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a b s t r a c t

Knowledge-representation and reasoning methods have been extensively researched within Artificial
Intelligence. Among these, argumentation has emerged as an ideal paradigm for inference under
uncertainty with conflicting knowledge. Its value has been predominantly demonstrated via analyses of
the topological structure of graphs of arguments and its formal properties. However, limited research
exists on the examination and comparison of its inferential capacity in real-world modelling tasks
and against other knowledge-representation and non-monotonic reasoning methods. This study is
focused on a novel comparison between defeasible argumentation and non-monotonic fuzzy reasoning
when applied to the representation of the ill-defined construct of human mental workload and
its assessment. Different argument-based and non-monotonic fuzzy reasoning models have been
designed considering knowledge-bases of incremental complexity containing uncertain and conflicting
information provided by a human reasoner. Findings showed how their inferences have a moderate
convergent and face validity when compared respectively to those of an existing baseline instrument
for mental workload assessment, and to a perception of mental workload self-reported by human
participants. This confirmed how these models also reasonably represent the construct under con-
sideration. Furthermore, argument-based models had on average a lower mean squared error against
the self-reported perception of mental workload when compared to fuzzy-reasoning models and the
baseline instrument. The contribution of this research is to provide scholars, interested in formalisms
on knowledge-representation and non-monotonic reasoning, with a novel approach for empirically
comparing their inferential capacity.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Several approaches in the field of Artificial Intelligence (AI)
have been proposed and investigated for modelling reasoning
under uncertainty [1]. These include probability calculus [2] and
its variations such as Possibility Theory [3] and Imprecise Prob-
abilities [4], Dempster–Shafer Theory [5], Argumentation The-
ory [6] and Fuzzy reasoning [7]. Many scholars have used these
approaches for modelling reasoning activities across many ap-
plication domains. However, most of these are based upon a
monotonic consequence relation: adding a formula to a theory
never produces a reduction of its set of consequences. In other
words, monotonicity supports the fact that learning a new piece
of knowledge cannot reduce the set of what is known. Because
of this limitation, they have been deemed not suitable for many
knowledge representation problems that are non-monotonic in
nature. Here, a conclusion or claim, derived from the applica-
tion of some knowledge, can be retracted in the light of new

∗ Corresponding author.
E-mail address: luca.longo@tudublin.ie (L. Longo).

knowledge [8]. Defeasible Reasoning [9–11], a formalism for non-
monotonic reasoning [12], is built upon reasons, conclusions and
inferences that can be defeated. In practical terms, an implemen-
tation of defeasible reasoning is offered by argumentation [6,13,
14]. It has gained interest because it provides the basis for compu-
tational models inspired by the way humans reason [15]. These
models have extended classical reasoning approaches, based on
deductive logic, that were proving increasingly inadequate for
problems requiring non-monotonic reasoning and explanatory
reasoning that are not available in standard non-monotonic log-
ics [16]. In details, AT focuses on how pieces of evidence, beliefs
and sometimes intuitions, seen as arguments, can be represented,
supported or discarded in a defeasible reasoning process, and
it investigates formal approaches to assess the validity of the
conclusions inferred [17]. Despite the interest surrounding formal
argumentation [18], limited work exists to compare the inferen-
tial capacity of models built with it against those of other non-
monotonic reasoning approaches in knowledge-representation
and reasoning under uncertainty [19–21].

This paper attempts at bridging this gap by proposing an
empirical investigation whereby the inferential capacity of AT

https://doi.org/10.1016/j.knosys.2020.106514
0950-7051/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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is compared against that of non-monotonic fuzzy reasoning. To
achieve this goal, a knowledge representation problem has been
chosen: the representation and assessment of the ill-defined con-
struct of mental workload (MWL), via non-monotonic reasoning.
Defining and modelling mental workload is an open problem
within the disciplines of Human Factors, Psychology and Neu-
roscience. It is ill-defined because no clear and widely accepted
definition exist. Mental workload can be intuitively described as
the amount of necessary cognitive work invested in a certain
task for a period of time. Nevertheless, this is an oversimplified
definition and other factors such as stress, time pressure and
mental effort can all influence mental workload whose levels
can change over the execution of a task. Additionally, different
scholars and reasoners from different disciplines might define
mental workload according to their theoretical background, their
knowledge and availability of different theories. This justifies the
subjectivity and uncertainty surrounding the problem of mental
workload definition and modelling. However, a reasonable as-
sumption made in this research study is that mental workload is a
complex construct built upon a network of pieces of evidence, be-
liefs, intuitions and understanding the interactions among these,
is essential in defining and assessing it. These assumptions are
also the key components of a defeasible concept: a concept built
upon a set of reasons that can be defeated by additional reasons.
Eventually, since mental workload is an ill-defined construct,
no ground truth exists to validate different models of mental
workload itself. However, over the past 50 years, designers and
scholars have proposed a set of validation criteria that can be
used to validate models of mental workload [22]. Among them,
convergence and face validity have been chosen in this study.
The former refers to the extent to which two measures of mental
workload, that should be theoretically related, are in fact related,
while the latter assess whether these measures appear effective
in terms of their stated aims, that means measuring mental
workload.

The specific research question under investigation is: to what
extent can defeasible argumentation allow the construction of mod-
els of mental workload with a higher convergent and face valid-
ity when compared to those constructed via non-monotonic fuzzy
reasoning?

The reminder of the paper is organised by presenting related
work on argumentation theory and fuzzy reasoning in Section 2.
A short description of the construct of mental workload follows,
aimed at providing the readers with the relevant notions to un-
derstand the modelling problem under investigation. In Section 3,
the design of a comparative experiment and the methodolo-
gies for the development of argument-based and fuzzy-reasoning
models are detailed. Section 4 presents the results followed by
a discussion. Section 5 concludes this research by highlighting
its contribution to knowledge and proposing future avenues of
development.

2. Related work

Reasoning and explanation under incomplete and uncertain
knowledge have been investigated for several decades in AI. On
one hand, classical propositional logic has demonstrated to be
inadequate for dealing with real-world reasoning activities often
involving inconsistent and conflicting information [23]. This is be-
cause of its monotonicity property that is based upon a notion of
consequence relation by which adding a formula to a theory never
produces a reduction of its set of consequences. In a nutshell,
monotonicity is grounded on the fact that learning a new piece
of knowledge cannot reduce the set of what is known.

In detail, if a conclusion p follows from a set of premises A
(denoted as A ⊢ p), in standard monotonic reasoning it also holds

that A, B ⊢ p if any additional set of premises B is added to A, the
conclusion p is still valid.

However, this property does not allow the retraction of what is
known, which is what often happens with human-like reasoning,
which is generally non-monotonic. Reasoning is non-monotonic
when a conclusion, supported by one or a number of premises
built over some information, can be retracted in the light of new
information [24,25].

In other words, in non-monotonic reasoning, even if the
premises are still true, then the conclusion might not hold,
whereas in monotonic reasoning, if the premises are true the
conclusion necessarily follows. The property of non-monotonicity
relies on the idea that a claim can be derived from premises par-
tially specified, but in the case of an exception arising, this can be
withdrawn [26,27]. Many non-monotonic reasoning formalisms
have been investigated in AI over the last few decades [1,8,11,
16,28–31] with many applications in many domains, with some
examples in [10,32–40]. A type of reasoning that accounts for
the property of non-monotonicity is defasible reasoning, rou-
tinely used by humans. Here, the main feature is represented
by default knowledge employable in a reasoning process even if
the preconditions for its application are only partially known.
Default knowledge is represented by using defaults that are spe-
cific inference rules. These are expressions of the form: p(x) :

j1(x), . . . , jn(x) −→ c(x) where p(x) is the prerequisite of the
default, j1(x), . . . , jn(x) are the justifications and c(x) is the con-
sequent. If p(x) is known and if j(x) is consistent with what is
known, then c(x) can be defeasibly deduced [23]. In other words,
if it is believed that the prerequisite is true, and each of the n con-
ditions (justifications) can be assumed since they are consistent
with current beliefs, then this leads to believe the truth of the
conclusion. The truth surrounding preconditions is not explicitly
verified and they are assumed to hold defeasibly. In other words,
this means they are true in the absence of explicit informa-
tion to the contrary [8]. As soon as new information becomes
available and the falsity of such preconditions can be deduced,
then the conclusions, derived from the application of the default
knowledge can be retracted [1,10,12]. Intuitively, this means that
adding new premises may lead to removing (non-monotonicity),
rather than adding new conclusions (monotonicity).

One of the practical implementations of defeasible reasoning
is offered by argumentation theory (AT). Classical argumentation,
from its roots within philosophy and psychology, deals with the
study of how arguments or assertions are defined, discussed
and solved in case of divergent opinions. In AI, argumentation
refers to that body of literature that focuses on techniques for
constructing computational models of arguments. Such models
have become increasingly important for operationalising non-
monotonic reasoning [1,15]. Example of application areas include
dialogue and negotiation [15], knowledge representation [39]
and decision-making in health-care [34], practical reasoning, de-
cision support, dialogue and negotiation [15,17,41]. Argumen-
tation deals with the interactions between possibly conflicting
arguments, arising when different parties argue for and against
some conclusions or when different pieces of evidence are avail-
able [42]. Arguments can be seen as ‘tentative proofs for proposi-
tions’ [43] in a logical language whose axioms represent premises
in the domain under consideration. In general reasoning problem,
usually the premises are not consistent because they may lead
to incompatible conclusions. Argumentation systems are usually
formed by several components and layers. A good summary of
these components and their role can be found in [6] and sum-
marised in the structure of Fig. 1. The first and second layers
deals with the internal structure of arguments, its components
such as premises, types of rules, their conclusions, their con-
nection [44] as well as the definition of the conflicts among
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Fig. 1. Five layers upon which single-agent argument-based reasoning systems
are generally built [6].

them. The subsequent layers deals with the dialogical structure of
arguments and focus instead on conflict resolution. They typically
regard arguments as monolithic entities, whose internal structure
is abstracted away as far as the conflict resolution process is
concerned. Roughly speaking, the first two layers concern the
production and construction of arguments and their conflicts:
they are aimed at formalising a knowledge-base. The subsequent
dialogical layers concern with the resolution of potential inconsis-
tencies and the extraction of a rational point of view that can be
subsequently used, for instance, for supporting decision-making.

The structure described above is in somehow aligned to the
structure of [45] where 4 layers were proposed: logical, dialec-
tical, procedural, heuristic. The logical layer deal with argument
constructions, similar to layer one (Fig. 1). The second layer intro-
duces the notion of attack, rebuttal, defeats, counter-arguments
and deal with conflictual information, introducing the notion of
reinstatement, respectively similar to layers 2 and 4 of Fig. 1.
It also introduces the notion of argument comparison aimed at
determining whether an attack is successful, as in layer 3 of
the structure of [6]. The third layer regulates how a dispute
among arguments can be conducted and allows the introduc-
tion of new information and support new arguments formation.
This does not have correspondence to the structure proposed
in this paper, as static knowledge can be only represented in
the first 2 layers using the notions of argument and attack.
The fourth layer provides rationale ways for resolving conflicts
emerged in the previous layer and it is connected to the notion of
rhetoric, influencing the preceding layers. These strategical ways
or heuristics influence the previous layers by suggesting which
premises to use and which arguments to construct as well as
which arguments to attacks and claim to make or deny. This
does not have correspondence with the structure proposed in
this study (Fig. 1). The main differences (summarised in Fig. 2) is
that the structure proposed in this paper (left), on the one hand,
is linear and mainly for single-agent argument-based systems,
sometimes referred to autonomous agent reasoning [46], and it
is tailored to knowledge-representation problems, belief revision
and decision-making under uncertainty. On the other hand, the
structure proposed in [45] (right) is non-linear and mainly for
multi-agent systems where different parties engage in a dispute
and might form new arguments during the dialectical exchange
of information. The former is more static and adds a final 5th
layer devoted to the accrual of arguments, with the assumption
that sometimes, in some particular domain, a final rational point
has to be always extracted. The latter is more dynamic and is
tailored to those situations in which rhetoric is required and
reasoning is conducted by multi-parties such as in legal reasoning
and dialogues facilitating multi-agent interaction [45,46].

The first layer of the structure used in this research (Fig. 1)
focuses on constructing arguments. An example of an internal,
monological structure has been proposed by Toulmin [47]. Toul-
min’s model is useful for highlighting the elements that might

Fig. 2. Comparison of a single-agent argument-based reasoning scheme for
knowledge representation [6] versus a multi-agent reasoning scheme for legal
reasoning [45].

form a natural argument, and it provides a useful basis for knowl-
edge representation. Another well-known approach has been pro-
posed by Reed and Walton to model the notion of arguments
as product [48,49]. It is based upon the notion of argumentation
schemes and it is useful for identifying and evaluating a variety
of argumentation structures in everyday discourse [44]. A recent
attempt for reconstructing the internal structure of arguments in
natural language has been proposed in [50]. This combines the
linguistic representation framework of Constructive Adpositional
Grammars (CxAdGrams) [51] with the argument classification
framework of the Periodic Table of Arguments (PTA) [52]. In detail,
the second layer is built upon the notion of conflict, also referred
to as attack or defeat, sometimes with slightly different meanings,
key notions in argumentation. Several kinds of conflicts have been
emerged in the literature but three core classes exist [53]:

• undermining attack - an argument can be attacked on one of
its premises by another argument whose conclusion negates
that premise. Example: ‘soda consumption is low according
to X so X has a low risk of cholesterol’ can be undermined by
‘the blood pressure emerging from a test is high so X has a high
consumption of sodas’

• rebutting attack - it occurs when an argument negates the
conclusions of another argument. Example: ‘X consumes
minimal amount of soda so X has a low risk of heart attack’
can be rebutted by ‘X is an obese person, the strongest risk for
heart attack is obesity, so the risk of heart attack is high’.

• undercutting attack - it occurs when an argument uses a
defeasible inference rule and is attacked by arguing that
there is a special case that does not allow the application of
the rule itself [54]. Example: ‘aspirin treatment minimises the
risk of heart attack so X has a low risk of heart attack’ can be
undercut by ‘paper Z demonstrated that aspirin failed several
times in minimising the treat of heart attack so it is not always
an effective method to reduce heart attacks’.

Conflict between arguments, although a key notion in ar-
gumentation, does not embody any approach for evaluating an
attack, which is instead handled in the third layer. Generally
speaking, an attack often has a form of a binary relation be-
tween two arguments. Some author distinguishes this relation in
a weak form, attacking another argument and not weaker (defeat)
or in a strong form, attacking another argument and stronger

3
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(strict defeat) [53]. The construction of defeat relations are often
influenced by the domain of application and are usually defea-
sible, that means attackable. For example, consider those do-
mains where observations are important: defeat relations might
be influenced by the reliability of tests and the expertise of the
observers. To establish whether an attack can be considered a
successful defeat, a trend in argumentation considers the notion
of strength of arguments. Here, the assumption is the inequality
of the strength of arguments that should be accounted for in the
computation of sets of arguments and counterarguments [55].
Several researchers have adopted the notion of preferentiality
among arguments [56]. In these researches, the assumption is
that the information, necessary to evaluate the successfulness
of an attack between two arguments is often pre-specified, and
implemented as an ordering of values or a given partial prefer-
ence. However, according to [56], also the information concerning
preferentiality might be contradictory, and the preferences may
change according to the context and to different observers who
can assign different strengths, to different arguments, employ-
ing specific different criteria. Therefore, the notion of meta-level
argument has emerged: a simple node in a graph where preferen-
tiality is abstractly defined, and can be implemented by creating
a new attack relation from a preference argument. Meta-level
arguments have the goal of making a reasoning process more
intuitive, as it allows no commitment regarding the definition of
the preferences of arguments. As opposed to the preferentiality
approach, another branch of argumentation is devoted to attach
weights to attack relations rather than to arguments [55,57].
For example, the traditional binary relation of attack has been
extended in [58] through the notion of fuzzy relations borrowed
from Fuzzy Logic. This approach allows an expert to represent
the degree of truth on an attack from an argument to another.
Similarly in [59], probabilities can be assigned to arguments and
attack relations. Here, probabilities refers to the likelihood of their
existence and aim at capturing the inherent uncertainties in an
argumentative reasoning activity.

Defeat relations, as defined in the third layer, focus on the
relative strength of two conflicting arguments. However, they do
not express yet which ones can be regarded as justifiable. The
final state of each argument depends on the interaction with the
others thus a notion of dialectical status is required in a fourth
layer. Often, the outcome of an argumentation system is achieved
by splitting the set of arguments in two, those that support a
certain decision/action/claim and those that do not. Sometimes
an additional class can contain those arguments that leave the
dispute among arguments in an undecided status. In practical,
real-world argumentation, multiple actions, decisions or claims
can be considered thus the number of classes can increase. A
seminal approach for assessing the dialectical status of arguments
has been proposed by Dung [16], in line with other more practical
and concrete works on argumentation [54,60]. Dung’s abstract
argumentation frameworks (AF) has been proven very useful for
comparing different argumentative systems by translating them
into his abstract format [60]. Here, given a set of abstract argu-
ments whereby their internal structure is abstracted away, and a
set of defeat relations, a decision has to be taken for determining
which ones can ultimately be accepted. The core idea is that by
uniquely looking at the defeaters of an argument to decide its
dialectical status is not enough. It is also important to assess
whether the defeaters are defeated themselves. Argumentation
frameworks are strictly connected to the notions of semantics,
specific criteria for the assessment of the dialectical status of
arguments. The ideas is that, given an argumentation framework,
a semantics specifies zero or more sets of acceptable arguments,
called argument-based extensions, intuitively corresponding to
different points of view. Examples include the popular grounded

and preferred semantics proposed by Dung [16] respectively a
sceptical and credulous criteria for argument acceptability. Other
semantics can be found in [14,61–68]. For practical purposes, as
it often happens with human, a unique rational inference has
to be made, a unique decision or has to be taken or a unique
rationale claim is necessary. Thus another layer, a fifth layer, is
sometimes added to the previous structure, as depicted in Fig. 1,
aimed at accruing remaining arguments and producing a unique
inference employable for practical purposes, such as informing
decision making or explaining a rationale outcome. Here, accrual
occurs at the level of the consequents of arguments and not at the
level of an argument’s claim. In other words, as stated in [69], in
the former case, the accrual refers to a combination of arguments
and their claims, leading to accruing reasons or arguments, while
in the latter case, it refers to the decision or belief which is the
subject of a reason (argument), namely referred to the claim (con-
clusion). Examples of approaches for accruing arguments at the
consequent level include the average of the consequents of the
arguments in an extension, in case of quantitatively assessable
claims, or the consideration of claims of the top x% of arguments
in case they were ranked in the previous layer with a ranking-
based semantics. The reader is reminded to [69–72] for other
approaches of accrual of arguments.

Despite the abundance of theoretical work, one of the main
issues surrounding argumentation, its theories and approaches,
is the lack of research devoted to the examination of its impact
on the quality of the inferences produced by reasoning mod-
els built upon it. Similarly, situating and comparing argument-
based systems among and against other non-monotonic reason-
ing approaches is negligible. However, as previously mentioned,
many other approaches for implementing non-monotonic reason-
ing and enabling knowledge representation under partial, con-
flicting and uncertain information exist. One of these is repre-
sented by fuzzy reasoning, a type of reasoning grounded in the
well-known fuzzy logic. Fuzzy reasoning, as originally proposed
in the seminal article by Zadeh [73], is a generalisation of stan-
dard logic in which a concept can possess a degree of truth, and
not only being completely true or completely false.

For this reason, fuzzy logic aims at modelling vague concepts
with varying degrees of truth. In practical terms, these concepts
are implemented via fuzzy sets and membership functions. The
former are particular sets whose elements have degrees of mem-
bership and have similar notions to classical set theory such
as inclusion, union and intersection. The latter are particular
functions that models this membership, that means, they assign
a grade of membership to an element, in the interval [0, 1]
∈ R. These formal representations can support the construction
of ‘‘IF-THEN’’ rules using natural language terms, as in ‘‘IF the
temperature is very high THEN significantly increase the speed
of the fan’’. Temperature and speed are the concepts, modelled
as fuzzy sets, while very high and significantly are modelled by
membership functions. Note that other membership functions
might be designed as for instance, very low for temperature,
or moderately for speed. In other words, Temperature is a fuzzy
variable, while very high is a value that such variable can take,
which is modelled by a membership function. A set of fuzzy
rules can be employed for reasoning and along with the above
notions, they have enabled the development of fuzzy control
systems [74,75]. A traditional fuzzy control system is usually
composed by a fuzzification module, an inference engine and a
defuzzification module, sometimes referred to as defuzzifier [76,
77]. The fuzzification module takes the input variables, identified
from the knowledge-base of an expert related to an underlying
application domain. The universe of information is split into a
number of fuzzy subsets, and each is assigned a linguistic label.
Subsequently, a membership function for each fuzzy subset is
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Table 1
Definition of Convergent, face validity and associated statistical tests for assessing a model of mental workload.
Validity Definition Statistical test

Convergent It refers to the extent to which different mental
workload measures that should be theoretically related,
are in fact related

Correlation (model inferences
vs MWL baseline instrument)

Face It determines the extent to which a measure of mental
workload logically appears effective in terms of its
stated aims (measuring mental workload)

Correlation and Mean Squared
Error (model inferences vs
self-reported MWL score)

created by an expert or a human reasoner, aimed at modelling
the uncertainties associated to each input variable. These form
the fuzzy linguistic variables that, jointly with the rule-base of the
expert/reasoner, are translated into fuzzy rules that are aimed at
assigning relationship between fuzzy input and output. Each rule
can be built upon a number of fuzzy linguistic terms, joined with
specific operators.

These might include the more traditional t-norm and
t-conorms (intersection/disjunction), or others such as those used
in intuitionistic fuzzy sets [78,79]. These are taken by the in-
ference engine that actually performs the reasoning. Usually,
these rules are all evaluated in parallel and are combined with
another operator (usually the fuzzy OR operator) to obtain one
fuzzy output distribution. This is then taken by the defuzzification
module that applies a strategy (example the centre of mass, or
mean of max approaches), to produce a single crisp output.

One of the limitations of this reasoning approach is that it does
not incorporate any explicit notion of conflict among fuzzy rules.
In other words, conflicting fuzzy rules might give rise to different
outcomes when they are aggregated, therefore the behaviour
of a fuzzy rule system admits that some degrees of truth may
decrease in the presence of new information, which could be
interpreted as a form of non-monotonicity. However, beside this
interpretation, no explicit mechanism exists in standard fuzzy
reasoning systems to handle conflicts among rules. Some scholars
have proposed different extensions of standard fuzzy reasoning
systems by incorporating a non-monotonic layer for dealing with
conflicting information. Unfortunately, these are sporadic and not
backed up by empirical research. For example, in [30], conflicting
rules have their conclusions aggregated by an averaging function
while in [31], a rule-base compression method is proposed for
the reduction of non-monotonic rules. This method identifies all
redundant rules after their fuzzification and it removes them
while preserving the defuzzified output from the fuzzy system.
Another approach has been proposed in [80, Chapter 8], and it
is built upon Possibility Theory [3] which is employed within
the inference engine to handle conflicting information. Possibility
and necessity are measures of uncertainty and a special form of
imprecise probability [81]. They can be linked to the notion of
truth and its degree: Possibility indicates the extent to which
data fail to refute its truth while necessity indicates the extent to
which data supports its truth (both real values in [0, 1] ∈ R). The
possibility of a proposition can also be seen as the upper bound
of the related necessity (Pos ≥ Nec).

Not a lot of work exist in the literature towards compar-
ing different non-monotonic reasoning approaches and their in-
ferential capacity. The authors in [82] attempted at comparing
Normal Default Theory against Defeasible Logic Programming.
Similarly, [83] performed a comparison of first order predicate
logic, fuzzy logic and non-monotonic logic as part of a knowledge-
representation problem whereas [84] discussed and compared
preferential and explanatory non-monotonic reasoning. However,
the research studies above mainly focused on formal comparisons
of different properties of different non-monotonic approaches for
inferences and not on empirical evidence gathered from experi-
mental studies involving humans. In contrast, a similar work to

Fig. 3. General structure of a Mamdani fuzzy control system and its inferential
process including fuzzification of natural language rules, their elicitation via an
inference engine and their defuzzification towards a crisp output.

the research approach followed in this paper, has been performed
by [85]. It focused on an empirical comparison between non-
monotonic preferential logic and screened belief revision, a par-
ticular version of belief revision theories, involving human data.
Most of the work on non-monotonic reasoning are strictly related
to various knowledge-representation problems and this is the
reason why the ill-defined concept of human mental workload
has been selected for experimental purposes.

Mental workload (MWL) is a construct coming from psychol-
ogy and mainly applied within ergonomics and education [86]
with novel applications in medicine and human–computer inter-
action. It can be intuitively described as the amount of cognitive
activity exerted to accomplish a specific task under a finite period
of time [87]. However, this definition is very simplistic and many
factors influence mental workload. Despite 50 years of research,
unfortunately it is still an ill-defined construct, with many defi-
nitions, discipline-specific and with many application-dependent
models [40]. Similarly, many formalisms exist to represent and
assess mental workload [22,39,88,89]. Along with the various
ad hoc models of mental workload, the many definitions and
context-specific models, a number of criteria for evaluating these
have been proposed [90], including reliability, validity, sensitivity
and diagnosticity. Two of them have been selected in this study,
as indicated in the research question of Section 1: convergent
and face validity, both defined in Table 1. The following sec-
tion is devoted to the description of the construction of various
models of mental workload by employing different declarative
knowledge-bases, provided by different human reasoners, for-
malised by using the two reasoning methods described so far,
namely defeasible argumentation and non-monotonic fuzzy rea-
soning, and elicited with data acquired by human participants in
an educational context.

3. Design and methodology

A primary research study has been designed and performed.
This is aimed at comparing the inferential capacity of defeasible
argumentation and non-monotonic fuzzy reasoning for the prob-
lem of mental workload modelling. In particular, a well-known
self-reporting subjective mental workload assessment instrument
has been chosen as baseline: the Nasa Task Load Index [88].
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Fig. 4. Summary of the comparison of defeasible argumentation and
non-monotonic fuzzy reasoning inferences.

This is a combination of six factors believed to influence mental
workload: mental, temporal and physical demand, stress, effort
and performance.

Each factor is quantified with a subjective judgement coupled
with a weight w computed via a paired comparison procedure,
that lead to 15 possible comparisons. The questionnaire designed
for the quantification of each factor, and the pairwise comparison,
can be found in [88] and in Tables 7 and 8 of Appendix. Eventu-
ally, the final mental workload score is the weighted average of
the subjective rating associated to each attribute di:

NASA-TLX =

(
6∑

i=1

di × wi

)
1
15

As it is intuitive to grasp, this model is a weighted average,
with no notion of non-monotonicity and no consideration of the
relationships among the factors.

The information associated to these factors along with that
related to the pairwise comparison (preferentiality) has been
used to construct three knowledge-bases of different topology
and complexity with a human reasoner. Note that no automatic
procedure for inducing rules from data have been used, but only
the expertise of human reasoners. In detail, defeasible argument-
based model and a non-monotonic fuzzy reasoning-based mod-
els were constructed for each knowledge-base. Eventually, their
inferential capacity is evaluated according to two criteria usu-
ally employed for the evaluation of models of mental workload:
face and convergent validity (as detailed in Table 1). The overall
research design is summarised in Fig. 4.

3.1. Non-monotonic fuzzy reasoning models

The non-monotonic fuzzy reasoning models are built accord-
ing to the traditional Mamdami control system of Fig. 3 and
extended by employing the notions of possibility and necessity to
support its non-monotonicity.

3.1.1. Fuzzification module
Each encoded knowledge-base can be represented by rules

of the form ‘‘IF - THEN’’. The antecedent is a set of premises
associated to a number of mental workload features, while the
consequent is associated to a possible mental workload level
(underload, fitting lower load, fitting upper load, overload). Exam-
ples of rules are:

• Rule 1: IF low mental demand THEN underload
• Rule 2: IF low effort THEN fitting lower load

Each consequent of a rule can be represented as a fuzzy term and
described by a fuzzy membership function (FMF) (examples in
Fig. 17). According to the domain expert’s knowledge, two options

Table 2
T-Norms and t-Conorms employed for two propositions a, b.
Fuzzy operator T-Norm T-Conorm

Zadeh min(a, b) max(a, b)
Lukasiewicz max(a + b − 1, 0) min(a + b, 1)
Product a.b a + b − a.b

were designed: the universe of mental workload is represented
with an interval [0, 100] ∈ ℜ with 4 membership functions.
Fuzzy membership functions were also defined for all linguistic
variables associated to the antecedents of rules such as low for
mental demand and low for effort (examples in Fig. 16).

Membership functions for both the antecedents and conse-
quent of a rule have been defined considering a human reasoner,
with experience with the construct of human mental workload,
and not automatically induced from data. Since each feature of
the NASA-Task Load Index instrument are rated by human partic-
ipants using a 20-point scale (Table 7 in Appendix), the input for
these membership functions was scaled to the interval [0, 100] ∈

ℜ in order to be the same as the membership functions defined
for the consequents (workload levels). This was purely a practical
decision in order to deal with similar scales. Additionally, the
definition of

3.1.2. Inference engine
Once the knowledge-bases are fully translated into fuzzy infer-

ence rules, the next step is to evaluate their initial truth values.
Each membership grade on the antecedent of these rules needs
to be evaluated according to input data individually. If more than
one antecedent is contained in a rule, fuzzy logics are necessary
to aggregate them via the notions of union and intersection.
Three known operators are selected for this: Zadeh, Product and
Lukasiewicz. Table 2 lists the t-norms and t-conorms (AND, OR)
respectively for each selected operator. Subsequently to the cal-
culation of the initial truth values of the rules, it is necessary to
solve any contradiction among them. For example:

• ‘IF high effort
THEN mental demand cannot be low’.

This rule indicates that if effort is high then any rule whose
antecedent contains ‘low mental demand’ is refuted and its con-
sequent should be evaluated again and the truth value associated
to it updated. An example is:

- Exception 1: high effort refutes Rule 1

Exceptions represent the non-monotonic nature of the informa-
tion in the knowledge-bases. Here, the underlying reasons who
brought to life the exception is abstracted away that means, the
undercutting, rebutting or undermining nature of the refutation
is not formally modelled. A way of enabling non-monotonicity in
fuzzy reasoning is the use of Possibility Theory, as implemented
in [80]. Much of the literature on fuzzy mathematics is concerned
with possibility, a measure of the extent to which the data fail to
refute a conclusion. However, in the real world, we are primarily
concerned with necessity, a measure of the extent to which the
data support a conclusion. Possibility (Pos) and necessity (Nec)
are values bounded in the interval [0, 1] ∈ R. The reasoning
process of establishing necessary conclusions is not the same as
the process of establishing possible conclusions. For example, on
one hand, when possible truth values are initialised in the lack of
any data, a value of 1 is used. On the other hand, when necessary
truth values are initialised in the absence of data, a value of
0 is used [80]. According to these considerations, in this study
necessity is considered as the membership grade of a proposition
while possibility is always set to 1 for all propositions, due to
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Fig. 5. A graphical summary of the inferential process followed by the non-monotonic fuzzy reasoning model. (1) A fuzzification layer in which a knowledge-base
is operationalised via a human reasoner. Natural language rules are converted into computational fuzzy rules via membership functions for their antecedents and
consequents. This layer includes also the formalisation of fuzzy exceptions, specific refutations of fuzzy rules. (2) An inference engine includes an activation layer
aimed at evaluating fuzzy rules and fuzzy exceptions with real-world data, providing them with initial degrees of truth. Then, a non-monotonic layer deals with
the application of fuzzy exceptions via the notions of possibility and necessity, and then it updates the degrees of truth of activated fuzzy rules. Subsequently, an
aggregation layer merges the truncated membership functions of the consequents of the fuzzy rules. This aggregation is performed using the min operator, resulting
in an outer envelope of the truncated membership functions (3) A defuzzification layer produces a final crisp inference from merged membership functions.

the lack of any data. Under this circumstance, the effect on the
necessity of a proposition A by a set of propositions Q which
refutes A is given by:

Nec(A) = min(Nec(A), ¬Nec(Q1), ..,¬Nec(Qn)) (1)

with ¬Nec(Q ) = 1−Nec(Q ). In Eq. (1), the addition of supporting
evidence can only affect the necessity but not the possibility
of a proposition. In this research study, there is no addition of
supporting information but only attempts to refute information.
Thus, the above equation is sufficient to model the contradictions
in the knowledge-bases. An example is given below. Let us con-
sider Rule 1 assuming it is refuted only by Exception 1, then the
truth value of its consequent is given by:

• Truth value of Rule 1’s consequent = min(
Nec(low mental demand), 1 − Nec(high effort))

Nec(low mental demand) is the membership grade of the linguis-
tic variable low of the attribute mental demand. For instance,
if the mental demand = 1, then Nec(low mental demand) = 1,
according to the membership function low of Fig. 16. Similarly,
if Nec(high effort) = 0 then Exception 1 has no impact on
Rule 1 while if Nec(high effort) = 1 then the new truth value
of Rule 1 is 0. Values between 1 and 0 indicates that Rule 1 is
partially refuted. The truth value of Rule 1 is the truth value of the
consequent underload in this particular case. It is important to
highlight that the theory developed in [80] was for a multi-step
forward-chaining reasoning system. This means that rules were
activated in a chain, one by another, defining a precedence order
of rules. However, in the current research study, the activation of
rules is done in a single step, in the sense that data is imported
and all rules are activated (or not) at once. Despite this constrain,
it is still possible to define a precedence order of refutations also
in this case. In detail, a tree structure in which the consequent of
a refutation is the antecedent of the next refutation can be con-
structed. In this way, Eq. (1) can be applied from the root or roots
to the leaves. This approach is sufficient for knowledge-bases that
do not contain loops (cyclic exceptions). However, this is not

the case as the knowledge-bases employed here contain loops of
rules or rebutting information. For instance, let us consider the
following ‘‘IF-THEN’’ rules and their refutations:

• Rule 3: IF low temporal demand THEN underload
• Rule 4: IF high frustration THEN overload
• Exception 2: low temporal demand refutes Rule 4
• Exception 3: high frustration refutes Rule 3

In this case it is not clear whether exceptions 2 or 3 should be
solved first. Given that there is no information within the knowl-
edge bases to decide whether a mental workload feature (premise
of a rule) or an exception is more important than another, then
the proposal here is to activate them simultaneously. In detail,
the original truth value of rules are initially computed before
updating them due to exceptions (refutations). For instance, the
truth values of rules 3, 4 are:

• Tmp1 = Nec(Rule 3) = Nec(low temporal demand)
• Tmp2 = Nec(Rule 4) = Nec(high frustration)
• Truth value of Rule 3 = min (Nec(low temporal demand), 1

- Tmp2))
• Truth value of Rule 4 = min (Nec(high frustration), 1 -

Tmp1))

The above mechanism handles conflictual information by updat-
ing the degrees of truth of each rule. In turn, this degree of truth
also represents the degree of truth of the rule’s consequent. Once
each consequent (mental workload level) has an associate degree
of truth, it is necessary to aggregate them before proceeding
to the defuzzification step. A disjunctive approach is employed
for performing this aggregation. This approach groups the con-
sequent levels inferred by each ‘‘IF-THEN’’ rule using the ‘max’
operator. In this case, at least one rule is satisfied, leading to a
more flexible proposal. For instance, the truth value of underload
in a context where only Rule 1 and Rule 3 infer underload is
‘max(Truth value of Rule 1, Truth value of Rule 3)’. A conjunc-
tive approach, employing the ‘min’ operator, is also possible.
However, the set of rules would need to be jointly satisfied, repre-
senting a stricter proposal. Since exceptions are already defined in
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Fig. 6. An illustrative defuzzification process with an aggregation of 5 member-
ship functions associated to 5 mental workload levels. The final truth values are:
underload = 1, fitting lower = 0.83, fitting load = 1, fitting upper = 1 and overload
= 0. The coordinates of the centroid are (6.89, 0.39) and the mean of max is
7.12.

Table 3
Summary of designed fuzzy reasoning models with different operators, defuzzi-
fication methods, membership functions for antecedents and consequents across
knowledge-bases.
Model Operator Defuzzification Antecedents Consequents KB

F1 Zadeh Centroid Fig. 16 Fig. 17 1
F2 Zadeh Mean of max Fig. 16 Fig. 17 1
F3 Product Centroid Fig. 16 Fig. 17 1
F4 Product Mean of max Fig. 16 Fig. 17 1
F5 Lukasiewicz Centroid Fig. 16 Fig. 17 1
F6 Lukasiewicz Mean of max Fig. 16 Fig. 17 1
F7 Zadeh Centroid Fig. 16 Fig. 17 2
F8 Zadeh Mean of max Fig. 16 Fig. 17 2
F9 Product Centroid Fig. 16 Fig. 17 2
F10 Product Mean of max Fig. 16 Fig. 17 2
F11 Lukasiewicz Centroid Fig. 16 Fig. 17 2
F12 Lukasiewicz Mean of max Fig. 16 Fig. 17 2
F13 Zadeh Centroid Fig. 20 Fig. 21 3
F14 Zadeh Mean of max Fig. 20 Fig. 21 3
F15 Product Centroid Fig. 20 Fig. 21 3
F16 Product Mean of max Fig. 20 Fig. 21 3
F17 Lukasiewicz Centroid Fig. 20 Fig. 21 3
F18 Lukasiewicz Mean of max Fig. 20 Fig. 21 3

the knowledge-base, this paper only investigates the disjunctive
case. The inference engine stops when each consequent level has
a truth value assigned.

3.1.3. Defuzzification module
The output of the inference engine can be graphically seen

as the aggregation of the consequents (mental workload levels)
of fuzzy inference rules, output of the inference engine, as ex-
emplified in Fig. 6. Several methods can be used for calculating
a single defuzzified scalar but two are selected here: mean of
max and centroid. The first returns the average of all the con-
sequents (here mental workload levels) of the fuzzy rules, with
maximal membership grade. The second returns the coordinates
(x, y) of the centre of gravity of the geometric shape formed by
the aggregation of the membership functions associated to each
consequent (MWL level). The defuzzified scalar is subsequently
represented by the x coordinate of the centroid and we assume
it represents a rational inference of mental workload. Following
the non-monotonic fuzzy reasoning process described so far, a
set of models is constructed with different fuzzy logic operators
and defuzzification methods (as listed in Table 3). A graphical
summary of the inferential process followed by these models is
depicted in Fig. 5 (see Table 4).

3.2. Argument-based models

The definition of argument based-models follows the five-
layer modelling approach depicted in Figs. 1 and 7. Arguments are
rule-based and not of any other form such as natural language or
logical propositions. They are of two types: defeasible and defeater

Fig. 7. The multi-layer argumentative structure for knowledge representation
and defeasible reasoning. Layer 1: definition of the internal structure of argu-
ments;’ Layer 2: definition of the conflicts among arguments using the notion
of attack; Layer 3: activation of arguments and evaluation of their conflicts;
Layer 4: definition of the acceptability status of arguments; Layer 5: accrual of
acceptable arguments at their consequent level.

Fig. 8. A uni-dimensional self-reporting scale of perceived mental workload.

Table 4
Summary of the non-monotonic fuzzy reasoning models constructed via a
human reasoner grouped by knowledge-base with references to their graphical
representation and details of the membership functions adopted and their
activation ranges both for the antecedents (MfA) and consequents (MfC) of fuzzy
rules.
KB Graph Fuzzy rules MfA (ranges) MfC (ranges)

1 Fig. 18 Tables 11–15 Fig. 16 (Table 9) Fig. 17 (Table 10)
2 Fig. 19 Tables 16–17 Fig. 16 (Table 9) Fig. 17 (Table 10)
3 Fig. 22 Tables 20–25 Fig. 20 (Table 18) Fig. 21 (Table 19)

rules. The former rules contain premises that only create pre-
sumptions in favour of their conclusion contrarily to strict rules,
which logically entail their conclusion [91]. The latter are rules
that cannot be used to draw any conclusion and are essentially
used to prevent some conclusion. These definitions of rules are in
line with defeasible logics [92]. In detail, defeasible arguments are
rules that can be defeated by contrary knowledge while defeater
arguments are used to defeat some defeasible rule by producing
knowledge to the contrary [92].

Layer 1 - Definition of the internal structure of arguments. The
first step focuses on the construction of forecast arguments as it
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Table 5
Designed argument-based models and their parameters across each layer.
Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Args. Conflicts Conflict evaluation Semantics Accrual

M1 Tables 11, 13 Tables 12, 14, 15 Binary Grounded Cardinality + Average
M2 Tables 11, 13 Tables 12, 14, 15 Binary Preferred Cardinality + Average
M3 Tables 11,13,16 Tables 12,14, 15,17 Binary Grounded Cardinality + Average
M4 Tables 11,13,16 Tables 12,14, 15,17 Binary Preferred Cardinality + Average
M5 Tables 20, 22 Tables 21, 23, 24, 25 Binary Grounded Cardinality + Average
M6 Tables 20, 22 Tables 21, 23, 24, 25 Binary Preferred Cardinality + Average

Table 6
Number of students across topics and delivery methods employed by lecturer (1:
direct instruction with PDF; 2: direct instruction with video; 3: 2 + collaborative
activity).
Topic Delivery method

1 2 3

Science 13 36 9
Scientific method 21 18 22
Research planning 22 22 16
Literature review 21 22 9

Table 7
The questions associated to the self-reporting NASA Task Load Index mental
workload assessment instrument. Each answer is a 20-point scale.
Dimension Question

Mental demand How much mental and perceptual activity was
required (e.g. thinking, deciding, calculating,
remembering, looking, searching, etc.)? Was the
task easy or demanding, simple or complex,
exacting or forgiving?

Physical demand How much physical activity was required (e.g.
pushing, pulling, turning, controlling, activating,
etc.)? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?

Temporal demand How much time pressure did you feel due to the
rate or pace at which the tasks or task elements
occurred? Was the pace slow and leisurely or
rapid and frantic?

Effort How hard did you have to work (mentally and
physically) to accomplish your level of
performance?

Performance How successful do you think you were in
accomplishing the goals, of the task set by the
experimenter (or yourself)? How satisfied were
you with your performance in accomplishing
these goals?

Frustration How insecure, discouraged, irritated, stressed and
annoyed versus secure, gratified, content, relaxed
and complacent did you feel during the task?

follows.

Forecast argument: premises → conclusion

A forecast argument is composed by a set of premises and a
conclusion derivable by applying an inference rule →. It is a
defeasible rule that can be defeated by contrary knowledge [92].
To keep the terminology consistent with previous sections, we
also refer to this as an ‘‘IF-THEN’’ rule. An example of a single-
premise forecast argument is ‘‘ARG 1: IF low mental demand
THEN underload’’. An example of a multiple-premise forecast
argument is: ‘‘HPF1: IF (high OR medium upper) effort and
(medium lower OR medium OR low) performance AND (low
OR medium lower) frustration AND (low OR medium lower)
mental demand THEN underload’’. The linguistic terms of the
attributes used in the premises of an argument and its conclu-
sion are strictly bounded in well defined ranges and these are

Table 8
The pair-wise comparison procedure associated to the self-reporting NASA Task
Load Index mental workload assessment instrument.
Pair Factor 1 Factor 2

1 Temporal demand □ OR □ Frustration

2 Performance □ OR □ Mental demand

3 Mental demand □ OR □ Physical demand

4 Frustration □ OR □ Performance

5 Temporal demand □ OR □ Effort

6 Physical demand □ OR □ Frustration

7 Performance □ OR □ Temporal demand

8 Mental demand □ OR □ Effort

9 Physical demand □ OR □ Temporal demand

10 Frustration □ OR □ Effort

11 Physical demand □ OR □ Performance

12 Temporal demand □ OR □ Mental demand

13 Effort □ OR □ Physical demand

14 Frustration □ OR □ Mental demand

15 Performance □ OR □ Effort

Table 9
Linguistic terms used to build the antecedents of rules and their
levels for knowledge base 1 and 2.
Linguistic term Range

Low [0, <33]
Medium lower (Medium−) [33, <50]
Medium upper (Medium+) [50, <67]
High [70, 100]

established by the human reasoner. Formally:

IF(i1 ∈ [l1, u1] AND i2 ∈ [l2, u2]) OR (i3 ∈ [l3, u3] AND
i4 ∈ [l4, u4]) THEN consequent ∈ [lc, uc]

where in ∈ R is the activation value of premise n which is
bounded in the numerical range [ln, un] ∈ R (with ln < un);
[lc, uc] ∈ R (with lc < uc) is the numerical range of the
consequent; AND, OR are logical operators.

The inference → is formalised as a mapping from the ranges
of the premises to that of the conclusion, as proposed in [93]. For-
mally, with the simple case which can be extended to an arbitrary
number of premises, the value associated to the conclusion c is:

c =
|uc − lc |

Rmax − Rmin
× (v − Rmax) + uc (2)

with

v = min[max(i1, i2),max(i3, i4)]

Rmax = min[max(u1, u2),max(u3, u4)]

Rmin = min[max(l1, l2),max(l3, l4)]

9



L. Longo, L. Rizzo and P. Dondio Knowledge-Based Systems 211 (2021) 106514

Table 10
Linguistic terms used to build the consequents of rules and their
levels for knowledge bases 1 and 2.
Linguistic term Range

Underload [0, <33]
Fitting lower load (Fitting load−) [33, <50]
Fitting upper load (Fitting load+) [50, <67]
Overload [70, 100]

Table 11
Forecast rules designed for knowledge-base 1.
Label Rule

MD1 IF low mental demand THEN underload
MD2 IF medium− mental demand THEN fitting load−

MD3 IF medium+ mental demand THEN fitting load+

MD4 IF high mental demand THEN overload
TD1 IF low temporal demand THEN underload
TD2 IF medium− temporal THEN fitting load−

TD3 IF medium+ temporal THEN fitting load+

TD4 IF high temporal THEN overload
EF1 IF low effort THEN underload
EF2 IF medium− effort THEN fitting load−

EF3 IF medium+ effort THEN fitting load+

EF4 IF high effort THEN overload
PF1 IF low performance THEN overload
PF2 IF medium− performance THEN fitting load−

PF3 IF medium+ performance THEN fitting load+

PF4 IF high performance THEN underload
FR1 IF low frustration THEN underload
FR2 IF high frustration THEN overload

Table 12
Rebutting (symmetrical) attacks designed for knowledge-base 1.
label Attack

R1 MD1 mutually excludes FR2
R2 TD1 mutually excludes FR2
R3 FR1 mutually excludes MD4
R4 FR1 mutually excludes TD4
R5 FR1 mutually excludes EF4
R6 EF1 mutually excludes FR2
R7 EF1 mutually excludes MD4

Note that the value of a rule will always lie between the
numerical range [lc , uc] of its consequent but three options are
possible depending on their values:

• if lc < uc then Eq. (2) models a linear relationship (the
higher the value of the premises the higher the value of the
conclusion)

• if lc > uc then Eq. (2) models an inverse linear relationship
(the higher the value of the premises, the lower the value of
the conclusion)

• if lc = uc then Eq. (2) models a constant function whose
inputs results in the same output (uc). This is useful to model
consequents with categorical levels.

Briefly, the above mapping provides a formula for rules that
employ logical operators AND/OR, replacing them for max and
min operators [94]. Example of forecast arguments can be found
in Tables 11 and 20.

Layer 2 - Definition of the conflicts of arguments. In order to
model inconsistencies, the notion of mitigating argument [42] is
introduced. This is a defeater rule that cannot be used to drawn
any conclusion but only to prevent some other conclusion [92].
This type of argument is formed by a set of premises and an
undercutting inference ⇒ to another argument, either forecast or
mitigating:

Mitigating argument:premises ⇒ ¬argument

Fig. 9. Density plots of the distributions of the NASA-TLX scores (left) and
perceived mental workload scores (right) for the entire population (231
participants).

Fig. 10. Convergent validity of the non-monotonic fuzzy reasoning models
(grey), the argument-based models (white) against the Nasa Task Load scores
measured by the Pearson Correlation Coefficient, ordered lower to higher.

The inference ⇒ is an undercutting attack and a mitigating
argument can be seen as an exception which has the effect of
undermining the validity of another argument. Mitigating ar-
guments are used to express the uncertainties of a reasoner
concerning the validity of forecast arguments or other mitigating
arguments. An example of a mitigating argument that can be
constructed from Exception 1 (Section 3.1) is: ‘‘UA1: high effort
⇒ ¬ARG1’’. Undercutting attacks do not allow partial refutation,
so its target is always discarded. This means that no notion of
strength of arguments nor strength of attack is considered.

Another type of attack relation is the rebutting attack, as men-
tioned in Section 2. This occurs when a forecast argument negates
the conclusion of another forecast argument. A rebuttal occurs
when the conclusions of two forecast arguments are believed
to be mutually exclusive according to a reasoner. They attack
each other generating rebuttals from contradictions, resulting in
symmetric attacks:

Rebutting attack: forecast argument ⇔ forecast argument

An example of rebutting attack is: ‘‘R1: MD1 ⇔ FR2’’ (Table 12
and Fig. 18 in Appendix).

The third type of attack is the undermining attack which occurs
when a forecast argument challenges the premises of another
forecast argument. In other words, the conclusion of a forecast
argument attacks the premises of another forecast argument. This
allows a reasoner to model a situation in which the premises
used to construct a particular forecast argument are no longer
applicable given the inference of another forecast argument.

Undermining attack: forecast argument ⇒ ¬forecast argument

10
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Fig. 11. Convergent validity of the non-monotonic fuzzy reasoning models
(grey), the argument-based models (white) against the Nasa Task Load index,
measured by the Pearson Correlation Coefficient, grouped by knowledge-base
and ordered from lower to higher.

Fig. 12. Face validity of the non-monotonic fuzzy reasoning models (grey), the
argument-based models (white) against the subjective perception of mental
workload, ordered by lower to higher.

An example of an undermining attack is: ‘‘U1: R1 undercuts FR2’’.
More on the benefits of having undermining attacks in addition to
rebutting and undercutting attacks is discussed in detail in [91].
The union of designed arguments and attacks can now be seen
as an argumentation framework (AF). Formally, an argumentation

Fig. 13. Face validity between the non-monotonic fuzzy reasoning models
(grey), the argument-based models (white) against the subjective perception of
mental workload, group by knowledge-base and ordered by lower to higher.

Fig. 14. Mean squared errors of the inferences of the non-monotonic fuzzy rea-
soning models (grey), the argument-based models (white) against the subjective
perception of mental workload, ordered by lowered to higher.

framework is a pair:

AF = ⟨Args, Attacks⟩

where Args is a set of arguments (either forecast or mitigating)
and Attacks ⊆ Args × Args is the list of attacks (either under-
cutting, rebutting or undermining). Examples of argumentation
frameworks are those depicted in Figs. 18, 19 and 22 that also
represent the three knowledge-bases used in this research.

Layer 3 - Evaluation of the conflicts of arguments At this
stage an AF can be elicited with data. Forecast and mitigat-
ing arguments can be activated or discarded, based on whether
their premises evaluate true or false. Attacks between activated
arguments are considered valid, while all the others designed
argument are discarded. Contrarily to fuzzy reasoning systems,

11
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Fig. 15. Mean squared errors of the inferences of the non-monotonic fuzzy rea-
soning models (grey), the argument-based models (white) against the subjective
perception of mental workload, grouped by knowledge-base and ordered by
lowered to higher.

Fig. 16. Fuzzy membership functions for the designed linguistic terms for the
antecedents of rules for knowledge bases 1 and 2.

Fig. 17. Designed fuzzy membership functions for the designed linguistic terms
for the consequents of rules for knowledge bases 1 and 2.

as designed in Section 3.1, there is no partial refutation, so a suc-
cessful attack always refutes its target. In other words, no notion
of strength of arguments or strength of attack is considered here.
The set of activated forecast and mitigating arguments as well
as the set of valid attacks form a sub-argumentation framework
(subAF ). A subAF is the same or a sub-set of the original AF and
it contains that portion of a knowledge-base (rules and attacks)
that has been activated with data and evaluates true:

subAF ⊆ AF

Layer 4 - Definition of the dialectical status of arguments
Given a subAF , acceptability semantics are applied in order to

accept or reject its arguments. Here, a subAF is equivalent to the
notion of Abstract Argumentation Framework (AAF) proposed by
Dung [16]) because the internal structure of arguments is not
considered, that means it is abstracted away for the acceptance
of arguments. In detail, arguments are considered in a dialogical
structure, an interconnect graph of nodes (the arguments) and
semantics are applied for evaluating which of them are defeated.
An argument A is defeated by B if there is a valid attack from
A to B [16]. Not only that, but it is also necessary to evaluate
if the defeaters are defeated themselves. A set of non defeated
arguments is called extension (conflict free set of arguments).
Formally, An AAF is a pair ⟨Arg, attacks⟩ where: Arg is a finite set
of arguments, abstractly evaluated, attacks ⊆ Arg × Arg is binary
relation over the set Arg . Given sets of arguments X, Y ⊆ Arg , X
attacks Y if and only if there exists x ∈ X and y ∈ Y such that
(x, y) ∈ attacks. A set X ⊆ Arg of arguments is:

• admissible iff X does not attack itself and X attacks every set
of arguments Y such that Y attacks X;

• complete iff X is admissible and X contains all arguments
it defends, where X defends x if and only if X attacks all
attackers of x;

• grounded iff X is minimally complete (w.r.t. ⊆);
• preferred iff X is maximally admissible (w.r.t. ⊆).

Extensions are in turn used in the 5th layer of the diagram of
Fig. 1, to produce a final inference.

Layer 5 - Accrual of acceptable arguments Eventually, in the last
step of the reasoning process, a final inference sometimes has to
be produced for practical purposes. For example, in case multiple
extensions are computed, one extension might be preferred over
the others. In this study, one assessment of mental workload
has to be produced for practical purposes, thus a mechanism
for accruing the arguments in multiple extensions, is needed.
Intuitively, we argue that a larger conflict-free extension of ar-
guments might be seen as carry more consistent information
towards the description of the underlining phenomena being
modelled (mental workload) than smaller extensions. Aware that
other justifications are possible, we believe that the cardinality of
an extension (number of conflict-free accepted arguments within
it) can be used as a practical mechanism for the selection of
the most suitable one. In the case more extensions exist with
the same highest cardinality, then the proposal is to take into
consideration of all them and their arguments, since a clear
consistent inferential point of view (extension) has not emerged.
After the selection of the most suitable extension/s, a single
scalar is produced through the accrual of the consequents of
its/their arguments. This is a simple average of the consequents
of accepted forecast arguments within an extension (those that
support a mental workload level and as computed in layer 1).
Mitigating arguments already had their role by contributing to
the resolution of conflictual information (layer 4) and they do not
support any mental workload level and thus are not considered
here. Formally, the overall inference of mental workload, brought
forward by an extension (or multiple extensions), is computed by
aggregating the scalars of its forecast arguments:

MWL =
1
m

m∑
z=1

1
n

n∑
i=1

carg i ∈ z

with c the value of the consequent of forecast arguments argi in
extension z, as computed in Eq. (2), n the number of arguments
in extension z and m is the number of extensions with highest
cardinality, with m, n ≥ 1).

Table 5 summarises the design of the argument-based models
and their configuration following the 5-layer structures described
above (Fig. 7).

12
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3.3. Participant and procedures

A number of third-level classes have been delivered to stu-
dents at the (anonymous institution). Each student has been
provided with a study information sheet and a consent form,
approved by the ethical committee of the university. After each
class, students had to fill in the questionnaire associated to the
NASA-TLX instrument (Tables 7–8, Appendix). Students were
from 23 different countries (age 21–74, mean 30.9, std= 7.67).
Four different topics of the module ‘research methods’ delivered
in the school of computing, at the above institute, were delivered
in different semesters during the academic terms 2015–2018.
Three different delivery methods of instructional material were
used by the lecturer:

1 traditional direct instruction, using slides projected to a
white board. The lecturer introduced and explained the con-
tents as in a traditional one-way class, without interaction
with students;

2 multimedia video of the same content of 1 projected to a
white board. In this case the delivery of the videos were
significantly shorter than the deliveries of the instructional
material with method 1;

3 constructivist collaborative activity performed after the de-
livery method 2. The lecturer randomly formed groups of
students (max 4), provided them with the handouts of the
class and a set of trigger questions on the instructional ma-
terial previously delivered, to allow iteration of information
and to enhance learning.

These delivery methods are assumed to impose on students dif-
ferent experience of mental workload. Overall, 231 students have
participated in the study (summary statistics described in Ta-
ble 6). After completing the questionnaire associated to the multi-
dimensional NASA-TLX instrument for mental workload assess-
ment, participants were required to answer another question
providing an indication of their experienced mental workload us-
ing a uni-dimensional self-reporting scale (Fig. 8). The assumption
behind self-reporting measures of mental workload is that only
the person executing a task can provide a precise account of the
own experienced workload. This question was also designed to
support the computation of the face validity of each model, as
defined in Table 1. Each argument-based and fuzzy reasoning
model was elicited with the data associated to each student, and
a mental workload inference was produced for each of them. The
following section is aimed at presenting and interpreting these
inferences.

4. Results

The answers of each item of the NASA-TLX questionnaire
(Tables 7 and 8) provided by each student were used to elicit each
of the designed non-monotonic fuzzy reasoning model (eighteen
models in Table 3) and argument-based model (6 models in
Table 5). Fig. 9 depicts the distribution of the NASA-TLX scores for
the entire population (avg: 46.82; sd: 13.05) and the distribution
of the uni-dimensional self-reported mental workload answers
for the entire population of students (avg: 53.76; sd: 14.83). Both
are normal and follow a Gaussian distribution. Fig. 23 depicts the
scatterplots of the inferences produced by the non-monotonic
fuzzy reasoning and argument-based models against the unidi-
mensional self-reported mental workload scores as reported by
students.

Convergent validity
Figs. 10 and 11 depict the Spearman correlation coefficients

(p < 0.05) of the inferences produced by the designed models

Fig. 18. Graphical representation of knowledge-base 1 as an argumentation
framework.

Fig. 19. Graphical representation of knowledge-base 2 as an argumentation
framework.

Fig. 20. Designed fuzzy membership functions for the designed linguistic terms
for the antecedents of rules for knowledge base 3.

(mental workload scores) against the NASA-TLX scores, respec-
tively ordered overall and grouped by knowledge base. The Spear-
man test was used because the assumptions behind the Pearson
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Fig. 21. Designed fuzzy membership functions for the designed linguistic terms
for the consequents of rules for knowledge base 3.

Fig. 22. Graphical representation of knowledge-base 3 as an argumentation
framework.

Table 13
Mitigating arguments designed for knowledge-base 1.
Label Rule

M1 IF high performance THEN not FR2
M2 IF low performance THEN not FR1

Table 14
Undercutting attacks originating from designed mitigating argu-
ments for knowledge-base 1.
Label Attack

U1 R1 undercuts FR2
U2 R2 undercuts FR1

Table 15
Undermining attacks originating from designed forecast arguments
for knowledge-base 1.
Label Attack

UM1 EF4 undermines MD1

correlation test were not met. Moderate to high correlation coeffi-
cients were generally observed (ρ within 0.3–0.8). This indicates
that the assumption of the theoretical relationship between the
NASA-TLX measure, known in the literature to fairly model the ill-
defined construct of mental workload, and the designed models,
in fact exists. Additionally, a deeper analysis of these correla-
tions reveals that argument-based models (white bars of Fig. 11)

Table 16
Mitigating arguments designed for knowledge-base 2. These are in addition to
the mitigating arguments designed in knowledge-base 1. Note that in the case
attribute A is preferred than attribute B, it means attribute A was chosen over
B on the pair-wise comparison procedure of the NASA Task Load Index.
label Rule

M3a IF high effort and low performance
THEN not MD1

M3b IF high effort and low performance
THEN not TD1

M4a IF high performance and low effort
THEN not TD4

M4b IF high performance and low effort
THEN not MD4

M5 IF effort is preferred than frustration
and low effort THEN not FR2

M6 IF frustration is preferred than effort
and high frustration and THEN not EF1

M7 IF effort is preferred than mental
demand and low effort THEN not MD4

M8 IF mental demand is preferred than
effort and high mental demand THEN
not EF1

M9 IF effort is preferred than frustration
and high effort THEN not FR1

M10 IF frustration is preferred than effort
and low frustration THEN not EF4

M11 IF frustration is preferred than
temporal demand and low frustration
THEN not TD4

M12 IF temporal demand is preferred than
frustration and high temporal demand
THEN not FR1

M13 IF frustration is preferred than mental
demand and low frustration THEN not
MD4

M14 IF mental demand is preferred than
frustration and high mental demand
THEN not FR1

M15 IF frustration is preferred than
temporal demand and high frustration
THEN not TD1

M16 IF temporal demand is preferred than
frustration and low temporal demand
AND THEN not FR2

M17 IF frustration is preferred than mental
demand and high frustration THEN not
MD1

M18 IF mental demand is preferred
thanfrustration and low mental demand
THEN not FR2

generally lead to inferences closer to the baseline (NASA-TLX)
when compared to those of the non-monotonic fuzzy reasoning
models. In detail, this difference is more accentuated (Fig. 11
bottom) when considering the third knowledge-base (Fig. 22).
A reasonable interpretation is that this knowledge-base contains
a larger amount of conflictual information when compared to
the other knowledge-bases. This suggests that argument-based
models seems to handle non-monotonicity of knowledge and
information on average significantly better than fuzzy reasoning
models. In respect to model parameters, the inferences produced
by fuzzy reasoning models do not seem to be significantly af-
fected by the different fuzzy operators used (Zadeh, Product,
Lukasiewicz) nor the defuzzification method (centroid or mean
of max) when analysed by considering the different knowledge
bases (Fig. 11). A similar situation exists for the argument-based
models whose inferences seem not to be affected by the semantic
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Table 17
Undercutting attacks originating from additional designed mitigat-
ing arguments for knowledge-base 2.
Label Attack

U3a M3a THEN not Md1
U3b M3b THEN not TD1
U4a M4a THEN not TD4
U4b M4b THEN not MD4
U5 M5 THEN not FR2
U6 M6 THEN not EF1
U7 M7 THEN not MD4
U8 M8 THEN not EF1
U9 M9 THEN not FR1
U10 M10 THEN not EF4
U11 M11 THEN notTD4
U12 M12 THEN not FR1
U13 M13 THEN not MD4
U14 M14 THEN not FR1
U15 M15 THEN not TD1
U16 M16 THEN not FR2
U17 M17 THEN not MD1
U17 M18 THEN not FR2

Table 18
Linguistic terms used to build the antecedents of rules and their
levels for knowledge-base 3.
Linguistic term Range

Low [0, <3]
Medium lower (Medium−) [3, <6]
Medium [6, <16]
Medium upper (Medium+) [16, <18]
High [18, 20]

Table 19
Linguistic terms used to build the consequents of rules and their
levels for knowledge base 3.
Linguistic term Range

Underload [0, <6]
Fitting lower load (Fitting load−) [6, <9]
Fitting Load (Fitting load) [9, <13]
Fitting upper load (Fitting load+) [13, <16]
Overload [16, 120]

used (grounded, preferred). However, this was expected because
when preferred semantics produces only one extension of argu-
ments, this coincides with the grounded extension produced by
grounded semantics.

Face validity Figs. 12 and 13 depict the Spearman correlation
coefficients (p < 0.05) of the inferences produced by the designed
models against the perception of mental workload reported by
students, respectively ranked from lower to higher and grouped
by knowledge base. Similarly to the analysis of convergent valid-
ity, the Spearman test was used because the assumptions behind
the Pearson correlation test were not met. Moderate correla-
tion coefficients were generally observed (ρ within 0.3 − 0.5).
This indicates that the fuzzy non-monotonic reasoning models
and the argument-based models appear moderately effective in
following the perception of mental workload subjectively re-
ported by students. However, since the correlations produced
by argument-based models (white bars of Fig. 12) are nearly
the same as the correlations of the mental workload scores of
the baseline model (the NASA-TLX), considered to be the gold
standard measure for subjective mental workload, against the
subjective perception of mental workload, then this suggests that
their face validity is very good and in line with state-of-the-art
models [22]. Additionally, results of Fig. 13 clearly demonstrate
how the correlations of the inferences produced by the argument-
based models against the perception of subjective mental work-
load, reported by students, when grouped by knowledge-bases is

Table 20
Forecast rules designed for knowledge-base 3.
Label Rule

HPF1 IF (high or medium upper) effort and
(medium lower or medium or low)
performance AND (low or medium lower)
frustration and (low or medium lower)
mental demand THEN underload

HPF2 IF (high or medium upper) performance and
(medium or medium lower) effort and
medium mental demand and medium lower
frustration THEN fitting load−

HPF3 IF high performance and (medium or medium
upper) mental demand and medium
frustration and low effort THEN fitting load

HPF4 IF (high or medium upper) performance and
medium upper frustration and medium upper
mental demand and (medium lower or
medium or medium upper) effort THEN fitting
load

HPF5 IF high effort and high frustration and
(medium lower or medium) performance and
high mental demand THEN overload

HPF6 IF high effort and high frustration and high
mental demand and low performance THEN
overload

fMD1 IF low mental demand THEN underload

fMD2 IF medium lower mental demand THEN fitting
load−

fMD3 IF medium mental demand THEN fitting load

fMD4 IF medium upper mental demand THEN fitting
load+

fMD5 IF high mental demand THEN overload

fTD1 IF low temporal demand THEN underload

fTD2 IF medium lower temporal demand THEN
fitting load−

fTD3 IF medium temporal demand THEN fitting load

fTD4 IF medium upper temporal demand THEN
fitting load+

fTD5 IF high temporal demand THEN overload

fEF1 IF low effort THEN fitting load

fP1 IF high effort and high mental demand THEN
overload

fEF2 IF (medium upper or medium or medium
lower) effort THEN fitting load−

fP2 IF high effort and low mental demand THEN
underload

fF1 IF high frustration THEN underload

fF2 IF low frustration THEN underload

fME1 IF high mental demand and high effort THEN
overload

fPF1 IF medium lower performance and medium
lower frustration THEN fitting load−

fPF2 IF medium performance and medium
frustration THEN fitting load

always higher than those correlations produced by the fuzzy non-
monotonic reasoning models and this is more accentuated again
with knowledge-base 3.

A deeper analysis has been performed by investigating the
error (distance) between the inferences produced by designed
models and the subjective perception of mental workload re-
ported by students (as per scale in Fig. 8). Figs. 14 and 15 depict
the mean squared errors (MSEs) of the inferences of each de-
signed model, respectively overall and grouped by knowledge
base. As it can be observed, argument-based models not only have
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Table 21
Rebutting (symmetrical) attacks designed for knowledge-base 3.
label Attack

R1 fTD5 mutually excludes fMD1
R2 fTD1 mutually excludes fMD5
R3 fP1 mutually excludes fF2
R4 fP2 mutually excludes fF1
R5 fEF1 mutually excludes fF1
R6 fF1 mutually excludes fTD1
R7 fPF2 mutually excludes fME1
R8 fPF1 mutually excludes fME1

Table 22
Mitigating rules designed for knowledge-base 3.
Label Rule

M1a IF high performance THEN not fMD5
M1b IF high performance THEN not fTD5
M1c IF high performance THEN not fMD1
M1d IF high performance THEN not fTD1
M1e IF high performance THEN not fP1
M2a IF low performance THEN not fP1
M2b IF low performance THEN not fEF1
M2c IF low performance THEN not fEF2
M2d IF low performance THEN not fTD1
M2e IF low performance THEN not fMD1
M3 IF high effort THEN not fF2
M4a IF high physical demand THEN not fMD1
M4b IF high physical demandTHEN not fTD1

Table 23
Undercutting attacks originating from designed mitigating argu-
ments for knowledge-base 3.
Label Attack

U1 M1a undercuts fMD5
U2 M1b undercuts fTD5
U3 M1c undercuts fMD1
U4 M1d undercuts fTD1
U5 M1e undercuts fP1
U6 M2a undercuts fP1
U7 M2b undercuts fEF1
U8 M2c undercuts fEF2
U9 Md2 undercuts fTD1
U10 M2e undercuts fMD1
U11 M3 undercuts fF2
U12 M4a undercuts fMD1
U13 M4b undercuts fTD1

almost always a lower MSE error than the fuzzy non-monotonic
reasoning models, but this time they were also often better
than the baseline instrument (NASA-TLX). Additionally, among
the non-monotonic fuzzy reasoning models, the difference in
the inferences of those employing the centroid as defuzzification
method appear to be better than the ones employing the mean of
max. This is also confirmed by the scatterplots of Fig. 23 that show
how the fuzzy models employing the mean of max defuzzification
method produced clustered inferences around different points
with low spread (last three lines of scatterplots), when compared
to those inferences produced by models applying the centroid
method (third and fourth lines of scatterplots). In relation to the
inferences by argument-based models, Fig. 15 confirms again that
when knowledge-bases are characterised by higher uncertainty
due to an higher number of interacting and conflicting pieces
of knowledge (knowledge-base 3, bottom of figure), then they
behave significantly better than fuzzy reasoning models. This can
be also observed in the scatterplots of Fig. 23. In fact, when it
comes to knowledge-base 3 (third column of scatterplots), then
the inferences of argument-based are more spread than those
produced by non-monotonic fuzzy reasoning models.

Table 24
Mitigating arguments designed knowledge-base 3 - Part a.
Label Attack

UM1 HPF5 undermines fMD3
UM2 HPF5 undermines fTD4
UM3 HPF5 undermines fTD2
UM4 HPF5 undermines fTD3
UM5 HPF5 undermines fEF1
UM6 HPF5 undermines fEF2
UM7 HPF5 undermines fF1
UM8 HPF5 undermines fP2
UM9 HPF5 undermines fTD1
UM10 HPF5 undermines fMD1
UM11 HPF5 undermines fF2
UM12 HPF3 undermines fMD4
UM13 HPF3 undermines fMD2
UM14 HPF3 undermines fTD4
UM15 HPF3 undermines fTD2
UM16 HPF3 undermines fEF2
UM17 HPF3 undermines fF1
UM18 HPF3 undermines fP2
UM19 HPF3 undermines fTD1
UM20 HPF3 undermines fMD5
UM21 HPF3 undermines fMD1
UM22 HPF3 undermines fTD5
UM23 HPF3 undermines fP1
UM24 HPF3 undermines fF2
UM25 HPF2 undermines fMD4
UM26 HPF2 undermines fMD3
UM27 HPF2 undermines fTD4
UM28 HPF2 undermines fTD3
UM29 HPF2 undermines fEF1
UM30 HPF2 undermines fF1
UM31 HPF2 undermines fP2
UM32 HPF2 undermines fTD1
UM33 HPF2 undermines fMD5
UM34 HPF2 undermines fMD1
UM35 HPF2 undermines fTD5
UM36 HPF2 undermines fP1
UM37 HPF2 undermines fF2
UM38 HPF6 undermines fMD4
UM39 HPF6 undermines fMD2
UM40 HPF6 undermines fMD3
UM41 HPF6 undermines fTD4
UM42 HPF6 undermines fTD2
UM43 HPF6 undermines fTD3
UM44 HPF6 undermines fEF1
UM45 HPF6 undermines fEF2
UM46 HPF6 undermines fF1
UM47 HPF6 undermines fP2
UM48 HPF6 undermines fTD1
UM49 HPF6 undermines fMD1
UM50 HPF6 undermines fF2
UM51 HPF1 undermines fMD4
UM52 HPF1 undermines fMD2
UM53 HPF1 undermines fMD3
UM54 HPF1 undermines fTD4

4.1. Discussion

An analysis of the convergent validity of designed models
showed that their inferences can be considered valid. They are
positively and moderately correlated to the well known subjec-
tive model of mental workload, namely the NASA Task Load In-
dex, thus likely modelling mental workload too. A negative or null
correlation would have implied the invalidity of designed mod-
els since they would have probably modelled another construct
and not mental workload. An analysis of the convergent validity
indicated a better inferential capacity of the argument-based
models over the non-monotonic fuzzy reasoning models. This
can be confidently claimed because their inferences are always
superior of the non-monotonic fuzzy reasoning models, regard-
less of their respective internal configurations and parameters,
and regardless of the knowledge-bases employed. Argument-
based models consistently showed a significantly lower mean
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Fig. 23. Scatterplots of inferences produced by designed models and perception of mental workload reported by humans.

squared error when compared to the self reported mental work-
load over the non-monotonic fuzzy reasoning models, in addition
to a slight improvement also against the baseline model (NASA-
TLX). Eventually, when results were compared across knowledge-
bases, it was evident that when a higher degree of conflictuality
of information was present (as knowledge-base 3), then defea-
sible argumentation seems to be a better modelling tool for
handling non-monotonicity when compared to fuzzy reasoning.
In other words, defeasible argumentation allowed the construc-
tion of models of mental workload with a higher convergent

and face validity when compared to those constructed via non-
monotonic fuzzy reasoning, especially when higher uncertainty
and conflictuality of information characterise knowledge-bases.

5. Conclusion and future work

This study presented a comparison between non-monotonic
fuzzy reasoning and non-monotonic defeasible argumentation
using three different knowledge-bases of different complexity
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Table 25
Mitigating arguments designed knowledge-base 3 - Part b.
Label Attack

UM55 HPF1 undermines fTD2
UM56 HPF1 undermines fTD3
UM57 HPF1 undermines fEF1
UM58 HPF1 undermines fEF2
UM59 HPF1 undermines fMD5
UM60 HPF1 undermines fTD5
UM61 HPF1 undermines fP1
UM62 HPF4 undermines fMD2
UM63 HPF4 undermines fMD3
UM64 HPF4 undermines fTD2
UM65 HPF4 undermines fTD3
UM66 HPF4 undermines fEF1
UM67 HPF4 undermines fEF2
UM68 HPF4 undermines fF1
UM69 HPF4 undermines fP2
UM70 HPF4 undermines fMD5
UM71 HPF4 undermines fTD1
UM72 HPF4 undermines fMD1
UM73 HPF4 undermines fP1
UM74 HPF4 undermines fF2

coded from an expert human reasoner in the domain of men-
tal workload. A primary research has been conducted including
the construction of computational models using these two non-
monotonic reasoning approaches to represent the construct of
mental workload and to allow its assessment. Such models were
constructed from the same information used by a well-known
subjective model of mental workload, namely the Nasa Task
Load Index, this also used as baseline. The elicitation of these
models was made possible by using data gathered in third-level
classrooms from students who attended different topics deliv-
ered in different ways. The inference produced by each of these
models was a single scalar representing an assessment of mental
workload that was used for comparison purposes. The selected
metrics for the evaluation of the inferential capacity of these
designed models were convergent and face validity. The former
indicates whether the inferences of the models are coherent with
the assessments produced by the selected baseline model (NASA-
TLX). The latter is a form of logical validity and indicates whether
these models are actually measuring what they are supposed
to measure, namely mental workload. Findings indicated how
both the models built with non-monotonic fuzzy reasoning and
defeasible argumentation had a good convergent validity with
the baseline, confirming these are also modelling mental work-
load as a construct. However, the argument-based models had
a superior face validity over the non-monotonic fuzzy reasoning
models across the three different knowledge bases. A deeper
analysis of the inference of constructed models indicated that,
when a knowledge-base is characterised by higher degree of
uncertainty and conflictuality, then defeasible argumentation is
more suitable for handling non-monotonicity when compared to
fuzzy reasoning.

The first contribution of this research lies in the proposal
and application of a comparative research aimed at evaluating
the impact of different quantitative non-monotonic reasoning
approaches for knowledge-representation problems under uncer-
tainty, following and extending previous work in the field [21].
The second contribution is the execution of an experiment that
is not purely based upon an analysis of the topological properties
of graphs of arguments or the formal characteristics of different
reasoning techniques, but rather on an empirical quantification
of their inferential capacity by constructing models with human
reasoners and by employing data collected in a real-world do-
main of application. Scholars in the field of logic are provided
with a replicable approach for comparing different formalisms for
non-monotonic reasoning empirically.

Future work will focus on the replication of this research study
by considering further knowledge-bases of different complexities
and degrees of conflictuality, by extending the comparison of
defeasible argumentation with other reasoning approaches such
as non-monotonic expert systems [95]. It will also concentrate
on the creation of different models of arguments by employ-
ing different semantics for the computation of their dialectical
status, such as ranking-based semantics [65] and their applica-
tion in other real-world knowledge-representation and reasoning
problems under uncertainty. Eventually, the comparison can be
done also with other argument-based systems, hybrid systems
such as fuzzy argumentation and an in depth evaluation of their
explainability.
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