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Abstract 

Dose-response curves are fundamental tools of in vitro toxicology, extensively employed in 

toxicant or drug screening. They are expressed by a variety of end-points and assays, 

measured at different time-points in a choice of cell-lines, but are typically quantified only 

using the mean concentration for 50% response (e.g. drug efficacy or pathway inhibition) as 

an indicator of overall effect. However, the response is the result of a complex and dynamic 

cascade of events which occur between the initial exposure and the measured end-point, and 

the characteristic rates of the contributing stages govern the dose response and ultimately 

the measured characteristic concentration. A better understanding of the effects and 

interdependencies of these can help in interpreting the response curves. The system can be 
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modelled according to a phenomenological rate equation approach, in which each stage of 

the process is characterised by a rate constant, and causal relationships between different 

processes are incorporated. The current study utilises such an approach to simulate some 

common response cascades of cell populations to exogenous agents and explores the 

dependences of the dose dependent response on, for example, number of steps in a cascade, 

time-point, and scenarios such as additive, synergistic and antagonistic response of multiple 

exogenous agents.  

Keywords: In vitro toxicology, Numerical Modelling, Rate Equation Approach, Systems 

Biology. 

  



Introduction: What’s in a dose response curve? 

Quantification of the efficacy of a drug, the safety of a material or the severity of a toxicant is 

a key component of a range of fundamental research and product development activities. 

Given the drive for a reduction in the use of animal models for drug testing and evaluating 

toxicity, due to regulatory developments in both the EU[1] and US[2], the availability and 

continued development of in vitro models for this purpose is critical. In vitro testing of 

pharmaceuticals, pesticides, or toxicants is commonly performed according to a dose 

response curve, the response of a cytological assay as a measure of a biological endpoint in a 

cell population exposed to systematically varied doses of the exogenous agent of interest. 

Dose response endpoints can include viability assays, but also assays from all stages of cellular 

toxicity pathways[3], such as xenobiotic metabolism, receptor mediated effects, and adaptive stress 

responses. The dose response curve is commonly fitted with an analytical function which 

describes the sigmoidal response behaviour, based, for example (amongst numerous others), 

on the Hill equation[4], and the response can be quantified in terms of the concentration 

required to induce a 50% response in the assay of choice, often considered in terms of 

inhibition (IC50) or efficacy (EC50). (For simplicity, the term IC50 is used throughout this 

manuscript). The protocols are well established in scientific research and, increasingly, high 

content screening platforms based on such assays are employed in government screening 

programmes and pharmaceutical drug development[5,6]. By integrating in vitro cytotoxicity 

and quantitative structure activity relationship (QSAR) approaches, predictive models can be 

developed to further guide screening and drug discovery strategies[7,8].  

Although dose response curves are regularly and routinely employed, they are rarely analysed 

further than the determination of an IC50, and subtle variations in the nature of the responses 



are not well understood. The dose dependent response is a convolution of uptake of the 

exogenous agent, intracellular transport and interactions, resulting in a complex cascade of 

cellular processes, including activation of cellular defence mechanisms, leading to an end 

point response as measured by one or more cytotoxicity assays. The original Hill model is 

based on an analytical approach to describing ligand receptor binding in terms of equilibrium 

rate constants[9], in which the Hill coefficient or slope, describing the degree of curvature of 

the sigmoidal response, provides a quantification of the degree of interaction between ligand 

binding sites. Black and Leff[10] introduced the operational model of agonism to help further 

understand the action of agonists and partial agonists, and how they influence the dose-

response curves. The response curves can also be represented as a Taylor series expansion, 

for a more generic approach to modelling responses of biological systems[11].  

The response of a cellular system to exposure to an exogenous agent is a dynamic process, 

however, and a dose-response curve at a fixed time point provides only a snapshot of the 

dose dependent response which evolves systematically as a function of time. Cellular 

physiology is a complex, dynamic system of highly synergistic processes, and a fundamental 

and integrated understanding of whole cell function is required for understanding the origin 

and progression of disease, optimisation of therapies, and understanding of resistance and 

sensitivity of cells to therapy, as well as the development of ever improved imaging 

technologies. Notably, such complex multivariant systems are not unfamiliar to the realms of 

the physical and chemical sciences, but are rather considered in an evolutionary sense. 

Systems Biology approaches to representing and understanding the mammalian cell 

metabolism are becoming increasingly sophisticated[12],[13] and include such physicochemical 

models to represent the system properties, behaviour, and observable characteristics. In a 



systems biology approach, the structure and dynamics of the different cellular functions are 

examined, instead of the characteristics of the individual cellular components. Each of the 

analytical or numerically soluble equations in the model can be associated with a specific 

process in the system, and hence each of the parameters, rates and initial conditions, can be 

assigned a physical/biochemical interpretation in the overall model of the system.  

In a cell population, the system can be modelled in a phenomenological rate equation 

approach, similar to that used by Einstein to describe population photodynamics, and predict 

the phenomenon of laser action[14]. The approach has been used to model and understand 

the complex cascade of photoinduced effects in nonlinear optics of materials and 

photochemistry[15]. The dose dependence at a certain time point reflects the temporal 

evolution of the system to the initial perturbation to the system and can be used to model 

transient (pulse chase) or steady state exposures. The use of such rate equation models for 

the simulation or fitting of complex systems has become increasingly prevalent in 

pharmacokinetics/pharmacodynamics[16,17]. In terms of nanobio interactions, Salvati et al. 

employed a rate equation approach to model the uptake of polystyrene nanoparticles in cells 

as measured by the fluorescent response of the cell populations, although no modelling of 

the cellular responses was undertaken[18]. Dell’Orco et al. used a similar approach, described 

in terms of Systems Biology, to model the delivery success rate of engineered nanoparticles 

and its dependence on the presence and structure of the protein corona[19]. Maher et al. 

utilised such an approach to describe the generation dependent uptake of, and subsequent 

oxidative stress and immune-responses to, poly amido amine (PAMAM) dendrimers in vitro, 

accounting for the differing responses of different cytotoxicity assays and cell lines[20], and 



Dadalt-Souto et al. similarly simulated the in vitro response to drug loaded chitosan 

nanoparticles[21].  

The representation of the cellular responses in terms of a causally related sequence of events 

leading to cell death in terms of uptake, interaction and response rate constants provides a 

more intuitive representation of the state of the system and the dependences of the process 

on the physico-chemical nature of the exogenous agent, the cell type and the cytotoxic 

assay/end point. It therefore lends itself more naturally to platforms of predictive toxicology, 

such as QSARs[22] and the Adverse Outcome Pathway (AOP) formalism[23]. This paper will 

explore the temporal and dose dependent responses of cellular systems to the exposure to 

exogenous agents using a phenomenological rate equation approach to illustrate the effects 

of different uptake and response processes, as well as experimental protocols, on the 

measured response, and therefore the wealth of information which underpins cytotoxicity 

response curves. The simulations apply generically to cell populations, and no experimental data 

is explicitly used. However, reference is made to specific experimental studies throughout, and the 

rates and timescales are guided by previous experimental studies of the interactions of nanoparticles 

and drugs with cells in vitro, from the authors[20,24–26]. 

 

Methodology: 

An exogenous agent, in molecular or particulate form, is uptaken by a cell by, for example, 

pino- or endo- cytosis, whereupon it initiates a biochemical response in the cell. In the case 

of intercalating chemotherapeutic agents such as doxorubicin (DOX), this occurs via rapid 

uptake and transport to the nucleolus/nucleus of the cell (~4-12 hrs), whereupon it 



intercalates with the RNA/DNA, initiating a toxic response, leading to apoptosis[27]. In the case 

of cationic nanoparticles, endocytosis results in ROS generation in the endosomes/lysosomes, 

oxidative stress, loss of mitochondrial membrane potential, and initiation of inflammatory 

responses[28].  

The latter case has previously been numerically modelled for the case or PAMAM dendrimers, 

and is illustrated schematically in Figure 1[20,29]. In particular, the schematic representation 

depicts the uptake of a particle by a cell (system), progression to ROS generation (quenched 

by anti-oxidants), then onto mitochondrial damage, inflammatory cascade and finally 

apoptosis (if the cellular recovery rates are insufficient). The system could equally be adapted 

to represent the uptake of a toxicant or chemotherapeutic agent, in the latter case, for 

example, its intercalation in the nucleus, resulting in RNA/DNA damage and subsequent 

apoptosis. The model can be adapted to incorporate any number of intermediate steps to 

embellish the description of the mode of action and/or cellular response pathways, including 

cell recovery mechanisms. 

 

Figure 1: Schematic representation of systematic sequence of events upon uptake of exogenous 

agent (nanoparticle). The rates (k) and numbers (N) of each step describe, respectively, cellular 

uptake, ROS generation, antioxidant (GSH) quenching, mitochondrial membrane potential (MMP) 

decay, tumour necrosis factor (TNF), and loss of viability (v). The term “source” is implicated in the 

intracellular generation of ROS, while “rec” indicates routes of recovery. 



The complex system illustrated schematically in Figure 1 can be better described using a series 

of rate equations, as described in detail by Maher et al.[20]. The series of equations and their 

impact on the modelling process and dose response curve are introduced sequentially in the 

Results section. Numerical results for all equations were obtained by integration using the 

iterative Euler approach[30] and Matlab (v.2018b) was used to generate the model and data. 

Sigmaplot v10 was employed to analyse the dose response curves using the Pharmacological 

Curve fitting procedure of a four parameter Hill equation: 

𝑓(𝑥) = 𝑚𝑖𝑛 + (
𝑚𝑎𝑥−min

1+(𝑥
𝐼𝐶50

⁄ )
𝑛)       Equation (1) 

in which the Hill slope is represented by n. 

Results 

The process of nanoparticle endocytosis by cells in vitro, taking into account the cell 

replication rate (kdoub), has previously been described by Salvati et al.[18] and subsequently by 

Maher et al. [31] and is here represent by Equation 2, in which a generalised case of 

nanoparticle or molecule uptake is considered. As the dose (D) is expressed as the molar dose, 

for ease of comparison with the experimental data, Nuptake is an expression of the molar 

quantity (number per unit volume) of uptaken nanoparticle or molecule. In subsequent 

equations, the term “N” is used to denote the equivalent quantity denoted by the subscript 

text that follows.  

𝑑𝑁𝑢𝑝𝑡𝑎𝑘𝑒

𝑑𝑡
= (𝐷 − 𝑁𝑢𝑝𝑡𝑎𝑘𝑒) ((1 + 𝑘𝑑𝑜𝑢𝑏). 𝑁𝑐𝑒𝑙𝑙 . 𝑘𝑢𝑝𝑡𝑎𝑘𝑒)    Equation (2) 



where kuptake is the rate of endocytosis (in units of inverse time), kdoub accounts for cellular 

replication during the exposure period and D is the molar dose. Assuming a cell duplication 

half life of 24hrs, kdoub has a value of (0.69/24)hr-1.  

In the absence of cell replication or depletion of the applied dose, as represented by the term 

(D-Nuptake), the uptake of the exogenous agent by the cell population Ncell is a linear function 

of time, as shown in Figure 2. Depletion of the applied dose by the uptake process introduces 

a nonlinearity in the uptake process, however, and the impact of this depletion is dependent 

on the rate of uptake, as might be expected. The process also depends on the number of cells, 

and so the endocytosis rate is best considered as a rate per unit time, per cell. 

 

Figure 2: Internalised dose (Nuptake) as a function of time, with (linear) and without 

(curved) source depletion, for different uptake rates, kendo. 



In a very simplistic model, the uptake of the exogenous agent can be considered at this 

stage to impact on the cell viability, Nv, initially set equal to a value of 1 to represent 100% 

cellular viability, such that  

𝑑𝑁𝑉

𝑑𝑡
= −𝑘𝑉. 𝑁𝑢𝑝𝑡𝑎𝑘𝑒 . 𝑁𝑉        Equation (3) 

Using Equation 3, the dose dependent loss of viability can be represented as a dose response 

curve, as shown in Figure 3. The response was calculated for parameters of Ncell = 105, kuptake= 

10-7 cell-1hr-1 and kv = 0.1 M-1hr-1, at a timepoint of 24 hrs. The dose-response curve matches 

well that generated by a four parameter Hill equation (Equation (1)), with the exception of 

the curvature at the low and high dose ends. It should be noted, however, that at this stage 

the model does not include many confounding factors of the intracellular processes, to be 

introduced in later aspects of the study, and also that the Hill model is not the only model 

appropriate to dose response curves[5]. Critically, it is important to bear in mind that the 

model is continuous in both dose and cell number, rather than discrete in terms of individual 

molecules or cells, and in particular does not account for multiple dosage of an individual cell. 



 

Figure 3: Dose Response curve calculated according to Equation (3) (dots) for a 24hr 

timepoint, compared to a four parameter Hill curve (solid line).  
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Figure 4: 24hr dose response curve and its dependence on uptake rate, with and without 

source depletion. Source depletion results in an only slightly higher IC50 value, perceptible 

for the 1 x 10-6 cell-1hr-1 curve.  

In this simple model, the dose response is primary effected by the uptake rate, as shown in 

Figure 4. The impact of dose depletion is relatively small, although this does depend on the 

uptake rate, but also the timepoint at which the reduction in viability is measured. The dose 

response curve is also critically dependent on the fixed timepoint at which the loss in viability 

is measured, as shown in Figure 5. Notably, a higher degree of toxicity is registered with 

increasing exposure time, as might be expected, and this is best represented by the inverse 

IC50
[32], which is seen to be a complex function of exposure time, as shown in the plot of Figure 

6. Furthermore, although the general shape of the curves in Figure 5 appears to be 

independent of exposure time, the Hill slope of a four parameter fit is seen to be exposure 



time dependent, as shown in Figure 7. Such a complex relationship of inverse IC50 with 

exposure time has been observed for the action of chemotherapeutic agents, and is 

understandable by considering that the endpoint or exposure time is shorter that any of the 

times associated with the critical rates of the cellular processes[33]. In the case of Figure 6, it 

can be considered that the trend of toxicity, as represented by the inverse IC50, is lower than 

expected for times of <24 hrs, given that the rate of loss of viability is 0.1 hr-1, with an 

associated timescale of 10 hrs.  

 

Figure 5: Dependence of Dose Response on exposure time (no depletion) 



 

Figure 6: Dependence of (inverse) IC50 on exposure time. Individual dual data points are 

derived from the simulations of Figure 5. 
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Figure 7: Dependence of Hill Slope on exposure time. Individual dual data points are 

derived from the simulations of Figure 5. 

Although it can simulate many features of the common dose response curve, the model of 

Equation 3, based on a direct response to uptake of an exogenous agent, is greatly simplified, 

and does not include many aspects of the cellular response processes. In the case of cationic 

nanoparticles, endocytosis results in the generation of ROS and the resultant oxidative stress 

is counteracted by the intrinsic intracellular anti-oxidants, exemplified previously by the 

intracellular levels of glutathione (GSH), and the interaction quenches both the levels of ROS 

and GSH[29]. In the previous study which modelled the dose and time dependent toxicity of 

PAMAM dendrimers, it was determined that, in order to accurately model the system, a 

further, exhaustible ROS “Source” term, NSource, should be introduced[20]. In a similar way to 
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binding receptors for drugs, this term limits the extent of the interaction of the toxicant in the 

cell. Thus: 

𝑑𝑁𝑆𝑜𝑢𝑟𝑐𝑒

𝑑𝑡
= −𝑁𝑒𝑛𝑑𝑜 . 𝑁𝑆𝑜𝑢𝑟𝑐𝑒 . 𝑘𝑅𝑂𝑆      Equation (4) 

where kROS is the interaction rate for the nanoparticles and source. The generation of ROS is 

then described by: 

 

𝑑𝑁𝑅𝑂𝑆

𝑑𝑡
= 𝑁𝑒𝑛𝑑𝑜 . 𝑁𝑆𝑜𝑢𝑟𝑐𝑒 . 𝑘𝑅𝑂𝑆 − 𝑁𝐺𝑆𝐻. 𝑁𝑅𝑂𝑆. 𝑘𝑞    Equation (5) 

𝑑𝑁𝐺𝑆𝐻

𝑑𝑡
= 𝑘𝐺𝑆𝐻 − 𝑁𝐺𝑆𝐻. 𝑁𝑅𝑂𝑆. 𝑘𝑞      Equation (6) 

The first term in Equation (5) is a dose (D) dependent term describing continuous ROS 

generation at a rate kROS (NROS(0) = 0). The second term describes the quenching of the ROS 

at a rate kq, and depends on both; ROS levels, NROS, and antioxidant levels, NGSH (NGSH(0) = 0). 

In the study by Mukerjee et al., the antioxidant levels were represented by the experimentally 

measured values of Glutathione (GSH).38 In Equation (6), the experimentally observed linear 

increase of the control levels of GSH, at a rate of kGSH, is described by the first-term, and the 

second-term, which is the same as in Equation (5), describes the quenching of the GSH levels. 

Values of kGSH and kq are derived from the experimental data and simulations of Mukherjee 

et al.[29] 

Figure 8 shows the effect on the time dependence of the generation of ROS as a function of 

Nsource, at a fixed value of kq=0.005hr-1. Note, that the maximum value has been normalised to 

1 for each value of Nsource, for visualisation purposes. The maximum level of ROS increases 

significantly as the value of Nsource increases, but equally, so too does the impact of the 



quenching process. For a fixed value of Nsource=10, Figure 9 shows the effect of varying rates 

of quenching interaction rate, kq on the normalised profile of ROS generation. In this case, the 

absolute magnitude of ROS is decreased with increasing rate, as might be expected, and the 

maximum of the oxidative stress profile shifts to shorter times. The increased rate of 

antioxidant quenching of ROS is to reduce the toxicity of the exogenous agent, as can be seen 

by the shifting of the dose response profile to higher doses, as seen in Figure 10. For fixed 

Nsource (=10) and kq (=0.005 hr-1) the effect of increased dose on the time evolution profile of 

the ROS is to increase the magnitude of the maximum, continuously shifting to earlier times, 

as shown in Figure 11. A similar behaviour was observed for the generation and dose 

dependent oxidative stress profiles of PAMAM dendrimers[29]. 

 

Figure 8: Dependence of (normalised) time evolution of NROS on Nsource: (Dose =103 M)  



 

Figure 9: Dependence of (normalised) time evolution of NROS on kq: (Dose =103 M) 
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Figure 10: Dependence of Dose Response curve (at 72 hrs) on kq  

 

Figure 11: Dose dependence of time evolution of NROS. 

The subsequent, experimentally observed, cascade of cellular responses can be similarly 

simulated. In the case of the experimental studies of PAMAM dendrimer nanoparticles, the 

cascade elements examined were: caspase activation, mitochondrial membrane potential 

decay (MMPD), generation of tumour necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) 

for HaCaT cells[25], or interleukin-6 (IL-6) for mouse macrophages[32]. In the model of 

Mukherjee et al.,[29] the early stage caspase activation and MMPD are both a result of 

increased levels of ROS, although through independent pathways. Thus:  

𝑑𝑁𝐶𝑎𝑠𝑝

𝑑𝑡
= 𝑘𝐶𝑎𝑠𝑝. 𝑁𝑅𝑂𝑆 − 𝑘𝐶𝑎𝑠𝑝2. 𝑁𝐶𝑎𝑠𝑝     Equation (7) 
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𝑑𝑁𝑀𝑀𝑃

𝑑𝑡
= 𝑘𝑀𝑀𝑃 . 𝑁𝑅𝑂𝑆 − 𝑘𝑇𝑁𝐹. 𝑁𝑀𝑀𝑃       Equation (8) 

𝑑𝑁𝑇𝑁𝐹

𝑑𝑡
= 𝑘𝑇𝑁𝐹 . 𝑁𝑀𝑀𝑃 − 𝑘𝐼𝐿−8. 𝑁𝑇𝑁𝐹      Equation (9) 

𝑑𝑁𝐼𝐿−8

𝑑𝑡
= 𝑘𝐼𝐿−8. 𝑁𝑇𝑁𝐹        Equation (10) 

Again, in Equations 7 to 10; N describes the respective populations at time t, and k the 

respective rates and the initial conditions for all cases are such that N(0) = 0. Overall, these 

equations show a possible cascade of events as a result of oxidative stress involving; parallel 

rather than sequential processes of caspase activation and loss of MMP, the latter leading to 

activation of TNF-α and IL-8, as described for (HaCaT) human skin cells, exposed to PAMAM 

dendrimers by Mukherjee et al.[29].  

Figure 12 shows the (normalised) evolution of the ROS, MMP and TNF- as a function of time. 

The values for the respective parameters employed are listed in Table 1.  



 

Figure 12: Time evolution of (normalised) the cellular ROS, MMP and TNF- (Dose = 

103M)  

Table 1: List of Model Parameters, unless otherwise stated 

Morel Parameter Value 

NCell 10,000 

kendo 1 x 10-5 cell-1 hr-1 

kdoub 0.03 hr-1  

kROS 1 x 10-3 M-1 hr-1 

kq 5 x 10-3 M-1 hr-1 

kGSH 1 hr-1 

kv1 0.5 M-1 hr-1 



kMMP 0.05 hr-1 

kv2 0.05M-1 hr-1 

kTNF 0.05 hr-1 

kv3 0.025M-1 hr-1 

kIL8 0.05 hr-1 

kCasp 0.05 hr-1 

kCasp2 0.05 hr-1 

kv4 0.01M-1 hr-1 

 

Loss of cell viability can be monitored using a number of assays.16,17 As an example, the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay measures the 

mitochondrial activity and is thus experimentally most associated with changes in the 

mitochondrial membrane potential, loss of which can, at certain levels, lead to apoptosis. The 

following equation can be used to calculate the change in the population of viable cells, NV as 

a result of any of the calculated cellular responses Nx, representing either NROS, NCasp, NMMP, 

NTNF. 

𝑑𝑁𝑉

𝑑𝑡
= −𝑘𝑉. 𝑁𝑥

𝑏 . 𝑁𝑉        Equation (11) 

Equation 11 describes the process of cell death, dependent on the change in the cellular 

response, and the number of viable cells. NV is initially set equal to a value of 1 to represent 

100% cellular viability. The significance of the stochastic term b will be explored at a later 

stage. 



Figure 13 illustrates the dose response curves for three assays, measuring the cellular 

oxidative stress (NROS), loss of mitochondrial membrane potential (NMMP) and inflammatory 

response (TNF-) at a 24hr time point. It is clear that three different assays, at the same time 

point, can portray what appears to be a very different toxic response, precisely because they 

measure processes which occur at different rates in the cell. Notably, as shown by the dashed 

lines, the fit of a four parameter Hill equation to the simulated response improves as the 

cascade progresses. Values of Hill slope, and standard errors, derived from the fit are 

respectively, ROS: 1.52 ± 0.04, MMP: 1.107 ± 0.004 and TNF:  0.879 ± 0.009. The fact that the 

modelled response improves with complexity is important when considering not just the full 

dose range, but also the low dose responses, as has been advocated for in vitro bioassays with 

environmental samples[34]. 

 



Figure 13: Dose response for three assays responsive to the cellular responses of oxidative 

stress (ROS), loss of mitochondrial membrane potential (MMP) and inflammatory response 

(TNF-), measured at a 24hrs timepoint. The dashed lines show fits of a four parameter Hill 

equation to the simulated responses. 

Similarly, when measured at different timepoints, any one of these assays can show very 

different responses, as shown in Figure 14, for the case of the TNF- response. Again, the 

dashed lines show fits of a four parameter Hill equation to the simulated responses. The Hill 

slope of the fit to the simulated response is relatively insensitive to exposure time, varying 

from 0.798 ± 0.009 for 6 hrs to 0.969 ± 0.007 for 72 hrs. 

 



Figure 14: Dose response for the cellular inflammatory response (TNF-), measured at 

different timepoints. The dashed lines show fits of a four parameter Hill equation to the 

simulated responses. 

As indicated in Figure 1, any of the cellular response pathways can have branches for 

recovery, without leading to loss of viability, or other assay response. In the case of oxidative 

stress, antioxidant quenching provides such a mechanism. At other points in the cascade, 

similar quenching or recovery mechanisms can be included, as indicated in Equation 12, 

resulting in a reduction of NTNF according to a rate krec. 

𝑑𝑁𝑇𝑁𝐹

𝑑𝑡
= 𝑘𝑇𝑁𝐹 . 𝑁𝑀𝑀𝑃 − 𝑘𝐼𝐿−8. 𝑁𝑇𝑁𝐹 −  𝑘𝑟𝑒𝑐 . 𝑁𝑇𝑁𝐹    Equation (12) 

The effect of such a process is to reduce the rate of response of the assay, as indicated in 

Figure 15, for the 72hr response with varying values of krec from 0-1 hr-1.  

 



Figure 15: 72 hr Dose Response of the TNF- assay, with varying recovery rates krec. 

When measuring processes which evolve along parallel metabolic pathways, very different 

toxic responses are similarly registered by two independent assays, as shown in Figure 16. 

Caspase activation due to oxidative stress, in parallel with loss of MMP, is simulated according 

to Equation (7), in which kCasp represents the caspase activation rate and kCasp2 a depletion 

rate. The response rate of the assay, kv4, is set at 0.01 hr-1, compared to the MMP assay 

response rate of 0.05 hr-1. Note, where the generation and response rates are equal for both 

pathways, the assays exactly overlap, but a difference in response rates results in a 

significantly different dose response curve at this time point, although the dose responses 

will equilibrate at later time points. Such behaviour is common when using two different 

assays, such as Alamar Blue, which is used as a measure of general cell metabolic activity, and 

MTT, more sensitive to changes in mitochondrial activity[35].  

 



Figure 16: Dose dependence of loss of viability due to the parallel processes of Caspase 

activation in the cytoplasm and loss of mitochondrial membrane potential, at 24 hr 

exposure time. 

It is noticeable that, in the dose response curves of Figures 13-16, many do not reach a value 

of zero. However, as shown in Figure 14, this can be the result of a short exposure time in 

comparison to the cellular response time, and does not represent a phenomenon of “partial 

agonism”. In the context of agonist-receptor binding, as a model for example of the 

intracellular mechanism of action of drugs, a partial agonist can bind in different ways, some 

of which do not activate the expected the cell signalling pathway[36]. In the model presented 

in Equations (1-6), such a partial agonism can be represented through the interaction of the 

uptaken agent with the reaction source. In the case of ROS generation, an alternative reaction 

route can be represented, such that the binding, at rate kb, gives rise to bound species, Nbound, 

according to Equation (12) which do not result in the generation of ROS, but deplete the 

available reaction source, NSource, according to Equation (13): 

𝑑𝑁𝑏𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑁𝑢𝑝𝑡𝑎𝑘𝑒 . 𝑁𝑆𝑜𝑢𝑟𝑐𝑒 . 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔      Equation (13) 

𝑑𝑁𝑆𝑜𝑢𝑟𝑐𝑒

𝑑𝑡
= −𝑁𝑢𝑝𝑡𝑎𝑘𝑒 . 𝑁𝑆𝑜𝑢𝑟𝑐𝑒. 𝑘𝑅𝑂𝑆 − 𝑁𝑢𝑝𝑡𝑎𝑘𝑒 . 𝑁𝑆𝑜𝑢𝑟𝑐𝑒. 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  Equation (14) 

In this simplistic phenomenological model, which does not explicitly consider the response of 

individual cells in an ensemble, the cellular response, resulting in the change in the assay, is 

represented by (1-Nv) as calculated by Equation (11). Considering that Nbound do not 

contribute to the cellular response pathway, this should be normalised by the ratio (NSource -

Nbound)/NSource, and the resultant assay response, over the range 1-0 is represented by (1-Nv’), 

where Nv’ represents the normalised response. Figure 17 represents the response of an assay 



monitoring the loss of viability due to ROS, with increasing amounts of Nbound, as a result of 

increasing values of kb. The result is primarily to increase the level at which the dose response 

saturates from 0, to a value which is equal to (kROS x kb)/( kROS + kb). Also shown are examples 

of the effect of varying ROS generation rates, kROS, at fixed kb. In this case, the dose response 

shifts to higher (kROS, = 5 x 10-4 M-1 hr-1), or lower (kROS, = 5 x 10-4 M-1 hr-1) doses, but notably, 

the high dose saturation level also shifts according to the ratio to (kROS x kb)/(kROS + kb), 

reflecting the competition between the two processes. 

 

Figure 17: Dose Response curves depicting partial agonism (ROS generation, kROS= 1 x 10-3 

M-1 hr-1), due to varying rates of competitive binding (kb). Also shown are the responses at 

a fixed binding rate of kb= 1 x 10-3 M-1 hr-1 and varying ROS generation rate. 



It should be noted that the simulations to date have presumed a 1:1 stoichiometric ratio of 

the reaction species. However, as represented by the parameter b in Equation 11, this ratio 

can vary depending on the nature of the reaction. A variation in the stoichiometric ratio has 

a significant effect on the dose response curve, as shown in Figure 18, for the case of Caspase 

activation in the cytoplasm, after 24 hrs. Notably, the Hill slope of the curve becomes 

dramatically steeper, and is well correlated with the order of the reaction, as shown in Figure 

19, although notably, the correlation is not a direct 1:1, or linear one. At later times, however, 

a more linear relationship is observed and a close to 1:1 relationship between the Hill slope 

and the order of the reaction is observed. 

 

Figure 18: Dependence of the dose response curve on the stoichiometric parameter b of 

Equation 11. The dashed line shows a fit of the four parameter Hill equation to the 

simulated curve. 



 

Figure 19: Correlation of Hill slope of the fitted dose response curve on the stoichiometric 

ratio of the cellular response. 

The phenomenological rate equation approach can readily be extended to model the 

simultaneous action of one or more exogenous agents A and B, and to explore the 

characteristics of additive, synergistic and antagonistic behaviours. In a simple approach, the 

second agent B is endocytosed in parallel with agent B, at rate kendo2, and contributes to the 

oxidative stress at a rate of kROS2. Equations 4 and 5 can be rewritten; 

𝑑𝑁𝑆𝑜𝑢𝑟𝑐𝑒

𝑑𝑡
= −(𝑁𝑒𝑛𝑑𝑜. 𝑘𝑅𝑂𝑆 − 𝑁𝑒𝑛𝑑𝑜2. 𝑘𝑅𝑂𝑆2). 𝑁𝑆𝑜𝑢𝑟𝑐𝑒     Equation (15) 

𝑑𝑁𝑅𝑂𝑆

𝑑𝑡
= (𝑁𝑒𝑛𝑑𝑜. 𝑘𝑅𝑂𝑆 − 𝑁𝑒𝑛𝑑𝑜2. 𝑘𝑅𝑂𝑆2). 𝑁𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑁𝐺𝑆𝐻. 𝑁𝑅𝑂𝑆. 𝑘𝑞  Equation (16) 
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Both agents A and B contribute to the same intracellular response of generation of ROS and 

therefore to the subsequent cascade of cellular events. The dose dependent (DA and DB) 

behaviour is described by an isobologram, a representation first introduced by Loewe in 

1927[37], and reviewed for example by Tallarida[38]. Figure 19 shows an example of an 

isobologram for agent A, using the parameters of Table 1, and agent B, with values of kuptake2 

= 5 x 10-7 cell-1hr-1 and kROS2 = 5 x 10-4 cell-1hr-1. The straight line locus of IC50 for the combined 

doses is characteristic of an additive process, although it should be noted that the temporal 

profiles of the response curves for NROS and all subsequent responses in the cascade can 

change as a result of the different characteristic rates associated with the two agents, and 

can be used to differentiate their effects.  

In the case, for example, where agent B also has the effect of increasing the cell membrane 

permeability and so the uptake rate of agent A, the effect can be simulated by;  

𝑘′𝑢𝑝𝑡𝑎𝑘𝑒 = (1 ± 
𝐷𝐵

𝑏

𝑎
) . 𝑘𝑢𝑝𝑡𝑎𝑘𝑒       Equation (17) 

The positive sign increases the rate of uptake of agent A linearly, depending on the dose of 

agent B, whereas the negative sign decreases it. Alternatively, the stoichiometric ratio of the 

interaction can be different to 1, which can be simulated by the parameter b. The parameter 

a is included to modulate the degree of synergy/antagonism. Figure 19 shows examples of 

synergistic or antagonistic responses, in which kuptake increases (a=50) or decreases (a=100) 

linearly with dose of agent B. Also shown is the response where the synergistic response is 

sublinearly dependent on the dose DB, (a=1, b=0.25) 



 

Figure 19: Isobolograme of two exogenous agents A and B, with respective IC50s of 17 M 

and 69 M. Open Circles show the locus of a synergistic effect whereby the uptake rate of 

Agent A is dependent on DB
0.25. Filled triangles show a synergistic effect in which the uptake 

rate of Agent A is increased linearly by Agent B, while the open triangles show an 

antagonistic effect in which the uptake rate of Agent A is decreased linearly by Agent B. 

 

Discussion 

The dose response curves of a cellular system to exposure to exogenous agents can be 

phenomenologically reproduced using a rate equation approach, which simulates the initial 

uptake of the agent, the initial cellular reactions and subsequent cascade of response 



pathways. The dose response at any given time point faithfully reproduces the sigmoidal 

dependence commonly experimentally observed, often fitted analytically using a Hill 

equation, to yield a value of IC50 or EC50. The simulation approach demonstrates, however, 

that the value of the median concentration is not uniquely characteristic of the agent, or the 

agent/cell line combination, and therefore the methodology of characterisation of cytotoxic 

responses according to dose response curves is somewhat questionable. Indeed, the analysis 

demonstrates that, despite the fact that it can be extremely sensitive to changes to certain 

individual characteristics of the system, the changes manifest in the dose response curve, 

describable by a four parameter Hill equation, are extremely non-specific in terms of the 

exposure or cellular parameters. 

As shown by the analysis represented in Figure 5, the median response is dependent on the 

exposure time, as might be expected, and, although there is a correlation between the 

characteristics of the dose dependence and the exposure time, this correlation only holds 

once the exposure time is long in comparison to the timescale of the cellular events which 

impact the measured response. The measured dose response curve depends of course on the 

assay employed, as represented by Figure 13, and thus, at a given time-point, different assays 

can yield significantly different response curves, as they interrogate the respective response 

pathways at different stages of evolution of the pathway. The recommendation, therefore, is 

that cytotoxicological assays should be conducted for time periods of, as long as possible. 

Cellular response pathways can furthermore be sequential (Figures 12,13), parallel (Figure 16) 

and/or can give rise partial responses (Figure 17). These processes are not easily 

distinguishable by the dose dependent response, although their influence on the dose 



response can be visualised using the numerical modelling approach based on rate equations 

to describe the dynamic evolution of the state of the system.  

When visualised in the temporal domain, cytological responses are much more intuitively 

comprehensible. The sequence of events, from uptake to the final cytological outcome (e.g. 

apoptosis, necrosis), and importantly the influence of the properties of the external agent, 

can be distinguished from those of the properties of the test system, including cell line and 

assay, which can aid in understanding of the fundamental mechanisms of interaction, and 

thus guide strategies of, for example, drug design and predictive toxicology. 

The rate of the initial uptake of the exogenous agent has, understandably, a critical impact on 

the cellular response, as shown in Figure 4. In the systematic study of a homologous series of 

PAMAM dendrimers in a range of human cell lines, when modelled using a similar rate 

equation approach[20], it was concluded that, while the uptake rate is largely independent of 

cell line, it is systematically dependent on particle size. This size dependent nanoparticle 

uptake rate was seen to extend to 50 nm aminated polystyrene (PS-NH2) nanoparticles, in a 

similar study by Maher[39], in the same range of human cell lines. Both PAMAM dendrimers 

and PS-NH2 nanoparticles have been seen to give rise to oxidative stress in the acidifying 

environment of the endosomes, by sequestering protons that are supplied by the v-ATPase 

(proton pump)[40]. It has been proposed that the initial wave of ROS may be produced via 

NADPH oxidase[41], an enzyme which produces superoxide anions (O2
-) in phagosomes and 

endosomes[42], and thus may represents the source term of Equation (4), for this particular 

response pathway. The dose and time dependence of the generation of ROS is complex, but 

is well described as a function of particle dependent ROS generation rates, and cellular 

dependent parameters describing ROS source, antioxidant levels and ROS quenching rates. 



Notably, for the homologous series of PAMAM generations 4-6, which have systematically 

increasing numbers of surface amino groups, the systematically varied oxidative response as 

well as resultant toxic response, was comprehensively described by variation of a single 

generation dependent parameter. The direct correlation of the exposure outcome on the 

structural properties of the external agent points towards clear QSARs. The rate equation 

approach is particularly suitable to visualisation of AOPs on a cellular level, in which QSARs 

govern the molecular initiating event (MIE) and the subsequent pathways are represented by 

the subsequent cascade of key events (KE) linked by key event relationships (KER), which, 

herein are the rate equations[23]. Indeed, recent work by Zgheib et al.[43] has explored the use 

of different routes towards quantification of AOPs, including a systems biology approach, 

similar to that employed here. The AOP approach is increasingly favoured for predictive 

toxicology to guide regulatory interventions[44]. The approach to quantitative analysis of the 

systems response is also key to metabolic flux analysis and fluxomics[45]. In the case, for 

example, of the chemotherapeutic agent, DOX, a dual pathway of mechanism of response has 

been described[46], whereby rapid transport to the nucleus/nucleoli of the cell results in 

binding with the RNA/DNA, a process which can similarly be considered a MIE, the limiting or 

source term being the number of RNA/DNA binding sites. Reversible reduction of DOX in the 

cytosol by several oxidoreductases to a semiquinone radical can also give rise to oxidative 

stress as a MIE[47,48], instigating an independent cascade of cellular events, which can be 

described by an independent or interlinked system of rate equations.  

Notably, uptake of the external agent can occur via a number of different mechanisms, which 

can depend on the agent itself and the cell line used, and the subsequent cellular response 

can be substantially different. As an example, extending the series of poly (propylene imine) 



dendrimers to generation 0-2, whereas the higher generations are seen to cause oxidative 

stress after endocytosis, the lower generations are seen to act as antioxidants, and the lack 

of evidence of endocytosis suggests a transition from active uptake of the larger higher 

generation dendrimers, to passive uptake of the smaller, lower generation[49]. Thus, an 

acellular assessment of the reactivity of an agonist is not sufficient to predict their cellular 

response[50].  

The visualisation of the complex cellular mechanisms in the temporal domain provides a much 

more comprehensible picture of the response pathways, which can be represented 

mathematically by the system of rate equations. Figure 1 is of course a simplified model, but 

the system and the associated rate equations can be as complex, or as simple, as the challenge 

requires, and even extend to multi-omic pathway maps. Low dose, or early stage cellular 

responses can be key initial indicators of dysregulation of cellular machinery at later stages of 

the response pathway, more evident at higher exposure concentrations, and so monitoring 

such early stress and indeed adaptive responses can be important[51]. It should also be noted 

that the representation of Figure 1 does not include compartmentalised and inter-

compartmentalised responses to describe the complete response of a cell. Increasingly, web-

based resources are, however, available for such model building to describe the kinetic 

responses of cells in a systems biology approach, although they are not well adapted to dose 

responses[13,52]. Alternatives to colorometric based assays, such as impedance based cellular 

responses may provide real time monitoring of the state of the cellular system[53]. Notably, 

such a systems approach naturally lends itself to a broader approach to the responses systems 

on the organism level[12,19,54]. It should be noted that, as such models become increasingly 

complex and multiparametric, uncertainties of fitting to experimental data also increase, in 



which case approaches such as parameter global sensitivity analysis (GSA)[19] could 

significantly enhance the robustness of the processes. 

Conclusions 

In vitro cytological dose response curves derive from a complex sequence of events, from 

cellular uptake of an exogenous agent, to internal interactions which trigger a cascade of 

response pathways resulting in a cellular outcome, which can be measured by a number of 

cytological assays in a number of different cell lines, at a number of seemingly arbitrary time-

points. The four parameter curve is sensitive to any number of parameters en route, but the 

changes are not very specific to their causes, given the multitude of influencing factors. An 

understanding of these influencing factors can improve both the design and interpretation of 

dose response experiments. However, ultimately, monitoring the uptake processes and 

response pathways of the events, in a systems biology approach, provides the best 

understanding of their interdependencies, and can help extract independent properties of 

the exogenous agent, and the cellular system. Such an understanding can help to guide 

strategies for toxicology or preclinical drug screening, or even routes towards in vitro 

screening of patient sensitivities in a companion diagnostics approach[55]. 

 

Declaration of interests 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

  



[1] European Union, “Legislation for the protection of animals used for scientific 

purposes - Environment - European Commission,” can be found under 

http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm, n.d. 

[2] Public Law 106-545 106th Congress An Act, n.d. 

[3] B. H. Mukherjee SP, Lyng FM, Garcia A, Davoren M, Toxocology Appl. Pharmacol. 

2010, 248, 259–68. 

[4] R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz, A. Tosaki, Arch. Hist. Exact 

Sci. 2012, 66, 427–438. 

[5] O. US EPA, “Toxicology Testing in the 21st Century (Tox21),” can be found under 

https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21, n.d. 

[6] “TNRF Resources | National Center for Advancing Translational Sciences,” can be 

found under https://ncats.nih.gov/rnai/capabilities/resources#Robotic_Platform, n.d. 

[7] M. D. Barratt, Environ. Health Perspect. 1998, 106 Suppl 2, 459–65. 

[8] K. Kalani, D. K. Yadav, A. Singh, F. Khan, M. M. Godbole, S. K. Srivastava, Curr. Top. 

Med. Chem. 2014, 14, 1005–13. 

[9] A. V. Hill, J. Physiol. 1910, 40, iv–vii. 

[10] J. W. Black, P. Leff, Proc. R. Soc. London. Ser. B, Biol. Sci. 1983, 220, 141–62. 

[11] A. Sorribas, B. Hernández-Bermejo, E. Vilaprinyo, R. Alves, Biotechnol. Bioeng. 2007, 

97, 1259–1277. 

[12] R. Steuer, B. H. Junker, R. Steuer, B. H. Junker, Chem. Phys. 2009, 142. 



[13] Z. P. Gerdtzen, in Genomics Syst. Biol. Mamm. Cell Cult., Springer Berlin Heidelberg, 

Berlin, Heidelberg, 2011, pp. 71–108. 

[14] A. Einstein, Verhandlungen der Dtsch. Phys. Gesellschaft 1916, 18, 318–323. 

[15] W. Blau, H. Byrne, W. M. Dennis, J. M. Kelly, Opt. Commun. 1985, 56, 25–29. 

[16] M. Miyazaki, S. Nakade, K. Iwanaga, K. Morimoto, M. Kakemi, Drug Metab. 

Pharmacokinet. 2003, 18, 350–357. 

[17] S. M. Ryan, J. M. Frías, X. Wang, C. T. Sayers, D. M. Haddleton, D. J. Brayden, J. 

Control. Release 2011, 149, 126–132. 

[18] A. Salvati, C. Åberg, T. dos Santos, J. Varela, P. Pinto, I. Lynch, K. A. Dawson, 

Nanomedicine Nanotechnology, Biol. Med. 2011, 7, 818–826. 

[19] D. Dell’Orco, M. Lundqvist, T. Cedervall, S. Linse, Nanomedicine Nanotechnology, Biol. 

Med. 2012, 8, 1271–1281. 

[20] M. A. Maher, P. C. Naha, S. P. Mukherjee, H. J. Byrne, Toxicol. Vitr. 2014, 28, 1449–

1460. 

[21] G. D. Souto, Z. Farhane, A. Casey, E. Efeoglu, J. McIntyre, H. J. Byrne, Anal. Bioanal. 

Chem. 2016, 408, 5443–5455. 

[22] OECD, “OECD Quantitative Structure-Activity Relationships Project [(Q)SARs] - OECD,” 

can be found under http://www.oecd.org/chemicalsafety/risk-

assessment/oecdquantitativestructure-activityrelationshipsprojectqsars.htm, n.d. 

[23] C. Wittwehr, H. Aladjov, G. Ankley, H. J. Byrne, J. de Knecht, E. Heinzle, G. Klambauer, 



B. Landesmann, M. Luijten, C. MacKay, et al., Toxicol. Sci. 2017, 155, 326–336. 

[24] S. P. Mukherjee, H. J. Byrne, Nanomedicine Nanotechnology, Biol. Med. 2013, 9, 202–

211. 

[25] S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren, H. J. Byrne, Toxicol. Appl. 

Pharmacol. 2010, 248, 259–268. 

[26] Z. Farhane, F. Bonnier, O. Howe, A. Casey, H. J. Byrne, J. Biophotonics 2017, 11, 

e201700060. 

[27] Z. Farhane, F. Bonnier, H. J. Byrne, Anal. Bioanal. Chem. 2017, 409, 1333–1346. 

[28] P. C. Naha, S. P. Mukherjee, H. J. Byrne, Int. J. Environ. Res. Public Health 2018, 15, 

338. 

[29] S. P. Mukherjee, H. J. Byrne, Nanomedicine Nanotechnology, Biol. Med. 2013, 9, 202–

211. 

[30] K. E. Atkinson, J. Wiley, AN INTRODUCTION TO NUMERICAL ANALYSIS Second Edition, 

1978. 

[31] M. A. Maher, P. C. Naha, S. P. Mukherjee, H. J. Byrne, Toxicol. Vitr. 2014, 28, 1449–

1460. 

[32] P. C. Naha, M. Davoren, F. M. Lyng, H. J. Byrne, Toxicol. Appl. Pharmacol. 2010, 246, 

91–99. 

[33] Z. Farhane, H. Nawaz, F. Bonnier, H. J. Byrne, J. Biophotonics 2018, 11, e201700258. 

[34] B. I. Escher, P. A. Neale, D. L. Villeneuve, Environ. Toxicol. Chem. 2018, 37, 2273–2280. 



[35] Z. Farhane, F. Bonnier, M. A. Maher, J. Bryant, A. Casey, H. J. Byrne, J. Biophotonics 

2017, 10, 151–165. 

[36] V. Pliska, J. Recept. Signal Transduct. 1999, 19, 597–629. 

[37] S. Loewe, Die Mischiarnei. Klin Wochenschr 1927, 6, 1077–1085. 

[38] R. J. Tallarida, J. Pharmacol. Exp. Ther. 1041, 319, DOI 10.1124/jpet.106.104117. 

[39] M. A. Maher, Structure Activity Relationships Governing the Interaction of 

Nanoparticles with Human Cells – Predictive Models for Toxicology and Medical 

Applications, Dublin Institute of Technology, 2016. 

[40] A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. 

Castranova, M. Thompson, Nat. Mater. 2009, 8, 543–557. 

[41] T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. 

Wiesner, A. E. Nel, Nano Lett. 2006, 6, 1794–1807. 

[42] V. V Shuvaev, J. Han, K. J. Yu, S. Huang, B. J. Hawkins, M. Madesh, M. Nakada, V. R. 

Muzykantov, FASEB J. 2011, 25, 348–57. 

[43] E. Zgheib, W. Gao, A. Limonciel, H. Aladjov, H. Yang, C. Tebby, G. Gayraud, P. Jennings, 

M. Sachana, J. B. Beltman, et al., Comput. Toxicol. 2019, 11, 1–13. 

[44] Unclassified ENV/JM/MONO(2013)6 JOINT MEETING OF THE CHEMICALS COMMITTEE 

AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY 

Revised Guidance Document on Developing and Assessing Adverse Outcome 

Pathways, 2017. 



[45] D. Stewart, S. Dhungana, R. Clark, W. Pathmasiri, S. McRitchie, S. Sumner, Syst. Biol. 

Toxicol. Environ. Heal. 2015, 57–83. 

[46] “Doxorubicin Pathway (Cancer Cell), Pharmacodynamics Overview | PharmGKB,” can 

be found under https://www.pharmgkb.org/pathway/PA165292163, n.d. 

[47] G. Minotti, Free Radic. Res. Commun. 1989, 7, 143–8. 

[48] G. Minotti, S. Recalcati, A. Mordente, G. Liberi, A. M. Calafiore, C. Mancuso, P. 

Preziosi, G. Cairo, FASEB J. 1998, 12, 541–52. 

[49] H. Khalid, S. P. Mukherjee, L. O’Neill, H. J. Byrne, J. Appl. Toxicol. 2016, 36, 464–473. 

[50] M. A. Maher, H. Khalid, H. J. Byrne, Anal. Bioanal. Chem. 2016, 408, 695–703. 

[51] R. Judson, K. Houck, M. Martin, A. M. Richard, T. B. Knudsen, I. Shah, S. Little, J. 

Wambaugh, R. Woodrow Setzer, P. Kothya, et al., Toxicol. Sci. 2016, 152, 323–339. 

[52] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, H. Kitano, Proc. IEEE 

2008, 96, 1254–1265. 

[53] K. E. Garbison, B. A. Heinz, M. E. Lajiness, J. R. Weidner, G. S. Sittampalam, 

Impedance-Based Technologies, Eli Lilly & Company And The National Center For 

Advancing Translational Sciences, 2004. 

[54] H. Kitano, Science (80-. ). 2002, 295, 1662–1664. 

[55] “Overview of Companion Diagnostics in the Pharmaceutical Industry.,” can be found 

under https://www.ddw-online.com/personalised-medicine/p92845-overview-of-

companion-diagnostics-in-the-pharmaceutical-industry.html, n.d. 



 


	Numerically Modelling Time and Dose Dependent Cytotoxicity
	Recommended Citation

	tmp.1576256769.pdf.mMYX5

