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MULTIPLE SOLUTIONS OF THE QUASIRELATIVISTIC
CHOQUARD EQUATION

M. MELGAARD AND F. ZONGO

Abstract. We prove existence of multiple solutions to the quasirelativistic Choquard
equations with a scalar potential.

(Published in J. Math. Phys. 53 (2012), 033709)

1. Introduction

We study the nonlocal and nonlinear problem

Lφ+ V φ− |φ|2 ∗Wφ = −λφ, (1.1)

‖φ‖L2(R3) = 1, (1.2)

for a large class of potentials V and W , and L =
√
−α−2∆ + α−4 − α−2 (the quasirela-

tivistic Laplacian) with α being Sommerfeld’s fine structure constant. This Hartree-like
Choquard equation arises as the Euler-Lagrange equation associated with a energy func-
tional E(·) introduced in (3.2). We prove the existence of multiple solutions for two
separate cases. Theorem 3.2 concerns the unconstrained problem (1.1), and Theorem 3.4
treats the constrained problem (1.1)-(1.2).

By replacing L by the negative Laplacian and by choosing V = 0, and W (x) = 1/|x|,
we obtain the nonrelativistic Choquard equation which models an electron trapped in its
own hole and was proposed by Choquard in 1976 as an approximation to Hartree-Fock
theory of a one-component plasma [6]. In a meson nucleon theory a system similar to this

equation, but with W (x) = e−µ|x|

|x| , arises when one includes the nucleon recoil caused by

surrounding mesons [9]; this classical model provides solitary waves. A quantum theory
of gravitating particles yields another example [2]. Furthermore, the Choquard equation
has become a prototype of nonlocal problems, which arise in many situations [17].

For the nonrelativistic Choquard equation (in the special case W (x) = 1/|x|) Lieb
proved existence and uniqueness (modulo translations) of a minimizer (for some λ) by
using symmetric decreasing rearrangement inequalities. His existence proof can be ex-
tended to more general W provided W is symmetric decreasing which, in some sense, has
to be considered a severe restriction; regularity of the solution was subsequently studied
by Menzala [14].

Within the same setting, always for the negative Laplacian, Lions [13] proved existence
of infinitely many spherically symmetric solutions by application of abstract critical point
theory both without the constraint (here it suffices that W is spherical symmetric) and
with the constraint (more severe restrictions on W must be assumed). Zhang [18, 19] has
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studied existence of solutions for the nonhomogenous Choquard equation; considering
λ = 1, a negative V which tends to zero at infinity, and adding a positive function g on
the right-hand side of (1.1). Küpper, Zhang, and Xia [10] have studied positive solutions
and the bifurcation problem arising when one adds a term µf(x) to the (1.1); µ > 0 and
f being nonnegative. Furthermore, Zhang, Küpper, Hu and Xia have studied existence
of solutions, when the right-hand side is multiplied by a positive function which tends to
a constant at infinity [20].

For V = 0 and W = 1/|x|, the first rigorous study of (1.1) was performed by Lieb and
Yau [12] in a slightly different context, when the constraint is replaced by ‖φ‖L2 = N .
They established the existence of a symmetric decreasing minimizer provided N < Nb for
some number Nb.

We prove existence of multiple solutions, including a minimizer of the corresponding
energy functional E . Moreover, we prove some additional properties of the solutions. Our
proofs are based upon two classic theorems of critical point theory: in the unconstrained
case we apply the mountain pass theorem by Ambrosetti and Rabinowitz [3], and for the
constrained case, we apply a suitable variant due to Berestycki and Lions [5].

2. Preliminaries

Throughout the paper we denote by C (with or without indices) various constants
whose precise value is of no importance. Let RN be the N -dimensional Euclidean space.
We set

BR = {x ∈ RN : |x| < R }, B(x,R) = { y ∈ RN : |x− y| < R }.

By SN−1 we will denote the unit sphere in RN .
Functions. By C∞0 , C∞, and Lp we refer to the standard function spaces. For a measure
space 〈M,µ〉, µ being a σ-finite measure, the weak Lp space (or Marcinkiewicz space) is
defined as the space of measurable functions φ such that

sup
t>0

t µ ({x : |φ(x)| > t})1/p <∞.

The space of bounded measures is denoted Mb.
Sobolev spaces. Denoting the Fourier-Plancherel transform of u ∈ L2(R3) by û, we define

H1/2(R3) = {φ ∈ L2(R3) : (1 + |ξ|)1/2φ̂ ∈ L2(R3) }, (2.1)

which, equipped with the scalar product

〈φ, ψ〉H1/2(R3) =

∫
R3

(1 + |ξ|)φ̂(ξ)ψ̂(ξ) dξ,

becomes a Hilbert space; evidently, H1(R3) ⊂ H1/2(R3). We have that C∞0 (R3) is dense in
H1/2(R3) and the continuous embedding H1/2(R3) ↪→ Lr(R3) holds whenever r ∈ [2, 3] [1,
Theorem 7.57]. Moreover, we shall use that any weakly convergent sequence in H1/2(R3)
has a pointwise convergent subsequence. The space of radial (i.e., spherically symmetric)

functions belonging to H1/2(R3) will be denoted H
1/2
r (R3).

Auxiliary results. We need the following “radial” lemma by Lions [4].
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Lemma 2.1. If u ∈ Lp(RN), 1 ≤ p < ∞, is a radial nonincreasing function (i.e.,
0 ≤ u(x) ≤ u(y) whenever |x| ≥ |y|), then

|u(x)| ≤ |x|−N/p
(

N

|SN−1|

)1/p

‖u‖Lp(RN ), x 6= 0.

Moreover, we will apply the following compactness lemma due to Strauss [15].

Lemma 2.2. Let P and Q : R→ R be two continuous functions satisfying P (s)/Q(s)→
0 as s→ +∞. Let (un) be a sequence of measurable functions from RN into R such that

sup
n

∫
RN
|Q(un(x))| dx <∞

and
P (un(x))→ v(x) a.e. in RN , asn→ +∞.

Then for any bounded Borel set Ω one has∫
Ω

|P (un(x))− v(x)| dx −→ 0 as n→ +∞.

If, moreover, one assumes that P (s)/Q(s) → 0 as s → 0 and un(x) → 0 as |x| → +∞
uniformly with respect to n, then P (un) converges to v in L1(RN) as n→∞.

Genus. The genus of any compact symmetric subset A of H
1/2
r (R3) \ {0} will be denoted

by γ(A). Bear in mind that the boundary ∂A of a symmetric bounded neighborhood of 0
in a d-dimensional space has a genus equal to d. For the definition and properties of the
genus, we refer to Struwe [16].

3. Assumptions and main theorems

Functionals. The kinetic energy is defined by

l̃0[φ] := α−1‖φ̂(k)‖2

L2(R3,(
√

(2π|k|)2+α−2−α−1)dx)

on H1/2(R3). It is convenient to introduce

l0[φ] := α−1‖φ̂(k)‖2

L2(R3,
√

(2π|k|)2+α−2dx)
.

Moreover, we introduce

sV : H1/2(R3)→ R by φ 7→
∫
R3

V (x)|φ(x)|2dx (3.1)

along with (arising from the direct Coulomb energy)

JW (ψ, φ) :=

∫
R3

∫
R3

ψ(x)φ(y)W (x− y)dxdy,

whenever it makes sense. We consider the following functional E : H1/2(R3)→ R defined
by

φ 7→ 1

2
l0[φ] +

1

2
sV [φ] +

1

2
(λ− α−2)‖φ‖2

L2 −
1

4
JW (|φ|2, |φ|2), (3.2)
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At this place we do not focus on whether the functionals are well-defined or not, this will
be discussed in detail in the sequel.

Assumptions. We impose the following conditions.

Assumption 3.1. Let V be a real-valued measurable function on R3 such that V is
nonnegative, the associated form sV is l0-bounded with bound less than one, and l0 +sV is
weakly lower semicontinuous on H1/2(R3). Let W be a nonnegative, nonzero, spherically
symmetric measure such that there exist K ≥ 1, pk ∈ (1,∞), with k ∈ [1, K], and
functions Wk satisfying {

W = ν +
∑K

k=1Wk,
ν ∈Mb(R3), Wk ∈ Lpkw (R3).

We have:

Theorem 3.2. Let Assumption 3.1 be satisfied. Then, for λ > α−2, there exists a sequence
of (nontrivial) solutions (uj)j≥1 of (1.1) satisfying:
1. The functions uj are radial and non-increasing.
2. The function u1 is positive and decreasing provided W is non increasing and V is
nonnegative and bounded from above.
3. One has

0 < E(uj−1) ≤ E(uj) −−−→
j→∞

∞.

The general case. We introduce, for N > 0, the set

C = {u ∈ H1/2
r (R3) : ‖u‖L2 = N }.

We seek critical points of E restricted to C.

Assumption 3.3. Let V satisfy the hypotheses in Assumption 3.1. Let W be a nonnega-
tive, nonzero, spherically symmetric measure such that there exist K ≥ 1, pk ∈ (3/2,∞),
with k ∈ [1, K], and functions Wk satisfying

W =
K∑
k=1

Wk, Wk ∈ Lpkw (R3).

The main result is:

Theorem 3.4. Let Assumption 3.3 be satisfied and let d ≥ 1. Suppose there exists a
compact symmetric set Ω such that

Ω ⊂ C ; γ(Ω) ≥ d, : E(u) < 0 for u ∈ Ω. (3.3)

Then there exists a sequence of pairs (λj, uj)1≤j≤d satisfying{
α−2 < λj <∞
uj is a solution of (1.1) with λ = λj
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and, furthermore, one has:
1. The function u1 is positive and

E(u1) = min
φ∈C
E(φ) < 0.

2. The functions uj belong to C.
3. One has E(u1) ≤ E(u2) ≤ · · · ≤ E(uj) < 0.
4. All uj are distinct.
If (3.3) holds for all d, then assertions 1-3 are valid for j ≥ 1 and E(uj)↗ 0 as j →∞.

4. Unconstrained problem. Proof of Theorem 3.2

We begin with the following auxiliary result.

Lemma 4.1. For every u ∈ H1/2(R3) we have

1

2
‖u‖2

H1/2 ≤ 〈u, (
√
−∆ + α−2)u〉 ≤ α−1‖u‖2

H1/2 . (4.1)

Proof. For every real a ≥ 0 and b ≥ 1 we have the following inequality

a+ 1

2
≤
√
a2 + b2 ≤ b(a+ 1). (4.2)

Letting a = 2π|k| and b = α−1 in (4.2) we get

2π|k|+ 1

2
≤
√

(2π|k|)2 + α−1 ≤ α−1(2π|k|+ 1),

and, consequently,

1

2
〈(2π|k|+ α−1)û, û〉L2 ≤ 〈

√
(2π|k|)2 + α−2û, û〉L2 ≤ α−1〈(2π|k|+ α−1)û, û〉L2 .

Since 〈u, (
√
−∆ + α−2)u〉L2 = 〈

√
(2π|k|)2 + α−2û, û〉L2 we obtain (4.1). �

Proof of Theorem 3.2. We apply Theorems 2.1 and 2.8 of Ambrosetti and Rabinowitz [3].
For this purpose we need to verify several conditions. We divide the proof into three
steps but first we fix some notation. Let K = H1/2(R3) and make the decomposition
K = X ⊕ V , where V is a finite dimensional subspace of K. Moreover, we let Bρ = {u ∈
X : ‖u‖H1/2 = ρ}.
1. First we show that there exist ρ, σ > 0 such that E|∂Bρ∩X > σ. For any u ∈ X , the
weak Young inequality implies that

JW (u2, u2) ≤ ‖W‖Lpw‖u
2‖L1‖u2‖Lr = ‖W‖Lpw‖u‖

2
L2‖u‖2

L2r ,

with 1/p + 1/r + 1 = 2 and r ∈ [1, 3/2]; the latter is a consequence of the Sobolev
embedding H1/2(R3) ↪→ Ls(R3) valid for s ∈ [2, 3]. In particular, ‖u‖L2 ≤ C1‖u‖H1/2 and
‖u‖Lr ≤ C2‖u‖H1/2 and, therefore,

JW (u2, u2) ≤ C‖u‖4
H1/2 (4.3)
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From the latter inequality, Lemma 4.1, and λ > α−2, we get that

E(u) ≥ α−1

4
‖u‖2

H1/2 +
1

2
(λ− α−2)‖u‖2

L2 − C‖u‖4
H1/2

≥ α−1

4
‖u‖2

H1/2 − C‖u‖4
H1/2

≥ ‖u‖2
H1/2

(
α−1

4
− C‖u‖2

H1/2

)
.

Next we choose codim X such that, for every u ∈ X , ‖u‖2
H1/2 <

α−1

4C
. Then, for every

u ∈ ∂Bρ ∩ X , we conclude that E(u) > σ > 0 with σ = ρ2(α
−1

4
− Cρ2).

2. For each finite dimensional subspace V of K there exists R = R(V) such that E < 0
on V \ BR; BR is defined similarly to Bρ above. With a slight abuse of notation we let
J(u) = JW (u2, u2). Then we see that J′(u)u = 4J(u) for all u ∈ K. Let V be a finite
dimensional subspace of K. For every u ∈ K with ‖u‖H1/2 ≥ 1 and, for any t > 0, let
g(t) = J(tu/‖u‖H1/2). Then g(t) > 0 and

g′(t) = J′
(

tu

‖u‖H1/2

)
u

‖u‖H1/2

=
1

t
J′
(

tu

‖u‖H1/2

)
tu

‖u‖H1/2

=
4

t
J

(
tu

‖u‖H1/2

)
= 4t−1g(t).

Thus
g′(t)

g(t)
=

4

t
⇒
∫ ‖u‖

H1/2

1

g′(t)

g(t)
dt =

∫ ‖u‖
H1/2

1

4

t
dt,

and, consequently,

ln[J(u)]− ln[J(tu/‖u‖H1/2)] = ln[‖u‖4
H1/2 ]

⇒ J(u) = ‖u‖4
H1/2J

(
tu

‖u‖H1/2

)
. (4.4)

Let δ = inf {J(u) : ‖u‖H1/2 = 1, u ∈ V} and let SV be the unit sphere of V , and let (uj)j≥1

be a sequence in SV . Then (uj) is bounded and therefore there exists a subsequence of
(uj) still denoted by (uj) that converges weakly to u in K. Since dimV < ∞ we can
assume that (uj) is a minimizing sequence of J(·) and also (uj) converges strongly to u in
V . The weakly lower semicontinuity of J(·) implies that

δ = inf
v∈SV

J(v) = lim inf
j

J(uj) ≥ J(u) > 0, because u 6= 0.

From (4.4) and above it follows that

J(u) ≥ ‖u‖4
H1/2 inf

SV
J(u) i.e. J(u) ≥ δ‖u‖4

H1/2 .

This, in conjunction with Lemma 4.1, gives us that

E(u) ≤ α−1‖u‖2
H1/2 + (λ− α−2)‖u‖2

L2 − δ‖u‖4
H1/2

It is not hard to see that E(u)→ −∞ as ‖u‖H1/2 → +∞. This ends step 2.
3. Within the framework of Ambrosetti and Rabinowitz we look for critical points of

E(·) in H
1/2
r (R3). It is easy to see that E ∈ C1(H1/2(R3);R). It remains to check the
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Palais-Smale (PS) condition, i.e., if (uj)j≥1 is a sequence of non increasing functions in

H
1/2
r (R3) such that{

E(uj) is bounded,

E ′(uj) =
(
α−1
√
−∆ + α−2

)
uj + (λ− α−2)uj + V uj − (W ∗ |uj|2)uj −−−→

H−1/2
0.

then there exists a subsequence of (uj) which converges in H1/2(R3).
Let (uj)j≥1 be such a sequence and let εj = E ′(uj). We begin by proving that (uj)j≥1

is a bounded sequence in H1/2(R3). Now,

l0[uj] + (λ− α−2)‖uj‖2
L2 + s[uj]− JW (u2

j , u
2
j) = 〈εj, uj〉H−1/2,H1/2 (4.5)

Since, by hypothesis, E(uj) is bounded, we have that

l0[uj] + (λ− α−2)‖uj‖2
L2 + s[uj] = 2E(uj) +

1

2
JW (u2

j , u
2
j)

≤ C +
1

2
JW (u2

j , u
2
j) (4.6)

On the other hand,

〈E ′(uj), uj〉 = l0[uj] + (λ− α−2)‖uj‖2
L2 + s[uj] + JW (u2

j , u
2
j),

i.e.,

〈E ′(uj), uj〉 = 2E(uj)−
1

2
JW (u2

j , u
2
j),

which implies that

〈εj, uj〉+
1

2
JW (u2

j , u
2
j) = 2E(uj) ≤ C

and, consequently,

|〈E ′(uj), uj〉| ≤ C and
1

2
JW (u2

j , u
2
j) ≤ C.

This, in conjunction with (4.6) implies that

l0[uj] + (λ− α−2)‖uj‖2
L2 + s[uj] ≤ C,

whence
l0[uj] + α(λ− α−2)‖un‖2

L2 ≤ C

because V is nonnegative. Then by (4.1) we obtain

1

2
‖uj‖2

H1/2 + α(λ− α−2)‖uj‖2
L2 ≤ C

Since λ− α−2 ≥ 0, then we immediately conclude that ‖uj‖H1/2 ≤ C.
Now, by the Banach-Alaoglu theorem there exists a subsequence of uj (still denoted

uj) such that uj ⇀ u in H1/2(R3) and a.e. on R3. It is worth to mention that u is radial
and non increasing because all uj are. Since uj is radial and non increasing, Lemma 2.1
implies that

|uj(x)| ≤ c|x|−3/2, x 6= 0.

Therefore lim|x|→∞ uj(x) = 0 and, consequently, lim|x|→∞ u(x) = 0. Let vj = uj−u. Then

it is not hard to see that (vj)j≥1 is bounded in H1/2 and lim|x|→∞ vj(x) = 0. An application
of Sobolev’s embedding theorem shows that each vj belongs to Lp(R3), p ∈ [2, 3]. Hence
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we can apply Lemma 2.2, i.e., Strauss’ compactness principle [15], wherein we choose
P (s) = |s|r and Q(s) = |s|2 + |s|3, and v = 0. It follows that∫

R3

|vn|r dx −−−→
n→∞

0, i.e. ‖uj − u‖Lr −−−→
n→∞

0, r ∈ [2, 3].

Next we show that E ′(uj) → E ′(u) in H−1/2(R3). We have (u2
j)j≥1 bounded in Ls(R3),

s ∈ [1, 3
2
] since uj is bounded in Lr(R3), r ∈ [2, 3] and, together with W ∈ Lpkw (R3)

and the generalized Young inequality, we deduce that W ∗ u2
j is bounded in Lq(R3) with

3/2 < q < ∞. Moreover, by the dominated convergence theorem we infer that W ∗ u2
j

converges strongly to W ∗ |u|2 in Lq(R3). Let ψj = W ∗ |uj|2, and w ∈ H1/2. Then

|〈ψjuj − ψu,w〉H−1/2,H1/2| = |〈ψjuj − ψju+ ψju− ψu,w〉H−1/2,H1/2|
≤ C [‖ψj(uj − u)‖L2 + ‖(ψj − ψ)u‖L2 ]

By Hölder’s inequality we have that

‖ψj(uj − u)‖L2 ≤ ‖ψ2
j‖Ll‖(uj − u)2‖Lm

with (1/l) + (1/m) = 1; valid because m ∈ [1, 3/2] and l ∈ (3/4,∞). Then, by the
uniform boundedness of ψj in Lq(R3), q ∈ (3/2,∞), and the strong convergence of uj
to u in Lr, r ∈ [2, 3], and the strong convergence of ψj to ψ in Lq(R3), it follows that
〈ψjuj − ψu,w〉H−1/2,H1/2 → 0 as j →∞. Hence

ψjuj = (W ∗ u2
j)uj ⇀

H−1/2
ψu = (W ∗ u2)u. (4.7)

On the other hand, by the boundedness of uj in H1/2(R3) and the boundedness of W ∗u2
j

in Lq, we have that (W ∗u2
j)u

2
j is bounded in L1. These facts, together with the pointwise

convergence of (W∗u2
j)u

2
j to (W∗u2)u2 in R3 imply that Lebesgue’s dominated convergence

theorem yields

JW (u2
j , u

2
j) −→ JW (u2, u2).

By passing to the limit in (4.5) as j →∞, we get that

lim
j

{
l0[uj] + (λ− α−2)‖uj‖2

L2 + s[uj]
}

= JW (u2, u2).

An application of Fatou’s lemma yields

l0[u] + (λ− α−2)‖u‖2
L2 + s[u] ≤ lim inf

j

{
l0[uj] + (λ− α−2)‖uj‖2

L2 + s[uj]
}

= lim
j

{
l0[uj] + (λ− α−2)‖uj‖2

L2 + s[uj]
}

= JW (u2, u2).

Moreover, since uj converges strongly to u in Lr(R3), r ∈ [2, 3], we have that

α−1
(√
−∆ + α−2 − α−1

)
uj + λuj + V uj −−−→

H−1/2
α−1

(√
−∆ + α−2 − α−1

)
u+ λu+ V u

in the sense of distributions. The latter, in conjunction with (4.7), implies that

E ′(uj) −−−→
H−1/2

E ′(u) =
(√
−α−2∆ + α−4 − α−2

)
u+ λu+ V u+ (W ∗ u2)u.
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Then, by hypothesis, we deduce that E ′(u) = 0. In particular, 〈E ′(u), u〉 = 0 and we infer
that

l0[u] + (λ− α−2)‖u‖2
L2 + s[u] = JW (u2, u2).

Furthermore,

〈uj − u,
√
−α−2∆ + α−4(uj − u)〉

= 〈
√
−α−2∆ + α−4u, u− uj〉 − 〈

√
−α−2∆ + α−4uj, u− uj〉

= 〈
(√
−α−2∆ + α−4 − α−2

)
u+ λu+ V u− (W ∗ u2)u, u− uj〉+

∫
(W ∗ |u|2)u(u− uj) dx

+(α−2 − λ)〈u, u− uj〉 − 〈V u, u− uj〉 − 〈
√
−α−2∆ + α−4uj, u− uj〉.

The first term on the right-hand side is equal to 〈E ′(u), u − uj〉H−1/2,H1/2 = 0, the third
term from the right-hand side, viz. 〈u, u−uj〉 tends to zero (because uj converges weakly
to u in H1/2), the same argument applies to fourth term. As for the second term we apply
Hölder’s inequality twice. Since both W ∗ u2 and u are bounded in Lq, 3/2 < q <∞ and
uj converges strongly to u in Lr, r ∈ [2, 3], this implies that the second term tends to

zero. For the last term we need the uniform boundedness of
√
−α−2∆ + α−4uj in L2(R3),

together with the strong convergence of uj to u in L2(R3) to conclude. In view of the
above, we obtain

〈
√
−α−2∆ + α−4(uj − u), uj − u〉L2 −→ 0

Since 〈
√
−α−2∆ + α−4(uj−u), uj−u〉 ≥ (|∇|(uj − u), uj − u)〉, we have 〈|∇|(uj−u), uj−

u〉 → 0. We conclude that ‖uj − u‖H1/2 → 0. �

.
It is worth to mention that Assumption 3.1 is optimal for a nonnegative, radial W

because there exists W ∈ L∞(R3) such that (1.1) has no H1/2(R3) solutions. For instance,
we may choose W ≡ 1. Then (1.1), with V ≡ 0, takes the form Lu + (1 − ‖u‖2

L2)u = 0
and this implies that u ≡ 0.

5. Constrained problem. Proof of Theorem 3.4

We prove Theorem 3.4 and we establish two corollaries.

Proof of Theorem 3.4. Without loss of generality we consider W ∈ Lpiw (R3). The idea is
to apply the critical point theory by Berestycki and Lions [5] in the following framework:

H = L2(R3) and K = H
1/2
r (R3). In order to apply the abstract theorem, we need to

establish the following requirements:
1. E|C is bounded below;
2. E is weakly lower semicontinuous on T = {u ∈ C : E(u) ≤ 0};
3. E|C satisfies the (PS)− condition.
Verification of item 1. From Lemma 4.1 we find that

E(u) ≥ α−1

4
(‖u‖2

H1/2 − ‖u‖2
L2)− 1/4JW (u2, u2). (5.1)

An application of the weak Young inequality and Sobolev’s inequality yield

JW (u2, u2) ≤ ‖W‖Lpw‖u
2‖L1‖u2‖Lr/2 ≤ CN2‖W‖Lpw‖u‖

2
H1/2 (5.2)
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where 1/p+2/r+1 = 2, i.e., 1/p+2/r = 1 which is possible to satisfy because r ∈ [2, 3] and
p ≥ 3. Since u belongs to C, it is not hard to see that ‖u2‖L1 = ‖u‖2

L2 = N2. Moreover,
‖u2‖Lr/2 = ‖u‖2

Lr ≤ C‖u‖2
H1/2 . Without loss of generality, we choose ‖W‖Lpw = 1/2αCN2.

Then inequality (5.2) becomes

JW (u2, u2) ≤ α−1

2
‖u‖2

H1/2

while (5.1) becomes simply E(u) ≥ −N2.
Verification of item 2. Let (uj) ⊂ T := {u ∈ C : E(u) ≤ 0} such that uj ⇀ u in H1/2(R3).
Obviously, as for item 1, it follows that

sup
j
JW (u2

j , u
2
j) <∞

and, by Fatou’s lemma, we get that

JW (u2, u2) ≤ lim inf
j
JW (u2

j , u
2
j).

Since the remaining terms are obviously weakly lower semicontinuous, it follows that E is
weakly lower semicontinuous on T .
Verification of item 3. Let (uj)j≥1 be a sequence in C satisfying{

−∞ < β ≤ E(uj) ≤ σ < 0

(
√
−α−2∆− α−4 − α−2)uj + V uj − (W ∗ u2

j)uj + λjuj = εj −−−→
H−1/2

0,

where

−λj = E(uj) =
1

2
l0[uj] +

1

2
s[uj]−

1

4
JW (u2

j , u
2
j)

We have
1

2
〈(
√
−α−2∆− α−4 − α−2)uj, uj〉+

1

2
(λ− α−2)‖uj‖2

L2

+
1

2

∫
R3

V (x)|uj(x)|2 dx− 1

4

∫ ∫
W (x− y)|uj(x)|2|uj(y)|2 dxdy ≤ σ.

Since we have already proved that, for any v ∈ C, JW (v2, v2) ≤ C, we obtain

1

2
〈
√
−α−2∆− α−4uj, uj〉+

1

2
(λ− α−2)‖uj‖2

L2 +
1

2

∫
R3

V (x)|uj(x)|2 dx ≤ C,

whence

C ≥ 1

2
〈(
√
−α−2∆− α−4)uj, uj〉 ≥ ‖uj‖2

H1/2 .

Therefore, C ≥ ‖uj‖2
H1/2 , i.e., (uj) is bounded in H

1/2
r (R3). Furthermore,

−λj ≤ 2E(uj) ≤ 2σ, −2σ ≤ λj ≤ λ.

Indeed,

−1

2
λj =

1

2
〈(
√
−α−2∆ + α−4 − α−2)uj, uj〉+

1

2

∫
R3

V (x)|uj(x)|2 dx

−1

4

∫ ∫
W (x− y)|uj(x)|2|uj(y)|2 dxdy − 1

4

∫ ∫
W (x− y)|un(x)|2|un(y)|2 dxdy
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i.e.
−1

2
λj = E(uj)−

1

4

∫ ∫
W (x− y)|uj(x)|2|uj(y)|2 dxdy,

This shows that −1
2
λj ≤ E(uj) and then −λj ≤ 2E ≤ 2σ.

On the other hand, since JW (u2
j , u

2
j) is uniformly bounded with respect to j and from

the facts above we conclude that λj ≤ λ. Now we can follow the proof of Theorem 3.2

and conclude that uj converges strongly to u in H
1/2
r (R3). This verifies item 3. Then the

assertions of the theorem follows immediately from Berestycki and Lions [5, Theorems 7
and 9].

�

Corollary 5.1. Let the hypotheses of Theorem 3.4 be satisfied. Then there there exists a
nondecreasing and positive sequence (Nd)d≥1 such that, if N ≥ Nd, then the conclusions
of Theorem 3.4 hold.

Proof. Let (Vd)d≥1 be a sequence of d-dimensional subspaces of H
1/2
r such that Vd ⊂ Vd+1

and let C1 = {u ∈ H
1/2
r : ‖u‖L2 = 1}. By definition of the genus, γ(C1 ∩Vd) = d. For any

positive real number N and any u ∈ C1 ∩ Vd, we have that

E(Nu) ≤ N2

2
l0[u] +

N2

2
s[u]− N4

4
JW (u2, u2)

≤ N2

2

{
sup

u∈C1∩Vd
(l0[u] + s[u])− N2

2
inf

u∈C1∩Vd
JW (u2, u2))

}
.

Then there exists Nd such that for N ≥ Nd the right-hand side is negative and, therefore,
E is negative. Thus, for N ≥ Nd, Ã = {Nu : u ∈ C1∩Vd} satisfies (3.3) and, consequently,
the assertions of Theorem 3.4 hold true. �

Corollary 5.2. Let the hypotheses of Theorem 3.4 be satisfied. If, moreover,

lim inf
r→+∞

r2W (r) ≥ L, (5.3)

then there exists Ld such that (3.3) holds true provided L ≥ Ld. If L = +∞, then (3.3)
holds true for all d ≥ 1. In particular, the assertions of Theorem 3.4 are valid.

Proof. Without loss of generality we may suppose N = 1. Let A = C1∩Vd where (Vd)d≥1 is

a sequence of d-dimensional subspaces of H
1/2
r (to be specified below) such that Vd ⊂ Vd+1.

Choose u ∈ A and let uκ(x) = u(x/κ). Then ‖κ−3/2uκ‖L2 = 1 and

E(κ−3/2uκ) ≤
1

2
l0[κ−3/2uκ]+

1

2

∫
R3

V (κx)|u(x)|2 dx−1

4

∫
R3

∫
R3

u2(x)u2(y)W (κ|x−y|) dxdy.

Using that H1(R3) ⊂ H1/2 and, specifically,

l0[φ] ≤ C‖φ‖2
H1 , ∀φ ∈ H1(R3),

in conjunction with∫ ∫
1
2
≤|x−y|≤1

u2(x)u2(y)W (κ|x− y|) dxdy ≤
∫
R3

∫
R3

u2(x)u2W (κ|x− y|) dxdy
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we have that

E(κ−3/2uκ) ≤
C

2
λ−2

∫
R3

|∇u|2 + 1 +
1

2

∫
R3

V (κx)|u(x)|2 dx

−1

4

∫ ∫
1/2≤|x−y|≤1

u2(x)u2(y)W (κ|x− y|) dxdy

≤ C1

2
κ−2

{∫
R3

|∇u|2 − κ2

2

∫ ∫
1/2≤|x−y|≤1

u2(x)u2(y)W (κ|x− y|) dxdy
}

+ C2

≤ C1

2
κ−2

{∫
R3

|∇u|2 − L

2

∫ ∫
1/2≤|x−y|≤1

u2(x)u2(y) dxdy

}
+ C2.

where, in the last inequality, we used the assumption in (5.3). For u ∈ A we may suppose
that u2(x) > 0 for Ξ = {|x| ≤ 2}. Indeed, we may choose Vd to be the subspace spanned
by the first d eigenfunctions un of −∆ with Dirichlet boundary conditions on ∂Ξ. Since

each un ∈ H1(R3) ⊂ H1/2(R3) is radial, we have that un ∈ H1
r (R3) ⊂ H

1/2
r (R3) as

required. This choice of Vd will ensure that

inf
u∈C1∩Vd

∫ ∫
1/2≤|x−y|≤1

u2(x)u2(y) dxdy > 0

and, by taking L large enough, we find that

sup
u∈C1∩Vd

E(κ−3/2uκ) < 0 for κ ≥ κ0.

Finally, with Ã = {κ−3/2
0 uκ0 : u ∈ C1 ∩ Vd} we conclude that γ(Ã) = γ(A) = d and,

therefore, (3.3) is satisfied for Ã.
�

If one takes W (x) = 1/|x|α, 2 < α < 4, then E is not even bounded below; this observa-
tion alone shows that Assumption 3.3 is necessary.

A posteriori it can be shown that solutions uj of (1.1) satisfy the following properties:

(i) uj ∈ C∞(R3 \ {0});
(ii) For all R > 0 and β < ν :=

√
λ(2α−2 − λ), there exists C = C(β,R) > 0 such

that

|uj(x)| ≤ Ce−β|x|, for |x| ≥ R.

Indeed, the proof of properties (i) and (ii) for the quasirelativistic Choquard equation
(1.1) is carried over, with minor changes, from the proof of similar properties, valid for
the quasirelativistic Hartree-Fock equations, found in Dall-Aqua et al. [7].
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