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Abstract

A biosensor is defined as a compact analytical device incorporating a biological

sensing element integrated within a physico-chemical transducer whose aim is to pro-

duce optical or electronic signals proportional to the concentration of an analyte in

a sample. Biosensors offer enormous potential to detect a wide range of analytes in

health care, the food industry, environmental monitoring, security and defense. The

beneficial impact on society as a result of the availability of such systems is immense,

therefore investigating any strategy that could reduce development times and costs

and reveal alternative designs is of utmost importance. In particular, mathematical

modelling and simulation, the so-called “virtual experimentation”, is a relatively in-

expensive and yet powerful tool for scientific analysis and prediction.

Biosensor modelling is a rich source of mathematical challenges. The main com-

ponents of biosensors are based on well-understood physical processes (such as dif-

fusion, convective flow, energy and mass transfer) as well as chemical and biological

reactions, all of which are amenable to mathematical modelling using ordinary and

partial differential equations. The objective of this project is to provide a foundation

for mathematical and computational modelling of biosensors, through identifying an-

alytical and numerical methods applicable to the study of electrochemical and optical

biosensors, with a view to optimising their design process. The models will be relevant

to ongoing experimental work in the National Centre for Sensor Research (NCSR)

and the Biomedical Diagnostics Institute (BDI) at Dublin City University.
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Chapter 1

Introduction and Background

Material

1.1 Why study biosensors?

Biosensor design underpins the development of a range of next-generation biomedical

diagnostic tools which will directly affect the quality of life worldwide over the next

few decades. The level of commercial development in this area is significant, with

many international diagnostics companies wishing to develop point-of-care and at-

home testing devices for many diseases and disorders. Other important applications

of biosensors are in measuring water quality, detecting biological and chemical warfare

agents or the presence of toxins or harmful microorganisms in food. The beneficial

impact on society as a result of the availability of such systems to both personal

health and environmental quality is immense. Therefore, investigating any strategy

that could reduce development times and costs, reveal alternative system designs and
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subsequently increase the rate at which new devices are brought to the market, is

of utmost importance. In particular, mathematical modelling and simulation, the

so-called “virtual experimentation” is a relatively inexpensive and yet powerful tool

for scientific analysis and prediction.

Biosensors are analytical devices which convert biochemical reactions into measur-

able signals, using optical or electrical transducers. They involve a biological (recog-

nition) element and a transduction element. The biological or recognition element

may be an antibody, an enzyme, DNA, RNA, a whole cell, or a whole organ or sys-

tem. The transduction element, wherein the biological event or signal is converted to

a measurable signal, may include any one of the following forms: chemical, electrical,

magnetic, mechanical, optical, or thermal. Biosensor performance parameters may

be improved significantly by providing (a) the proper interface between the biological

and the transduction element and (b) by manipulating the structure of the interface.

One needs to combine these in an optimum manner to suit one’s application so as to

obtain, ideally a simple, rapid, and label-free application (refer to [1]).

For example, the first and still the most widely used commercial biosensor is the

glucose biosensor which was developed by Leland C. Clark in 1962. The glucose

biosensor uses an enzyme to break down blood glucose and transfer an electron to an

electrode, which can be schematically represented as

Glucose +O2
k1−→gluconic acid +H2O2,

H2O2−→O2 + 2H+ + 2e−.

2



This is an example of an electrochemical biosensor.

Biosensor characteristics

Biosensors are usually characterised by the following parameters (refer to, for exam-

ple [1]):

• Sensitivity is the response of the sensor to changes in analyte concentration.

• Selectivity is the ability of the sensor to respond only to the target analyte.

That is, lack of response to other interfering chemicals is the desired feature.

• Range is the concentration range over which the sensitivity of the sensor is

good. Sometimes this is called dynamic range or linearity.

• Response time is the time required for the sensor to indicate 63% of its final

response due to a step change in analyte concentration.

• Reproducibility is the accuracy with which the sensor’s output can be ob-

tained.

• Detection limit is the lowest concentration of the analyte to which there is a

measurable response.

• Life time is the time period over which the sensor can be used without signif-

icant deterioration in performance characteristics.

• Stability characterises the change in its baseline or sensitivity over a fixed

period of time.
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Biosensors can be broadly categorised as either bioaffinity devices (which are anal-

ysed in Chapter 3 of this thesis) or biocatalytic devices (considered in Chapter 2 and

4). In the bioaffinity devices, the analyte in the solution binds selectively to a re-

ceptor immobilised on the biosensor surface. In the biocatalytic devices, an enzyme

immobilised on the biosensor surface catalyses the target substance (refer to [2]).

1.1.1 Immunoassays

An example of bioaffinity sensors is provided by immunoassays, which are a group

of sensitive analytical tests that utilise very specific antibody-antigen complexes to

produce a signal that can be measured and related to the concentration of a compound

in solution (refer to [3]). Immunoassays also produce qualitative data in terms of the

presence or absence of a compound in the body. An antigen is a substance with the

ability to induce an immunological response, such as, for example, bacteria, viruses,

allergens, etc. An epitope, or antigenic determinant, is the part of the antigen that

is recognised by the immune system, specifically by antibodies (B-cells or T-cells).

Antibodies are the soluble proteins that circulate freely and exhibit properties that

contribute specifically to immunity and protection against foreign material (refer

to [4]). The part of an antibody that recognises an epitope is called a paratope.

Each antibody consists of four polypeptides - two heavy chains and two light chains

joined to form a Y shaped molecule as shown in Figure 1.1. The amino acid sequence

in the tips of the Y varies greatly among different antibodies and gives each antibody

its specificity for binding antigen.

4



Figure 1.1 – Antibody structure.

The production of antibodies is an important process in the use of immunoassays

because it is the antibody-antigen complexes that the device uses for its results. Im-

munoassays require the use of labelled materials in order to measure the amount of

antigen or antibody present. A label is a molecule that will react as part of the assay,

and in doing so produces a signal that can be measured in the solution. Examples of

labels include radioactive compounds or enzymes that cause a change of colour in a

solution or its fluorescence (refer to [3]).

The measurement of the analyte using labels is broadly categorised into compet-

itive and non-competitive methods. In competitive formats, unlabelled analyte

in the test sample is measured by its ability to compete with labelled antigen for a

limited number of antibody binding sites (refer to [5]). The unlabelled antigen blocks

the ability of the labelled antigen to bind because that binding site on the antibody

5



is already occupied. Thus, in a competitive immunoassay, less label measured in the

assay means more of the unlabelled (test sample) antigen is present. The amount of

antigen in the test sample is inversely related to the amount of label measured in the

competitive format: i.e., as one increases, the other decreases. Competitive assays will

be studied in Section 3.2 of this thesis. Non-competitive (sandwich) immunoassays

generally provide the highest level of assay sensitivity and specificity. This format

is referred to as a “sandwich” assay because the analyte is bound (sandwiched) be-

tween two highly specific antibody reagents. The reaction mixture typically includes

an excess of labelled antibody, so that all drug/metabolite is bound. The amount of

antibody-antigen complex is then measured to determine the amount of drug present

in the sample. The measurement of labelled analyte, usually antibody, is directly

proportional to the amount of antigen present in the sample. An analysis of simple

non-competitive assays is given in Section 3.1 and sandwich assays in Section 3.3.

Results can be either qualitative (for example, the pregnancy test provides a

“positive” or “negative” result), but most often, in mathematical modelling we will

be concerned with quantitative results, which are provided as numerical results

which give the compound concentration as a function of the (unlabelled) analyte in

the sample taking into consideration the competitive/non-competitive nature of the

device.

These results are compared with experimental measurements which are often pre-

sented in the form of calibration curves (also known as dose-response curves).

A calibration curve is constructed by measuring and plotting the biosensor response

6



against a wide range of initial analyte concentrations and used for future estimations

of the “dose” once the “response” is known.

In constructing mathematical models for antibody-antigen interactions, the fol-

lowing simplifying assumptions are usually made (refer to [3]):

• The antigen is present in a homogeneous form consisting of only one chemical

species.

• The antibody should be homogeneous.

• The antigen possesses one epitope for binding.

• The antibody has a single binding site that recognises one epitope of the antigen

with one affinity.

• Binding should be uniform with no positive or negative allosteric effects (the

binding of one antibody binding site should not influence the binding of the

other site).

• The separation of bound from free antigen must be complete.

• There should be no non-specific binding, such as to the walls of the reaction

vessel.

1.1.2 Enzyme biosensors

Enzymes are biocatalysts that, like all other catalysts, greatly enhance the rate of

specific chemical reactions, without being consumed in the process. These reactions

7



would still take place without enzymes - but it would take years rather than millisec-

onds! In the context of living organisms, enzymes perform a wide variety of vital

functions. For example, in the digestive systems of animals, enzymes known as amy-

lases and proteases break down large molecules (such as starch or proteins) into

smaller ones (such as maltose or glucose) so they can be more easily absorbed by

intestines.

Enzymes can often work together in a specific order creating so-called metabolic

pathways, where one enzyme catalyses a substrate and then passes the product on

to another enzyme for another catalytic reaction. A similar concept, the cascade re-

action is studied in Section 2.3 and Chapter 4. An interesting example of a metabolic

pathway in the human body is provided by alcohol metabolism. Most of the ethyl

alcohol ingested by a person is oxidised to acetaldehyde (a highly toxic substance)

by an enzyme called alcohol dehydrogenase (ADH). The product, acetaldehyde,

is then catalysed by a second enzyme, acetaldehyde dehydrogenase, to acetic acid,

which can then be more easily eliminated by the body. It has been conjectured that

genetic factors that might speed up the first reaction or slow down the second, could

make a person less likely to develop alcoholism since such factors would cause a large

buildup of acetaldehyde and make drinking very uncomfortable.

An enzyme has a specific three-dimensional shape, it is a large molecule, usually

much bigger than its corresponding binding substrate. Only a relatively small part

of the enzyme called its active site actually comes into contact with the substrate.

Part of the substrate fits into the active site and forms a temporary structure called

8



an enzyme-substrate complex. The substrate molecule is like the key that fits

the enzyme’s lock. The reaction takes place at the active site and this is where the

products are formed. As the products have a different shape from the substrate, they

no longer fit the active site and are repelled. The active site is then free to react with

more substrates. The active site of the enzyme may not exactly correspond to the

shape of the substrate, as the active site has a more flexible shape and therefore it is

able to mould itself around the substrate. This mechanism is referred to the induced

fit theory which is based on the lock and key theory shown in Figure 1.2. Refer

to [6] and [7] for a detailed explanation of the lock and key model and the induced

fit model.

Figure 1.2 – Enzyme-substrate interactions.

An enzyme biosensor consists of an enzyme as a biological sensing element and

a transducer, which may be amperometric, potentiometric, conductimetric, optical,

calorimetric, etc. Enzyme biosensors have been applied to detecting various sub-

strates, which are selectively oxidised or reduced in enzyme-catalysed processes de-

pending on the nature of the substrates and enzymes used (oxidases or reductases) to
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construct a sensor. Most enzyme biosensors modelled in this thesis use amperometric

techniques (refer to [8]). Amperometry is the determination of the intensity of the

current crossing an electrochemical cell under an imposed potential. This intensity is

a function of the concentration of the electrochemically active species in the sample.

Oxidation or reduction of a species is generally performed by a working electrode, and

a second electrode acts as a reference. For example, a glucose-sensitive biosensor that

uses glucose oxidase could detect either the H2O2 produced by the enzymatic reac-

tion, or the amount of oxygen consumed during the oxidation of glucose (refer to [9]).

For the repeated use of enzymes, cells, antibodies, and other biologically active agents

in analytical devices, numerous techniques for fixing them to carrier materials have

been developed. Immobilisation, particularly of enzymes, brings about a number

of further advantages for their application in analytical chemistry:

1. In many cases the enzyme is stabilised.

2. The enzyme-carrier complex may be easily separated from the sample, i.e., the

latter is not contaminated by the enzyme preparation.

3. The stable and largely constant enzyme activity renders the enzyme an integral

part of the analytical instrument (refer to [10]).

A mathematical study of a biosensor employing two immobilised enzymes is pre-

sented in Chapter 4.
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1.2 Elementary biochemistry concepts

1.2.1 Measuring concentrations

Any quantitative study of solutions requires that we know the amount of solute dis-

solved in a solvent or the concentration of the solution. Chemists employ several

different concentration measures, each one having advantages and limitations. The

use of the solution generally determines how we express its concentration. There

are four concentration units defined: percent by weight, mole fraction, molarity, and

molality. The concentration unit used in this thesis is molarity (M) (refer to [11]).

A mole is the amount of substance that contains as many atoms, molecules, ions,

or any other entities as there are atoms in exactly 12g of carbon-12. It has been

determined experimentally that the number of atoms per mole of carbon-12 is

NA = 6.0221367× 1023 mol−1,

which is known as the Avogadro constant. The molar mass of a substance is the

mass in grams or kilograms of one mole of the substance. In many calculations, molar

masses are more conveniently expressed as kg mol−1 (refer to [11]).

Molar concentration or molarity is defined as the number of moles of solute

dissolved in one litre (L) of solution; that is,

molarity =
number of moles of solute

L solution

Thus, molarity has the units moles per litre (mol L−1). By convention, we use square

brackets [ ] to represent molarity. It is one of the most commonly employed concen-
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tration measures. The advantage of using molarity is that it is generally easier to

measure the volume of a solution using precisely calibrated volumetric flasks than to

weigh the solvent. Its main drawback is that it is temperature dependent, because the

volume of a solution usually increases with increasing temperature. Another draw-

back is that molarity does not tell one the amount of solvent present (refer to [11]).

A solution of concentration 1 mol/L is also denoted as 1 molar (1M). In numerical

simulations throughout this thesis we often use the International System units of

moles/m3 and note that

1 mol/m3 = 10−3 M = 1 mM.

1.2.2 Basic chemical kinetics

The rate of a reaction is expressed as the change in reactant concentration with time.

Consider a simple reaction of

X −→ Y. (1.1)

If we denote the concentrations of reactant X at time t0 and t1 by X0 and X1 re-

spectively, then the rate of the reaction (1.1) over the time interval t1 − t0 can be

expressed as

X1 −X0

t1 − t0
=

∆X

∆t
,

however, since X1 < X0, in order to keep the reaction rate as a positive quantity, we

introduce a minus sign which gives

rate of reaction = −∆X

∆t
.

12



The reaction rate can also be expressed in terms of the appearance of the product,

Y , as

rate of reaction =
Y1 − Y0
t1 − t0

=
∆Y

∆t
= −∆X

∆t
.

The rates of chemical reactions almost always obey the Law of Mass Action. Al-

though the direct proportionality to concentration is sometimes modified, this law

states that

The rate of reaction is directly proportional to the product of

the concentrations of the reactants.

The proportionality constant is known as the rate constant for the reaction in

question. For particular sorts of reaction this constant may be given a rather more

descriptive name, for example, the association rate constant for a reaction involving

association of two molecules, the dissociation rate constant for the reverse reaction.

The rate constant is a measure of how fast a reaction takes place (for a specified

concentration), or, more precisely, it indicates how frequently the reaction occurs

(hence it has the units s−1). At the level of single molecules the rate constant is a

measure of the probability (per unit time) that the reaction will happen in the next

time interval. Throughout this thesis it is assumed that rate “constants” are indeed

constant in the sense that they change neither with time nor with reactant concentra-

tion. However, in practice, the value of a rate constant may depend on variables such

as temperature, pressure, or electric field (e.g., on membrane potential) (refer to [12]).
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In what follows, mathematical descriptions in the form of differential equations

are given for the law of mass action in the context of several simple reactions.

First-order reactions

The simplest possible reaction involves the irreversible conversion of a substance X

to Y as seen in (1.1). The law of mass action can be written as

dx

dt
= −kx,

where k is the rate constant of the reaction, and x denotes the concentration of the

reactant X. This is a first-order reaction since its rate only depends on the first power

of the concentration. In reality, most reactions are not as simple as irreversible reac-

tions since, with accumulation of product, the reverse reaction becomes important.

These reactions are named reversible reactions, where the equilibrium does not lie far

to one side. For example,

X
k1
�
k−1

Y, (1.2)

where k−1 is the dissociation rate constant of the reaction (1.2). It has the rate

equation of

dx

dt
= −k1x+ k−1y = −dy

dt
,

where y denotes the concentration of Y .

Second-order reactions

Many biochemical reactions are not of first-order, but are of second or higher order.

Simple examples of second-order irreversible reactions are

2X
k−→Y
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and

X + Y
k−→Z.

The rate of such reactions is proportional to the second power of the concentration,

or product of concentrations, given by

dy

dt
= −1

2

dx

dt
= kx2

and

dz

dt
= −dx

dt
= −dy

dt
= kxy

respectively, where z denotes the concentration of Z. Similarly, a simple example of

second-order reversible reactions is

X + Y
k1
�
k−1

Z,

which has the corresponding rate equation of

dz

dt
= −dx

dt
= −dy

dt
= k1xy − k−1z.

Note that, reaction rates are expressed in mole/liter/second (Ms−1). The first-order

rate constants have the dimension of time−1 (s−1) and the second-order rate constants

have the dimension of concentration−1× time−1 (M−1s−1); zero-order rate constants

have the dimension of concentration× time−1 (Ms−1) (refer to [13]).

1.3 Mathematical modelling

A mathematical model of a physical law is a description of that law in the lan-

guage of mathematics. Such models make it possible to use mathematical methods
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to deduce results about the physical world that are not evident or have never been

observed. For example, the possibility of placing a satellite in orbit around the Earth

was deduced mathematically from Issac Newton’s model of mechanics nearly 200 years

before the launching of Sputnik, and Albert Einstein (1879-1955) gave a relativistic

model of mechanics in 1915 that explained a precession in the perihelion of the planet

Mercury that was not confirmed by physical measurement until 1967 (refer to [14]).

We often need to develop the quantitative context for a particular problem and it

can involve the formation of a mathematical model. Mathematical models enable one

to furnish an abstract analytical structure for a real world problem. This abstraction

of the specific situation and a means to generalise to a broader range of problems.

These models of reality constitute an important part of mathematical analysis. Thus,

the development and application of mathematical models that reflect real world sit-

uations connects to various scientific areas. Analysis of real world problems often

requires application of the relevant data to a mathematical model.

Mathematical modelling is a technique which builds on a firm understanding of

the basic terminology, notation, and methodology of mathematics. It involves the

following steps. First, the problem or objective of the study must be stated in a

way that reflects accurately the needs of the organisation. The second step includes

finding data relevant to the problem which can be applied to the model, and often

includes the scaling of these measurements. This process often yields a more realistic

model, the results of which are more easily comprehended. The third step in the mod-

elling process is the development of a mathematical model that addresses the concerns
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of the organisation. In developing the mathematical model, the primary goal is to

provide a quantitative structure for analysing a large group of possible situations.

Model formulation frequently includes the selection of the appropriate mathematical

functions to explain the phenomenon. In the fourth step, the data collected at the

second step are applied to the mathematical model to obtain quantitative results.

Step five involves the interpretation of the analysis completed in the previous step.

It is very important that the results are interpreted in a clear and comprehensible

way. Next, the results of the analysis are verified as to their applicability to a wide

range of possibilities for the organisation. The ability of a model to predict accurately

is fundamental to verification. If the model is verified as useful to the organisation,

then it will be implemented. After implementation, use of the model may lead to

additional applications for similar models, adjustments and refinements of the model,

or eventual rejection of the model if it is found inapplicable to function.

Mathematical models and the modelling process serve as learning aids by empha-

sising the applied aspects of mathematical analysis.

Non-dimensionalisation and scaling

After a mathematical model of a continuous physical system, which may consist of,

say, a set of differential equations and associated initial and boundary conditions, has

been created, we try to obtain the solutions for this model. There are two kinds of

solutions: exact analytical solutions and approximate solutions. Exact solutions can

be obtained if we can solve an equation analytically, for example be able to solve a

linear equation exactly. Approximate solutions can be obtained by applying some
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type of approximation to an equation or a system of equations.

In order to obtain an approximate solution, sometimes, the first thing we want to

do is to non-dimensionalise the system. Since practically useful models are often very

difficult to analyse rigorously, the only way to simplify the model is to apply some

kind of asymptotic reduction, based on the idea that we can neglect certain terms

which are small compared with others in the system.

In general, after the process of non-dimensionalisation, we end up with an equa-

tion or equations with dimensionless variables, rather than equations with a large

number of physical parameters and variables all with dimensional units. The art of

non-dimensionalisation lies in the choice of scales. There is no standard way to do

the scaling - the main principle is to balance the terms in the equation by choosing

self-consistent scales, since the purpose is to make the largest dimensionless param-

eter numerically of order one in the attained properly scaled equations. Note that

the process of rescaling may be necessary if the scaling causes inconsistency of the

differential equation. Normally, to check for the consistency of the system, we use the

approximate solution just obtained to evaluate the neglected terms, so as to ensure

that they are indeed relatively small.

In practice, it is not always possible to choose all the dimensionless parameters to

be O(1), but it is usually best to try and choose the largest dimensionless parameter

to be O(1). For a more detailed reference on scaling refer to [15] and [16].
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1.4 Outline of thesis

This thesis investigates analytical methods applicable to mathematical models arising

from biosensor research and is motivated by a collaboration with the National Cen-

tre for Sensor Research (NCSR) and the Biomedical Diagnostics Institute (BDI) at

Dublin City University. Several models of varying complexity are proposed in answer

to experimental problems, usually concerned with optimising design parameters for

biosensors. One main concern is to simplify the models as much as possible, without

the loss of important information from the original problem.

Chapter 1 provides some background material which includes the motivation for

studying biosensors as well as an elementary description of their structure and func-

tionality. This chapter also includes a simple introduction to chemical kinetics and

describes antibody-antigen interactions (which are fundamental to bioaffinity devices)

and enzyme-substrate systems, which form the basis of biocatalytic devices.

Chapter 2 reviews the well-known Michaelis-Menten kinetics scheme for enzyme-

substrate reactions together with a detailed mathematical analysis, which uses dy-

namical systems and perturbation theory methods. A comparison is given between

the classical formulation, which is used in most mathematical models of enzyme-

substrate interactions in the literature, and a generalised formulation which elimi-

nates a standard simplifying assumption of irreversibility in the model. This chapter

also introduces the concept of a bi-enzyme cascade reaction, which is the basis for

the problem studied in Chapter 4, together with its mathematical formulation.
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In Chapter 3 we give examples and analyse problems where modelling of transport

phenomena only affect the transient behaviour of the system and has no effect on the

final steady states of the species involved. It is often the case that the equilibrium

values are the only piece of information required for the solution of a practical prob-

lem (although, sometimes, time to reach equilibrium is the real issue) and in such

situations it is important to identify the conditions under which a complex partial dif-

ferential equations model can be replaced with a simpler one. Such problems as these

are related to immunosensors, a class of bioaffinity devices, and involve mathematical

models of antibody-antigen interactions. We analyse three types of immunoassays:

the direct assay, the competitive assay (which are analysed with and without diffusion

effects) and the sandwich assay.

Chapter 4 studies a flow injection analysis of a bi-enzyme electrode, with the

aim of finding the ratio of the two enzymes involved which yields the highest current

amplitude. A detailed comparison of three mathematical models (each neglecting dif-

ferent aspects of the biosensor functionality) is given, and the best modelling strategy

under various physical conditions is investigated.

Finally, a summary of the work from the previous chapters is given, and further

suggestions on modelling biosensor problems are made.
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Chapter 2

Enzyme-Substrate Kinetics: A

Mathematical Analysis of The

Michaelis-Menten Model

This chapter introduces the Michaelis-Menten model, one of the most widely used

mathematical models in biochemical kinetics. This simple model is expressed as a

system of ordinary differential equations which is analysed using dynamical systems

and perturbation theory methods. The model is compared with a generalised kinetic

scheme in which the second step of the reaction is reversible. Finally, the last sec-

tion of this chapter provides an introduction to cascade schemes consisting of two

catalytically linked enzyme-substrate reactions, which forms the basis of the problem

presented in Chapter 4.
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2.1 Standard Michaelis-Menten kinetics

2.1.1 Introduction

Enzyme reactions do not follow the law of mass action directly. The rate of the re-

action only increases to a certain extent as the concentration of substrate increases.

The maximum reaction rate is reached at high substrate concentrations due to en-

zyme saturation. This is in contrast to the law of mass action, which states that the

reaction rate increases as the concentration of substrate increases (refer to [17]).

The simplest model that explains the kinetic behaviour of enzyme reactions is

the classic 1913 model of Michaelis and Menten (refer to [18]) which is widely used

in biochemistry for many types of enzymes. The Michaelis-Menten model is based

on the assumption that the enzyme binds the substrate to form an intermediate

complex which then dissociates to form the final product and release the enzyme

in its original form. (This mechanism was also explained in Section 1.1.2.) The

schematic representation of this two-step process is given by

E + S
k1
�
k−1

C
k2−→E + P, (2.1)

where k1, k−1 and k2 are constant parameters associated with the rates of the reac-

tion. The double arrow symbol � indicates that the reaction is reversible while the

single arrow → indicates that the reaction is irreversible. Note that it is generally

assumed that the second step of the reaction in (2.1) is irreversible. In reality, this is

not always the case. Typically, reaction rates are measured under the condition that

the product is continually removed, which prevents the reverse reaction of the second
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step from occurring effectively. We will consider the possibility of a reversible second

step of the reaction in Section 2.2.

We denote the concentrations of the chemical species in reaction (2.1) by their

corresponding lower case letters, that is

e = [E], s = [S], c = [C], p = [P ],

each being functions of time, where [ ] traditionally denotes concentrations. Based

on the principles of mass action and conservation of mass, the kinetic behavior of the

chemical species is described by the following system of nonlinear ordinary differential

equations, namely



de

dt
= −k1es+ (k2 + k−1)c (2.2a)

ds

dt
= −k1es+ k−1c (2.2b)

dc

dt
= k1es− (k2 + k−1)c (2.2c)

dp

dt
= k2c. (2.2d)

If the reaction is initiated at time t = 0 in a medium with e = e0, s = s0, then we

require the initial conditions

e(0) = e0, s(0) = s0, c(0) = 0, p(0) = 0.

Note that

de

dt
+
dc

dt
= 0

in system (2.2), and hence e+ c = e0. This conservation law will be used extensively

throughout our models, which expresses the fact that the enzyme only exists in two
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forms during the reaction: free enzyme and complex-bound enzyme. We can obtain

a second conservation law s+ c+ p = s0 from system (2.2), from the fact that

ds

dt
+
dc

dt
+
dp

dt
= 0.

Finally, we remark that, under certain experimental conditions, we can assume that

the substrate concentration is kept constant for all times. (For example, the problem

presented in Chapter 4 deals with the flow injection analysis of an enzymatic reaction,

where the substrate is continually pumped into the system.) If we allow s(t) = s0,

for all t, system (2.2) reduces to a single equation

dc

dt
= k1(e0 − c)s0 − (k2 + k−1)c,

with c(0) = 0 and it is easy to see that

lim
t→∞

c(t) = c∗ and lim
t→∞

e(t) = e0 − c∗,

where

c∗ =
e0

1 + K1
m

s0

.

In which

K1
m =

k−1 + k2
k1

(2.3)

is the well known Michaelis constant. The second conservation law (involving s

and p) does not hold for this system and equation (2.2d) shows that

lim
t→∞

p(t) =∞,

although the rate of formation of product dp/dt will eventually approach an equilib-

rium.
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2.1.2 Equilibrium and stability analysis

Note that equation (2.2d) yields the product concentration, p, once we have deter-

mined the complex concentration, c, so it can be uncoupled from the rest of the

equations in system (2.2). Thus we only need to consider the first three equations of

the system. Applying the conservation law e + c = e0, system (2.2) reduces to only

two equations, which are given in terms of the substrate concentration, s, and the

complex concentration, c, namely


ds

dt
= −k1(e0 − c)s+ k−1c (2.4a)

dc

dt
= k1(e0 − c)s− (k2 + k−1)c, (2.4b)

with initial conditions s(0) = s0 (2.5a)

c(0) = 0. (2.5b)

The equilibrium analysis carried out on the simplified system (2.4) gives the following

equilibrium solutions for the different reactants, with

e∗ = e0, s∗ = 0, c∗ = 0,

where e∗, s∗ and c∗ denote the equilibrium values of e, s and c respectively. The

equilibrium solution for the product concentration, p, can be obtained from the second

conservation law s + c + p = s0, which yields p∗ = s0. The long-term behaviour of

these functions is illustrated in Figure 2.1, where we see that the enzyme concentration

returns to its initial value while the substrate concentration is depleted and goes to

zero. Also, the concentration of the complex increases rapidly during the short initial
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period of the reaction (since the enzyme quickly reacts with the substrate), but then

depletes and goes to zero. This figure is produced by using MAPLE, so as the rest of

the figures in this thesis.

Figure 2.1 – Relative concentrations of reactants and product of the standard

Michaelis-Menten kinetics. Typical values for constants used in this simulation are:

k1 = 102 m3/mol · s, k−1 = 10−1 m3/mol · s, k2 = 10 m3/mol · s, e0 = 1 mol/m2 and

s0 = 1 mol/m3.

How can we tell if the equilibrium point (s∗, c∗) is stable or unstable? An equilib-

rium is considered stable if the system always returns to it after small disturbances,

and considered unstable if the system moves away from the equilibrium after small
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disturbances. In general, unstable equilibrium solutions are not of much interest for

practical purposes (refer to [19]).

In the stability analysis of the standard Michaelis-Menten model, we consider the

simplified system (2.4), and we let

f(s, c) = −k1(e0 − c)s+ k−1c, (2.6)

g(s, c) = k1(e0 − c)s− (k2 + k−1)c. (2.7)

Then the partial derivatives of equations (2.6) and (2.7) are calculated and evaluated

at the equilibrium state to form the Jacobian matrix

 ∂f(s∗,c∗)
∂s

∂f(s∗,c∗)
∂c

∂g(s∗,c∗)
∂s

∂g(s∗,c∗)
∂c

 =

 −k1(e0 − c∗) k−1 + k1s
∗

k1(e0 − c∗) −k1s∗ − k2 − k−1



which yields the characteristic equation

λ2 + (k1(e0 − c∗ + s∗) + k2 + k−1)λ+ k1k2(e0 − c∗) = 0.

From this quadratic equation, we can easily see that the two eigenvalues λ1 and λ2

satisfy the conditions

λ1 + λ2 = −(k1(e0 − c∗ + s∗) + k2 + k−1) < 0,

and

λ1λ2 = k1k2(e0 − c∗) > 0,

since e0 − c∗ > 0. The fact that the sum of the two eigenvalues is negative, and their

product is positive implies that we have two negative eigenvalues. The equilibrium
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solution of the standard Michaelis-Menten model is therefore, linearly stable.

We can also show that the equilibrium point (s∗, c∗) = (0, 0) is globally stable, and

hence attracts all the phase plane trajectories of system (2.4). We start by showing

that the positive quadrant

Γ =
{

(s, c) ∈ R2 : s ≥ 0, c ≥ 0
}

is a positive invariant region for system (2.4) (which means that trajectories entering

this region cannot leave it in forward time). Hence, a solution with a positive initial

condition will stay positive for all t ≥ 0. This is easily done if we show that the flow

points inwards on all boundaries of the region Γ. In particular, we have to check that

ds

dt
≥ 0, when s = 0, c ≥ 0,

and

dc

dt
≥ 0, when c = 0, s ≥ 0.

These conditions can be easily verified in system (2.4). Then we construct a Lyapunov

function for the system as

V : Γ ⊂ R2 → R, V (s, c) = s+ c. (2.8)

As described in [20], a Lyapunov function must satisfy the following properties:

1. V (s, c) > 0 for all (s, c) 6= (s∗, c∗) and V (s∗, c∗) = 0;

2. V̇ (s, c) < 0 for all (s, c) 6= (s∗, c∗).
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The first property follows easily from the positivity of s and c proved above, while

the second property can be established by noting from system (2.4) that

V̇ (s, c) = ṡ+ ċ = −k2c < 0, if c 6= c∗ = 0.

Thus, the conditions above imply that the equilibrium point (s∗, c∗) is globally asymp-

totically stable.

2.1.3 The quasi-steady-state approximation

In the original Michaelis-Menten model (refer to [18]), it was assumed that the

substrate concentration, s, is assumed to be in instantaneous equilibrium with the

enzyme-substrate complex concentration, c, which gives

k1es = k−1c.

Then by using the initial condition e+ c = e0, we find that

c =
e0s

Ks + s
,

where Ks = k−1/k1. If we let v denote the velocity of the reaction, then the rate at

which the product is formed is given by

v =
dp

dt
= k2c =

k2e0s

Ks + s
=

vmaxs

Ks + s
,

where

vmax = k2e0 (2.9)

is the maximum reaction velocity, attained when all the enzyme is bounded with the

substrate (refer to [17]).
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An alternative analysis of an enzymatic reaction was proposed by Briggs and Hal-

dane in [21], and forms the basis for most modern descriptions of enzyme reactions.

Their assumption is that the rates of formation and breakdown of the complex are

essentially equal at all times, except at the beginning of the reaction, when the forma-

tion of the complex is very fast. Thus, we have dc/dt ≈ 0. It is simple to determine

the velocity of the reaction with this assumption (refer to [17]). Thus, from (2.4b) we

obtain the complex concentration, c, in terms of the substrate concentration, s, as

c =
k1e0s

k−1 + k2 + k1s
=

e0s

K1
m + s

. (2.10)

For a detailed explanation, refer to [22], [23] and [24].

This gives an expression for c but it does not satisfy the initial conditions specified

before, namely c(0) = 0 and s(0) = s0, as we get

c(0) =
e0s0

s0 +K1
m

6= 0.

However, equation (2.10) is a reasonable approximation of the equilibrium value of

the complex concentration which is sufficient for many experimental situations, but

crucially not for all.

If we insert equation (2.10) into equation (2.4a), we obtain

ds

dt
≈ −k2c = − k2e0s

K1
m + s

. (2.11)

Since the enzyme is traditionally considered to be present in small amounts compared

with the substrate the assumption is that the substrate concentration effectively does
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not change during this initial transient stage. In this case, the (approximate) dy-

namics are governed by equation (2.11) with the initial condition s(0) = s0. This is

known as the quasi-steady-state approximation.

The quasi-steady-state approximation gives an expression for the velocity of the

reaction which is useful for practical applications. Equation (2.11) implies that

v =
dp

dt
= −ds

dt
=

k2e0s

K1
m + s

=
vmaxs

K1
m + s

, (2.12)

where vmax andK1
m are defined in equations (2.9) and (2.3) respectively. The Michaelis

constant K1
m can be easily determined from experimental data if we notice that, set-

ting

s = K1
m,

equation (2.12) implies

v =
vmax

2
.

This allows us to interpret K1
m as the substrate concentration at which the velocity

of the reaction is half-maximal and it indicates how efficiently an enzyme selects its

substrate and converts it to product. The lower the value of K1
m, the more effective

the enzyme is at low substrate concentrations and K1
m is unique for each enzyme-

substrate pair. Consequently, K1
m values are useful for comparing the activities of

two enzymes that act on the same substrate or for assessing the ability of different

substrates to be recognised by a single enzyme. For practical purposes, it is also

useful to know how fast the enzyme operates after it has selected and bound its

corresponding substrate; that is, how fast does the complex proceed to the product
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and free enzyme? This property is characterised by the catalytic constant

kcat =
vmax
e0

,

and in the Michaelis-Menten scheme, we have

kcat = k2.

Thus, kcat is the rate constant of the reaction when the enzyme is saturated with sub-

strate (i.e., when c ≈ e0, v0 ≈ vmax, where v0 is the initial velocity of the reaction);

we have already seen this relationship in equation (2.9). kcat is also known as the

enzyme’s turnover number because it is the number of catalytic cycles that each

active site undergoes per unit time. It is a first-order rate constant and therefore has

units of s−1 (refer to [17]).

Solving equation (2.11) with the initial condition s(t) = s0 we obtain an implicit

solution for s, namely

s(t) +K1
m ln s(t) = −k2e0t+ s0 +K1

m ln s0. (2.13)

In what follows, we show that an explicit solution for s can also be found in terms

of the Lambert W function 1. This function is defined as the inverse of the function

f where

f : C → C, f(w) = wew.

The Lambert W function satisfies

z = W (z)eW (z), ∀ z ∈ C (2.14)

1Lambert W function, which is named after Johann Heinrich Lambert, is also called the

Omega function or product log.
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and by implicit differentiation, we can also show that W satisfies the differential

equation

z(1 +W )
dW

dz
= W, for z 6= −1

e

or

dW

dz
=

W

z(1 +W )
. (2.15)

Now we need to write equation (2.11) into a form similar to (2.15). We let s = SK1
m,

then substitute it into (2.11) to obtain

K1
m

dS

dt
= −k2e0S

S + 1
,

which gives

(S + 1)
dS

dt
= −k2e0S

K1
m

. (2.16)

Now if we let S(t) = W (z(t)) and substitute this into (2.16), we obtain

(W (z) + 1)
dW

dz
z
′
(t) = −k2e0

K1
m

W (z).

Also, from equation (2.15), we get

z
′
(t) = −k2e0

K1
m

z(t),

for which the general solution is

z(t) = e
− k2e0

K1
m
t+C

,

where C is an arbitrary constant. Hence,

s = SK1
m = K1

mW (z(t)) = K1
mW

(
e
− k2e0

K1
m
t+C
)
. (2.17)
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Then, by using the initial condition s(0) = s0, we obtain

W−1(
s0
K1
m

) = eC . (2.18)

If we let z = W−1(s0/K
1
m), and together with equation (2.14), we get

W−1(
s0
K1
m

) =
s0
K1
m

e
s0
K1

m . (2.19)

Now equate equations (2.18) and (2.19) to obtain

eC =
s0
K1
m

e
s0
K1

m . (2.20)

Substituting equation (2.20) into (2.17), we obtain

s(t) = K1
mW

(
s0
K1
m

e
s0−k2e0t

K1
m

)
.

We can now use the solution obtained for s to find explicit solutions for c, e and p as

follows:

c(t) =
e0s

s+K1
m

=

e0W

(
s0
K1

m
e

s0−k2e0t

K1
m

)
1 +W

(
s0
K1

m
e

s0−k2e0t

K1
m

) , (2.21)

e(t) = e0 − c =
e0

1 +W

(
s0
K1

m
e

s0−k2e0t

K1
m

) ,

p(t) = s0 − s− c = s0 −W
(
s0
K1
m

e
s0−k2e0t

K1
m

)K1
m +

e0

1 +W

(
s0
K1

m
e

s0−k2e0t

K1
m

)
 .

The exact solution obtained for the complex concentration, c, is plotted in Figure

2.2, and is compared with a numerical solution obtained by integrating system (2.4).

The reason we are interested in plotting the complex concentration, c, is due to

that the amperometric signal is measured as the time evolution of dp/dt (the rate of
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formation of the product) on the electrode. As remarked before, the quasi-steady-

state assumption does not lead to a mathematically correct solution for c, due to its

failure to satisfy the initial condition c(0) = 0. This assumption is, however, widely

used in biochemistry to approximate the reaction rate after the initial transient period

is over.

Figure 2.2 – Numerical solution of the Michaelis-Menten model (2.4) (continuous green

line) versus the exact solution of the quasi-steady-state approximation of equation (2.21)

(red points).
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2.1.4 Perturbation analysis

The quasi-steady-state approximation dc/dt ≈ 0 needs to be justified mathematically

by non-dimensionalising system (2.4) and by identifying the effect a small parame-

ter has on the system. The standard dimensionless variables in modelling enzyme-

substrate kinetics are

ē =
e

e0
, s̄ =

s

s0
, c̄ =

c

e0
, p̄ =

p

s0
, t̄ =

t

t0
, where t0 =

1

k1e0
,

(refer to, for example [25]), which lead to the non-dimensional system


ds

dt
= −(1− c)s+ αc (2.22a)

ε
dc

dt
= (1− c)s− kc, (2.22b)

for simplicity, bars are omitted on all the non-dimensional variables. The values of

the new parameters introduced by the non-dimensionalisation are:

α =
k−1
k1s0

, ε =
e0
s0
� 1, k =

K1
m

s0
. (2.23)

In non-dimensional form, the initial conditions are:

e(0) = 1, s(0) = 1, c(0) = 0, p(0) = 0,

and the conservation law is:

e+ c = 1.

It is often assumed that the parameter ε is small as a reflection of the fact that the

remarkable catalytic effectiveness of enzymes means that very small concentrations

are required in order to convert the substrate, hence, e0 � s0. System (2.22) is a
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singularly perturbed initial value problem and we now see that the quasi-steady-state

approximation consists of neglecting the term εdc/dt in the second equation. How-

ever, in doing so we are basically ignoring the boundary layer which exists near t = 0

(a region where c(t) grows very fast) and the quasi-steady-state approximation only

gives us the outer solution. A rigorous asymptotic analysis of this boundary layer

will be carried out in Section 2.2.3 for the reversible Michaelis-Menten model.

A different choice of non-dimensionalisation is introduced in [26], where it is argued

that, since there are practical situations in which e0/s0 may not be negligible, a more

appropriate choice for the small parameter ε should follow by requiring that:

1. The duration of the pre-steady-state period tc is much shorter than the charac-

teristic time for substrate change, ts.

2. The relative change |∆s/s0| in the substrate concentration during the pre-

steady-state period is small.

The authors of [26] makes the approximation s ≈ s0 in equation (2.4b), which

yields the solution

c(t) = ĉ
(
1− eκt

)
,

where

ĉ =
e0s0

K1
m + s0

, κ = k1(s0 +K1
m).

This gives the estimate tc ≈ 1/κ. The duration of the second timescale, ts, is approx-

imated by the formula

ts ≈
smax − smin
|s′(t)|max

=
K1
m + s0
k2e0

.
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Hence, the condition tc � ts yields

k2e0
k1
� (s0 +K1

m)2.

A stronger inequality can be obtained from condition 2 above by writing∣∣∣∣∆ss0
∣∣∣∣ ≈ tc

s0

∣∣∣s′(t)∣∣∣
max

=
e0

K1
m + s0

,

and hence

e0 � K1
m + s0.

The new choice for the small parameter of this problem should therefore be

ε̂ =
e0

K1
m + s0

� 1,

and, choosing the non-dimensional variables

s̄ =
s

s0
, c̄ =

c

ĉ
, t̄ =

t

tc
,

gives the boundary layer problem which is governed by the equations


ds̄

dt̄
= ε̂

(
−s̄+

ĉ

e0
c̄s̄+

k−1ĉ

k1e0s0
c̄

)
(2.24a)

dc̄

dt̄
=
tck1s0e0

ĉ
s̄− tck1s0c̄s̄− tc(k2 + k−1)c̄, (2.24b)

with s̄(0) = 1, c̄(0) = 0. After the transition period is over, we introduce a new

dimensionless time by putting

t̃ =
t

ts
,

and the resulting outer problem is


ds̄

dt̃
= −tsk1e0s̄+ tsk1ĉc̄s̄+

tsk−1ĉ

s0
c̄ (2.25a)

ε̂
dc̄

dt̃
=
tsk1s0e0

ĉ
s̄− tsk1s0ĉc̄s̄− ts(k2 + k−1)c̄. (2.25b)
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A lengthy perturbation theory analysis is provided in [26], so no further details will

be given here.

2.2 Reversible Michaelis-Menten kinetics

The typical Michaelis-Menten reaction scheme (2.1) assumes that the complex dis-

sociation step is irreversible. In reality, there will be some degree of reversibility in

product formation in many chemical reactions. Thus, a more realistic model for the

Michaelis-Menten kinetics would be

E + S
k1
�
k−1

C
k2
�
k−2

E + P, (2.26)

where k−2 is another reaction rate constant. The dynamics of the system are de-

scribed by the following system of nonlinear differential equations by using the law

of mass action:



de

dt
= −k1es+ (k2 + k−1) c− k−2ep (2.27a)

ds

dt
= −k1es+ k−1c (2.27b)

dc

dt
= k1es− (k2 + k−1) c+ k−2ep (2.27c)

dp

dt
= k2c− k−2ep. (2.27d)

The same conservation laws and initial conditions apply here as for the standard

Michaelis-Menten model in Section 2.1.1.
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2.2.1 Equilibrium and stability analysis

In system (2.27), by using the conservation laws e + c = e0 and s + c + p = s0, the

system can be reduced to the following two independent equations in terms of s and

c, namely


ds

dt
= −k1 (e0 − c) s+ k−1c (2.28a)

dc

dt
= k1 (e0 − c) s− (k2 + k−1) c+ k−2 (e0 − c) (s0 − c− s) . (2.28b)

At equilibrium, we obtain the quadratic equation in terms of c from system (2.28) as

c2 −
(
k2
k−2

+ e0 + s0 +
k−1
k1

)
c+ e0s0 = 0. (2.29)

Note that, unlike the standard Michaelis-Menten model, there are now two possible

values for the equilibrium solution of c. If we let c1 and c2 denote the two roots of

equation (2.29), we have the relations

c1 + c2 =
k2
k−2

+ e0 + s0 +
k−1
k1

> 0, and c1c2 = e0s0 > 0.

Thus, we conclude that equation (2.29) has two positive roots, and it can be easily

seen that c1 < e0 < c2. Hence, the root that is less than e0 is in fact the only possible

value for the equilibrium solution. However, solving equation (2.29) directly yields

awkward formulae for the equilibrium values of c, s and p, and so, in Section 2.2.3,

we are going to discuss an asymptotic approximation of this equilibrium solution and

its dependence on the system parameters. Figure 2.3 shows the long-term behaviour

of the species in the reversible model.
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Figure 2.3 – Relative concentrations of reactants and product of the reversible

Michaelis-Menten kinetics. Typical values for constants used in this simulation are:

k1 = 102 m3/mol ·s, k−1 = 10−1 m3/mol ·s, k2 = 10 m3/mol ·s, k−2 = 10−2 m3/mol ·s,

e0 = 1 mol/m2 and s0 = 1 mol/m3.

In the reversible Michaelis-Menten model, even without specifying explicit ex-

pressions for the equilibrium values c∗, e∗, s∗ and p∗, we can still carry out the linear

stability analysis of the equilibrium values. The stability analysis is carried out on

system (2.28), and by using the same technique as was used in Section 2.1.2, we ob-

tain the Jacobian matrix

 −k1 (e0 − c∗) k−1 + k1s
∗

(k1 − k−2) (e0 − c∗) 2k−2c
∗ − k−2 (e0 + s0 − s∗)− k1s∗ − k2 − k−1
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which yields the following characteristic equation

λ2 + ((k1 + k−2)e
∗ + k−2p

∗ + k1s
∗ + k2 + k−1)λ

+e∗ (k1k−2e
∗ + k1k−2p

∗ + k1k2 + k−1k−2 + k1k−2s
∗) = 0.

If we let λ1 and λ2 denote the two eigenvalues, by using the conservation laws e0−c∗ =

e∗ and s0 − s∗ − c∗ = p∗ at equilibrium, we obtain

λ1 + λ2 = − ((k1 + k−2)e
∗ + k−2p

∗ + k1s
∗ + k2 + k−1) < 0,

and

λ1λ2 = e∗ (k1k−2e
∗ + k1k−2p

∗ + k1k2 + k−1k−2 + k1k−2s
∗) > 0.

Therefore, we can see again the two eigenvalues are both negative. This implies that

the equilibrium solution of the reversible Michaelis-Menten model is linearly stable.

Global stability can also be established by using a Lyapunov function similar to that

of Section 2.1.2.

2.2.2 Non-dimensional model and approximate values of the

equilibrium solution

We use the same dimensionless quantities as were used in the standard Michaelis-

Menten model in Section 2.1.4 and obtain the following non-dimensional form of the

reversible Michaelis-Menten model, where bars are again omitted for simplicity,
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ds

dt
= − (1− c) s+ αc (2.30a)

ε
dc

dt
= (1− c) s− kc+ λ (1− c) (1− s− εc) , (2.30b)

where α, ε and k are the same as defined in equation (2.23) and

λ =
k−2
k1
� 1.

The system is supplemented by the non-dimensional initial conditions

e(0) = 1, s(0) = 1, c(0) = 0, p(0) = 0,

and the non-dimensional conservation laws

e+ c = 1 (2.31a)

s+ εc+ p = 1. (2.31b)

In this section, we are going to find an approximate equilibrium value for c as an

asymptotic expansion in terms of λ; refer to [27] for details of the asymptotic methods.

At equilibrium, c can be determined by the equation obtained from system (2.30) as

λc2 +

(
α− k
ε
− λ

(
1 + α

ε
+ 1

))
c+

λ

ε
= 0. (2.32)

The initial assumption is that the solution has a particular form of expansion, namely

c ≈ c0 + λc1 + · · · (2.33)

where ≈ signifies asymptotic equivalence. Substituting equation (2.33) into (2.32),

one finds that

λ(c0 + λc1 + · · · )2 +

(
α− k
ε
− λ

(
1 + α

ε
+ 1

))
(c0 + λc1 + · · · ) +

λ

ε
= 0.
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The first problem to solve comes from the terms which are constant, this is because

these equations are supposed to hold for small λ and therefore we require it to hold

as λ→ 0. At O(1), this gives

c0
α− k
ε

= 0,

which gives

c0 = 0.

Next, at O(λ):

εc20 − c0(1 + α + ε) + c1(α− k) + 1 = 0,

we obtain

c1 =
1

k − α
,

since c0 = 0. This process used to find c0 and c1 can be continued to systematically

construct the other terms of the asymptotic expansion. The approximation we have

calculated so far is

c∗ ≈ λ

k − α
+ · · ·

The approximate equilibrium values for the others reactants and product can be ob-

tained from the system of equations and the conservation laws, which gives


s∗ =

αc∗

1− c∗
≈ αλ

k − α

e∗ = 1− c∗ ≈ 1− λ

k − α

p∗ = 1− s∗ − εc∗ ≈ 1− λα + ε

k − α
.

Note that these equilibrium values can be easily obtained by solving the quadratic
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equation (2.32) then expand it in terms of ε. The reason we used asymptotic ex-

pansion instead is to show a standard procedure to obtain approximate equilibrium

values for models of this type. We can see that, unlike in the irreversible model, the

substrate and complex concentrations are not depleted but tend to very small values,

s∗, c∗ = O(λ); slightly different values are obtained for e∗ and p∗ as well. Note that

when λ = 0 (i.e., k−2 = 0), we obtain



c∗ = 0

s∗ = 0

e∗ = 1

p∗ = 1,

which are the non-dimensional equilibrium values of the standard Michaelis-Menten

model as shown in Section 2.1.2.

In conclusion, the standard Michaelis-Menten model and the reversible Michaelis-

Menten model give qualitatively similar results. The only difference consists in slightly

different values for the steady-states (such as, for example, c∗ = 0 in the standard

model, while c∗ = O(λ) in the reversible model). For later analysis in this thesis, we

will always work with the standard model, as these small variations are not worth

the inconvenience of dealing with an extra term and having to specify another exper-

imental constant k−2.
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2.2.3 Boundary layer analysis

In system (2.30), typically e0 � s0 which implies ε� 1. To be precise, suppose that

k and α are O(1) while ε � 1. Then the term εdc/dt is small if dc/dt is O(1) and

can therefore be neglected, which is the quasi-steady-state assumption. However, it

is a singular approximation, as we cannot satisfy both initial conditions, and we can

expect a boundary layer near t = 0 where dc/dt is large and εdc/dt cannot be ne-

glected. The procedure for establishing this result is the method known as matched

asymptotic expansions (refer to [28] and [29]). This method is carried out in the

following three steps.

Step 1: Outer solution

To solve system (2.30) approximately, we assume the solution can be expanded in

powers of ε. In other words, we let

s ≈ s0out + εs1out + · · · (2.36)

and

c ≈ c0out + εc1out + · · · (2.37)

Insert equations (2.36) and (2.37) into system (2.30), and by equating powers of ε, we

obtain the following sequence of equations for the successive terms: at O(1), we obtain


ds0out
dt

= −
(
1− c0out

)
s0out + αc0out (2.38a)

0 = (1− c0out)s0out − kc0out + λ(1− c0out)(1− s0out), (2.38b)

and therefore

c0out =
s0out + λ(1− s0out)

k + s0out + λ(1− s0out)
. (2.39)
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Substitute equation (2.39) into equation (2.38a) to obtain

ds0out
dt

= −s0out + (s0out + α)
s0out + λ(1− s0out)

k + s0out + λ(1− s0out)
,

which gives

ds0out
dt

=
−s0outk + α(s0out(1− λ) + λ)

k + s0out(1− λ) + λ
. (2.40)

This separable differential equation is easily solved to give

k(α− k − (1 + α)λ)

(α− αλ− k)2
ln((α− αλ− k)s0out + αλ)

+
1− λ

α− αλ− k
s0out = t+ A, (2.41)

where A is the constant of integration which will be determined later.

Step 2: Rescaling the problem: the boundary layer

If we now substitute equation (2.41) into (2.39) we get an expression for the com-

plex concentration, c, but this does not satisfy the initial condition on c, since there

are two timescales involved in the system; one is the timescale near t = 0 and the

other one is the long timescale when the substrate concentration changes significantly.

To deal with this problem, in order to bring out the new balances in the equation,

it is appropriate to introduce a rescaling of the time by

t = ετ.

System (2.30) then becomes


ds

dτ
= ε(−(1− c)s+ αc) (2.42a)

dc

dτ
= (1− c)s− kc+ λ(1− c)(1− s− εc). (2.42b)
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To obtain the solutions for c and s, the appropriate expansions for the boundary layer

solutions are now

s ≈ s0in + εs1in + · · · (2.43)

and

c ≈ c0in + εc1in + · · · (2.44)

Substituting equations (2.43) and (2.44) into system (2.42), we obtain



d(s0in + εs1in + · · · )
dτ

= ε(−(1− (c0in + εc1in + · · · ))(s0in + εs1in + · · · ) + α(c0in + εc1in + · · · ))

d(c0in + εc1in + · · · )
dτ

= (1− (c0in + εc1in + · · · ))(s0in + εs1in + · · · )− k(c0in + εc1in + · · · )

+λ(1− (c0in + εc1in + · · · ))(1− (s0in + εs1in + · · · )− ε(c0in + εc1in + · · · )).

Again by equating powers of ε, at O(1), we obtain

ds0in
dτ

= 0,

implying that

s0in = B,

where B is an arbitrary constant of integration. With initial condition s0in(0) = 1, we

get B = 1. Thus s0in = 1, and

dc0in
dτ

= (1− c0in)(s0in)− kc0in + λ(1− c0in)(1− s0in),

which gives

dc0in
dτ

+ (1 + k)c0in = 1,
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and therefore

c0in =
1

1 + k
(1− e−(1+k)τ ). (2.46)

Note that when τ = 0, c0in = 0.

Step 3: Matching

It remains to determine the constant A in the approximation of the boundary layer

solution. The important point here is that both the inner and outer expansions are

approximations of the same system. Therefore, in the transition region between the

inner and outer layers we should expect that the two expansions give the same result.

This is accomplished by requiring that the value of s0in as one exits the boundary

layer (i.e., as τ → ∞) is equal to the value of s0out as one enters the boundary layer

(i.e., as t→ 0). Imposing this condition yields

lim
t→0

[s0out(t), c
0
out(t)] =

[
1,

1

1 + k

]
= lim

τ→∞
[s0in(τ), c0in(τ)],

which gives

A =
1− λ

α− αλ− k
+
k(α− αλ− k − λ)

(α− αλ− k)2
ln(α− k),

and equation (2.41) becomes

1− λ
α− αλ− k

(s0out − 1) +
k(α− αλ− k − λ)

(α− αλ− k)2
ln

(
s0out −

αλ

α− k
(s0out − 1)

)
= t. (2.47)

Note that when λ = 0 (i.e., k−2 = 0), equation (2.47) simplifies to

s0out + k ln s0out = 1 + (α− k)t,

which corresponds to the solution obtained for the classical model in [25]. The bound-

ary layer expansion is supposed to describe the solution in the immediate vicinity of
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the endpoint t = 0. It is therefore not unreasonable to expect that the outer solution

applies over the remainder of the interval, with the assumption that there are no

other layers.

To summarise, in order to proceed with the systematic singular perturbation, we

first look for the outer solution of the system in the form of regular series expansions.

At O(1), the sequence of equations are:


ds0out
dt

= −(1− c0out)s0out + αc0out

0 = (1− c0out)s0out − kc0out + λ(1− c0out)(1− s0out),

and at O(ε), we have


ds1out
dt

= c1outs
0
out − (1− c0out)s1out + αc1out

dc0out
dt

= −c1outs0out + (1− c0out)s1out − kc1out − λ((1− c0out)(s1out + c0out) + c1out(1− s0out)),

which are valid for t > 0; the solutions involve undetermined constants of integration,

one at each order, which have to be determined by matching these solutions as t→ 0

with the singular solutions as τ →∞.

On the other hand, the sequence of equations for the singular part of the solution,

valid for 0 ≤ τ ≤ 1 are: at O(1),


ds0in
dτ

= 0

dc0in
dτ

= (1− c0in)(s0in)− kc0in + λ(1− c0in)(1− s0in),
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and at O(ε), we have


ds1in
dτ

= −(1− c0in)s0in + αc0in

dc1in
dτ

= −c1ins0in + (1− c0in)s1in − kc1in − λ((1− c0in)(s1in + c0in) + c1in(1− s0in)),

and so on.

The solutions of these equations must satisfy the initial conditions at t = 0. Since

in most biological applications 0 < ε � 1, we only need to evaluate the O(1) terms

of the solutions as shown in this section. In Figure 2.4, we show the inner solution

(c0in from (2.46)), outer solution (c0out from (2.47) and (2.39)) and the exact solution

(obtained from (2.29)) of the reversible Michaelis-Menten model. For a detailed ex-

planation of the technique used in this section, refer to [15], [28] and [29].

2.3 Cascade reactions

This section introduces the concept of a cascade reaction and discusses some notation

and elementary dynamical properties of systems describing cascade reactions. Such

systems will be studied in more detail in Chapter 4.

A cascade reaction is a sequence of biochemical reactions which have the property

that the product of one reaction is a reactant in the following reaction. We will focus,

in particular, on a cascade scheme which consists of two enzyme-substrate reactions
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Figure 2.4 – Inner, outer and exact solution of reversible Michaelis-Menten kinetics.

Typical values for constants used in this simulation are: k1 = 4 × 102 m3/mol · s,

k−1 = 10 m3/mol · s, k2 = 3.2× 102 m3/mol · s, k−2 = 75 m3/mol · s, e0 = 1 mol/m2

and s0 = 1 mol/m3.

described by the Michaelis-Menten kinetic models

E1 + S1

k1
�
k−1

C1
k2−→E1 + S2, E2 + S2

k3
�
k−3

C2
k4−→E2 + P, (2.52)

where E1 is the first enzyme, E2 is the second enzyme, S1 is the first substrate, S2 is

the second substrate in the second reaction and also the product of the first reaction,

C1 and C2 are the complexes and P is the final product, while k1, k−1, k2, k3, k−3

and k4 are constant parameters which represent the rate of the reactions. As in

Chapter 1, we denote the concentrations of the chemical species in reactions (2.52)
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by their corresponding lower case letters, i.e.,

e1 = [E1], e2 = [E2], s1 = [S1], s2 = [S2], c1 = [C1], c2 = [C2], p = [P ].

The initial conditions are:

e1(0) = e01, e2(0) = e02, s1(0) = s0, s2(0) = 0, c1(0) = 0, c2(0) = 0, p(0) = 0,

where e01 and e02 are constants. The differential equations governing the evolution of

these concentrations are:



de1
dt

= −k1e1s1 + (k2 + k−1)c1 (2.53a)

de2
dt

= −k3e2s2 + (k4 + k−3)c2 (2.53b)

ds1
dt

= −k1e1s1 + k−1c1 (2.53c)

ds2
dt

= k2c1 − k3e2s2 + k−3c2 (2.53d)

dc1
dt

= k1e1s1 − (k2 + k−1)c1 (2.53e)

dc2
dt

= k3e2s2 − (k4 + k−3)c2 (2.53f)

dp

dt
= k4c2. (2.53g)

Note that the conservation laws for this system are:


e1 + c1 = e01 (2.54a)

e2 + c2 = e02 (2.54b)

s1 + c1 + s2 + c2 + p = s0. (2.54c)

Chapter 4 deals with an experimental problem involving a cascade reaction of the

type (2.52), in which the two enzymes are immobilised on an electrode at the bottom
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of a flow cell as shown in Figure 2.5. It is assumed that the two enzymes fully cover

the surface of the electrode and it is only the total concentration, e, that can be

measured experimentally, rather than the individual concentrations, e01 and e02.

Figure 2.5 – Enzyme immobilisation.

Hence, we let

e = e01 + e02, and ζ =
e01
e02
, (2.55)

which gives

e01 =
eζ

1 + ζ
, and e02 =

e

1 + ζ
.

From the two conservation laws given by equations (2.54a) and (2.54b), and taking

into account the fact that the product is uncoupled from all the other chemical reac-

tants, we can reduce system (2.53) to the following four equations,



ds1
dt

= −k1(e01 − c1)s1 + k−1c1 (2.56a)

ds2
dt

= k2c1 − k3(e02 − c2)s2 + k−3c2 (2.56b)

dc1
dt

= k1(e
0
1 − c1)s1 − (k2 + k−1)c1 (2.56c)

dc2
dt

= k3(e
0
2 − c2)s2 − (k4 + k−3)c2. (2.56d)

The concentrations of all the reactants and product are plotted in Figure 2.6.
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Figure 2.6 – Relative concentrations of reactants and product of the cascade reactions.

Typical values for constants used in this simulation are: k1 = 102 m3/mol · s, k−1 =

10−1 m3/mol · s, k2 = 10 m3/mol · s, k3 = 102 m3/mol · s, k−3 = 10−1 m3/mol · s,

k4 = 10 m3/mol · s, e0 = 1 mol/m2 and s0 = 1 mol/m3.

In order to gain a better insight into system (2.56), we introduce the following

non-dimensional variables

s̄1 =
s1
s0
, s̄2 =

s2
s0
, c̄1 =

c1
e
, c̄2 =

c2
e
, t̄ =

t

t0
,

where t0 = 1/(k1s0). This gives the non-dimensional system (the bars have been

omitted);
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ds1
dt

= ε1

(
k−1
k1s0

c1 −
(

ζ

1 + ζ
− c1

)
s1

)
(2.57a)

ds2
dt

= ε1

(
k2
k1s0

c1 −
k3
k1

(
1

1 + ζ
− c2

)
s2 +

k−3
k1s0

c2

)
(2.57b)

dc1
dt

=

(
ζ

1 + ζ
− c1

)
s1 −

K1
m

s0
c1 (2.57c)

dc2
dt

=
k3
k1

(
1

1 + ζ
− c2

)
s2 −

K

s0
c2, (2.57d)

where

ε1 =
e

s0
, K1

m =
k−1 + k2

k1
, K =

k−3 + k4
k1

, (2.58)

with non-dimensional initial conditions

s1(0) = 1, s2(0) = 0, c1(0) = 0, c2(0) = 0.

It is easy to see that the equilibrium points of system (2.57) are given by

s∗1 = 0, s∗2 = 0, c∗1 = 0, c∗2 = 0, e∗1 =
ζ

1 + ζ
, e∗2 =

1

1 + ζ
,

where s∗1, s
∗
2, c

∗
1, c

∗
2, e

∗
1 and e∗2 denote the equilibrium values of s1, s2, c1, c2, e1 and

e2 respectively. The product concentration, p, as given by the original system (2.53)

also reaches an equilibrium point which we can determine after non-dimensionalising

the conservation law (2.54c), giving p∗ = s0/e. We note that, if we had used the

reversible form of the Michaelis-Menten scheme (2.26) as studied in Section 2.2, the

equilibrium values for the substrates and complexes would have depended on ζ, the

initial ratio of the two participating enzymes, which is potentially more useful as it

contains more information about the physical system. A similar result is obtained in

Chapter 4 when the glucose concentration (s1) is assumed to be maintained constant

at the reaction site.
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2.4 Summary

This chapter introduced the mathematical framework for the classical Michaelis-

Menten kinetics scheme for enzyme-substrate reactions. This extensively studied

model was used here as an illustration for how the law of mass action allows chemical

kinetics processes to be expressed in terms of differential equations.

Numerous mathematical studies of the Michaelis-Menten model exist in the liter-

ature. For example, we reviewed an elementary singular perturbation analysis which

shows that the initial rapid formation of enzyme-substrate complex can be modelled

as a boundary layer near the origin. In this framework, the quasi-steady-state assump-

tion (which is widely used in enzyme kinetics for estimating the reaction velocity) is

shown to correspond to the outer solution approximation (refer to, for example, [25]).

We also analysed a commonly used simplifying assumption made in the context of

the Michaelis-Menten kinetic mechanism, namely that the second step of this reaction

(the complex dissociation) is irreversible. We found that this simplification leads to

qualitatively similar dynamical behaviour to the full reversible model and therefore

its usage in mathematical modelling is completely justified. Finally, we introduce

cascade reactions involving catalytically linked enzymes which were modelled as two

coupled Michaelis-Menten schemes. A simple mathematical formulation in the form

of an ordinary differential equations system was given as a preliminary step towards

the more detailed analysis presented in Chapter 4.
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Chapter 3

Modelling Antibody-Antigen

Interactions

In this chapter we construct and analyse mathematical models for antibody-antigen

reactions, which are important for understanding bioaffinity devices. We consider

three types of immunoassays: the direct assay, the competitive assay (which are anal-

ysed with and without diffusion effects) and the sandwich assay.

3.1 The direct assay

This section studies the kinetics of the binding reaction between an antigen and an an-

tibody, with and without modelling of transport effects. This simple reaction is rarely

used on its own for diagnostic purposes but lies at the heart of every immunosensing

device and so we must study it first.
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3.1.1 Simplified model for the direct assay

We start our study of the direct antibody-antigen interactions by ignoring transport

of species and concentrating on the kinetics of the reaction. This will result in a

simple system of ordinary differential equations model and our aim here is to provide

a formula for the equilibrium values of all reactants and products as well as their

dependence on initial conditions.

Figure 3.1 – Antibody-antigen interactions.

The antibody-antigen interaction shown in Figure 3.1 can be expressed by the

following reaction equation symbolically,

A+B
k

�
k−

C, (3.1)

where A represents antigen, B represents antibody, and C represents the product of

antigen and antibody. Reaction (3.1) has a forward (association) reaction rate of k and

a backward (dissociation) reaction rate of k−, where the forward reaction rate is very
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large (around 1000 times bigger than the reaction rate constant k1 in the Michaelis-

Menten kinetics) while the backward reaction is very slow and is therefore often

neglected. This fact reflects the high affinity between antigen and its corresponding

antibody. We denote the concentration of the chemical species in reaction (3.1) by

their corresponding lower case letters, namely

a = [A], b = [B], c = [C].

The dynamics of the system is described by the following system of ordinary differ-

ential equations



da

dt
= −kab+ k−c (3.2a)

db

dt
= −kab+ k−c (3.2b)

dc

dt
= kab− k−c, (3.2c)

with initial conditions a(0) = a0, b(0) = b0 and c(0) = 0, where a0 and b0 are

constants. Note that in system (3.2),

da

dt
+
dc

dt
= 0 and

db

dt
+
dc

dt
= 0;

these together with the initial conditions give the associated conservation laws,

a+ c = a0 (3.3a)

b+ c = b0. (3.3b)

The ratio k/k− can be determined experimentally and from the equilibrium condition

as

k

k−
=

c∗

a∗b∗
.
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To non-dimensionalise the system, we introduce the following variables

ā =
a

b0
, b̄ =

b

b0
, c̄ =

c

b0
, t̄ =

t

t0
,

where ā, b̄, c̄, t̄ denote the dimensionless variables, with t0 = 1/(kb0). Note that we

divide the concentrations of all species by the initial concentration of antibody, b0,

as we will be interested in experimental situations in which a0 varies and can even

take a zero value. Moreover, b0 is usually known and kept constant throughout the

experiment. We obtain the following system of equations, where bars are omitted on

all the non-dimensional variables for simplicity,



da

dt
= −ab+ µc (3.4a)

db

dt
= −ab+ µc (3.4b)

dc

dt
= ab− µc, (3.4c)

with non-dimensional initial conditions a(0) = ψ, b(0) = 1, c(0) = 0, and conserva-

tion laws

a+ c = ψ (3.5a)

b+ c = 1, (3.5b)

where

µ =
k−
kb0

, ψ =
a0
b0
. (3.6)

Note that µ � 1, since the backward reaction is assumed to be much slower than

the forward reaction; also, as soon as the experiment is set up, b0 is fixed, due to the

immobilisation of the antibody.
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Based on the non-dimensional conservation laws in (3.5), we can reduce system

(3.4) down to a single equation in terms of c, namely

dc

dt
= (ψ − c)(1− c)− µc.

Then the equilibrium value for c is given by the quadratic equation

c2 − (1 + ψ + µ)c+ ψ = 0, (3.7)

where, from (3.5b), we must select the root which satisfies the condition c < 1, which

is

c =
1

2

(
1 + ψ + µ−

√
(1 + ψ + µ)2 − 4ψ

)
. (3.8)

This solution is equivalent to that obtained in [30], where a spatially extended model

is considered. Note also that if µ� 1, the leading order approximation for c is given

by

c =
1

2
(ψ + 1− |ψ − 1|) ,

which gives different results depending on whether ψ > 1 or ψ < 1.

In what follows, we derive approximate formulas for the equilibrium values of a,

b and c using regular perturbation expansions. Such approximations will allow for

a more clear interpretation of these results within the experimental framework. We

assume the parameter µ is small and write

c = c0 + µc1 + µ2c2 + · · · (3.9)

Substituting the expansion (3.9) into equation (3.7), we find that

(c0 + µc1 + µ2c2 + · · · )2 − (1 + ψ + µ)(c0 + µc1 + µ2c2 + · · · ) + ψ = 0. (3.10)

62



Collecting coefficients of like powers of µ, at O(1), we obtain

c20 − (1 + ψ)c0 + ψ = 0,

which gives

c0 = 1 or c0 = ψ.

At O(µ), we get

2c0c1 − (1 + ψ)c1 − c0 = 0,

which gives

c1 =
1

1− ψ
when c0 = 1, or c1 =

ψ

ψ − 1
when c0 = ψ.

This process used to find c0 and c1 can be continued to systematically construct the

other terms of the asymptotic expansion. The approximation we have calculated so

far is

c = 1 +
µ

1− ψ
+ · · · (3.11)

or

c = ψ +
µψ

ψ − 1
+ · · · (3.12)

Now since that the solution of c is less than 1 (c < a0 for the dimensional variables),

we have to consider these solutions with regard to the following three cases:

• When ψ > 1, we choose the solution

c = 1 +
µ

1− ψ
+ · · · ;

• When ψ < 1, we choose the solution

c = ψ +
µψ

ψ − 1
+ · · · ;
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• When ψ = 1, we cannot choose either of the two solutions obtained in equations

(3.11) and (3.12), since the two solutions do not allow ψ = 1 (we cannot have

a zero denominator). Thus, to obtain the solution in this case, we start the

asymptotic analysis again with ψ = 1 substituted into equation (3.7), which

yields

c2 − (2 + µ)c+ 1 = 0. (3.13)

It is now more appropriate to use the expansion

c = c0 +
√
µc1 + µc2 + µ

√
µc3 + · · · (3.14)

since we can clearly see that there is an
√
µ term contained in equation (3.8), and

thus we obtain

(c0 +
√
µc1 + µc2 + µ

√
µc3 + · · · )2− (2 + µ)(c0 +

√
µc1 + µc2 + µ

√
µc3 + · · · ) + 1 = 0.

Again, by collecting terms in powers of
√
µ, at O(1), we obtain

c20 − 2c0 + 1 = 0,

giving

c0 = 1.

At O(
√
µ), we obtain

2c0c1 − 2c1 = 0,

which means that c1 cannot be determined here. At O(µ), we obtain

c21 + 2c0c2 − 2c2 − c0 = 0,
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giving

c1 = 1 or c1 = −1.

Again, this process used to find c0 and c1 can be continued to systematically construct

the other terms of the asymptotic expansion. The approximation we have calculated

so far is

c = 1−√µ+ · · ·

or

c = 1 +
√
µ+ · · ·

where c = 1 +
√
µ+ · · · cannot be a solution, since c < 1.

We now present a summary of the equilibrium values for the antigen, antibody

and product in all three cases discussed above.

Case 1: When a0 > b0 (i.e., ψ > 1), the equilibrium solutions are



a = ψ − 1 +
µ

ψ − 1
+ · · · (3.15a)

b =
µ

ψ − 1
+ · · · (3.15b)

c = 1− µ

ψ − 1
+ · · · (3.15c)

Case 2: When a0 < b0 (i.e., ψ < 1), the equilibrium solutions are



a =
µψ

1− ψ
+ · · · (3.16a)

b = 1− ψ +
µψ

1− ψ
+ · · · (3.16b)

c = ψ − µψ

1− ψ
+ · · · (3.16c)
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Case 3: When a0 = b0 (i.e., ψ = 1), the equilibrium solutions are


a =
√
µ+ · · · (3.17a)

b =
√
µ+ · · · (3.17b)

c = 1−√µ+ · · · (3.17c)

In particular, the equilibrium value of the product is

c =


1− µ

ψ − 1
+ · · · , if ψ < 1

ψ − µψ

1− ψ
+ · · · , if ψ > 1 (3.18)

1−√µ+ · · · , if ψ = 1.

We note that the asymptotic expansions derived above are not uniformly valid as

they fail within an O(µ) region about ψ = 1. (It is easy to see that within this

region, the term µ/(ψ−1) becomes O(1)). Since b0 is kept constant, we can view c in

equation (3.18) as a function of the initial (non-dimensional) antigen concentration

ψ = a0/b0 and this dependence is plotted in Figure 3.2, together with the exact

solution for c given by equation (3.8). The region of non-uniformity for the asymptotic

solution is clearly visible in the figure. However, real immunoassay devices generally

work under the condition a0 > b0 (ψ > 1) and in this region we have a uniform

approximation. The calibration curve would then consist of the increasing right-hand

branch of the red graph in Figure 3.2(a). We note that, if |ψ − 1| > O(µ), then use

of the approximation expression (3.18) might offer better insight into the behaviour
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of the solution for µ� 1, especially for chemistry researchers.

Figure 3.2 – Product concentration as a function of the initial (non-dimensional)

antigen concentration ψ. Black curve correspond to the exact solution of c given by

equation (3.8), red curves and the blue dot correspond to the approximate solution of

c given by equations (3.18). Typical values for constants used in this simulation are:

b0 = 2, k = 100, k− = 8 in (a) and k− = 0 in (b).

As was expected, the steady states of system (3.4) depend on whether a0 > b0

or a0 < b0 (antigen or antibody predominates). If, for example, the concentration of

antigen is greater than that of antibody (Case 1), we see from (3.15) that, reverting

back to dimensional variables, b ≈ 0, c ≈ b0 and a ≈ a0−b0, which is intuitively clear.

(In other words, the antibody is almost depleted and the concentration of product

approaches that of the original antibody concentration.) Note also that, if we ignore

the backward reaction and let µ = 0, the steady states in this case become: b∗ = 0,
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c∗ = b0 and a∗ = a0 − b0. Similar interpretations are also easily obtained for the

solutions in Cases 2 and 3.

3.1.2 Diffusion model for the direct assay

This subsection covers a spatially extended model of direct antibody-antigen inter-

actions, where the two species are contained within a small cell (which we represent

mathematically as a one-dimensional spatial domain). More specifically, we consider

the case when the antibody is immobilised on a surface while the antigen is free to

diffuse before the interaction between the two species. The resulting model is closely

related to the work in [30] and [31], where it was presented as a simplified description

(ignoring competitive effects) of a Fluorescence Capillary-Fill Device, a type of preg-

nancy test studied in [32]. We mention some of the mathematical results obtained

in [30] and [31], but the emphasis of this section is on obtaining an exact formula for

the equilibrium states of reactants and products and comparing these results to those

of the simplified model in Section 3.1.1.

The time evolution of the antigen concentration can be described by the diffusion

equation

∂a(x, t)

∂t
= D

∂2a(x, t)

∂x2
, x ∈ (0, d), t ≥ 0,

where x = 0 represents the free surface of the cell and x = d is the bottom of the cell

where the antibody is immobilised, with initial condition

a(x, 0) = a0.
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The boundary conditions are:

∂a(0, t)

∂x
= 0,

D
∂a(d, t)

∂x
= k−c(t)− ka(d, t)(b0 − c(t)),

at the top and bottom of the solution respectively, together with the conservation law∫ d

0

a(x, t)dx+ c(t) = a0d, t ≥ 0,

where D is the diffusion coefficient for antigen, which has units of m2/s. The con-

centration a0 has units of moles/m3, while b0 has units of moles/m2. To non-

dimensionalise the system, we introduce the following variables

x̄ =
x

d
, t̄ =

Dt

d2
, ā(x̄, t̄) =

da(x, t)

b0
, and c̄(t̄) =

c(t)

b0
,

then we obtain the non-dimensional system as shown below (bars on non-dimensional

variables are omitted for simplicity),



∂a(x, t)

∂t
=
∂2a(x, t)

∂x2
(3.19a)

a(x, 0) = ψ1 (3.19b)

∂a(0, t)

∂x
= 0 (3.19c)

∂a(1, t)

∂x
= γ(µ1c(t)− a(1, t)(1− c(t))) (3.19d)

c(t) +

∫ 1

0

a(x, t)dx = ψ1, (3.19e)

where x ∈ (0, 1) and we define

ψ1 =
a0d

b0
, γ =

dkb0
D

, µ1 =
k−d

kb0
. (3.20)
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Next, we are going to analyse system (3.19) as t→∞. At equilibrium,

∂a(x, t)

∂t
= 0, (3.21)

which gives

∂2a(x, t)

∂x2
= 0 (3.22)

from equation (3.19a). Then integrating equation (3.22) twice, we obtain

a∗(x) = B, (3.23)

where a∗(x) denotes the equilibrium value of a(x, t), and B is the constant of inte-

gration. From equation (3.19d) together with equation (3.23), we get

µ1c
∗ −B(1− c∗) = 0; (3.24)

also, from equation (3.19e), we get

c∗ +B = ψ1, (3.25)

where c∗ represents the equilibrium value of c(t). Then if we solve the system formed

by equations (3.24) and (3.25), we obtain the equilibrium solution of the product

concentration as

c∗ =
1

2

(
1 + µ1 + ψ1 −

√
(1 + µ1 + ψ1)2 − 4ψ1

)
. (3.26)

Note that the steady-state given above for the diffusion system is identical to the

equilibrium value obtained in equation (3.8) for the spatially-independent case, if we

allow for the slight differences in the definitions of µ1, ψ1 (see equation (3.20)) and

µ, ψ (see equation (3.6)).
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In what follows, we obtain an equivalent formulation of the diffusion system (3.19)

in the form of a nonlinear Volterra integro-differential equation. We follow the ap-

proach suggested in [30] and use Laplace transforms as shown below.

If we take the Laplace transform of equation (3.19a) with respect to t, we get

Lt

[
∂a(x, t)

∂t

]
= Lt

[
∂2a(x, t)

∂x2

]
,

giving ∫ ∞
0

∂a(x, t)

∂t
te−st∂t =

∫ ∞
0

∂2a(x, t)

∂x2
e−st∂t,

and therefore ∫ ∞
0

e−st∂a(x, t) =
∂2

∂x2

∫ ∞
0

a(x, t)e−st∂t,

so that [
e−sta(x, t)

]∞
0
−
∫ ∞
0

a(x, t)(−s)e−st∂t =
∂2

∂x2
â(x, s),

and finally,

−a(x, 0) + s

∫ ∞
0

a(x, t)e−st∂t =
∂2

∂x2
â(x, s).

Now, by using equation (3.19b), we obtain

∂2

∂x2
â(x, s)− sâ(x, s) + ψ1 = 0, (3.27)

where â(x, s) represents the Laplace transform of the function a(x, t) with respect to

t. It can be seen that the non-homogeneous second-order linear equation (3.27) has

the general solution

â(x, s) = Me
√
sx +Ne−

√
sx +

ψ1

s
, (3.28)
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where M and N are functions of s. Partially differentiate equation (3.28) to get

∂â(x, s)

∂x
= M

√
se
√
sx −N

√
se−

√
sx,

which gives

∂â(0, s)

∂x
= M

√
s−N

√
s, (3.29)

and taking the Laplace transform of (3.19c) with respect to t to obtain

Lt

[
∂a(0, t)

∂x

]
= Lt [0] ,

which gives

∂â(0, s)

∂x
= 0.

Thus, equation (3.29) becomes

M
√
s−N

√
s = 0,

which gives

M = N,

and therefore

∂â(x, s)

∂x
= N
√
s
(
e
√
sx − e−

√
sx
)
. (3.30)

Also, equation (3.28) gives

â(x, s)− ψ1

s
= N

(
e
√
sx + e−

√
sx
)
. (3.31)

Dividing equation (3.31) by (3.30) yields

â(x, s)− ψ1

s
∂â(x,s)
∂x

=
e
√
sx + e−

√
sx

√
s
(
e
√
sx − e−

√
sx
) = F (x, s),
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which gives

â(x, s) = F (x, s)
∂â(x, s)

∂x
+
ψ1

s
. (3.32)

Now, take the inverse Laplace transform of (3.32) to obtain

L−1t [â(x, s)] = L−1t

[
F (x, s)

∂â(x, s)

∂x

]
+ L−1t

[
ψ1

s

]
,

which gives

a(x, t) = L−1t [F (x, s)] ∗ L−1t
[
∂â(x, s)

∂x

]
+ ψ1,

(by the convolution theorem for Laplace transform). We let

f̃(x, t) = L−1t [F (x, s)] (3.33)

to obtain

a(x, t) = f̃(x, t) ∗ ∂a(x, t)

∂x
+ ψ1,

and hence

a(1, t) =

∫ t

0

f(t− s)∂a(1, s)

∂x
ds+ ψ1, (3.34)

where f(t) = f̃(1, t). Substituting equation (3.34) into (3.19d), we get

∂a(1, t)

∂x
= γ

(
µ1c(t)− (1− c(t))

(∫ t

0

f(t− s)∂a(1, s)

∂x
ds+ ψ1

))
. (3.35)

Differentiating equation (3.19e) with respect to t, we obtain

dc(t)

dt
+

∫ 1

0

∂a(x, t)

∂t
dx = 0,

and then using equations (3.19a) and (3.19c), we get

dc(t)

dt
= −∂a(1, t)

∂x
, (3.36)
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which, together with (3.35) gives

dc(t)

dt
= −γµ1c(t) + γψ1 (1− c(t)) + γ (1− c(t))

∫ t

0

f(t− s)∂a(1, s)

∂x
ds. (3.37)

Using equation (3.36), we also get

−dc(s)
ds

=
∂a(1, s)

∂x
, (3.38)

and, substituting equation (3.38) into (3.37) yields the following Volterra integro-

differential equation, namely

dc(t)

dt
= γψ1 − γ(µ1 + ψ1)c(t)− γ(1− c(t))

∫ t

0

f(t− s)dc(s)
ds

ds, (3.39)

where the kernel f(t) can be calculated from equation (3.33), namely

f̃(x, t) = L−1t [F (x, s)],

which gives

f̃(x, t) = L−1t

[
1√
s

1 + e−2
√
sx

1− e−2
√
sx

]
. (3.40)

Using the geometric series formula

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn, for |x| < 1,

we can write equation (3.40) as

f̃(x, t) = L−1t

[
1√
s

(1 + e−2
√
sx)

∞∑
n=0

e−2
√
snx

]

= L−1t

[
1√
π

∞∑
n=0

(√
π

s
e−2(n+1)

√
sx +

√
π

s
e−2n

√
sx

)]
. (3.41)

From the theory of Laplace transforms (refer to, for example [33]), we know that

L
[
x−

1
2 e−

a
4x

]
=

√
π

s
e−
√
as,
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and hence, we can write equation (3.41) as

f̃(x, t) =
1√
πt

∞∑
n=0

(
e−

(n+1)2x2

t + e−
n2x2

t

)
=

1√
πt

(
1 + 2

∞∑
n=1

e−
n2x2

t

)
,

which gives the kernel

f(t) = f̃(1, t) =
1√
πt

(
1 + 2

∞∑
n=1

e−
n2

t

)
. (3.42)

We have obtained the integro-differential equation (3.39) as an equivalent formu-

lation for system (3.19). As illustrated in [30], [31] and [34], this Volterra integro-

differential equation is more amenable to both analytical and numerical studies.

In what follows, we find an approximation for c(t), the product concentration,

using a regular perturbation method. Consider an analytic expansion for c(t) of the

form

c(t) = c0(t) + ε2c
1(t) + · · · (3.43)

where

ε2 =
1

ψ1

=
b0
a0d

as suggested in [30], which assumed that γ is order ε, with γ = γψ1ε, γψ1 and γµ1 are

of order 1. The non-dimensional parameter ε2 can be considered small as the antibody

sites are usually limited, and is more appropriate for the subsequent perturbation

analysis than the parameter µ used previously. Substituting the expansion (3.43)

into (3.39), at O(1), we obtain

dc0(t)

dt
= γψ1 − γ(µ1 + ψ1)c

0(t), (3.44)
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which is a first-order ordinary differential equation, with initial condition c(0) = 0.

Its solution is

c0(t) =
ψ1

µ1 + ψ1

(1− e−γ(µ1+ψ1)t). (3.45)

Similarly, taking the O(ε2) terms, we obtain

dc1(t)

dt
= −γ(µ1 + ψ1)c

1(t)− γψ1(1− c0(t))
∫ t

0

f(t− s)dc
0(s)

ds
ds. (3.46)

Now insert equation (3.45) into (3.46) to get

dc1(t)

dt
= −γ(µ1 + ψ1)c

1(t)

−γ2ψ2
1

(
1− ψ1

µ1 + ψ1

(1− e−γ(µ1+ψ1)t)

)∫ t

0

f(t− s)e−γ(µ1+ψ1)sds. (3.47)

Again, (3.47) is a first-order ordinary differential equation which can be solved to

obtain

c1(t) = − γ2ψ3
1

µ1 + ψ1

e−γ(µ1+ψ1)t

∫ t

0

∫ u

0

(
µ1

ψ1

eγ(µ1+ψ1)u + 1

)
f(u− s)e−γ(µ1+ψ1)sdsdu.

(3.48)

The double integral in equation (3.48) can be simplified as follows by changing

the order of integration∫ t

0

∫ t

s

(
µ1

ψ1

eγ(µ1+ψ1)u + 1

)
f(u− s)e−γ(µ1+ψ1)sduds.

Now apply the transformation of u = v + s, we obtain∫ t

0

∫ t−s

0

(
µ1

ψ1

eγ(µ1+ψ1)(v+s) + 1

)
f(v)e−γ(µ1+ψ1)sdvds

=

∫ t

0

e−γ(µ1+ψ1)s

∫ t−s

0

(
µ1

ψ1

eγ(µ1+ψ1)(v+s) + 1

)
f(v)dvds

=

∫ t

0

e−γ(µ1+ψ1)s

(
µ1

ψ1

eγ(µ1+ψ1)s

∫ t−s

0

eγ(µ1+ψ1)vf(v)dv +

∫ t−s

0

f(v)dv

)
ds
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=
µ1

ψ1

∫ t

0

∫ t−s

0

eγ(µ1+ψ1)vf(v)dvds+

∫ t

0

e−γ(µ1+ψ1)s

∫ t−s

0

f(v)dvds,

and changing the order of integration again, yields

µ1

ψ1

∫ t

0

∫ t−v

0

eγ(µ1+ψ1)vf(v)dvds+

∫ t

0

∫ t−v

0

e−γ(µ1+ψ1)sf(v)dvds

=
µ1

ψ1

∫ t

0

(∫ t−v

0

ds

)
eγ(µ1+ψ1)vf(v)dv +

∫ t

0

(∫ t−v

0

e−γ(µ1+ψ1)sds

)
f(v)dv

=
µ1

ψ1

∫ t

0

(t− v)eγ(µ1+ψ1)vf(v)dv +

∫ t

0

(
e−γ(µ1+ψ1)s

−γ(µ1 + ψ1)

)t−v
0

f(v)dv

=
µ1

ψ1

∫ t

0

(t− v)eγ(µ1+ψ1)vf(v)dv +

∫ t

0

1

γ(µ1 + ψ1)

(
1− e−γ(µ1+ψ1)(t−v)

)
f(v)dv

=
1

γ(µ1 + ψ1)

∫ t

0

(
γ(µ1 + ψ1)µ1

ψ1

(t− v)eγ(µ1+ψ1)v + 1− e−γ(µ1+ψ1)(t−v)
)
f(v)dv.

Therefore,

c1(t) = − γψ3
1

(µ1 + ψ1)2
e−γ(µ1+ψ1)t

×
∫ t

0

(
γ(µ1 + ψ1)µ1

ψ1

(t− v)eγ(µ1+ψ1)v + 1− e−γ(µ1+ψ1)(t−v)
)
f(v)dv,

which together with equation (3.45), gives an approximation of the function c(t) that

can be evaluated numerically.

3.2 The competitive assay

Competitive binding immunoassays are based on antibody-antigen interactions in

which the number of antigen binding sites on the antibody is limited. The antigen

and a labelled analogue are incubated together with a fixed concentration of the an-

tibody and the signal produced will reflect the competition between the antigen and
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analogue for binding to the antibody. This method requires that the antibody should

have the same binding affinity for the antigen as for the labelled analogue; we also

assume that the probability of binding to antibody is the same for both species.

3.2.1 Simplified model for the competitive assay

As in the previous section, we start by studying the kinetics of the chemical reactions

in a competitive assay in the absence of any transport effects. The antibody-antigen

interactions with competition can be expressed symbolically as

A+B
k

�
k−

C, A
′
+B

k

�
k−

C
′
, (3.49)

where A, B and C are the same as defined in Section 3.1.1; A
′
is basically the antigen

with a label attached to it called an analogue, and C
′

is the product formed by

the antibody and analogue. We assume the two reactions have the same forward and

backward rate constants of k and k−, and we denote the concentration of all reactants

and products by their corresponding lower case letters, namely

a = [A], a
′
= [A

′
], b = [B], c = [C], c

′
= [C

′
].

The dynamics of the system is described by the following system of ordinary dif-

ferential equations
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da

dt
= −kab+ k−c (3.50a)

da
′

dt
= −ka′b+ k−c

′
(3.50b)

db

dt
= −kb(a+ a

′
) + k−(c+ c

′
) (3.50c)

dc

dt
= kab− k−c (3.50d)

dc
′

dt
= ka

′
b− k−c

′
, (3.50e)

with initial conditions

a(0) = a0, a
′
(0) = a

′

0, b(0) = b0, c(0) = 0, c
′
(0) = 0,

where a0, a
′
0 and b0 are constants. Also, in system (3.50),

db

dt
+
dc

dt
+
dc
′

dt
= 0,

da

dt
+
dc

dt
= 0,

da
′

dt
+
dc
′

dt
= 0,

which gives the following conservation laws associated with this model, namely


b+ c+ c

′
= b0 (3.51a)

a+ c = a0 (3.51b)

a
′
+ c

′
= a

′

0. (3.51c)

We use a similar non-dimensionalisation strategy as in the previous section, with

ā =
a

b0
, ā′ =

a
′

b0
, b̄ =

b

b0
, c̄ =

c

b0
, c̄′ =

c
′

b0
, t̄ =

t

t0
,

where t0 = 1/(kb0). This yields the following system of dimensionless equations (bars

are again omitted on non-dimensional variables for simplicity).
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da

dt
= −ab+ µc (3.52a)

da
′

dt
= −a′b+ µc

′
(3.52b)

db

dt
= −b(a+ a

′
) + µ(c+ c

′
) (3.52c)

dc

dt
= ab− µc (3.52d)

dc
′

dt
= a

′
b− µc′ . (3.52e)

The non-dimensional initial conditions are:

a(0) = ψ, a
′
(0) = ψ

′
, b(0) = 1, c(0) = 0, c

′
(0) = 0,

and the non-dimensional conservation laws become


a+ c = ψ (3.53a)

a
′
+ c

′
= ψ

′
(3.53b)

b+ c+ c
′
= 1, (3.53c)

where we define

ψ =
a0
b0
, ψ

′
=
a
′
0

b0
, µ =

k−
kb0

. (3.54)

Using similar calculations to those shown in the previous section, system (3.52) to-

gether with the conservation laws (3.53) yield the following equilibrium equation for

the antibody concentration, b,

b2 −
(

1− ψ − ψ′ − µ
)
b− µ = 0. (3.55)

The exact values of the steady states for all the species are as follows:
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b =
1

2

(
1− ψ − ψ′ − µ+

√
(1− ψ − ψ′ − µ)2 + 4µ

)
(3.56a)

a =
ψµ

µ+ b
(3.56b)

a
′
=

ψ
′
µ

µ+ b
(3.56c)

c =
ψb

µ+ b
(3.56d)

c
′
=

ψ
′
b

µ+ b
. (3.56e)

We are now going to calculate the asymptotic approximations to these solutions as

shown in (3.56), in a manner similar to the previous model. Again we start with an

expansion of the form

b = b̃0 + µb1 + µ2b2 + · · · (3.57)

(we have used the notation b̃0 for the first term of the expansion in order to avoid

confusing it with b0, the initial antibody concentration). Then substituting equation

(3.57) into (3.55), we get

(b̃0 + µb1 + µ2b2 + · · · )2 −
(

1− ψ − ψ′ − µ
)

(b̃0 + µb1 + µ2b2 + · · · )− µ = 0.

By collecting coefficients of powers of µ, at O(1), we obtain

b̃0
2 −

(
1− ψ − ψ′

)
b̃0 = 0,

which gives

b̃0 = 0 or b̃0 = 1− ψ − ψ′ .

At O(µ), we obtain

2b̃0b1 + b̃0 − (1− ψ − ψ′)b1 − 1 = 0,
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when b̃0 = 0, we get

b1 =
1

ψ + ψ′ − 1
;

and when b̃0 = 1− ψ − ψ′ , we get

b1 =
ψ + ψ

′

1− ψ − ψ′
.

At O(µ2), we obtain

b21 + 2b̃0b2 − (1− ψ − ψ′)b2 + b1 = 0,

and when b̃0 = 0 and b1 = 1/(ψ + ψ
′ − 1), we get

b2 = − ψ + ψ
′

(ψ + ψ′ − 1)3
.

The solution we have calculated so far is

b = µ
1

ψ + ψ′ − 1
− µ2 ψ + ψ

′

(ψ + ψ′ − 1)3
+ · · · , if ψ + ψ

′
> 1,

or

b = 1− ψ − ψ′ + µ
ψ + ψ

′

1− ψ − ψ′
+ · · · , if ψ + ψ

′
< 1.

In the case where ψ + ψ
′
= 1, we cannot choose either of the two solutions, since the

denominators in the solutions are equal to zero. In this case, we have to start the

asymptotic analysis again with ψ+ψ
′
= 1 substituted into equation (3.55). Thus the

equilibrium values for b are given by the equation

b2 + µb− µ = 0. (3.58)

Again, in this case it is more appropriate to use the expansion

b = b̃0 +
√
µb1 + µb2 + µ

√
µb3 + · · · (3.59)
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since we can clearly see that there is an
√
µ term contained in equation (3.56a).

Substituting the new expansion (3.59) into equation (3.58), we obtain the equation

(b̃0 +
√
µb1 + µb2 + µ

√
µb3 + · · · )2 + µ(b̃0 +

√
µb1 + µb2 + µ

√
µb3 + · · · )− µ = 0,

and then by collecting coefficients of powers of
√
µ, at O(1), yields

b̃0 = 0.

At O(
√
µ), we obtain

2b̃0b1 = 0,

which means that b1 cannot be determined here. At O(µ), we get

b21 + 2b̃0b2 + b̃0 − 1 = 0,

giving

b1 = 1 or b1 = −1, since b̃0 = 0.

At O(µ
√
µ), we obtain

2b̃0b3 + 2b1b2 + b1 = 0,

yielding

b2 = −1

2
for both solutions of b1.

Therefore, we have the solution

b =
√
µ− 1

2
µ+ · · ·

or

b = −√µ− 1

2
µ+ · · · , which cannot be a solution, since b > 0.
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Now we need to find the solutions for a, a
′
, c and c

′
. From equation (3.52a) and

(3.53a), we get

da

dt
= −ab+ µ(ψ − a),

which indicates that the equilibrium value of a can be obtained from the equation

ab− µ(ψ − a) = 0. (3.60)

Here, we are going to use the same asymptotic expansion (3.59) for b, and use the

expansion for a as

a = ã0 + µa1 + µ2a2 + · · · (3.61)

Insert equations (3.57) and (3.61) into (3.60) to obtain

(ã0 + µa1 + µ2a2 + · · · )(b̃0 + µb1 + µ2b2 + · · · ) = µ(ψ − ã0 − µa1 − µ2a2 − · · · ).

To find an approximation for a, we need to consider the following three cases by

considering the terms in powers of µ.

• When ψ + ψ
′
> 1, we have

b̃0 = 0, b̃1 =
1

ψ + ψ′ − 1
, b̃2 = − ψ + ψ

′

(ψ + ψ′ − 1)3
.

At O(1), we obtain

ã0b̃0 = 0,

which means ã0 cannot be determined here, since b̃0 = 0. At O(µ), we obtain

ã0b1 + a1b̃0 = ψ − ã0,

giving

ã0 = ψ
ψ + ψ

′ − 1

ψ + ψ′
, since b̃0 = 0 and b1 =

1

ψ + ψ′ − 1
,
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At O(µ2), we obtain

ã0b2 + a1b1 + a2b̃0 + a1 = 0,

which gives

a1 =
ψ

(ψ + ψ′ − 1) (ψ + ψ′)
.

Therefore,

a = ψ
ψ + ψ

′ − 1

ψ + ψ′
+ µ

ψ

(ψ + ψ′ − 1) (ψ + ψ′)
+ · · ·

• When ψ + ψ
′
< 1, we have

b̃0 = 1− ψ − ψ′ , b1 =
ψ + ψ

′

1− ψ − ψ′
.

At O(1), we obtain

ã0b̃0 = 0,

giving

ã0 = 0, since b̃0 6= 0.

At O(µ), we obtain

ã0b1 + a1b̃0 = ψ − ã0,

which gives

a1 =
ψ

1− ψ − ψ′
, since b̃0 = 1− ψ − ψ′ .

Therefore,

a = µ
ψ

1− ψ − ψ′
+ · · ·
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• When ψ + ψ
′
= 1, we have

b̃0 = 0, b̃1 = 1, b̃2 = −1

2
.

Note the change of power series used for a in this case. At O(1), we obtain

ã0b̃0 = 0,

which means that ã0 cannot be determined here, since b̃0 = 0. At O(
√
µ), we obtain

ã0b1 + a1b̃0 = 0,

which gives

ã0 = 0, since b̃0 = 0 and b1 = 1.

At O(µ), we obtain

ã0b2 + a1b1 + a2b̃0 = ψ − ã0,

yielding

a1 = ψ, since b̃0 = 0 and b1 = 1.

At O(µ
√
µ), we obtain

ã0b3 + a1b2 + a2b1 + a3b̃0 + a1 = 0,

which gives

a2 = −ψ
2
, since b2 = −1

2
.

Therefore,

a ≈ √µψ − µψ
2

+ · · ·
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To summarise, the equilibrium solutions for the reactants and products in the

three cases discussed above are as follows:

Case 1: When b0 < a0 + a
′
0 (i.e., ψ + ψ

′
> 1), the equilibrium solutions are



a = ψ − ψ

ψ + ψ′
+ µ

ψ

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · · (3.62a)

a
′
= ψ

′ − ψ
′

ψ + ψ′
+ µ

ψ
′

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · · (3.62b)

b =
µ

ψ + ψ′ − 1
− µ2 ψ + ψ

′

(ψ + ψ′ − 1)3
+ · · · (3.62c)

c =
ψ

ψ + ψ′
− µ ψ

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · · (3.62d)

c
′
=

ψ
′

ψ + ψ′
− µ ψ

′

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · · (3.62e)

Case 2: When b0 > a0 + a
′
0 (i.e., ψ + ψ

′
< 1), the equilibrium solutions are



a = µ
ψ

1− ψ − ψ′
+ · · · (3.63a)

a
′
= µ

ψ
′

1− ψ − ψ′
+ · · · (3.63b)

b = 1− ψ − ψ′ + µ
ψ + ψ

′

1− ψ − ψ′
+ · · · (3.63c)

c = ψ − µ ψ

1− ψ − ψ′
+ · · · (3.63d)

c
′
= ψ

′ − µ ψ
′

1− ψ − ψ′
+ · · · (3.63e)
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Case 3: When b0 = a0 + a
′
0 (i.e., ψ + ψ

′
= 1), the equilibrium solutions are



a =
√
µψ − 1

2
µψ + · · · (3.64a)

a
′
=
√
µψ

′ − 1

2
µψ

′
+ · · · (3.64b)

b =
√
µ− 1

2
µ+ · · · (3.64c)

c = ψ −√µψ +
1

2
µψ + · · · (3.64d)

c
′
= ψ

′ −√µψ′ + 1

2
µψ

′
+ · · · (3.64e)

Note that if a
′
0 = 0 (i.e., labelled antigen is absent), the assay is no longer a competi-

tion system and solutions (3.62)-(3.64) reduce to the solutions (3.15)-(3.17) obtained

in Section 3.1.1. Also note that the behaviour of the competitive system is quali-

tatively different in the three cases discussed above. Case 1 (b0 < a0 + a
′
0) is the

case which is most relevant to experiments, since antibody sites are limited so there

is a true competition between antigen and analogue. In this case, the equilibrium

solutions show that antibody sites are almost depleted while antigen and analogue

bind to a ratio equal to that of their initial concentrations. In Case 2 (b0 > a0 + a
′
0),

the antibody binding sites are plentiful and so all antigen and analogue molecules will

eventually bind and form products.

We now show how these results can be used for constructing calibration curves for

competitive systems. The solutions of antibody-antigen interactions with competition

model were considered in the case of b0 < a0 + a
′
0, b0 > a0 + a

′
0 and b0 = a0 + a

′
0. In

a real-life testing situation, a0 is unknown, so the analysis below is more appropriate

(we assume that b0 and a
′
0 are given).
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Case I: When b0 ≤ a
′
0 (i.e., ψ

′
> 1); this implies

b0 < a0 + a
′

0 or ψ + ψ
′
> 1,

since a0 is positive. The solution in this case is identical to the solution obtained in

equation (3.62) presented above. The expression of the labelled product in terms of

ψ and ψ
′

is given by

c
′
=

ψ
′

ψ + ψ′
− µ ψ

′

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · ·

We plot c
′

against ψ, as given by the proceeding formula, to get the calibration curve

(red) in Figure 3.3. This is compared with the plot of the exact solution (black) given

by equation (3.56e) and the two curves are in good agreement for µ� 1. Note that,

since ψ
′
> 1, the asymptotic approximation in this case is uniformly valid for all

values of ψ > 0.

Case II: When b0 > a
′
0 (i.e., ψ

′
< 1), we need to consider the following two

situations;

• If b0 > a0 + a
′
0 then ψ < 1 − ψ′ , and the solution for c

′
is given by equation

(3.63e) (Case 2 in the previous analysis);

• If b0 < a0 + a
′
0 then ψ > 1 − ψ′ , and the solution for c

′
is given by equation

(3.62e) (Case 1 in the previous analysis).

Therefore, we conclude the solution for c
′

is given by
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Figure 3.3 – Exact value (black) and asymptotic approximation (red) for the labelled

product as functions of ψ in Case I. Typical values for constants used in this simulation

are: b0 = 1, a
′
0 = 1, k = 100 and k− = 8.

c
′
=



ψ
′

ψ + ψ′
− µ ψ

′

(ψ + ψ′ − 1)(ψ + ψ′)
+ · · · , if ψ + ψ

′
> 1 (b0 < a0 + a

′
0)

ψ
′ − µ ψ

′

1− ψ − ψ′
+ · · · , if ψ + ψ

′
< 1 (b0 > a0 + a

′
0)

ψ
′ −√µψ′ + 1

2
µψ

′
+ · · · , if ψ + ψ

′
= 1 (b0 = a0 + a

′
0).

Combining these three solution branches, we obtain the plots shown in Figure 3.4,

which are shown together with the exact solution for c
′

given by equation (3.56e).

We make the same remark as in the case of direct assays, namely that the asymp-

totic approximation for c
′

in this case is not uniformly valid around ψ = 1 − ψ
′
.

Once again, the restriction ψ + ψ
′
> 1 applies in most practical situations so that

non-uniformity will not be relevant in this region. Note also that, when µ = 0, the
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Figure 3.4 – Exact value (black) and asymptotic approximation (red) for the labelled

product as functions of ψ in Case II. Typical values for constants used in this simulation

are: b0 = 2, a
′
0 = 1, k = 100, k− = 8 in (a) and k− = 0 in (b).

asymptotic approximation is identical to equations in system (3.56).

3.2.2 Diffusion model for the competitive assay

We now consider the case when some of the reactants are free to diffuse within a small

cell, modelled as a one-dimensional domain. Just as in Section 3.1.2, we assume

that the antibody is immobilised to a surface (in our one-dimensional model this

actually corresponds to one point) while the antigen and labelled antigen can move

throughout the cell. A consistent system of equations which describes the behaviour

of the relevant chemical species is given by

∂a(x, t)

∂t
= D

∂2a(x, t)

∂x2
,
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∂a
′
(x, t)

∂t
= D

∂2a
′
(x, t)

∂x2
,

with x ∈ (0, d), t ≥ 0, and initial conditions

a(x, 0) = a0,

a
′
(x, 0) = a

′

0.

The boundary conditions are:

∂a(0, t)

∂x
= 0,

∂a
′
(0, t)

∂x
= 0, (3.65)

D
∂a(d, t)

∂x
= k−c(t)− ka(d, t)(b0 − c(t)− c

′
(t)),

D
∂a
′
(d, t)

∂x
= k−c

′
(t)− ka′(d, t)(b0 − c(t)− c

′
(t)),

together with the conservation laws∫ d

0

a(x, t)dx+ c(t) = a0d, t ≥ 0,

∫ d

0

a
′
(x, t)dx+ c

′
(t) = a

′

0d, t ≥ 0.

Note that this system is a generalisation of the reaction-diffusion problem with non-

local boundary conditions presented in Section 3.1.2. A similar problem was analysed

in [34], as a generalisation of [30] and [31], which represented a more accurate descrip-

tion of the Fluorescence Capillary-Fill Device of [32]. However, the model studied

here is a simpler version of the one in [34] for at least two reasons. Firstly, we have

assumed (just as in Section 3.2.1) that the antibody has the same binding affinity for

antigen and labelled antigen, which translated as identical sets of rate constants (k

and k−) for both reactions. Secondly, the model presented in [34] assumes that the
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labelled antigen is initially attached to a wall and is subsequently displaced when the

fluid sample is drawn by capillary action into the device. This introduces a new vari-

able into the system discussed above, namely “the wall-bound labelled antigen” and

changes the zero-flux boundary condition (3.65) into a reaction boundary condition.

This approach is more suited to describing a particular type of test, the Fluorescence

Capillary-Fill Device; however, we have decided to treat a more generic type of com-

petitive immunoassay. Moreover, like in the previous section, the emphasis of our

work is again on finding the equilibrium state for the products and comparing the

results between the spatially restricted and diffusion models. Sometimes, time taken

to achieve equilibrium is another interesting aspect.

To non-dimensionalise the system, we introduce the variables

x̄ =
x

d
, t̄ =

Dt

d2
, ā(x̄, t̄) =

da(x, t)

b0
, c̄(t̄) =

c(t)

b0
,

ā′(x̄, t̄) =
da
′
(x, t)

b0
, c̄′(t̄) =

c
′
(t)

b0
.

Then we obtain the non-dimensional system as shown below, where bars are omitted

again on all of the non-dimensional variables for simplicity; these are
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∂a(x, t)

∂t
=
∂2a(x, t)

∂x2
(3.66a)

∂a
′
(x, t)

∂t
=
∂2a

′
(x, t)

∂x2
(3.66b)

a(x, 0) = ψ1 (3.66c)

a
′
(x, 0) = ψ2 (3.66d)

∂a(0, t)

∂x
= 0 (3.66e)

∂a
′
(0, t)

∂x
= 0 (3.66f)

∂a(1, t)

∂x
= γ

(
µ1c(t)− a(1, t)

(
1− c(t)− c′(t)

))
(3.66g)

∂a
′
(1, t)

∂x
= γ

(
µ1c

′
(t)− a′(1, t)

(
1− c(t)− c′(t)

))
(3.66h)

c(t) +

∫ 1

0

a(x, t)dx = ψ1 (3.66i)

c′(t) +

∫ 1

0

a
′
(x, t)dx = ψ2, (3.66j)

with x ∈ (0, 1), t ≥ 0, and we define

ψ1 =
a0d

b0
, γ =

dkb0
D

, µ1 =
k−d

kb0
, ψ2 =

a
′
0d

b0
.

Next, we are going to analyse system (3.66) as t→∞. At equilibrium,

∂a(x, t)

∂t
= 0,

giving

∂2a(x, t)

∂x2
= 0 (3.67)

from equation (3.66a). Then integrating (3.67) twice and using (3.66e) gives

a∗(x) = B. (3.68)
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Similarly, we obtain

a
′∗(x) = C, (3.69)

where a∗(x) and a
′∗(x) denote the equilibrium values of a(x, t) and a

′
(x, t) respec-

tively; B and C are constants of integration.

From equations (3.66f), (3.66h) together with (3.66e), (3.66g), (3.68) and (3.69),

we get

µ1c
∗ −B(1− c∗ − c′∗) = 0, (3.70)

and

µ1c
′∗ − C(1− c∗ − c′∗) = 0. (3.71)

Also, from (3.66i) and (3.66j), we get

c∗ +B = ψ1, (3.72)

and

c
′∗ + C = ψ2. (3.73)

Then if we solve the system formed by equations (3.70), (3.71), (3.72) and (3.73) to-

gether with the conservation law (3.53c), we obtain the following equilibrium solution

for b∗, namely

b∗ =
1

2

(
1− µ1 − ψ1 − ψ2 +

√
(1− µ1 − ψ1 − ψ2)2 + 4µ1

)
. (3.74)

Also, from equations (3.68)-(3.73), we obtain the solutions for a∗(x), a
′∗(x), c∗ and

c
′∗ as
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a∗ =
ψ1µ1

µ1 + b∗
(3.75a)

a
′∗ =

ψ2µ1

µ1 + b∗
(3.75b)

c∗ =
ψ1b

∗

µ1 + b∗
(3.75c)

c
′∗ =

ψ2b
∗

µ1 + b∗
, (3.75d)

which are the same solutions as shown in (3.56) obtained in Section 3.2.1 (since

d/b0 in the diffusion model is equivalent to 1/b0 in the non-diffusion model). Using

Laplace transforms and their properties we carry out a similar calculation to that

given in Section 3.1.2 and obtain the following system of Volterra integro-differential

equations: 

dc(t)

dt
= γψ1 − γ(µ1 + ψ1)c(t)− γψ1c

′
(t)

−γ
(

1− c(t)− c′(t)
)∫ t

0

f(t− s)dc
ds

(s)ds (3.76a)

dc
′
(t)

dt
= γψ2 − γψ2c(t)− γ (µ1 + ψ2) c

′
(t)

−γ
(

1− c(t)− c′(t)
)∫ t

0

f(t− s)dc
′

ds
(s)ds, (3.76b)

where f(t) has the same definition as in Section 3.1.2. (see (3.42)). Note that in the

absence of labelled antigen (c
′

= 0), equation (3.76a) yields the result obtained for

the non-competitive assay (see (3.39)).

Adding (3.76a) and (3.76b) yields

d(c
′
(t) + c(t))

dt
= γ

(
1− c(t)− c′(t)

)
(ψ1 + ψ2)− γµ1(c(t) + c

′
(t)) (3.77)

−γ
(

1− c(t)− c′(t)
)∫ t

0

f(t− s)d(c
′
+ c)

ds
(s)ds,
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and, if we use the conservation law c(t) + c
′
(t) = 1− b(t), we get

db(t)

dt
= γµ1 − γ(µ1 + ψ1 + ψ2)b(t)− γb(t)

∫ t

0

f(t− s)db
ds

(s)ds. (3.78)

Once the solution of b(t) is calculated (using, for example, the asymptotic or numerical

methods detailed in [30], [31]), the product concentration c
′
(t) can be determined from

equation (3.76b), which yields

dc
′
(t)

dt
= −γµ1c

′
(t) + γb(t)

(
ψ2 −

∫ t

0

f(t− s)dc
′

ds
(s)ds

)
. (3.79)

Hence, instead of solving a coupled system of integro-differential equations (3.76), we

can now solve the independent equation (3.78) followed by equation (3.79). A regular

perturbation analysis could be applied to (3.78) and (3.79), which is similar to the

one used in Section 3.1.2 to obtain an approximation for b(t) and c
′
(t).

We conclude that, our assumption of identical rate constants for antibody-antigen

and antibody-analogue binding leads to a significant simplification of the problem

studied in [34], whereby a coupled system of Volterra integro-differential equations

was replaced by an uncoupled one. However, this simplification may not always be

feasible since the label attachment may interfere with the antigen’s epitope and there-

fore has to be considered carefully for each experimental setting.

3.3 The sandwich assay

The Sandwich assay (refer to, for example, [3]) is a type of immunoassay in which

an antibody for the antigen to be assayed is immobilised to a solid surface (this
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antibody is often referred to as the capture antibody), then the sample containing

the test analyte is added and the reaction has been allowed to reach equilibrium. A

second antibody, which has a radioactive or fluorescent label (and is therefore called

a tracer) is added, sandwiching the antigen. Again, after removal of excess, the

amount of bound label is measured. The signal level in this type of assay is clearly

proportional to the analyte concentration in the sample, just like in the direct assay.

The second antibody may be specific for a different epitope on the antigen, thus

enhancing overall specificity, or for the first antibody bound to an antigen. This

process is shown in Figure 3.5 and can be symbolically represented by the reactions

given by (3.80)-(3.83).

Figure 3.5 – Immunometric immunoassay.
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A+B1

k1
�
k−1

C1, (3.80)

D +B1

k1
�
k−1

C2, (3.81)

A+B2

k2
�
k−2

D, (3.82)

C1 +B2

k2
�
k−2

C2, (3.83)

where A represents antigen, B1 represents the immobilised antibody (also referred to

as capture antibody), B2 represents the labelled antibody, C1 is the product of the

antigen and immobilised antibody, C2 is the product of C1 and labelled antibody (also

referred to as the sandwich product), and D is the product of antigen and labelled

antibody. The first two reactions have a forward reaction rate of k1 and a backward

reaction rate of k−1, the third and fourth reactions have a forward and backward

reaction rate of k2 and k−2 respectively. We have assumed that the affinity of each

antibody for the corresponding antigen is the same regardless of whether the antigen

is free or bound to another antibody; this simplifying assumption is not essential

for the model and could easily be relaxed later. We denote the concentration of the

reactants and products by their corresponding lower case letters, i.e.,

a = [A], b1 = [B1], b2 = [B2], c1 = [C1], c2 = [C2], d = [D],

then the initial conditions can be represented as

a(0) = α, b1(0) = β1, b2(0) = β2, c1(0) = 0, c2(0) = 0, d(0) = 0,

where α, β1 and β2 are constants, such that α < β1 and α < β2 (under experimental

conditions). The kinetic behavior of each reactant is given by the following system of

nonlinear differential equations
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da

dt
= −k1ab1 + k−1c1 − k2ab2 + k−2d (3.84a)

db1
dt

= −k1ab1 + k−1c1 − k1b1d+ k−1c2 (3.84b)

db2
dt

= −k2b2c1 + k−2c2 − k2ab2 + k−2d (3.84c)

dc1
dt

= k1ab1 − k−1c1 − k2b2c1 + k−2c2 (3.84d)

dc2
dt

= k2b2c1 + k−2c2 + k1b1d− k−1c2 (3.84e)

dd

dt
= k2ab2 − k−2d− k1b1d+ k−1c2, (3.84f)

with conservation laws 
a+ c1 + c2 + d = α (3.85a)

b1 + c1 + c2 = β1 (3.85b)

b2 + c2 + d = β2. (3.85c)

To non-dimensionalise the system, we introduce the following variables

ā =
a

β1
, b̄1 =

b1
β1
, b̄2 =

b2
β1
, c̄1 =

c1
β1
, c̄2 =

c2
β1
, d̄ =

d

β1
, (3.86)

which gives the following non-dimensional system (bars are again omitted on all of

the non-dimensional variables for simplicity).



da

dt
= K−1c1 +K−2d− ab1 −K

′
ab2 (3.87a)

db1
dt

= K−1(c1 + c2)− b1(a+ d) (3.87b)

db2
dt

= K−2(c2 + d)−K ′b2(a+ c1) (3.87c)

dc1
dt

= ab1 −K−1c1 −K
′
b2c1 +K−2c2 (3.87d)

dc2
dt

= K
′
b2c1 + b1d− (K−1 +K−2)c2 (3.87e)

dd

dt
= K

′
ab2 −K−2d− b1d+K−1c2, (3.87f)
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where we let

K−1 =
k−1
k1β1

, K−2 =
k−2
k1β1

, K
′
=
k2
k1
. (3.88)

The non-dimensional initial conditions and conservation laws are:

a(0) =
α

β1
, b1(0) = 1, b2(0) =

β2
β1
, c1(0) = 0, c1(0) = 0, d(0) = 0, (3.89)

and



a+ c1 + c2 + d =
α

β1
(3.90a)

b1 + c1 + c2 = 1 (3.90b)

b2 + c2 + d =
β2
β1
. (3.90c)

From the steady state forms of equations (3.87) and the conservation laws (3.90) we

find that

b21 +

(
α

β1
− 1 +K−1

)
b1 −K−1 = 0,

b22 +

(
α− β2
β1

+
K−2
K ′

)
b2 −

K−2β2
K ′β1

= 0,

and

c2 =

β2
β1
b1 +K

′
b2 − (1 +K

′
)b1b2

b1 +K−1 +K ′b2 +K−3
,

where

K−3 =
k−3
k1β1

.

Therefore, it is possible to calculate the exact values of the steady states for all

the species, provided that all the reaction constants and initial concentrations are

accurately known. Some calibration curves, consisting of the steady states of c2,
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c2 +d and b2 as functions of initial antigen concentration, α are plotted in Figure 3.6.

The reason for plotting these species is that some antibodies have radioactive or

fluorescent labels which can be measured both at the surface and in the solution.

If the signal is measured at the surface, we need to plot c2 and compare it with

experimental data; however, for signals measured in the solution, it is c2 + d we are

interested in. Note also that over the short initial stage of the reaction, there exists

a linear response between the signal and analyte concentration.

Figure 3.6 – Sandwich product c2 (red), combined product c2+d (blue), and unbound

tracer b2 (green) as functions of initial antigen concentration α. Typical values for

constants used in this simulation are: k1 = 100, k−1 = 10, k2 = 100, k−2 = 10, β1 = 2

and β2 = 2.

The performance of a biosensor is often affected by the presence of a non-specific

(noisy) component of the recorded signal. In the configuration described above, any
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measurement of the fluorescent label in solution would inevitably include B2, which

is the amount of labelled antibody left over (or unbound) after the reaction. This is

a non-specific measurement as it does not provide any information about the antigen

in the sample. We have also plotted b2, the noise, together with the “good” signals

in Figure 3.6.

An alternative modelling strategy is to construct a two-step model. In the first

step, we add antigen to the capture antibody and allow the reaction

A+B1

k1
�
k−1

C1, (3.91)

to proceed to equilibrium. This corresponds to the direct assay model studied in Sec-

tion 3.1.1, where exact and approximate formulas were obtained for the equilibrium

value of C1. After the unbound antigen is washed away, we construct a second model

where the labelled antibody is introduced in the system (which does not contain any

free antigen) and reacts with the product C1 to form C2,

C1 +B2

k2
�
k−2

C2. (3.92)

The equilibrium value of c2 can then be obtained as a function of c1 and hence of the

initial antigen concentration, a0. Note that this modelling strategy does not eliminate

noise completely as, even after washing, the reversible nature of the reactions (3.91)

and (3.92) means that small amounts of free A and C1 will still be present in the

solution. (However, in an experimental setting, washing is always practiced since it

greatly reduces these amounts hence minimising non-specific interactions).
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The analysis of this two-step model is similar to the one presented above and will

not be given here; instead, it will be performed as part of future studies into sandwich

bioassays (refer to the conclusions section). What this example illustrates is how, in

a simple model, it is possible to distinguish between the specific signal and the noise

and we believe that this calculation should bring valuable insight into experimental

procedures.

3.4 Summary

In this chapter we analysed several modelling strategies for antibody-antigen interac-

tions with possible applications to immunoassay design. For direct and competitive

assays, we constructed two types of mathematical models: one-point models which

describe only the reaction kinetics and spatially extended models which allowed

for transport of one or more species to the reaction site. For both these assays (and

both types of models) we were able to derive exact formulas for the equilibrium values

of all reactants and construct calibration curves, which give the final product as a

function of the initial analyte concentration. It was concluded that, for each of the

assays considered, both modelling approaches gave identical equilibrium values and

hence the biosensor response was the same regardless of whether transport effects were

included in the model or not. Therefore, if the value of the equilibrium state is the

only piece of information required in an experimental context we would recommend

using the simpler model without diffusion. However, in many practical problems, the

time taken to achieve equilibrium is also a parameter of interest and, in such cases,
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we obviously cannot neglect transport. Our modelling results were found to agree

with the results in [30], [31] and [34] which presented more detailed and rigorous

mathematical studies of diffusion models for similar direct and competitive assays.

As remarked before, the aim of our work in this chapter was to find conditions under

which simpler models and studies could be used in the context of antibody-antigen

interactions. The last section presented a different type of immunoassay, namely a

sandwich assay, for which a simple one-point model was used in order to construct

a calibration curve. This example illustrated how mathematical modelling has the

potential to evaluate the ratio between specific and non-specific signals in an experi-

mental problem and optimise biosensor performance by identifying parameter regions

where the noise is minimal.
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Chapter 4

Mathematical Models for

Optimising Bi-enzyme Biosensors

In the previous chapter we have seen examples of problems where including diffusion

of a reactant into the model only affects the transient behaviour of the system but

has no effect on the final steady states of its concentration. It is often the case that

the equilibrium values are the only piece of information required for the solution of a

practical problem (although, sometimes, time to achieve equilibrium or size of the de-

vice is the real issue) and in such situations it is important to identify the conditions

under which a complex partial differential equations model can be replaced with a

simpler one.

In this chapter, we study a flow injection analysis of a bi-enzyme electrode, with

the aim of finding the ratio of the two enzymes involved which yields the

highest current amplitude. A detailed comparison is given of three mathematical
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models (each neglecting different aspects of the biosensor functionality) and we try

to recommend the best modelling strategy under various physical conditions. It is

expected that, due to the more complex physical configuration of this system, the

inclusion of diffusion effects will be important in the modelling process.

4.1 Experimental problem and modelling strate-

gies

The problem we study here is motivated by a series of experiments conducted at the

National Centre for Sensor Research (NCSR) and the Biomedical Diagnostics Insti-

tute (BDI) at Dublin City University over the past few years by a group of researchers

interested in building a biosensing platform based on a bi-enzyme electrode. For more

details, we refer the reader to [35], [36], and [37]. This study investigates a model

biosensor system which consists of two enzymes immobilised onto an electrode modi-

fied with a conducting polymer. The first enzyme, glucose oxidase (GOX), acts as the

source of the substrate for the second enzyme, horseradish peroxidase (HRP), produc-

ing hydrogen peroxide from the oxidation of glucose to gluconolactone. Horseradish

peroxidase is in direct electronic communication with the electrode via the conducting

polymer and facilitates the electrocatalytic reduction of hydrogen peroxide, which can

be measured amperometrically at moderate reducing potentials. Cascade schemes,

where an enzyme is catalytically linked to another enzyme, can produce signal am-

plification and therefore increase the biosensor efficiency. HRP and GOX have very
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different kinetic characteristics (which have been studied extensively) and so obtain-

ing the optimum performance of this biosensing system will depend on the correct

ratio of the two enzymes.

HRP and GOX were immobilised together in one step on the polymer-modified

electrode. Different solutions containing the two enzymes at different molar ratios

were prepared and used to immobilise the enzymes on the electrode. (For more details

of the immobilisation procedure, refer to [36] or [37].) After the immobilisation, the

electrode was inserted in a flow-cell and an amperometric flow-injection analysis was

carried out. Glucose standard solutions at concentrations between 0.5 and 20 mM

were then passed over the electrode and the signals recorded. Figure 4.1 (reproduced

with permission from [37]) shows a typical amperogram recorded after passing the

glucose solutions. Figure 4.2 (also reproduced from [37]) shows a comparison between

all the sensitivities of the electrodes with different molar ratios HRP/GOX. It can

be clearly seen that these experiments concluded that the electrode prepared with

HRP/GOX at a molar ratio of 1:1 yielded the highest sensitivity.

It is known that the GOX enzyme used in the experiments has an activity of

1.7 U/mol protein while the activity of HRP is 5.7 U/mol protein 1. Therefore HRP

is approximately three times more active than GOX and so, it was expected that a

platform with a greater amount of GOX than of HRP would be most efficient. The

1One unit U of an enzyme is defined as the amount which catalyses the transformation of one

µmol of substrate per minute. The enzyme specific activity is a measure of the purity of the enzyme

preparation and is defined as the number of enzyme units per mass, U/mg or molar mass, U/mol.
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Figure 4.1 – Amperometric responses of a HRP/GOX bi-enzyme electrode to a range

of glucose concentrations between 0.5 and 20 mM.

Figure 4.2 – Comparison of HRP/GOX ratio and sensitivity to glucose. The electrode

prepared immobilising HRP and GOX at the molar ratio 1:1 yields the highest catalytic

signals and the highest sensitivity. The glucose concentration used in this experiment

was 20 mM.
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fact that the electrode with HRP and GOX present at molar ratio of 1 : 1 produces

the highest signals is surprising and leads to the hypothesis that other phenomena

might influence the response. Several factors affect the rate at which enzymatic reac-

tions proceed - temperature, pH, enzyme concentration, substrate concentration, and

the presence of any inhibitors or activators, also the activity of HRP may be reduced

disproportionately as a consequence of its immobilisation on the electrode surface,

and its reliance on direct electron transfer.

In attempting to construct a mathematical model for this problem, we make the

following simplifying assumptions:

1. The immobilisation mechanisms of the two enzymes are equally efficient and

hence the distribution of immobilised HRP and GOX molecules on the surface

of the electrode is proportional to that of the solution used.

2. Immobilisation of HRP and GOX produces a geometrically close-packed spher-

ical monolayer which is spatially homogeneous.

3. The electron transfer process is 100% efficient, since this parameter only affects

the magnitude of the signals, and not their relative responses.

A cascade reaction takes place at the electrode. Glucose oxidase catalyses the oxida-

tion reaction of glucose to gluconic acid, with production of H2O2. HRP is oxidised

by hydrogen peroxide and then subsequently reduced by electrons provided by the

electrode, as shown in the following abbreviated reaction. These reactions may be
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summarised as follows:

β-D-glucose +O2 +H2O
GOX−→ gluconic acid +H2O2,

H2O2 + HRP −→ Compound I +H2O,

Compound I + 2e− +H+ −→ HRP +H2O.

We can see that these reactions taking place at the electrode is a biochemical cascade

reaction, since the product of the first reaction feeds into the second reaction as the

substrate and is then consumed. We are going to use the standard Michaelis-Menten

equations (4.1) to model these reactions,

E1 + S1

k1
�
k−1

C1
k2−→E1 + S2, E2 + S2

k3
�
k−3

C2
k4−→E2 + P, (4.1)

where E1 denotes the first enzyme GOX, E2 denotes the second enzyme HRP, S1 de-

notes the first substrate glucose, S2 denotes the second substrate hydrogen peroxide,

C1 and C2 are the two complexes and P is the final product. Also, k1, k−1, k2, k3,

k−3 and k4 are constant parameters which represent the rate of the reactions as in

Section 1.3.

In the following sections we will present three models of varying complexity for

analysing this optimisation problem. Numerical and, where possible, analytical solu-

tions will be presented with a view to expressing the steady-state current as a function

of the ratio ζ of the two immobilised enzymes and thus finding its maximum value.

The first model, the “comprehensive model” assumes that the two substrates, S1

and S2, are free to diffuse in the solution and consists of two diffusion equations with
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the relevant nonlinear reaction-type boundary conditions. This model was proposed

and solved numerically in [35]. We then jump to the other extreme and ignore all

transport phenomena basically reducing the whole problem to the one-point kinetics

of the cascade reaction in the second model, the “simplified model”. This leads to

a system of ordinary differential equations which is analysed using a combination

of dynamical systems methods, perturbation techniques and numerical simulations.

This model was also studied previously in [36] but the analysis presented here is more

comprehensive. Finally, the third model, the “intermediate model” is proposed here

for the first time and is a compromise between the two situations discussed above,

where we allow one substrate (hydrogen peroxide) to diffuse but assume the other

substrate (glucose) is only present at the reaction point (that is, the electrode). This

leads to a simpler system in comparison with the first model, consisting of one diffu-

sion equation with nonlinear boundary conditions.

It is perhaps instructive to give some motivations regarding the choice of these

three models and discuss expectations. Based on our experience from previous chap-

ters, we expect that the diffusion of S1 (glucose) to the reaction site will not affect the

equilibrium state except by increasing the time it takes to achieve it. So we expect

there will be little difference between the first and third model. On the other hand,

neglecting the diffusion of S2 (hydrogen peroxide) in the second model is potentially

more serious as this assumes that all S2 generated in the first reaction is immediately

available for the second reaction and this could affect the size of the final steady states.

The three models are discussed in detail in the next three sections and comparisons

between them are given at the end of the chapter.
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4.2 The comprehensive model

This section reviews the model introduced in [35] (where both substrates diffuse).

An additional steady-state analysis of the partial differential equations is presented

which is then compared with the numerical results obtained in [35].

4.2.1 Review of the comprehensive model

In this model, the reactions (4.1) were modelled by a system of partial differential

equations and boundary conditions representing convective and diffusive transport of

the two substrates, glucose and hydrogen peroxide, as well as the reaction kinetics

of the bi-enzyme electrode. For simplicity, the convective transport is not explicitly

modelled and the flow injection is only reflected in the boundary conditions imposed

at the top of the diffusion domain, 0 ≤ x ≤ L. We have also assumed that diffusion

is one-dimensional and x measures distance from the electrode.

In what follows, we denote the concentrations of all the chemical species mentioned

in the cascade scheme (4.1) by their corresponding lower case letters (e.g., c1 = [C1]

etc.). The two substrates satisfy the following diffusion equations,

∂s1(x, t)

∂t
= D1

∂2s1(x, t)

∂x2
, 0 ≤ x ≤ L, t ≥ 0,

∂s2(x, t)

∂t
= D2

∂2s2(x, t)

∂x2
, 0 ≤ x ≤ L, t ≥ 0,
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where D1 and D2 are the diffusion coefficients. At the top boundary, S1 is in constant

supply (due to the continuous glucose injection), and S2 is assumed to be flushed away

constantly, which gives the following boundary conditions

s1(L, t) = s0, t ≥ 0,

s2(L, t) = 0, t ≥ 0.

At the bottom boundary, the boundary conditions reflect the fact that the diffusive

flux of each substrate is equal to the corresponding reaction rate as

D1
∂s1(0, t)

∂x
= k1e1(t)s1(0, t)− k−1c1(t),

D2
∂s2(0, t)

∂x
= k3e2(t)s2(0, t)− k2c1(t)− k−3c2(t),

together with

de1
dt

= −k1e1(t)s1(0, t) + (k−1 + k2)c1(t),

de2
dt

= −k3e2(t)s2(0, t) + (k−3 + k4)c2(t),

dc1
dt

= k1e1(t)s1(0, t)− (k−1 + k2)c1(t),

dc2
dt

= k3e2(t)s2(0, t)− (k−3 + k4)c2(t),

dp

dt
= k4c2(t).

In accordance with the physical problem described above, we consider the following

initial conditions

e1(0) = e01, e2(0) = e02, c1(0) = 0, c2(0) = 0, p(0) = 0, s2(x, 0) = 0,

s1(x, 0) =

{ s0, if x = L

0, otherwise,
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where e01, e
0
2 and s0 are constants. We let

ζ =
e01
e02
,

which implies

e01 =
eζ

1 + ζ
, e02 =

e

1 + ζ
,

where e is the total amount of enzyme present on the electrode. We can assume

that e is a constant which corresponds to full coverage of the electrode; this can be

measured experimentally.

We are going to non-dimensionalise the system by introducing the following vari-

ables;

s̄1(x̄, t̄) =
s1(x, t)

s0
, s̄2(x̄, t̄) =

s2(x, t)

s0
, ē1(t̄) =

e1(t)

e
, ē2(t̄) =

e2(t)

e
,

c̄1(t̄) =
c1(t)

e
, c̄2(t̄) =

c2(t)

e
, p̄(t̄) =

p(t)

e
, x̄ =

x

l
, t̄ =

t

t0
,

where t0 = 1/(k1s0). We then obtain the non-dimensional system
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∂s1(x, t)

∂t
=

D1

k1s0l2
∂2s1(x, t)

∂x2
(4.2a)

∂s2(x, t)

∂t
=

D2

k1s0l2
∂2s2(x, t)

∂x2
(4.2b)

s1(1, t) = 1 (4.2c)

s2(1, t) = 0 (4.2d)

∂s1(0, t)

∂x
=
k1el

D1

e1(t)s1(0, t)−
k−1el

D1s0
c1(t) (4.2e)

∂s2(0, t)

∂x
=
k3el

D2

e2(t)s2(0, t)−
k2el

D2s0
c1(t)−

k−3el

D2s0
c2(t) (4.2f)

de1
dt

= −e1(t)s1(0, t) +
K1
m

s0
c1(t) (4.2g)

de2
dt

= −k3
k1
e2(t)s2(0, t) +

k−3 + k4
k1s0

c2(t) (4.2h)

dc1
dt

= e1(t)s1(0, t)−
K1
m

s0
c1(t) (4.2i)

dc2
dt

=
k3
k1
e2(t)s2(0, t)−

k−3 + k4
k1s0

c2(t) (4.2j)

dp

dt
=

k4
k1s0

c2(t), (4.2k)

where the bars were dropped for convenience. An extensive numerical analysis of this

system was presented in [35] where the behaviour of the enzyme ratio ζ was studied

for different values of the system parameters. The time evolution of k4c̄2(t), which

was taken as a measure of the amperometric signal, was calculated and the steady

state value, k4c
∗
2, was recorded as the current value and used for future parameter

iterations. Note that the dimensional value of the current is

I(t) ≈ dp

dt
= k4c2(t) = ek4c̄2(t), (4.3)

hence, k4c̄2(t) can be regarded as a good measure of the amperometric signal, which

should not depend on the choice of non-dimensionalisation used in the model. For
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example, Figure 4.3 in [35] shows the dependence of the (steady-state) current on the

GOX:HRP ratio, ζ, for different concentrations of the first substrate, glucose (s1).

The optimal ζ values (the values which yield maximum signals) are then indicated

on each curve. This figure was produced using Interactive Data Language (IDL).

Figure 4.3 – Dependence of current on ζ for different initial concentrations of s1. The

curves correspond to s0 = 1, 5, 10 and 20 mM from bottom to top. The maximum value

of current is indicated on each curve.

In Figure 4.3, we note that at low glucose concentrations, varying the ratio of

the immobilised enzymes has little effect on the electrode response. However, as the

glucose concentration increases the optimal ratio value becomes more pronounced

and converge to 1 (refer to [35]). The reason for this particular limiting value lies

behind the choice of catalytic conversion constants, k2 = k4. (The value used for the

simulation in [35] was k2 = k4 = 10s−1.) By choosing k4/k2 = 2, a similar pattern of

curves can be obtained by letting ζ∗ → 2 with increasing glucose concentrations.
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Figure 4.4 (also obtained in [35]) shows the dependence of the current on the

GOX:HRP ratio when the relative speed of the two consecutive reactions k4/k2 is

varied. Note again that, as the value of k4/k2 increases there seems to be a wider

range of ζ values associated with an “optimal” biosensor response.

Figure 4.4 – Dependence of current on ζ (electrode GOX:HRP ratio) for different k4/k2

values. The lower curve corresponds to k4/k2 = 0.5 and the upper curve corresponds

to k4/k2 = 8.

4.2.2 Steady-state analysis

In this section, we are going to analyse system (4.2) as t → ∞. At equilibrium,

equation (4.2a) gives

∂s1(x, t)

∂t
= 0,
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which means

∂2s1(x, t)

∂x2
= 0; (4.4)

then integrating equation (4.4) twice with respect to x, we get

s∗1(x) = Ax+B. (4.5)

Similarly, from equation (4.2b), we obtain

s∗2(x) = Cx+D, (4.6)

where s∗1(x), s∗2(x) denote the equilibrium values of s1(x, t), s2(x, t) respectively, and

A, B, C, D are constants of integration.

Equation (4.2c) together with equation (4.5) gives

s∗1(x) = (1−B)x+B;

similarly equation (4.2d) together with equation (4.6) gives

s∗2(x) = −Dx+D.

Thus, at x = 0, the system (4.2) can be reduced to



1−B =
k1el

D1

(
ζ

1 + ζ
− c∗1

)
B − k−1el

D1s0
c∗1 (4.7a)

−D =
k3el

D2

(
1

1 + ζ
− c∗2

)
D − k2el

D2s0
c∗1 −

k−3el

D2s0
c∗2 (4.7b)

0 =

(
ζ

1 + ζ
− c∗1

)
B − K1

m

s0
c∗1 (4.7c)

0 =
k3
k1

(
1

1 + ζ
− c∗2

)
D − k4 + k−3

k1s0
c∗2. (4.7d)
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Here, we have a system of four equations with four unknowns B, D, c∗1 and c∗2, which

can be reduced to the following system of two equations in term of c∗1 and c∗2, where

c∗1, c
∗
2 are positive and denote the equilibrium values of c1(t), c2(t) respectively.


(c∗1)

2 −
(
D1s0
k2el

+
D1K

1
m

k2el
+

ζ

1 + ζ

)
c∗1 +

D1s0
k2el

· ζ

1 + ζ
= 0 (4.8a)

(c∗2)
2 −

(
k2c
∗
1

k4
+
D2K

2
m

k4el
+

1

1 + ζ

)
c∗2 +

k2c
∗
1

k4
· 1

1 + ζ
= 0. (4.8b)

System (4.8) can be easily solved to give explicit formulas for c∗1 and c∗2; however, these

formulas are lengthy, so we do not include them here, see appendix A for calculations

of the explicit formulas. Note that the smaller solution is selected in both these

quadratic equations, as we need

c∗1 ≤ e01 =
ζ

1 + ζ
; c∗2 ≤ e02 =

1

1 + ζ
.

We then plot the current, k4c
∗
2, as a function of ζ by using MAPLE in Figure 4.5.

(Parameters are not all the same as the values used in the numerical simulation of [35]

as discussed in the previous section). We note again that, as we chose k2 = k4, the

optimal ratio ζ∗ approaches 1 for large glucose concentrations. Also, note that there

is good qualitative and quantitative agreement between Figure 4.3 and Figure 4.5,

as regards the behaviour of the steady state current. A comparison of the optimal

GOX:HRP ratios for all three models will be given in Section 4.5. Figure 4.6 shows

the current as a function of ζ when the ratio k4/k2 is varied; note again the similarity

with the numerical result shown in Figure 4.4.
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Figure 4.5 – Dependence of current on ζ as given by system (4.8). The curves corre-

spond to s0 = 1, 5, 10 and 20 mM from the bottom to top. Typical values for constants

used in this simulation are: k1 = 102, k−1 = 10−1, k2 = 10, k3 = 102, k−3 = 10−1,

k4 = 10, e0 = 10−5, l = 2× 10−4, D1 = 6.7× 10−10 and D2 = 8.8× 10−10.

Figure 4.6 – Dependence of current on ζ as given by system (4.8). The curves corre-

spond to k4/k2 = 0.2, 0.5, 1 and 2 from the bottom to top. Typical values for constants

used in this simulation are the same as in Figure 4.5.
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4.3 Simplified model

This section analyses the simple, one-point model of the cascade reaction which was

introduced in [36]. A detailed stability analysis is presented here which shows that

the system displays different behaviour for different values of the enzyme ratio ζ. We

also use results from geometric singular perturbation theory and monotone dynamical

systems in order to achieve a good understanding of this model.

4.3.1 Formation of the model

In this subsection we neglect diffusion of both substrates in the cascade reactions

(4.1), and construct a one-point model. Recall that, an ordinary differential equation

model for a cascade reaction was already discussed in Chapter 2. If we assume that

glucose is present in constant supply at the reaction point (i.e., s1(t) = s0), the non-

dimensional system (2.57) can be further simplified to the following system



dc1
dt

=
ζ

1 + ζ
−
(

1 +
K1
m

s0

)
c1 (4.9a)

dc2
dt

=
k3
k1

(
1

1 + ζ
− c2

)
s2 −

K

s0
c2 (4.9b)

ds2
dt

= ε1

(
k2
k1s0

c1 −
k3
k1

(
1

1 + ζ
− c2

)
s2 +

k−3
k1s0

c2

)
, (4.9c)

with initial conditions c1(0) = 0, c2(0) = 0 and s2(0) = 0, where the parameters ε1,

K1
m and K are the same as defined in equation (2.58), namely

ε1 =
e

s0
, K1

m =
k−1 + k2

k1
, K =

k−3 + k4
k1

.
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Instead of studying the behaviour of a single reaction (defined by the initial conditions

specified above), we have decided to look at the global behaviour of the dynamical

system (4.9). We also anticipate that all solutions of this system will display the

exact same asymptotic behaviour as t→∞.

Given the interpretation of c1, c2 and s2 as concentrations, it is important to

establish the positivity of solutions for this system. More precisely, we consider the

positive octant

Γ =
{

(c1, c2, s2) ∈ R3 | c1 ≥ 0, c2 ≥ 0, s2 ≥ 0
}
,

and prove it is a positively invariant region (which means that trajectories entering

this region cannot leave it in forward time). Hence, a solution with a positive initial

condition will stay positive for all t ≥ 0. This is easily done if we show that the flow

points inwards on all three boundaries of the region Γ. In particular, we have to check

that

dc1
dt
≥ 0, on c1 = 0, c2 ≥ 0, s2 ≥ 0,

dc2
dt
≥ 0, on c2 = 0, c1 ≥ 0, s2 ≥ 0,

ds2
dt
≥ 0, on s2 = 0, c1 ≥ 0, c2 ≥ 0,

and these conditions can be easily verified in system (4.9). Next, we are going to find

the equilibrium points of system (4.9). At equilibrium, from equations (4.9a) and
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(4.9b), we obtain

c∗1 =
ζ

(1 + ζ)
(

1 + K1
m

s0

) , (4.10)

c∗2 =
s∗2

(1 + ζ)
(
s∗2 + K2

m

s0

) , (4.11)

with

K2
m =

k−3 + k4
k3

,

as defined in Chapter 2. Then from equations (4.9c), (4.10) and (4.11), we find the

equilibrium value for s2(t) is,

s∗2 =
ζk2K

2
m

s0

(
k4

(
1 + K1

m

s0

)
− ζk2

) , (4.12)

which is positive if and only if

ζ <
k4
k2

(
1 +

K1
m

s0

)
.

We let

ζ∗ =
k4
k2

(
1 +

K1
m

s0

)
, (4.13)

as we will use this parameter frequently in the remainder of this chapter. Therefore,

we conclude that when ζ < ζ∗, the equilibrium values are



c∗1 =
k4ζ

k2ζ∗(1 + ζ)
(4.14a)

c∗2 =
ζ

ζ∗(1 + ζ)
(4.14b)

s∗2 =
ζK2

m

s0(ζ∗ − ζ)
, (4.14c)

and when ζ > ζ∗, we do not have an equilibrium value for s2(t) in the positive
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octant Γ. In order to better visualise the behaviour of the solution of system (4.9)

starting at (0, 0, 0), we now show that it is confined to an invariant set. We define

the set Ω1, such that

Ω1 =

{
(c1, c2, s2) ∈ R3 | 0 ≤ c1 ≤ c∗1, 0 ≤ c2 ≤

1

1 + ζ
, 0 ≤ s2 ≤ ∞

}
.

Next we are going to show the set Ω1 is an invariant set, by showing that all the

trajectories point inwards when crossing the boundary of the set Ω1, i.e., we need to

show that:

On Need to show

c1 = 0 dc1
dt
> 0

c1 = c∗1
dc1
dt

= 0

c2 = 0 dc2
dt
> 0

c2 = 1/(1 + ζ) dc2
dt
< 0

s2 = 0 ds2
dt
> 0

We can easily see that, on c1 = 0, we have

dc1
dt

=
ζ

1 + ζ
> 0.

On c1 = c∗1, we have

dc1
dt

=
ζ

1 + ζ
−
(

1 +
K1
m

s0

)
ζ

(1 + ζ)
(

1 + K1
m

s0

) = 0.

On c2 = 0, we have

dc2
dt

=
k3
k1

(
1

1 + ζ

)
s2 > 0.
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On c2 = 1/(1 + ζ), we have

dc2
dt

= − K

s0(1 + ζ)
< 0.

On s2 = 0, we have

ds2
dt

= ε1

(
k2
k1s0

c∗1 +
k−3
k1s0

c2

)
> 0,

since c∗1 > 0 and c2 ≥ 0. Thus, the set Ω1 is an invariant set, and thus the solution

starting at (0, 0, 0) stays in this invariant set.

In the next three subsections, we are going to investigate in detail the long term

behaviour of this solution and prove that

lim
t→∞

c1(t) = c∗1, for all ζ,

lim
t→∞

c2(t) =


c∗2, if ζ ≤ ζ∗

1

1 + ζ
, if ζ ≥ ζ∗,

lim
t→∞

s2(t) =

s∗2, if ζ < ζ∗

∞, if ζ ≥ ζ∗.

These results are easy to interpret in the context of the cascade reactions (4.1). If

ζ < ζ∗, there is a relatively small amount of e1(0) compared to e2(0) which means

that the production of s2 in the first reaction is somehow balanced by its consumption

in the second reaction and an equilibrium state can be reached. On the other hand, if

ζ ≥ ζ∗, the relatively large amount of e1(0) can facilitate the production of s2 which

is then not consumed fast enough in the second reaction so its concentration can grow

indefinitely. (Recall that we have assumed an unlimited supply of s1!)
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We now present briefly a local stability analysis for this equilibrium point. The

Jacobian matrix for system (4.9) can be constructed as follows:
∂f1
∂c∗1

∂f1
∂c∗2

∂f1
∂s∗2

∂f2
∂c∗1

∂f2
∂c∗2

∂f2
∂s∗2

∂f3
∂c∗1

∂f3
∂c∗2

∂f3
∂s∗2

 =


−1− K1

m

s0
0 0

0 −k3
k1
s∗2 + K

s0

k3
k1

(
1

1+ζ
− c∗2

)
ε1k2
k1s0

ε1

(
k3
k1
s∗2 + k−3

k1s0

)
− ε1k3

k1

(
1

1+ζ
− c∗2

)


Then denoting the eigenvalues of the Jacobian matrix by λ1, λ2 and λ3, we obtain

λ1 = −1− K1
m

s0
< 0,

λ2 + λ3 = −
k3s0s

∗
2 + k−3 + k4 + ε1k3s0

(
1

1+ζ
− c∗2

)
k1s0

< 0,

and λ2λ3 =
ε1k3k4

(
1

1+ζ
− c∗2

)
k21s0

> 0;

this shows that we have three negative eigenvalues, which tells us the equilibrium

point is locally stable. Also, a global stability analysis will be presented later in this

section.

4.3.2 Slow-fast dynamics

With the notation introduced in (4.9), that system can be written as



dc1
dt

= f1(c1) (4.15a)

dc2
dt

= f2(c2, s2) (4.15b)

ds2
dt

= ε1f3(c1, c2, s2), (4.15c)

where ε1 = e/s0 is a small parameter, i.e., ε1 � 1. Posed this way, c1 and c2 are
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fast variables, s2 is the slow variable and t is the fast time. System (4.15) is called

a slow-fast system (also known as a singularly perturbed system or system

with multiple scales).

If we let τ = ε1t, the system can be written in the form


ε1
dc1
dτ

= f1(c1) (4.16a)

ε1
dc2
dτ

= f2(c2, s2) (4.16b)

ds2
dτ

= f3(c1, c2, s2). (4.16c)

Then in system (4.16), c1 and c2 are still the fast variables, and s2 is still the slow

variable, but τ is the slow time. Regardless of how time is scaled, as long as f1(c1) 6= 0

and f2(c2, s2) 6= 0, we have∣∣∣∣dc1dt
∣∣∣∣� ∣∣∣∣ds2dt

∣∣∣∣ and

∣∣∣∣dc2dt
∣∣∣∣� ∣∣∣∣ds2dt

∣∣∣∣ .
Thus, it is the relative rates which makes c1 and c2 fast and s2 slow.

The fast subsystem (or unperturbed system) corresponding to system (4.15)

is defined as



dc1
dt

= f1(c1) (4.17a)

dc2
dt

= f2(c2, s2) (4.17b)

ds2
dt

= 0, (4.17c)
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and the equilibrium set of system (4.17) is given by

f1(c1) = 0, which implies c∗1 =
ζ

(1 + ζ)
(

1 + K1
m

s0

) , (4.18)

f2(c2, s2) = 0, which implies c∗2 =
s∗2

(1 + ζ)
(
s∗2 + K2

m

s0

) ; (4.19)

since ds2/dt is identically zero (hence s2 is constant), this set defines a one-dimensional

curve of fixed points M0, which can be thought of as a trivially invariant manifold.

Also, using the same arguments as in Section 4.4, it can be shown that in the fast sys-

tem each of these fixed points is stable. Moreover, since the eigenvalues were shown

to be strictly negative, each of these equilibrium points is hyperbolic. The manifold

M0 is then said to be normally hyperbolic and it is these manifolds that occupy

an important place in geometric singular perturbation theory (refer to [38]).

On the other hand, the slow subsystem (or layer system) is obtained by let-

ting ε1 = 0 in system (4.16), which gives


0 = f1(c1) (4.20a)

0 = f2(c2, s2) (4.20b)

ds2
dτ

= f3(c1, c2, s2). (4.20c)

The first two equations in system (4.20) give

c∗1 =
ζ

(1 + ζ)
(

1 + K1
m

s0

) , (4.21)

c∗2 =
s∗2

(1 + ζ)
(
s∗2 + K2

m

s0

) . (4.22)
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This defines a one-dimensional curve in the (c1, c2, s2) space, called the slow mani-

fold. Unlike the case of the fast system, there is now (slow) flow along this manifold,

which is derived from equation (4.20c), and is given by

ds2
dτ

= F (s2) =
k2ζ

(1 + ζ)
(

1 + K1
m

s0

) − (k−3 + k4) s2 − k−3s2
(1 + ζ)

(
s2 + K2

m

s0

) .

Note that, by letting F (s2) = 0, we obtain

s2 =
k2ζK

2
m

s0

(
k4

(
1 + K1

m

s0

)
− k2ζ

) ,
so there is an equilibrium point on this slow manifold provided the same condition

as before, namely ζ < ζ∗, is satisfied. Unlike regular perturbed systems, neither

the slow nor fast subsystem is sufficient for understanding the behaviour of system

(4.15). The dynamics of the original system are then often explained by combining

the information obtained from the fast and slow systems.

4.3.3 Slow invariant manifold

The main question at this point is whether the normally hyperbolic manifold M0 given

by equations (4.18) and (4.19) obtained in the fast (unperturbed) subsystem persists

for the original system (4.15) with the perturbation added. The conditions for the

persistence of this manifold are given by a theorem due to Fenichel (refer to [39]), and

other results in geometric singular perturbation theory (refer to [38] for a review of

this theory). A rigorous analysis of the fast-slow dynamics of system (4.15) is beyond

the aim of this thesis so will not be given. Instead, we use an approximation method
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(refer to [41]) for the qualitative asymptotic analysis of singular differential equations

by reducing the order of the differential system under consideration. The method

relies on the theory of invariant manifolds, which essentially replaces the original sys-

tem by another system on an invariant manifold with dimension equal to that of the

slow subsystem.

Definition 1

A system of differential equations is called autonomous if it maps into itself under

arbitrary translations along the time axis. In other words a system is autonomous if

its right-hand side is independent of time (refer to [40]).

Theorem 1 (refer to [41])

A smooth surface y = h(x, ε), (x ∈ Rm, y ∈ Rn) in Rm × Rn is a slow invariant

manifold of the autonomous system

ẋ = f(x, y, ε), εẏ = g(x, y, ε), (4.23)

if any trajectory x = x(t, ε), y = y(t, ε) of the system (4.23) that has at least one

point x = x0, y = y0 in common with the surface y = h(x, ε), i.e., y0 = h(x0, ε), lies

entirely in this surface, i.e., y(t, ε) = h (x(t, ε), ε).

The motion along an invariant manifold of the system (4.23) is governed by the

equation

ẋ = f (x, h(x, ε), ε) .

If x(t, ε) is a solution of this equation, then the pair (x(t, ε), y(t, ε)), where y(t, ε) =
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h (x(t, ε), ε), is a solution of the original system (4.23), since it defines a trajectory

on the invariant manifold.

Substituting the function h(x, ε) instead of y into system (4.23) gives the following

first order invariance equation for h(x, ε),

ε
∂h

∂x
f (x, h(x, ε), ε) = g(x, h, ε)

(refer to [41]).

Now we are going to restate the slow invariant manifold defined in Theorem 1

in the notation of our system (4.16). A smooth surface c1 = h1(s2, ε1) and c2 =

h2(s2, ε1) is a slow invariant manifold of system (4.16) if any trajectory s2 = s2(t, ε1),

c1 = c1(t, ε1) and c2 = c2(t, ε1) of the system that has at least one point s2 = s20,

c1 = c10 and c2 = c20 in common with the surface c1 = h1(s2, ε1) and c2 = h2(s2, ε1)

(i.e., c10 = h1(s20, ε1) and c20 = h2(s20, ε1)), and lies entirely in this surface (i.e.,

c1(t, ε1) = h1 (s2(t, ε1), ε1) and c2(t, ε1) = h2 (s2(t, ε1), ε1)).

The motion along an invariant manifold of system (4.16) is governed by the equa-

tion

ṡ2 = f3 (s2, h1(s2, ε1), h2(s2, ε1)) .

Hence by substituting h1(s2, ε1) and h2(s2, ε1) instead of c1, c2 into system (4.16)

yields the following invariance equations,

ε1
∂h1
∂s2

f3 (s2, h1(s2, ε1), h2(s2, ε1)) = f1(c1), (4.24)
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ε1
∂h2
∂s2

f3 (s2, h1(s2, ε1), h2(s2, ε1)) = f2(c2, s2). (4.25)

To calculate an approximation to the one-dimensional slow invariant manifold,

we let

c1 = h1(s2, ε1) = φ0(s2) + ε1φ1(s2) +O(ε21), (4.26)

c2 = h2(s2, ε1) = ψ0(s2) + ε1ψ1(s2) +O(ε21). (4.27)

Then if we substitute equations (4.26) and (4.27) into (4.24) and (4.25), the invariant

equations become

ε1
∂φ0

∂s2

(
k2
k1s0

(φ0(s2) + ε1φ1(s2))−
k3
k1

(
1

1 + ζ
− ψ0(s2)− ε1ψ1(s2)

)
s2 +

k−3
k1s0

(ψ0(s2) + ε1ψ1(s2))

)

=
ζ

1 + ζ
−
(

1 +
K1
m

s0

)
(φ0(s2) + ε1φ1(s2)) , (4.28)

ε1
∂ψ0

∂s2

(
k2
k1s0

(φ0(s2) + ε1φ1(s2))−
k3
k1

(
1

1 + ζ
− ψ0(s2)− ε1ψ1(s2)

)
s2 +

k−3
k1s0

(ψ0(s2) + ε1ψ1(s2))

)
=
k3
k1

(
1

1 + ζ
− ψ0(s2)− ε1ψ1(s2)

)
s2 −

K

s0
(ψ0(s2) + ε1ψ1(s2)) . (4.29)

Now, from equations (4.28) and (4.29), at O(1), we obtain

φ0(s2) =
ζ

(1 + ζ)
(

1 + K1
m

s0

) ,
ψ0(s2) =

s2

(1 + ζ)
(
s2 + K2

m

s0

) ,
and at O(ε1), we obtain

φ1(s2) =
k3K

2
m

k2(1 + ζ)
(

1 + K1
m

s0

)(
s2 + K2

m

s0

) ,
ψ1(s2) =

k1K
2
m

k2(1 + ζ)
(
s2 + K2

m

s0

)2 .
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Therefore, the approximation of the slow invariant manifold is given as

c1 = h1(s2, ε1) =
1

(1 + ζ)
(
ζ + K1

m

s0

)
1 + ε1

k3K
2
m

k2

(
s2 + K2

m

s0

)
+O(ε21), (4.30)

c2 = h2(s2, ε1) =
1

(1 + ζ)
(
s2 + K2

m

s0

)
s2 + ε1

k1K
2
m

k2

(
s2 + K2

m

s0

)
+O(ε21). (4.31)

Note that, when ε1 = 0, c1 = h1(s2, 0) and c2 = h2(s2, 0), equations (4.30) and

(4.31) reduce to the equations of the slow manifold (4.21) and (4.22). Figure 4.7

displays a two dimensional phase diagram of the perturbed system (4.9) showing

the dynamics in the variables c2 and s2. These graphs were obtained using the

dynamical systems software XPP created by Prof. Bard Ermentrout at the University

of Pittsburgh (available online at [42]). The existence of the slow manifold is clearly

visible in these diagrams with an equilibrium point present in Figure 4.7(a) (if ζ < ζ∗),

and no equilibrium point in Figure 4.7(b) (if ζ ≥ ζ∗).

4.3.4 Dynamical systems analysis

In this section, we are going to give an alternative analysis of the system (4.9), which

does not use the assumption that ε1 is a small parameter. From equation (4.14c) we

notice that the equilibrium value for s∗2 is positive if ζ < ζ∗ and negative (therefore

irrelevant to our study) if ζ ≥ ζ∗. Here, we are going to analyse these two cases in

more detail.
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Figure 4.7 – Phase portrait of system (4.9) showing c2 against s2 in the cases of: (a)

ζ < ζ∗, (b) ζ ≥ ζ∗.

Case 1: When ζ < ζ∗, we know that in this case there is a unique equilibrium

point, (c∗1, c
∗
2, s
∗
2), which is positive and stable. However, the stability established

previously by linear analysis is only local. That is to say, to determine whether an

equilibrium of a system is stable or not, we have only considered infinitesimal per-

turbations around the nominal solution. This analysis is adequate for linear systems,

since linear systems have identical local and global properties, but it is not adequate

for non-linear systems. Therefore, in this model, the local stability does not establish

that the solution starting at (0, 0, 0) converges to the equilibrium point (c∗1, c
∗
2, s
∗
2). To

prove the equilibrium point (c∗1, c
∗
2, s
∗
2) is globally stable, we are going to use LaSalle’s

Invariance Principle (refer to [43]) which is stated below.

Theorem 2 (LaSalle’s Invariance Principle)

Consider the autonomous system

ẋ = f(x), x(0) = x0, (4.32)
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defined on the domain D ⊂ Rn. Let Ω ⊂ D be a compact (i.e., closed and bounded)

set that is positively invariant with respect to the dynamics given by (4.32). Let V (·)

be a continuously differentiable function on D such that V̇ (x) ≤ 0 in Ω. Let E be the

set of all points in Ω where V̇ (x) = 0 and let M be the largest invariant set contained

in E. Then every solution starting in Ω converges to M as t→∞.

A set M is called an invariant set with respect to the dynamics (4.32) if

x(0) ∈M, implies x(t) ∈M, ∀ t ∈ R.

A set M is called positively invariant if

x(0) ∈M, implies x(t) ∈M, ∀ t ≥ 0.

By definition, trajectories can neither enter nor leave an invariant set; trajectories

may enter a positively invariant set; however, they just cannot leave it in forward

time.

In our model, the set Ω is defined as a cube which has the origin and the equilib-

rium point, (c∗1, c
∗
2, s
∗
2) as opposite corner points. More precisely we have

Ω =
{

(c1, c2, s2) ∈ R3 | 0 ≤ c1 ≤ c∗1, 0 ≤ c2 ≤ c∗2, 0 ≤ s2 ≤ s∗2
}
.

In order to show Ω is a positively invariant set with respect to the dynamics of system

(4.9), we need to show that all the flow trajectories starting in the set Ω stay in the

set Ω forever.
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The six faces in this cube are characterised by c1 = c∗1, c2 = c∗2, s2 = s∗2, c1 = 0,

c2 = 0 and s2 = 0. In order to show that all the trajectories point inwards through

each side of the cube and do not leave it in forward time, we need to show:

On Need to show

c1 = c∗1
dc1
dt
≤ 0

c2 = c∗2
dc2
dt
≤ 0

s2 = s∗2
ds2
dt
≤ 0

c1 = 0 dc1
dt
≥ 0

c2 = 0 dc2
dt
≥ 0

s2 = 0 ds2
dt
≥ 0

From system (4.9), on the face defined by c1 = c∗1, we have

dc1
dt

=
ζ

1 + ζ
−
(

1 +
K1
m

s0

)
c∗1 = 0,

since dc1/dt = 0 at equilibrium. This means that all trajectories starting in this plane

remain in this plane. On the face defined by c2 = c∗2, we have

dc2
dt

=
k3
k1

(
1

1 + ζ
− c∗2

)
s2 −

K

s0
c∗2. (4.33)

We also know that at equilibrium

k3
k1

(
1

1 + ζ
− c∗2

)
s∗2 −

K

s0
c∗2 = 0; (4.34)

subtracting equation (4.34) from (4.33) yields

dc2
dt

=
k3
k1

(
1

1 + ζ
− c∗2

)
(s2 − s∗2) ≤ 0,
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since 0 ≤ s2 ≤ s∗2 in Ω and 0 < c∗2 < 1/(1 + ζ). On the face defined by s2 = s∗2, we

have

ds2
dt

= ε1

(
k2
k1s0

c1 −
k3
k1

(
1

1 + ζ
− c2

)
s∗2 +

k−3
k1s0

c2

)
. (4.35)

Similarly, we also know that at equilibrium

ds2
dt

= ε1

(
k2
k1s0

c∗1 −
k3
k1

(
1

1 + ζ
− c∗2

)
s∗2 +

k−3
k1s0

c∗2

)
= 0, (4.36)

and subtracting equation (4.36) from (4.35), we get

ds2
dt

= ε1

(
k2
k1s0

(c1 − c∗1) +
k−3
k1s0

(c2 − c∗2) +
k3
k1

(c2 − c∗2) s∗2
)
≤ 0,

since 0 ≤ c1 ≤ c∗1, 0 ≤ c2 ≤ c∗2 and s∗2 ≥ 0 in Ω. On the face defined by c1 = 0, we

have

dc1
dt

=
ζ

1 + ζ
> 0.

On the face defined by c2 = 0, we have

dc2
dt

=
k3
k1

1

1 + ζ
s2 ≥ 0,

since 0 ≤ s2 ≤ s∗2 in Ω. On the face defined by s2 = 0, we have

ds2
dt

= ε1

(
k2
k1s0

c1 +
k−3
k1s0

c2

)
≥ 0,

since 0 ≤ c1 ≤ c∗1 and 0 ≤ c2 ≤ c∗2 in Ω.

Thus, we have shown that Ω is a positively invariant set with respect to the dy-

namics of system (4.9). Next, we need to define the Lyapunov function for this

model.
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The Lyapunov function is simply a continuous scalar function of the state vari-

ables, with continuous partial derivatives. The original motive for the development

of Lyapunov’s direct method was based on the physical concept of the energy content

of a system, which, in the usual dissipative case, is naturally a decreasing function of

time, and this is often a fruitful source of Lyapunov functions in practice. But on the

other hand, there is no reason why we should be restricted to using a function of this

type, and indeed it may not be appropriate in many cases. There is, unfortunately,

no completely general systematic procedure for obtaining Lyapunov functions; refer

to [20] for more details on how to construct the Lyapunov functions.

In our model, the Lyapunov function is a function of the three state variables

c1(t), c2(t) and s2(t) defined as

V (·) = V (c1(t), c2(t), s2(t)).

We let

V (c1(t), c2(t), s2(t)) = α(c∗1 − c1) + β(c∗2 − c2) + γ(s∗2 − s2), (4.37)

where α, β and γ are arbitrary constants which will be estimated in later calculations,

subject to the condition that V̇ (c1(t), c2(t), s2(t)) ≤ 0. We have

V̇ (c1(t), c2(t), s2(t)) =
∂V

∂c1
· ∂c1
∂t

+
∂V

∂c2
· ∂c2
∂t

+
∂V

∂s2
· ∂s2
∂t

, (4.38)

and since

∂V

∂c1
= −α, (4.39)

∂V

∂c2
= −β, (4.40)

139



∂V

∂s2
= −γ, (4.41)

we get

V̇ (c1(t), c2(t), s2(t)) = −α
(

ζ

1 + ζ
−
(

1 +
K1
m

s0

)
c1

)
−β
(
k3
k1

(
1

1 + ζ
− c2

)
s2 −

K

s0
c2

)
−γ
(
ε1

(
k2
k1s0

c1 −
k3
k1

(
1

1 + ζ
− c2

)
s2 +

k−3
k1s0

c2

))
,

giving

V̇ (c1(t), c2(t), s2(t)) = − αζ

1 + ζ
+

(
α +

αK1
m

s0
− γε1k2

k1s0

)
c1

+

(
βK

s0
+
γε1k−3
k1s0

)
c2 +

(
γε1k3
k1
− βk3

k1

)
s2

(
1

1 + ζ
− c2

)
.

If we let

γε1k3
k1
− βk3

k1
= 0,

V̇ (c1(t), c2(t), s2(t)) simplifies to

V̇ (c1(t), c2(t), s2(t)) = − αζ

1 + ζ
+
αk1s0 + α(k−1 + k2)− βk2

k1s0
c1 +

βk4
k1s0

c2,

and then by letting αk1s0 + α(k−1 + k2)− βk2 = 0, we obtain

α =
βk2

k1s0 + k−1 + k2
,

which yields

V̇ (c1(t), c2(t), s2(t)) = − βk2ζ

(k1s0 + k−1 + k2)(1 + ζ)
+
βk4
k1s0

c2

= − βk4
k1s0

 k2ζ

k4

(
1 + K1

m

s0

)
(1 + ζ)

− c2


= − βk4

k1s0
(c∗2 − c2) .
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Now if we take β = 1, we get

V̇ (c1(t), c2(t), s2(t)) = − k4
k1s0

(c∗2 − c2) ≤ 0,

since 0 ≤ c2 ≤ c∗2 in Ω. We can see that V̇ (c1(t), c2(t), s2(t)) = 0 if and only if c2 = c∗2.

Therefore, the function V defined in equation (4.37) satisfies the conditions of

LaSalle’s Invariance Principle if we take

α =
k2

k1s0 + k−1 + k2
, β = 1, γ =

1

ε1
.

Now let E denote all the points in the set Ω, where V̇ (c1(t), c2(t), s2(t)) = 0 (one

side of the cube Ω is defined by c2 = c∗2), the largest invariant set contained in this

plane is the equilibrium point (c∗1, c
∗
2, s
∗
2) itself, which corresponds to the set M men-

tioned in the LaSalle’s Invariance Principle. Thus, every solution starting in the cube

Ω converges to the equilibrium point (c∗1, c
∗
2, s
∗
2) as t→∞. In particular, this proves

that the solution with initial conditions c1(0) = 0, c2(0) = 0, s2(0) = 0 converges to

the equilibrium point.

Case 2: When ζ ≥ ζ∗, there is no equilibrium point in the positive octant where

c1 ≥ 0, c2 ≥ 0 and s2 ≥ 0.

In this case we need to show that



lim
t→∞

c1(t) = c∗1 =
ζ

(1 + ζ)
(

1 + K1
m

s0

) (4.42a)

lim
t→∞

s2(t) =∞ (4.42b)

lim
t→∞

c2(t) =
1

1 + ζ
, (4.42c)
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where the first limit is easily verified since the first equation only depends on c1(t).

In what follows we will use results from the theory of monotone dynamical systems

(refer to [44]) to show equations (4.42b) and (4.42c) are valid.

We first define some order relations on Rn as follows. For u, v ∈ Rn, we write

u ≤ v ⇔ ui ≤ vi,

u < v ⇔ ui ≤ vi, u 6= v,

u� v ⇔ ui < vi,

where i = 1, ...n (refer to [45]).

Next, we define monotone and cooperative systems, following [44].

Definition 2

Consider the autonomous system of ordinary differential equations

x
′
= f(x), (4.43)

where f is continuously differentiable on an open subset D ⊂ Rn. Let φt(x) denotes

the solution of system (4.43) that starts at the point x at t = 0. The function φt will

be referred to as the flow corresponding to system (4.43).

Let x0, y0 ∈ D, and let <r denote any one of the relations ≤, <, �; then

the dynamical system (4.43) is said to be monotone if x0 <r y0 implies that
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φt(x0) <r φt(y0), for all t > 0.

Definition 3

We say that D is p-convex if tx + (1 − t)y ∈ D for all t ∈ [0, 1] whenever x, y ∈ D

and x ≤ y. If D is a convex set then it is also p-convex. Then the system (4.43) is

said to be a cooperative system if

∂fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D

holds on the p-convex domain D.

In our system (4.9), we let

D = Ω1 =

{
(c1, c2, s2) ∈ R3 | 0 ≤ c1 ≤ c∗1, 0 ≤ c2 ≤

1

1 + ζ
, 0 ≤ s2 ≤ ∞

}
.

Recall that the infinite rectangular box Ω1 was shown to be a positive invariant set

for system (4.9) in Section 4.3.1, and it is clearly a p-convex set. We can also easily

show that

∂f1
∂c2

= 0,
∂f1
∂s2

= 0,

∂f2
∂c1

= 0,
∂f2
∂s2
≥ 0,

∂f3
∂c1
≥ 0,

∂f3
∂c2
≥ 0,

so that system (4.9) is a cooperative system, and a cooperative system generates a

monotone dynamical system.
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Proposition 1

If f(x) is cooperative and <r is as stated in Definition 1 above, then

P+ = {x ∈ D | 0 <r f(x)}

is a positive invariant set, and any solution starting in this set is monotone so that

any bounded solution here must converge to an equilibrium. (refer to [44] for the

proof.)

It is easy to show that, in the case of our system, the point (0, 0, 0) is in P+, so the

solution starting at the origin will be contained in P+ for all t > 0. Thus, this solution

is monotone but it cannot be bounded as the result above states that it would then

converge to an equilibrium point inside P+ ⊂ D. This contradicts the fact that there

is no equilibrium point inside the domain D in this case. Hence, the solution starting

at (0, 0, 0) is unbounded, so we must have

lim
t→∞

s2(t) =∞.

The component c2(t) is, however, both monotone and bounded and so must converge

to a finite limit. We have dc2/dt = 0, which implies

k3
k1

(
1

1 + ζ
− c2

)
s2 −

K

s0
c2 = 0,

and as

lim
t→∞

s2(t) =∞,

we must have

lim
t→∞

c2(t) =
1

1 + ζ
.
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4.3.5 Results

From the analysis presented in the previous subsections we conclude that the long

term behaviour of system (4.9) is as follows,

lim
t→∞

c1(t) = c∗1, for all ζ, (4.44)

lim
t→∞

c2(t) =


c∗2 =

ζ

ζ∗(1 + ζ)
, if ζ ≤ ζ∗ (4.45)

1

1 + ζ
, if ζ ≥ ζ∗, (4.46)

lim
t→∞

s2(t) =

s∗2, if ζ < ζ∗ (4.47)

∞, if ζ ≥ ζ∗, (4.48)

where c∗1, c
∗
2 and s∗2 were defined in equations (4.10), (4.11) and (4.12). We plot the

steady state current, k4c2(∞), as a function of ζ for various values of s0 (Figure 4.8)

and k4/k2 (Figure 4.9). Note that the overlaying of curves in Figure 4.8 for ζ values

of 1 to 6 and in Figure 4.9 for ζ values of 0 to 1, also note that from equations (4.45)

and (4.46), that the optimal GOX:HRP ratio is always given by

ζ∗ =
k4
k2

(
1 +

K1
m

s0

)
,

as c2(∞) achieves its maximum value of 1/(1+ζ∗) when ζ = ζ∗. Hence, in this simple

model which ignores the diffusion of the two substrates, it is possible to obtain an

explicit formula which gives the optimal value of ζ in terms of the system parameters.

Note again the agreement between the results as shown in Figure 4.8 and Fig-

ure 4.9 and the model in the previous section; further comparisons will be made in

Section 4.5.
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Figure 4.8 – Dependence of current on ζ for different initial concentrations of s0. The

curves correspond to s0 = 0.03, 0.09, 0.2 and 5 mM from the bottom to top. Typical

values for constants used in this simulation are: k1 = 102, k−1 = 10−1, k2 = 10 and

k4 = 10.

Figure 4.9 – Dependence of current on ζ for different values of k4/k2. The curves

correspond to k4/k2 = 0.2, 0.5, 1 and 2 from the bottom to top. Typical values for

constants used in this simulation are the same as in Figure 4.8.
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4.4 Intermediate model

In this model, we assume the glucose (s1) does not diffuse but is present only at the

electrode boundary point, and in addition it is constant, i.e., s1(t) = s0. (In other

words, s1 is supplied continuously at the reaction site.) The second substrate is free to

diffuse throughout the domain at all times during the experiment, which is reflected

by the following diffusion equation

∂s2(x, t)

∂t
= D1

∂2s2(x, t)

∂x2
.

At the top layer and the electrode, we have the boundary conditions

s2(L, t) = 0,

D1
∂s2(0, t)

∂x
= k3e2(t)s2(0, t)− k2c1(t)− k−3c2(t),

together with

de1
dt

= −k1e1(t)s1(t) + (k−1 + k2)c1(t),

de2
dt

= −k3e2(t)s2(0, t) + (k−3 + k4)c2(t),

dc1
dt

= k1e1(t)s1(t)− (k−1 + k2)c1(t),

dc2
dt

= k3e2(t)s2(0, t)− (k−3 + k4)c2(t),

dp

dt
= k4c2(t).

The initial conditions are:

e1(0) = e01, e2(0) = e02, s1(0) = s0, s2(x, 0) = 0,

c1(0) = 0, c2(0) = 0, p(x, 0) = 0,
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and the conservation laws are: e1(t) + c1(t) = e01

e2(t) + c2(t) = e02.

We are going to non-dimensionalise the system by introducing the following variables,

s̄2(x̄, t̄) =
s2(x, t)

s0
, ē1(t̄) =

e1(t)

e
, ē2(t̄) =

e2(t)

e
,

c̄1(t̄) =
c1(t)

e
, c̄2(t̄) =

c2(t)

e
, x̄ =

x

l
, t̄ =

t

t0
,

where t0 = 1/(k1s0); we then obtain the non-dimensional system



∂s2(x, t)

∂t
=

D1

k1s0l2
∂2s2(x, t)

∂x2
(4.50a)

s2(x, 0) = 0 (4.50b)

s2(1, t) = 0 (4.50c)

∂s2(0, t)

∂x
= η

(
s2(0, t)

(
1

1 + ζ
− c2(t)

)
− κc1(t)− µc2(t)

)
(4.50d)

dc1(t)

dt
=

ζ

1 + ζ
− (1 + σ1)c1(t) (4.50e)

dc2(t)

dt
= ρ2

(
s2(0, t)

(
1

1 + ζ
− c2(t)

)
− σ2c2(t)

)
, (4.50f)

with non-dimensional initial conditions

e1(0) =
ζ

1 + ζ
, e2(0) =

1

1 + ζ
, s2(x, 0) = 0, c1(0) = 0, c2(0) = 0,

and conservation laws 
e1(t) + c1(t) =

ζ

1 + ζ

e2(t) + c2(t) =
1

1 + ζ
,
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where

ζ =
e01
e02
, η =

k3el

D1

, κ =
k2
k3s0

,

µ =
k−3
k3s0

, ρ2 =
k3
k1
, σ1 =

K1
m

s0
, σ2 =

K2
m

s0
.

We now carry out a steady-state analysis of system (4.50), similar to the calcula-

tion carried out in Section 4.2.2. At equilibrium,

∂s2(x, t)

∂t
= 0,

which gives

∂2s2(x, t)

∂x2
= 0. (4.52)

Then by integrating (4.52) twice, we obtain

s∗2(x) = Ax+B,

which gives

s∗2(0) = B, (4.53)

where s∗2(x) denotes the equilibrium value of s2(x, t), A and B are constants of inte-

gration. Also, from equation (4.50c), we obtain A = −B and this condition together

with equation (4.53) yields

s∗2(x) = B(1− x),

which gives

∂s∗2(0)

∂x
= −B. (4.54)

From equation (4.50e), we obtain

c∗1 =
ζ

(1 + ζ)(1 + σ1)
,
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and, from equation (4.50f), we obtain

c∗2 =
1

1 + ζ

s∗2(0)

s∗2(0) + σ2
.

Also, from equations (4.50d) and (4.54), we get

−B = η

(
s∗2(0)

(
1

1 + ζ
− c∗2

)
− κc∗1 − µc∗2

)
,

which gives

(1 + ζ)B2 +

(
σ2(1 + ζ) + η(σ2 − µ)− κζη

1 + σ1

)
B − κζησ2

1 + σ1
= 0,

from which, B can be easily obtained as a function of ζ, i.e., B(ζ). (Note that since

the above quadratic equation has two real roots of different signs, we choose the pos-

itive root.)

Thus, the equilibrium value for the current is

I ≈ k4c
∗
2 =

k4
1 + ζ

B(ζ)

B(ζ) + σ2
.

The plot of the current (k4c
∗
2) versus ζ for different initial concentrations of glucose

is as shown in Figure 4.10; if we vary k4/k2 instead, we obtain the graphs in Figure

4.11.
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Figure 4.10 – Dependence of current on ζ for different initial concentrations of s0. The

curves correspond to s0 = 0.03, 0.09, 0.2 and 5 mM from the bottom to top. Typical

values for constants used in this simulation are: k1 = 102, k−1 = 10−1, k2 = 10,

k3 = 102, k−3 = 10−1, k4 = 10, e0 = 10−5, l = 2× 10−4 and D1 = 6.7× 10−10.

Figure 4.11 – Dependence of current on ζ for different values of k4/k2. The curves

correspond to k4/k2 = 0.2, 0.5, 1 and 2 from the bottom to top. Typical values for

constants used in this simulation are the same as in Figure 4.10.
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4.5 Summary and comparisons

In this chapter, we have studied the behaviour of a bi-enzyme biosensor based on

a cascade reaction, with particular emphasis placed on determining the value of the

enzyme ratio which leads to optimal performance (characterised by maximum sig-

nal amplitude). Three different models were considered: the “comprehensive model”

(where diffusion effects were included for both substrates, glucose and hydrogen per-

oxide), the “simplified model” (which concentrated on the kinetics of the two reactions

and no transport was taken into account) and the “intermediate model” (which only

considered the diffusion of the second substrate). As the simplified model consisted

of a system of ordinary differential equations, we were able to present a detailed an-

alytical study of its solutions (including an exact formula for the optimal GOX:HRP

ratio), unlike in the other two models where the results were mostly numerical.

The dependence of the biosensor response (i.e., the measured amperometric cur-

rent) as a function of ζ, the ratio of the two enzymes, is again plotted in Figure

4.12, for different values of the glucose concentration and, in Figure 4.13, for different

values of k4/k2. To facilitate the comparison of the three models, we then plot the

optimal ζ value (the value which maximises the current) as a function of the glucose

concentration. The four resulting curves are as shown in Figure 4.14.

We note that the simple model and the intermediate model give identical re-

sults for the optimal enzyme ratio for all values of initial glucose concentration. The

values predicted by the comprehensive model are quite different at low glucose con-
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Figure 4.12 – Dependence of current on ζ for different initial concentrations of s0.

Steady-state analysis of (a) and (b) comprehensive model, (c) simplified model, and (d)

intermediate model.

centrations but, again, identical at high glucose concentrations. Note that, at high

glucose concentration, the optimal enzyme ratio approaches the same value regardless

of the model used (This value is ζ∗ = 1 in our graph, as a consequence of choosing

k2 = k4.). The fact that a given optimal enzyme ratio is achieved at a higher value

of glucose concentration in the comprehensive model is quite obvious, since in that

model the glucose is diffusing from a distant place (unlike in the other two models
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Figure 4.13 – Dependence of current on ζ for different values of k4/k2. Steady-state

analysis of (a) and (b) comprehensive model, (c) simplified model, and (d) intermediate

model.

where s0 represents the glucose concentration at the reaction site). Also, at high glu-

cose concentrations, we expect both enzymes to be saturated with the corresponding

substrates (i.e., working at maximum capacity) and so increasing the amount of glu-

cose will not make any difference to the biosensor performance. The three models will

give the same result in this regime as the transport effects only affect the availability

of substrates at the reaction site.
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Figure 4.14 – Dependence of optimal ratio (GOX:HRP) on s0 (glucose concentration).

(a) Steady-state analysis of intermediate model, (b) Numerical analysis of comprehen-

sive model, (c) Steady-state analysis of comprehensive model, and (d) Steady-state

analysis of simplified model.

Next, we studied the dependence of the optimal enzyme ratio on a different pa-

rameter associated with our chemical system, namely k4/k2 which represents the ratio

of the catalytic turnover numbers for the two consecutive reactions. The optimal ratio

ζ was plotted against k4/k2 for the three models and the resulting graphs are shown

in Figure 4.15. Note that, the simple model predicts a linear relationship between ζ∗

and k4/k2, as illustrated by equation (4.13). The three models seem to give identical

results at low values of k4/k2, but diverge when the second reaction becomes much

faster than the first.

In conclusion, parameter regimes which are characterised by high glucose concen-

trations and low values of k4/k2 seem relatively indifferent to the modelling strategy
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Figure 4.15 – Dependence of optimal ratio (GOX:HRP) on k4/k2 ratio. (a) Steady-

state analysis of intermediate model, (b) Numerical analysis of comprehensive model,

(c) Steady-state analysis of comprehensive model, and (d) Steady-state analysis of

simplified model.

used and so we would recommend the simple model, which is the easiest to anal-

yse. For all the other parameter regions, further understanding of the behaviour of

the system is required and our results so far seem to imply that we need to investi-

gate the relationship between diffusion rates and the speeds of the two reactions. An

asymptotic analysis based on these parameters will form the subject of a future study.
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Conclusions and Future Work

The motivation for this thesis was provided by a collaboration with the National

Centre for Sensor Research (NCSR) and the Biomedical Diagnostics Institute (BDI)

at Dublin City University involving mathematical and computational modelling of

biosensors. Several experimental problems relevant to ongoing research in these cen-

tres were presented which were mostly concerned with optimising design parameters

for biosensing devices. We constructed mathematical models for these problems and,

using analytical methods or numerical simulations, we attempted to describe the

behaviour of solutions, with a view to providing recommendations for improving ex-

perimental practice. As well as studying these practical problems directly, a large

part of the thesis was dedicated to reviewing existing mathematical models relevant

to biosensor design, usually involving kinetics or transport of chemical species.

A brief summary of our work is given below. In Chapter 2, we reviewed the

Michaelis-Menten mathematical framework for studying the kinetics of enzyme-substrate

interactions. This scheme is widely used for modelling such reactions in the biochem-

istry literature and numerous mathematical studies of the resulting models exist. We

also investigated a generalised model corresponding to the more realistic assumption
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of reversible kinetics and found it to be equivalent to the predominantly used classical

scheme. Chapter 3 studied mathematical models for antibody-antigen reactions in

the context of three different types of immunosensors, namely direct, competitive and

sandwich assays. In the case of direct and competitive assays, we determined that

the predicted biosensor response (as measured by the concentration of the steady-

state products) is the same for models with or without diffusion of species. This

work can therefore be used to provide simplified modelling strategies for chemistry

researchers. We have also examined the connection between modelling results and ex-

perimental calibration curves as well as the possibility of tracking non-specific biosen-

sor responses. Chapter 4 analysed and compared three different models of varying

complexity, with the aim of determining the optimal enzyme ratio necessary for max-

imising a biosensor performance. It was concluded that the models agreed when the

analyte concentration was sufficiently high and the catalytic rates of the two enzymes

were assumed to be close to each other. In this parameter regime, the optimal ratio

of the two enzymes was seen to be equal to 1, which agreed with experimental results.

However, as detailed in the summary and comparison section of Chapter 4, we need

to understand the behaviour of this system for other parameter regions and so fur-

ther asymptotic and numerical studies are required, especially for the two modelling

strategies which involve diffusion.

The design of biosensing devices offers a rich source of mathematical modelling

problems and we hope to continue our interdisciplinary collaboration with NCSR/BDI.

Some of the identified problems, whose study was already initiated and presented par-

tially in this thesis, are listed below.
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Fluorescent-based immunoassays

Such devices are currently studied within the BDI in connection with the possibility of

early detection of biochemical markers for meningitis or cancer. Due to their high sen-

sitivity, fluorescence-based bioassays are widely used in biomedical diagnostics. The

most commonly used fluorescent labels are organic or inorganic molecules. However,

organic and inorganic dyes are susceptible to rapid photo bleaching and quenching due

to interaction with the solvent environment and molecular quenchers such as oxygen.

Furthermore, while fluorescence-based detection offers high sensitivity in principle,

there is often a low level of detectable fluorescence from the bioassay platform due

to the relatively low surface coverage of labelled biomolecules. Hence, there is a need

for brighter fluorescent labels which will increase sensitivity and lower the limit of

detection (LOD) in optical bioassays, particularly in the case of low volume samples.

This project was focused on modelling of a fluorescence-based sandwich immunoas-

say in which highly fluorescent silica nanoparticles are used as the fluorescence label

instead of the conventionally used single dye label. This will complement and make

a significant contribution to the ongoing BDI fluorescence-based immunoassay devel-

opment programme.

Sandwich assays were briefly introduced in Chapter 3 but more theoretical and

numerical studies are needed. Mathematical models of sandwich assays are relatively

rare in the literature so it is hoped that further work in this area would provide sig-

nificant insight into the design of these important optical bioassays.

159



Enzyme-channelling immunoassays

The problem studied in Chapter 4 dealt with the optimisation of a bi-enzyme elec-

trode. This represents, however, only a first step towards modelling the theoretical

and experimental platform studied by NCSR researchers which provided the initial

motivation. The original experimental setting involves a combination of antibody and

enzyme (HRP) immobilised on an electrode and a fluid sample containing antigen and

analogue. The analogue is, in this case, antigen which is labelled with a second en-

zyme (GOX). The substrate of the enzyme label (i.e., glucose) is also introduced into

the system and the same cascade reaction as in Chapter 4 is initiated. The main ques-

tion to be answered in this context is, given the amount of enzyme-labelled antigen

and the signal recorded at the electrode, what was the initial concentration of pure

antigen in the sample? This competitive immunosensor was studied experimentally

in [37] where it was argued that there are many advantages of coupling the immuno-

logical reaction to an enzyme-channelling scheme such as, for example, increasing the

amplitude of the specific signal (obtained from labelled antigen binding to antibody)

relative to the noise (given by reactions in the bulk solution). A mathematical model

for this complex system was proposed in [46] and some preliminary numerical simu-

lations were performed. We intend to take this problem a step further and attempt

a theoretical analysis of the model, which would combine results obtained for com-

petitive assays in Chapter 3 as well as cascade reactions in Chapter 4. As suggested

in Section 3.3, constructing analytical and numerical techniques for tracking specific

and non-specific signals should also be feasible, which should lead to improved design

parameter choices and device optimisation.
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Appendix A



1−B =
k1el

D1

(
ζ

1 + ζ
− c∗1

)
B − k−1el

D1s0
c∗1 (A.1a)

−D =
k3el

D2

(
1

1 + ζ
− c∗2

)
D − k2el

D2s0
c∗1 −

k−3el

D2s0
c∗2 (A.1b)

0 =

(
ζ

1 + ζ
− c∗1

)
B − K1

m

s0
c∗1 (A.1c)

0 =
k3
k1

(
1

1 + ζ
− c∗2

)
D − k4 + k−3

k1s0
c∗2. (A.1d)

Equation (A.1c) can be simplified in terms of B as

B =
K1
mc
∗
1

ζ
1+ζ
− c∗1

, (A.2)

then substitute (A.2) into (A.1a), we obtain

(c∗1)
2 −

(
D1s0
k2el

+
D1K

1
m

k2el
+

ζ

1 + ζ

)
c∗1 +

D1s0
k2el

· ζ

1 + ζ
= 0. (A.3)

Similarly, equation (A.1d) can be written in terms of D as

D =
K2
mc
∗
2

1
1+ζ
− c∗1

, (A.4)

then substitute (A.4) into (A.1b), we obtain

(c∗2)
2 −

(
k2c
∗
1

k4
+
D2K

2
m

k4el
+

1

1 + ζ

)
c∗2 +

k2c
∗
1

k4
· 1

1 + ζ
= 0. (A.5)
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Hence, the system of four equations with four unknowns B, D, c∗1 and c∗2 has been

reduced to the following system of two equations in term of c∗1 and c∗2, where c∗1, c
∗
2

are positive and denote the equilibrium values of c1(t), c2(t) respectively.


(c∗1)

2 −
(
D1s0
k2el

+
D1K

1
m

k2el
+

ζ

1 + ζ

)
c∗1 +

D1s0
k2el

· ζ

1 + ζ
= 0 (A.6a)

(c∗2)
2 −

(
k2c
∗
1

k4
+
D2K

2
m

k4el
+

1

1 + ζ

)
c∗2 +

k2c
∗
1

k4
· 1

1 + ζ
= 0. (A.6b)

System (A.6) can be easily solved to give the following explicit formulas for c∗1 and

c∗2:

c∗1 =

(
D1s0
k2el

+ D1K1
m

k2el
+ ζ

1+ζ

)
±
√(

D1s0
k2el

+ D1K1
m

k2el
+ ζ

1+ζ

)2
− 4D1s0

k2el
· ζ
1+ζ

2
(A.7)

c∗2 =

(
k2c∗1
k4

+ D2K2
m

k4el
+ 1

1+ζ

)
±
√(

k2c∗1
k4

+ D2K2
m

k4el
+ 1

1+ζ

)2
− 4k2c∗1

k4
· 1
1+ζ

2
. (A.8)
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