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Abstract

Nowadays crowdsourcing is widely used in
supervised machine learning to facilitate the
collection of ratings for unlabelled training
sets. In order to get good quality results it is
worth rejecting results from noisy/unreliable
raters, as soon as they are discovered. Many
techniques for filtering unreliable raters rely
on the presentation of training instances to
the raters identified as most accurate to date.
Early in the process, the true rater reliabili-
ties are not known and unreliable raters may
be used as a result. This paper explores
improving the quality of ratings for train-
ing instances by performing re-rating. The
re-rating relies on the detection of such in-
stances and the acquisition of additional rat-
ings for them when the rating process is over.
We compare different approaches to re-rating
and compare the improvements in labeling
accuracy and the labeling costs of these ap-
proaches.

1. Introduction

Crowdsourcing, a type of participative activity where
a task is proposed to a group of individuals (Es-
tellés-Arolas & Gonzalez-Ladron-de Guevara, 2012), is
widely used to collect ratings for data to be used in su-
pervised machine learning (Ambati et al., 2010; Brew
et al., 2010; Snow et al., 2008). The usual scenario
is that each training instance is presented to several
raters whose results are then combined to produce a
single target rating.

Raters usually have different expertise and degree of

ICML Workshop: Machine Learning Meets Crowdsourcing,
Atlanta, Georgia, USA, 2013.

commitment, and as a result submit ratings of vary-
ing accuracy. Low accuracy ratings can have a sig-
nificant negative impact on the quality of target rat-
ings. Therefore, unreliable raters should be detected
and their ratings disregarded. There are two ways to
use rater reliability in the calculation of target ratings:
static and dynamic. Static approaches first gather all
ratings in an undetermined order and then calculate
rater reliability and target ratings (Raykar et al., 2010;
Whitehill et al., 2009). The target rating is typically
the average of the ratings weighted by the calculated
reliability of the rater. Dynamic approaches, which are
the focus of this paper, present training instances one
by one, tracking rater reliability while raters provide
ratings (Donmez et al., 2009; Welinder & Perona, 2010;
Yan et al., 2011). In dynamic approaches, reliabilities
are estimated as ratings are gathered, and each train-
ing instance is presented only to those raters who are
deemed to be reliable, based on previously rated train-
ing instances. Thus, unreliable raters are discovered
dynamically, in contrast to static approaches which
wait until the end of the rating process to calculate
rater reliability.

The dynamic selection of the most accurate raters is
an example of a problem where a trade-off between
exploration and exploitation has to be found. Ex-
ploration involves giving enough chances to all raters,
even if some of them later prove unreliable, in order
to precisely estimate their reliabilities. When the re-
liabilities are known, exploitation can begin. During
exploitation only raters considered to be reliable are
asked to rate. Thus, dynamic estimation of rater reli-
ability inevitably leads to the collection of ratings from
inaccurate raters. The probability of asking inaccurate
raters is especially high in the beginning of the rating
process, during the exploration phase. It means that
training instances rated at the beginning have a higher
probability of having noisy target ratings.

This paper explores how to reduce the error of target
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ratings for training instances rated at the exploration
stage. At the end of the rating process the top raters
are selected and requested to supply additional rat-
ings for a certain portion of training instances rated
at the beginning of the process. When new ratings
are acquired, the old ratings are dropped. Now that
raters known to be reliable had been asked, the er-
ror in the training instances target ratings decreased.
We tested two approaches to selecting the number of
training instances to be re-rated: (i) a fixed approach,
which re-rated the initial x% of training instances, and
(ii) a trend-based approach, which used trend analysis
techniques to find the boundary between exploration
and exploitation in the rating process. The dynamic
rating approach used in this work involves multi-armed
bandits (MABs) (Tarasov et al., 2012).

The paper is structured as follows: Section 2 describes
related work. The experiment’s methodology is cov-
ered in Section 3. Section 4 presents the results and
discusses them, while Section 5 concludes the paper.

2. Related work

Crowdsourced rating of corpora for supervised ma-
chine learning is widely used in a variety of domains,
including machine translation (Ambati et al., 2010)
and sentiment analysis (Brew et al., 2010). Gener-
ally, a fixed payment is made for each rating collected.
One of the main challenges of crowdsourced rating of
corpora is to get the target ratings as accurate as pos-
sible while paying as little as possible for them. In
any application area some raters might complete the
task without fully engaging in it (Downs et al., 2010)
which results in inaccurate ratings. Such unreliable
raters can have a significant negative impact on target
ratings (Whitehill et al., 2009). There are a number
of different techniques that can be used to reduce this
negative effect which can be divided into three cate-
gories based on the stage of the rating process at which
they are applied:

1. Before the rating process starts: only raters
who successfully complete a qualification task rate
training instances (Downs et al., 2010). Usually, such a
task involves rating a few training instances for which
the correct ratings are already known.

2. After the rating process finishes (static
methods): all training instances are presented for
rating simultaneously, and each rater can rate as many
of them as desired. The process usually finishes when
a certain number of ratings for each training instance
is gathered. Then an expectation maximisation algo-
rithm is used to calculate both rater reliabilities and

target ratings (Dekel & Shamir, 2009; Raykar et al.,
2010; Whitehill et al., 2009). Target ratings are usually
calculated such that ratings from less reliable raters
have smaller weights than those from reliable ones.

3. During the rating process itself (dynamic
methods): training instances are presented one by
one (or in small batches) to a subset of raters. The
reliability of raters is tracked dynamically as they rate
training instances, the calculation of target ratings
also happens as ratings progress (Donmez et al., 2009;
Welinder & Perona, 2010; Yan et al., 2011).

Currently there is no strong evidence in the literature
that methods from the first group are actually benefi-
cial. Heer & Bostock (2010) report that these meth-
ods were able to reduce the proportion of invalid rat-
ings from 10% to 0.4%, while Su et al. (2007) were
unable to find any correlation between rater perfor-
mance in the qualification task and in rating of ac-
tual training instances. At the same time, both static
and dynamic techniques are widely used and have been
proven to be successful (Donmez et al., 2009; Raykar
et al., 2010). According to Welinder & Perona (2010),
dynamic techniques should be preferred over static
ones if it is important to bring down the total cost
of the rating process. A dynamic technique makes use
of all ratings gathered, while a static approach does
not. This is because ratings that have already been
paid for may have come from inaccurate raters and be
discarded while calculating the target ratings.

In general, dynamic approaches to estimating rater re-
liability use either probabilistic frameworks (Welinder
& Perona, 2010; Yan et al., 2011) or MABs (Don-
mez et al., 2009; Tarasov et al., 2012). Probabilis-
tic frameworks make certain assumptions, e.g., prior
beliefs about the rater reliability and the statistical
distribution of rater errors. Such assumptions might
not always hold true in real-life tasks, which can have
a negative impact on the results of using these ap-
proaches. In contrast, MABs do not make such as-
sumptions and therefore can be used for any task at
hand.

An MAB represents a problem of selection between k
alternatives as a k-armed gambling machine (Vermorel
& Mohri, 2005). In our previous work (Tarasov et al.,
2012) we explored whether they can be used for dy-
namic estimation of rater reliability. We found that
two algorithms—KL-UCB and ε-first—usually lead to
target ratings of higher accuracy compared to those
produced by IEThresh (which also is an MAB, al-
though it is not acknowledged directly (Donmez et al.,
2009)). In our experiments we determined the num-
ber of raters to be asked to rate each training instance
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(N) in advance. At each iteration, or round, a sin-
gle training instance was rated. Each rater who rated
this instance received a reward, a number which rep-
resented how close the rating of this rater was to the
consensus rating.

The ε-first algorithm (Vermorel & Mohri, 2005) di-
vides all rounds into two phases: exploration and ex-
ploitation. At the exploration phase N random raters
are asked to rate each training instance, which ensures
they were all given an equal chance to show their per-
formance. When exploitation starts, raters who have
the best performance to date are asked to rate. The
reliability score of a rater is simply an average of his
rewards to date. The ε-first algorithm has one param-
eter, ε, which determines the proportion of training
instances to be rated at the exploration stage.

In contrast, KL-UCB (Garivier & Cappe, 2011) does
not divide all rounds into exploratory or exploitative
like ε-first. In KL-UCB the reliability score of a rater
is a function of rewards received by him to date, and
this function depends on the number of training in-
stances the rater has rated. If a rater has a high relia-
bility score, it means that either (i) he has rated many
training instances and showed himself to be a reliable
rater, or (ii) he has rated few training instances so we
are not sure about his reliability yet. At any time, the
rater with a high reliability score should be asked to
rate.

In all the dynamic approaches described above, collec-
tion of ratings from unreliable raters inevitably hap-
pens at the beginning of the process. This can lead to
a situation where a certain part of the training set has
noisy target ratings. This issue is not covered by state-
of-the-art research in crowdsourcing to the best of our
knowledge, and we are not aware of any approaches to
correcting this exploration-stage error in other appli-
cations areas, where a trade-off between exploration
and exploitation is required.

In the next section we propose a few strategies for com-
pensating for these errors and suggest how the perfor-
mance of these approaches can be measured.

3. Methodology

The goal of our experiment is to compare different
strategies for increasing the accuracy of target rat-
ings in dynamic approaches. We simulated the crowd-
sourced collection of ratings; instead of asking real peo-
ple to rate training instances, we used datasets where
a number of raters had already rated all training in-
stances. When we required a rating from a certain
rater, instead of querying a real rater through the In-

ternet, we simply took the rating from the dataset.

This section describes the experiment we carried out,
the re-rating approaches we propose, the datasets we
used and explains performance measures.

3.1. Experiment

The collection of ratings in our experiment consisted
of two stages:

1. Initial rating process, during which MABs were
used to dynamically estimate rater reliability. The
initial rating process finished when every training in-
stance had been presented to raters and rated.

2. Re-rating: we detected which training instances
were rated at the exploration phase and selected the
most reliable raters at the end of the initial rating pro-
cess. To improve the accuracy of the target ratings of
these training instances, we collected replacement rat-
ings for these instances from the most reliable raters.

Three corpora were used for our experiments:

The Vera am Mittag (VAM) corpus (Grimm
et al., 2008), which contains non-acted video record-
ings of a talk show, divided into short segments. Each
speech segment is rated on three continuous dimen-
sions. Ratings on all dimensions are in the [-1, -0.5, 0,
0.5, 1] set. The three dimensions are activation (how
active or passive the recording is), evaluation (how
positive or negative it is) and power (how dominant
the speaker is). We used a portion of the VAM corpus
containing 478 speech recordings, each rated by same
17 raters. We formed three separate datasets, one for
each emotional dimension.

Our initial experiments revealed that the performance
of all raters in all three emotional datasets was very
similar. Thus, no matter which raters were chosen, the
resulting target ratings were of the same high quality.
To introduce some variability into the ratings we added
10 additional noisy raters to each dataset. The ratings
for these noisy raters were generated by adding a ran-
dom noise term, from a Guassian distribution, to the
actual rating of each recording, similar to the approach
adopted by Raykar et al. (2010).

The Jester dataset1 containing 4.1 million continu-
ous ratings (on the scale [-10, 10]) of 100 jokes rated by
73,421 people. Each joke is rated by a varying num-
ber of raters. A subset of ratings from 20 raters who
have rated all 100 jokes was used as the experimental
dataset.

1http://goldberg.berkeley.edu/jester-data/
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The MovieLens 10M dataset2 consisting of 10 mil-
lion ratings across 10,000 movies by 72,000 users. As
in Jester, each movie is rated by a different number
of people by assigning a rating in a [1, 5] range. We
extracted a subset of 288 movies, each rated by the
same 20 raters for our experiments.

As no true target ratings were available for any of the
datasets, we calculated them using the approach of
Raykar et al. (2010). We refer to these as the gold
standard ratings.

We conducted the initial rating process, the goal of
which was to rate T training instances using two differ-
ent MAB approaches: ε-first and KL-UCB. The initial
rating process consisted of the following steps:

1. Select a training instance to be rated: train-
ing instances were presented to raters one by one.
In order to determine the order of presentation, ac-
tive learning was used for three VAM datasets. Ac-
tive learning is a semi-supervised machine learning ap-
proach that can be used to build accurate classifiers
and predictors from collections of unrated data, with
minimal rating effort. This is achieved by only rating
those instances from a large pool that are deemed, us-
ing a selection strategy, to be most informative. We
used the active learning approach of Burbidge et al.
(2007) and a deterministic clustering approach to seed
this process (Hu et al., 2010). If a few training in-
stances had the same “informativeness” score, one of
them was chosen at random. Active learning was not
possible for the Jester and MovieLens datasets as no
features are available for the instances so we presented
training instances from those datasets in random or-
der.

2. Select raters: The most reliable N raters were
asked to rate the training instance selected during the
previous step. Ties in rater reliability scores were bro-
ken randomly, as were ties in step 1.

3. Calculate the target rating: we used an aver-
age of the N ratings received for a training instance as
the estimated target rating for the training instance.

4. Update the rater reliabilities: the closer the
rating given by a rater was to the estimated target
rating, the more reliable the rater. The reward for
a rater was a normalised inverse absolute difference
between the estimated target rating (calculated at step
3) and the rating provided by the rater (received at
step 2) and was in the [0, 1] interval. All rewards
received by a rater were stored and used to calculate
his reliability score. In ε-first, this score was just an

2http://www.grouplens.org/node/73

average of all rewards received by the rater to date,
while in KL-UCB it was a function of the number of
rewards received to date and their values (Garivier &
Cappe, 2011).

5. Repeat from step 1 until all training in-
stances are rated.

When the initial rating process was finished, the ac-
quisition of additional ratings proceeded as follows:

1. Training instances for which the acquisition of ad-
ditional ratings is required were selected.

2. Additional ratings for the instances were solicited
from the N most reliable raters (as at the end of the
initial rating process) to replace those previously col-
lected. In the situation when a rater had already pro-
vided a rating for a given training instance, we simply
reused the old rating. Collecting a new rating would
amount to “purchasing” multiple ratings for the same
training instance from the same individual.

3. The target ratings for the selected assets were up-
dated. A new target rating was an average of newly
acquired ratings.

We conducted different runs of the experiment for each
dataset, varying the number of raters asked to rate
every training instance N = 3, 5, 7, 9, 11, 13, 15.

Different approaches to re-rating covered in this paper
differ in terms of how step 1 was executed. We used
two baselines and two re-rating approaches in our ex-
periments. The baselines were as follows:

None: no re-rating happened at all (zero training
instances were selected for re-rating).

Full: all training instances rated during the initial
rating process were re-rated.

We considered the following re-rating approaches:

Fixed: the first x% of the training instances rated
in the initial rating process were selected for re-rating.

Trend-based: the number of training instances to
be re-rated was not set in advance and was determined
via trend analysis. We assumed that there exists a
border between exploration and exploitation in the ini-
tial rating process. When this border was found, only
training instances rated at the exploration phase were
re-rated.

As discussed, noisy ratings are often collected during
the exploration phase. This means that target ratings
for the training instances rated at this phase may be
unreliable. As the exploration stage progresses, rater
reliabilities are learned and unreliable raters are cho-
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sen more and more rarely. The error in target rat-
ings for the exploration stage exhibits the negative
trend. Finally, when rater reliabilities are estimated
well enough, only reliable raters are asked, and the er-
ror of target ratings remains stable and relatively low.

In practice, true target ratings are not known during
the rating process. Consequently, they can not be used
in locating the start of the exploitation. However, the
standard deviation (SD) of N ratings received for each
training instance can be used as a proxy measure, as
reliable raters tend to agree with one another. Our
initial experiments revealed that the behaviour of the
SD was generally similar to that of the error making
it a suitable proxy for the error.

First, we started with the sequence of all SDs
(σ1, σ2, ..., σT ) for ratings received in the initial rat-
ing process, where T was the total number of training
instances. Each σi was the SD of ratings which se-
lected raters supplied for the training instance rated
at i-th round. The Mann-Kendall test was used to
check if there was a negative trend in this sequence. If
there was a negative trend, the first SD was removed
and the check for trend was performed again on the
(σ2, σ3, ..., σT ) sequence. The process continued until
SDs in the sequence did not exhibit a negative trend.
This process is illustrated in Figure 1.

Figure 1. Detection of the boundary between exploration
and exploitation using trend analysis. In this example, all
training instances rated before the training instance #43
were rated at the exploration stage and had to be re-rated.

3.2. Performance measures

Two performance measures are important for each re-
rating approach: (i) the cost of ratings C, expressed
as a number of acquired ratings and (ii) the error of
the resulting target ratings E, which is the average

absolute difference between target ratings predicted by
raters and the gold standard ratings, measured as a
percentage of the full rating scale. For instance, if the
error is 0.25 on MovieLens dataset, where the width
of the full [1,5] scale is four, E = 0.25/4 = 0.0625 =
6.25%. The value of C includes both ratings gathered
during the initial rating process and during re-rating.
A good approach should lead to low values of both C
and E.

In order to compensate for possible ties at steps 1 and
2 of the initial rating process, we conducted the ex-
periment for each emotional dataset and each N five
times, and reported averaged values of C and E. In
MovieLens and Jester we did 50 runs instead of five,
because a large number of ties between training in-
stances introduced a significant random component to
the order of presentation of training instances.

In our experiments, we had to rank different re-rating
approaches. This task is often encountered in ma-
chine learning and is usually relatively simple. For
instance, if different classification techniques are com-
pared, they usually are ranked according to their ac-
curacy (Demsar, 2006). However, when more than one
performance measure is used, more sophisticated tech-
niques have to be applied. Estimating how well each
re-rating approach meets both low C and low E crite-
ria is a multi-criteria decision analysis (MCDA) prob-
lem. Many MCDA techniques exist and are widely
used in different application areas, however, according
to Toloie-Eshlaghy & Homayonfar (2011), the most
popular of these are members of the analytic hier-
archy process (AHP) family. Triantaphyllou & Baig
(2005) performed the analysis of different AHP meth-
ods and strongly recommended using a multiplicative
AHP (MAHP). We rank re-rating approaches using
the approach by Triantaphyllou & Baig (2005), apply-
ing MAHP with the two criteria being C and E. The
MAHP also allows some criteria to be more important
than others by assigning them different weights, which
should sum up to 1. In our experiments, both error
and cost were equally important, so both had equal
weight WC = WE = 0.5. The inputs to the MAHP
are four pairs of C and E, one for each re-rating ap-
proach. The result of the MAHP are ranks from 1 to 4
assigned to four re-rating approaches. Thus, the final
result of the experiment was 70 rankings (2 MABs × 5
datasets × 7 values of N) of four re-rating approaches.

We used the Friedman test following Demsar (2006)
to determine if there was a statistically significant
difference between at least two approaches and the
Bergmann-Hommel post-hoc test to discover which ap-
proaches do differ (Garcia & Herrera, 2008). The re-
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sult of this statistical testing was a grouping of ap-
proaches such that there was no statistically significant
difference between approaches from the same group.

4. Results and discussion

With ε-first, in 30 out of 35 experiments the trend-
based approach re-rated between 10% and 10.1% of
training instances. Therefore, the border between ex-
ploration and exploitation usually lay in the region of
ε = 0.1. Figure 2 shows just one SD graph as an
illustration, but very similar behaviour was observed
in other experiments as well. Such a crisp distinction
between exploration and exploitation was not very sur-
prising, as ε-first explicitly explores during first ε · T
rounds and exploits the rest of the time. A compari-
son of average ranks concluded that there was a sta-
tistically significant difference between re-rating ap-
proaches (Friedman test p-value <0.001), and the fol-
lowing two groups were identified by the Bergmann-
Hommel test with significance at α = 0.05 level3 (av-
erage ranks are given in parentheses):

1. Fixed, x = 10 (2.00) and trend-based (2.14)

2. None (2.85) and full (3.00)

None and full were the worst approaches, while fixed
and trend-based turned out to be the best. As the
boundary between exploration and exploitation was al-
most always at about 10%, the fixed approach worked
well, always re-rating 10% of training instances. Al-
though there is no statistically significant difference
between fixed and trend-based approaches, we would
recommend the use of fixed as a simpler alternative,
when ε-first is used to select raters dynamically.

In our experiments, the first ε · T training instances
had an average error of 6.57%, while the rest had an
error of 3.34%. When initial training instances were
re-rated using fixed re-rating, the error on those in-
stances dropped to 3.44%, i.e. halved. The initial
rating process required 3,225.6 ratings on average; re-
rating required an additional 179.26 ratings on aver-
age.

With regard to the significance of the reduction of
3.13% in the average error, we would like to cite
Wagstaff (2012), who notes that a decrease in error
of the same absolute value can have a completely dif-
ferent meaning and impact, depending on the area.
Indeed, some application areas such as medical diag-
nosis or biometrics would be intolerant even to small
mistakes. Even if an incorrect decision is taken in 1%

3The results reported below use α = 0.05, unless other-
wise specified.

of cases, it still results in a lot of mis-diagnoses or se-
curity breaches. There is little need for re-rating if the
error of a few percent is tolerable.

Figure 2. Change in SD of ratings, as training instances are
being rated (Activation, N = 3).

With KL-UCB, the border between exploration and
exploitation on VAM datasets lay in quite a wide range
from 5% to 50%, unlike ε-first, where this border was
almost always around 10%. The typical SD graph for
MovieLens and Jester did not exhibit any trends or
phases. One possible explanation is that Jester and
MovieLens represent very subjective problems, where
it is difficult to find a subset of raters tending to agree
with one another. In order to investigate this, we cal-
culated average absolute errors for all raters in all five
datasets (Figure 3). Red crosses represent noisy, ar-
tificially generated raters who do not agree, as their
ratings were generated independently of one another.
The errors of raters who were in the original datasets
(blue crosses) is spread uniformly in all datasets, but
the range of rater reliabilities is bigger on MovieLens
and Jester than on emotional datasets. This means
that, in general, raters in MovieLens and Jester tended
to disagree with each other more than on emotional
datasets. Thus, it was more difficult for KL-UCB to
pick a set of raters who agree, which explains the ab-
sence of trend in SD graphs. Nevertheless, the results
of our previous work (Tarasov et al., 2012) strongly
suggest that even on these more challenging datasets,
KL-UCB still can pick reliable raters quite successfully.

We launched the fixed approach with x = 50 in or-
der to ensure that it always re-rates all exploration-
phase training instances. The approaches were split
into three groups (Friedman p-value <0.001):
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1. None (1.74), trend-based (2.09)

2. Fixed, x = 50 (2.66)

3. Full (3.51)

The trend-based approach often re-rated only a few
initial training instances and therefore did not pro-
duce a big difference in cost or error, compared to no
re-rating. When the fixed approach was used, the av-
erage error over the initial 50% of training instances
changed from 5.54% (no re-rating) to 4.67%. However,
this decrease in error required significant additional
costs: compared to an average C = 3240.8 for no re-
rating, the fixed approach resulted in C = 4021.23
(an increase of 24.1%). This poor “value for money”
resulted in the fixed approach ranking worse than no
re-rating.

The grouping did not change when we used x = 25
instead of 50 in the fixed approach (Friedman p-value
<0.001):

1. None (1.77), trend-based (2.06)

2. Fixed, x = 25 (2.66)

3. Full (3.51)

Again, the significant additional cost resulted in a
1.04% decrease in error for the initial 25% of train-
ing instances, from 5.75% to 4.71%. We also tried
several different values of x in the fixed approach, but
the grouping remained the same.

We are interested in decreasing the error by re-rating
training instances, however the increase in cost associ-
ated with re-rating should not be high. Our assump-
tion was that both cost and error are equally impor-
tant, and the weights of both cost and error were set
to 0.5 while calculating the MAHP performance mea-
sure. However, there are some tasks (e.g. from medi-
cal or security applications) where we might be inter-
ested in bringing the error down, even if it costs a lot.
We modelled such a task by setting WC = 0.05 and
WE = 0.95 and compared the average ranks of full,
none, trend-based and fixed (both x = 25 and x = 50)
approaches. The resulting rankings and groupings are
different to those received for equal weights (Friedman
p-value <0.001, α = 0.1 for Bergmann-Hommel was
used):

1. Fixed, x = 50 (2.00) and full (2.11)

2. Fixed, x = 25 (2.91)

3. Trend-based (3.83) and none (4.14)

This ranking suggests that when accuracy is more im-
portant than cost, re-rating should be recommended.

As before, the trend-based approach was not signifi-
cantly different from no rating. However, the ranks of
fixed and full approaches changed. It should be noted
that re-rating 50% of the training instances proved to
be as beneficial as doing a full re-rating. Re-rating
more than 50% did not prove to be worthwhile. As
discussed above, the exploration phase always finished
by the time 50% of all training instances had been
rated. This means that by that time KL-UCB had
learned enough about rater reliability, and asked reli-
able raters to rate the second half of training instances.
Thus, for the situation where improving the accuracy
of the ratings is more important than the cost of get-
ting ratings, based on these results, the re-rating of
50% of training instances can be recommended.

Figure 3. Mean errors of raters. Red crosses represent ar-
tificially generated, noisy raters, while blue crosses corre-
spond to raters originally present in datasets. It is difficult
to find a subset of raters who agree with each other in
MovieLens and Jester.

5. Conclusions

The experiments reported in this paper show that
re-rating can indeed increase the accuracy of target
ratings in crowdsourced rating of training sets when
MABs are used to dynamically estimate rater reliabil-
ity. For ε-first, both trend-based and fixed re-rating
were the best, but we would recommend using the lat-
ter as a simpler alternative. In KL-UCB re-rating is
advised only for tasks where error has much higher
priority than cost, i.e. it is worthwhile to pay a lot
even for a relatively small increase in accuracy. For
such tasks, the re-rating of the first 50% of training
instances worked well in our experiments.
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