions, v;, always contains the same factor

1 —
N I (45 + BsPy), (4.38)
BeDy BEDy

where D; := D(o¥(n...1)) = D,\D(0¥) = D; C D,. The numerator of
(4.38)

[T (4s+ BsPs) = [] (T - Bs+ BsPs) = [ (I— Bs(I— Pp)) (4.39)
BeD1 BeDy BeDy

is equal to the sum of terms of the form [[ [—Bs(1I — Ps)], and after sub-
BETCD,
stitution to (4.37) we get the expression for the case of arbitrary coordinate

region x* (%) x¥(o¥):

%(ml...xn,yl...yn | k1. kn) x5 (0%) xY(0Y) = x*(0%) x¥(0?) [1...n](x) (4.40)

1
XH—AB I+ Z Z (HA> [1...n](—y).

BeD(ov) Dehgp TP o' 5e(D<a/)\r> <
~erND(a")

As in the case of x(1...n), for any off-diagonal term, at least one pair of indices
v =: (rory) € ', ro < rq, is such that P, transposes the corresponding pair
of momenta in y-wave.
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4.7 Evaluation of integrals.
We need evaluate the integral (4.1). For the case restricted by x(1...n) after
substitution of diagonal element from (4.35) we get

x(1..n) / % [1..n](z —y) (4.41)

= X(ln)/ (;lwl;" exp{ilk1(x1 —y1) + ... + kn(zn — yn)]} = x(1...n) 6" (z — y).
For evaluation of any integral with off-diagonal element fix any arbitrary

I' € D,. Then for any o’ # 1 there exists at least one pair of indices

v := (rory), ro < r1, such that (rory) € T,

P [1..re..ri..n](—y) = [1...r1...79..n](—y) and also

Py [l..ry..r.n|(=y) = [0'(1)...r1..79...0' (n) ] (—y),

interchanging relative order of r9,7r;. Then after applying the operator P,

to y-component of the wave, an integral for an arbitrary off-diagonal element
can be expressed as

X(l TL)/ d*k 1 [1T2r1n](1’)[’yl7“1T2”yn](—y)
(27T)n H A/B exp [Z (kTQ ('ZCTQ - yt2) + krl (‘/177"1 - yt1))]
Be(D(a’)\I)
B BT2T1 .
x [T | 2 explilkn (o = g) + ko (an =y} | - (442)

(ror1)#vyel 7

Note, that the position numbers of momentum indices o and r; are, respec-

tively, ro and r; for the x-wave but generally there are the numbers ¢; and

to of positions for the momentum indices r; and r5 in the y-wave, according
«—

to the composition of transpositions [] P, . The exponent in the numerator

vel
[1...rg..ri..nl(x)[y1...r1...r9.. 7] (—y), where r; = 74, and r9 = 7;,, contains,

in particular, the same term k., (z,, — yi,) + kr, (x,, — 4, ) in its argument as
the denominator and therefore can be cancelled out, leaving such term only
in square brackets. Then the integral can be decomposed into external and
internal integration with the change of variables and following rearrangement:

km (ITQ - yt2) + le (xrl - ytl)
= ql[(xw - xﬁ) + (yt1 - ytz)] + QQ[(xm + xﬁ) - (yt1 + th)]’

where 2q; := ko — k1, 2qo := ko + k1. After substituting the value of

B,y —ic 1 —ic —ic

Ao Tow T T (i0) Oy — ) Fos — T i 21 ie
B, —ic 1 e
A_'y_ ¢ 1—(=ic)/q, B gy +ic’
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the internal integral in (4.42) becomes equal (up to a constant coefficient) to

/ dgz exp {i[@2((wr, + ) = (Yo + )] } / 11 : dne ™

(rar kel ¢ +ic | q +ic/2’
(4.43)

where each v adds at most one pole with negative imaginary part.

2= (Tpy — Tp,) + (Y, — Yt,) > 0 in the region yx(1...n), because

x(1..n) = x*(1...rg...r;..n) x¥(1...11...t5...n)

=x(T1> o> T > > T > D) X(Y1 > e > Yy > e > Yt > Yn) =
= Ty > Tryy Yo > Y = (Try — Ty) + (Y, — Y1) > 0.

Set ¢1 = ¢, ¢/2 = b and the last integral in (4.43) reduces to

1 dq e B
¢, +ic| q+ib

0, (4.44)

(ror1)#y€El

because of only negative imaginary parts for all poles and since

d eiqz
45
q+1ib
as was shown for 2- and 3-particle case. Due to the arbitrary choice for

off-diagonal element it follows that

1 /d”k%(xl...xn,yl...yn | k1...kn) x(1..n) = x(1..n) 8" (x — y).

(2m)"
(4.45)

Next we consider the region x*(1...n) x¥(c¥). The integral of the first term
in (4.40) is equal to

X*(1...n) Xy(gy)/ (;i:;n Hl " [1..n](z —y)
a€D(a¥)
A"k B
= x*(1..n) x¥(0V) = ] (t+=2) Lonl@—y).  (4.46)
/ (27T) aeD(oY) ( Aa)

The first integral in (4.46) is equal " (x —y). Any other term of the integrand
in (4.46) contains at least one factor of the form B,/A,. Let o = (r179),
where r; < ry by assumption for index pairs. After substituting the value of

Byyr, — —ic 1 —ic —ic

Arrs ko — ko 1= (—i0)/(kr, — k) Ky — Ky, +ic 2q1 + ic’
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where k., — k., =: 2q1, k,, + k,, =: 22, and using

kl(xT1_yT2)+k2(xT2_yT1) = {QI[(le_xT2)+(yT2_yT1)]+Q2[(xT1 + xm) - (yTz + yTl)]}7
integral of any term in (4.46) containing the product of the factors B, /A,

for the set D, C D(c¥) becomes (up to a constant coefficient)

[z o lifaon 4o = @nrwa)] [ T1 ] 2

wepacn(n 1o +ic | ¢ +ic/2
(4.47)

where z = (2, — Tpy) + (Yr, — Yr,) > 0 because for r; < ro,
Ty, > T, in the region y*(1...n) and

<7
Yr, > Yy, in the region x¥(cV), since x¥(o¥) = II Pa> xXY(1..n).
a€D(oY)

It follows that internal integral in (4.47) is equal 0, similar to the previous
case.

The integral of any off-diagonal term in (4.40) contains, additionally to the

i
case of (4.47), the product ( II A5> <H(BV/A7)) and a corre-

Be(D(a")\T) =

sponding momentum transposition operator [[ P, which inverts the order
vel’
of momenta in each momentum pair v of y-wave. The difference with the

case of (4.47) is only with z = (z,, — x,,) + (Y, — y,), because the oper-
«—

ator [[ P, generally changes the position of momentum indices k,,, k;,:
vyerl’

(Yrgs YUry ) > (Yty, Yty ), however it does not invert the relative order of these

indices, due to the restriction v € (D,,\D(c¥)). Hence z > 0, and since, as it

shown in previous Section, there exists at least one pair of indices v := (ryr7),

r9 < 11, such that (rery) € I, then there exists a corresponding coefficient

B, = B,,,, in the numerator of the product [](B,/A,). It follows that

yel’
integral for any off-diagonal term in (4.40) is equal 0. Summing the results

of integration over all terms of (4.40) we obtain

1
(2m)"

/dnk %(ml...xn,yl...yn | ki.kn) X (1.n) xY(0¥) = x*(1..n) x¥(0¥) 0" (z — ).

Since xY(o¥) is chosen arbitrary, then applying transposition operator T,
for an arbitrary o to x*(1...n) x¥(c¥) we obtain the result for all possible
combinations of x*(o”) and x¥(0¥) so that for any arbitrary coordinate region

X (") x¥ ("),

(271r)n [ s | ) 07 () = () ) 8~ ).

Summation over all coordinate regions x*(c%) x¥(0¥) gives (4.1).
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