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Abstract 

The ability to generate low temperature plasma at atmospheric pressure offers new opportunities to 

decontaminate biological materials, including fresh foods. In this study, strawberries were treated 

with atmospheric cold plasma (ACP), generated with a 60 kV dielectric barrier discharge (DBD) 

pulsed at 50 Hz, across a 40 mm electrode gap, generated inside a sealed package containing 

ambient air (42% relative humidity). The current-voltage characteristics revealed that the plasma 

operated in the filamentary regime. The background microflora (aerobic mesophillic bacteria, yeast 

and mould) of strawberries treated for 5 min was reduced by 2 log10 within 24 h of post-ACP 

treatment. The respiration rate of ACP treated produce, measured by the closed system approach, 

showed no significant increase. The effect of ACP on strawberry colour and firmness was 

insignificant. 
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1. Introduction 

Strawberries are known for their flavour and nutritional value. Strawberries are rich in bioactive 

compounds such as phenolic compounds, including their abundant anthocyanins, which impart the 

bright red colour to the fruits. Freshly harvested strawberries are very susceptible to mechanical 

injury, dehydration, decay and physiological deterioration. For this reason, strawberries are 

harvested and packed in the field directly into retail clamshell containers that are delivered to the 

supermarket. However, post-harvest spoilage of strawberry can be mainly attributed to the high 

incidence of yeast and mould growth (Garcia et al., 2011; Narciso et al., 2007).  

Chlorine-based washing for decontamination is widely used by fresh produce processors. However, 

in some European countries including Germany, The Netherlands, Switzerland and Belgium the use 

of chlorine for washing fresh and fresh-cut products is prohibited (EU Directive 2092/91; Nguyen-the 

and Carlin, 1994). In addition, to address issues of chemical contamination, most processors seek to 

minimize or avoid the use of conventional preservatives and chemical antimicrobials (Misra et al., 

2011a). Consumer demands and the shortcomings of the existing technologies are thus stimulating 

the development of alternative and preferably non-thermal approaches to processing of fresh 

produce (Deliza at al., 2003; Jeyamkondan et al., 1999). Food industries are seeking suitable 

technologies to ensure optimum microbiological safety and quality of minimally processed foods 

(Castenmiller et al., 2008; Misra et al., 2011a). 

Nonthermal technologies such as high pressure processing (HPP) and pulsed electric field (PEF) 

technologies have already commercialised and provide good results (Suzuki, 2002). However, the 

equipment and set-up for HPP is capital intensive (Hugas et al., 2002), while PEF is only suitable for 

liquid foods. Nonthermal approaches for achieving decontamination of fresh whole fruits and 

vegetables include pulsed light processing (Gómez-López et al., 2007), ionising radiation, ultrasound 
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or ozone assisted washing (Bilek and Turantas, 2002; Pangloli and Hung, 2013) and use of other 

chemical or packaging approaches (Ramos et al., 2013). Challenges of adoption of such technologies 

include; the shadowing effect in UV light processing, consumer acceptance and facility set-up for 

ionising radiation and the lack of suitable industrial scale processing units for ultrasound processing 

(Deora et al., 2013). Washing methods combined with chemical approaches have provided some 

success; nevertheless, this demands large volumes of water at industrial scale. Considering these 

aspects, research to develop suitable food processing technologies aiming to overcome such 

limitations is desirable and timely. 

In this context, atmospheric pressure cold plasma (ACP) offers distinct advantages for 

decontamination of foods. The term ‘‘plasma’’ refers to an overall electrically neutral gas composed 

of molecules, atoms, ions and free electrons. In ACP, the electron temperature is much larger than 

the ion and neutral temperatures which are typically equal and close to room temperature (“cold” or 

non-thermal). The ACP gas is at atmospheric pressure, e.g. ambient air, thus obviating the need for 

vacuum chambers and pumps. Various aspects concerning the inactivation of food-borne pathogens 

using cold plasma technology have been reviewed by Misra et al. (2011b) and Niemira (2012). Until 

recent advances in the development and applications of atmospheric pressure plasma systems, cold 

plasma processes were carried out under vacuum and thus incompatible with food processing. 

While cold plasmas are used in industrial processes such as electronics cleaning (Korner et al., 1995), 

bonding of plastics (Vlachopoulou et al., 2009) or binding of dye to textile fibres (Naebe et al., 2010), 

their potential remains untapped in the food industry. Plasma generation at atmospheric pressure is 

of interest, both technically and commercially to the food industries because this can be 

implemented at ambient conditions, reduces cost, increases treatment speed and enables industrial 

applicability (Misra et al., 2011b). 

The present study involves use of a dielectric barrier discharge (DBD) to generate cold plasma from 

humid atmospheric air inside a package. DBD is a well-established technique to generate ACP plasma 
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(Kogelschatz, 2003) and has attracted the interest of a range of scientists in recent years because of 

its unique advantages (Xu, 2001; Huang et al., 2010). In this work, an evaluation of the potential use 

of atmospheric air cold plasma for the decontamination of strawberries inside a closed package was 

conducted. Some of the discharge features were obtained from charge-voltage (Q-V) and current-

voltage (I-V) measurements. The quality of the treated produce was evaluated based on the 

strawberry respiration rate within a closed system and change in colour and firmness. 

2. Materials and methods 

2.1. Produce Characteristics 

Fresh strawberries (Fragaria ananasa, var. Elsanta) were purchased from the local wholesale fruit 

market (Dublin, Ireland) and stored under refrigerated conditions for 1 hour before the beginning of 

the experiments. The density of the strawberries was determined by the volume displacement 

method using toluene instead of water, to avoid floating (AOAC, 1998). The choice of toluene was 

also based on the fact that it interacts to a lesser extent with the fruit (Ferrando and Spiess, 2003) 

and can efficiently fill the shallow dips of strawberries due to its low surface tension. The 

temperature of the liquid was registered using a thermometer to be 20.0 ± 0.2 °C. The mean density 

of the strawberry samples was found to be 0.938 ± 0.004 gcm
-3

 and was used in the calculations for 

respiration rate. 

2.2. In-package plasma treatment 

[Insert Figure 1 here] 

A schematic of the experimental set-up employed in the study is presented in Figure 1. The DBD 

system comprises of two circular aluminium plate electrodes (outer diameter = 158 mm) over 

polypropylene (PP) dielectric layers (of 2mm thickness) between which a PP package containing the 

food sample is placed. The high voltage step-up transformer (Phenix Technologies, Inc., USA) 
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powered at 230V, 50 Hz delivers a high voltage output in the range 0-120kV rms. A single value of 

the voltage applied across the electrodes of 60 kVRMS at 50Hz was used for these experiments. The 

rigid PP package had dimensions of 310 mm × 230 mm × 40 mm and also served as a dielectric 

material. Boxes with strawberry samples were sealed inside polymeric film of 50 micrometres 

thickness (Cryovac BB3050) with very low gas transmission rates, in order to prevent leakage of the 

plasma-generated reactive species. This film served as an additional layer of dielectric. The 

atmospheric air condition at the time of packaging and treatment was 42% relative humidity (RH) 

and 25 °C, as measured using a humidity-temperature probe connected to a data logger (Testo 176 

T2, Testo Ltd., UK). The strawberry samples were subjected to indirect ACP treatment for 5 minute 

and subsequently stored for 24 hours at 10 °C and 90% RH. Indirect exposure refers to placement of 

strawberries away from area of field between electrodes (at least 2.5 cm from the circumference of 

field in this study). These operating conditions were selected based on previous experiments 

conducted in our laboratory. All treatments and further evaluations were done in triplicate. 

2.3. Electrical characterisation of the plasma 

The electrode bias voltage was monitored using a high voltage probe (North Star PVM-6) coupled to 

a 10:1 voltage divider to allow recording of the full voltage waveforms on an Agilent InfiniVision 

2000 X-Series Oscilloscope (Agilent Technologies Inc., USA). The discharge characteristics were 

monitored using Q-V measurements by connecting a capacitor C0 = 8.8 nF in series on the ground 

side of the discharge. The voltage drop across the capacitor was recorded using a 1000:1 high 

voltage probe (Testec-Electronik TT-HVP 15kV), while a current transformer probe (Bergoz CT-E1.0S) 

was used to measure the current waveforms. The charge on the capacitor was plotted versus the 

applied voltage to obtain Lissajous figures from which the capacitance of the discharge gap, the 

capacitance of the dielectric, the total power delivered to the plasma, the transferred charge and 

discharge–on time (duration of the discharge per half cycle) were calculated, respectively. 
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2.4. Measurement of ozone concentration 

Ozone concentrations within the package were measured, immediately following ACP treatments, 

using Gastec short-term ozone detection tubes (Product No. 18M, Gastec, Japan). These tubes 

contain a reagent which changes colour after coming in contact with the specified gas and are 

calibrated for specific sampling volumes. 10 mL of gas was pulled out of the package, through the 

tube, using a gas pump (Gastec, Japan) and a hypodermic needle. To avoid leakage of the gas, a 

silicone septum with adhesive was used at the point of gas sampling. 

2.5. Microbial enumeration 

For microbial count estimations, untreated control samples, untreated control samples stored at 10° 

C for 24 h and atmospheric cold plasma (ACP) treated samples stored at 10° C for 24 h were 

analysed, respectively. Strawberry samples were placed in stomacher® bags (Seward 80 bags, UK), 

two strawberries (weighing approximately 10-15 g) were placed in each separate bag, containing 10 

ml of sterile maximum recovery diluent (MRD, Scharlau Chemie, Spain) and hand rubbed for 2-3 min. 

The resulting wash fluid was serially diluted in MRD. Total aerobic mesophiles and yeasts/moulds 

count were determined by surface plating of appropriate aliquots in duplicate on plate count agar 

(PCA, Scharlau Chemie, Spain) and potato dextrose agar (PDA, Scharlau Chemie, Spain) respectively. 

PCA plates were incubated at 37 °C for 24-48 h. The PDA plates were incubated at 25 °C for 3-7 days 

before yeast/mould colonies were counted. All experiments were conducted in duplicate and each 

microbial count was the mean of four determinations. 

2.6. Respiration rate measurement 

After 24 h in-pack storage, ACP treated strawberries were carefully moved into a gas jar (2.365 litre 

volume), sealed to air tight conditions and stored at 10 °C and 90 % relative humidity (RH). The 

recommended storage conditions for strawberries are 0-5 °C and ~95 %RH. However, the conditions 

employed in the present study were selected to account for the temperature abuse that is 
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commonly encountered during transport and in displays at retail. The change in O2 and CO2 gas 

compositions inside the respirometer were monitored over time using a gas analyser (Systech 

Instruments, UK). Gas sampling was performed with a hypodermic needle, inserted through an 

adhesive septum previously fixed to the jar, at a flow rate of 150 mL/min for 10s. The instrument is 

based on electrochemical sensor to record O2 concentration and on a mini-IR spectrophotometer to 

record CO2 concentrations (accuracy: 0.1 %v/v O2; 2 %v/v CO2). Initial experiments showed that 

sampling had no significant influence on gas concentration in the jar, as the total volume of the jar 

was much greater than the total volume sampled by the instrument during the experiment. 

Two-parameter, non-exponential equations (1), (2) similar to the Peleg’s model (Peleg, 1988) were 

respectively fitted to the average O2 and CO2 concentrations of the control and treated packages at 

different storage time t (in hours), using nonlinear regression analysis. 

2
1 2

[ ] 0.21
t

O
K t K

⎡ ⎤
= − ⎢ ⎥+⎣ ⎦

 (1) 

2
1 2

[ ]
t

CO
K t K

=
+

 (2) 

where K1 and K2 are the regression coefficients. A similar model has been applied for respiration data 

of apples by Mahajan and Goswami (2001) and Bhande et al. (2008).  

The rate of change of gas concentration was determined from the first derivative of the regression 

functions as outlined in Equations (3) and (4): 
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2
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At each sampling time, the respiration rates R
CO2

 and R
O2

, defined in terms of CO2 evolution and O2 

consumption, were calculated using Equations (5) and (6), respectively. 

R
CO2

=
d[CO

2
]

dt

V

W
 (5) 

R
O2

= −
d[O

2
]

dt

V

W
 (6) 

where   V  and  W  are the free gas volume (mL) and weight of the strawberries (kg), respectively. 

2.7. Colour measurement 

The colour was quantified using a L*-a*-b* colorimeter (Colour Quest XE Hunter Lab, Northants, UK). 

The colour measurements were performed along four symmetrical sections on each strawberry and 

the average value is reported. The instrument was calibrated using white (L* = 93.97, a* = 0.88 and 

b* = 1.21) and green (L* = 56.23, a* = 21.85, b* = 8.31) standard tiles, respectively. Hunter colour 

readings were recorded. The L* parameter (lightness index scale) ranges from 0 (black) to 100 

(white). The parameter a* measures the degree of red (+a) or green (-a*) colour and the b* 

parameter measures the degree of yellow (+b) or blue (-b*) colour. 

2.8. Firmness 

Four strawberries from each of the control and ACP treated groups were measured. The force 

necessary to cause a deformation of 3 mm with a speed of 0.2 mm/s was recorded using an Instron 

texture analyser (Instron 4302 Universal Testing Machine, Canton, MA, USA), with a 3.5-mm-

diameter flat-faced cylindrical probe. Data were analysed with the Instron series IX software for 

Windows. 
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2.9. Statistical Analysis 

The non-linear regressions were carried out using the Gauss-Newton numerical method available 

from the Minitab software package (Minitab® ver. 16, Minitab Ltd.). The coefficient of determination 

(r
2
) and the root mean squared error (RMSE), defined by equation (7) below, were used as criterion 

to evaluate the adequacy of model fitting. 

( )2

exp

1

tn
i pred

i t p

y y
RMSE

n n=

−
=

−∑   (7) 

where exp iy  are experimental observations, predy  are model predictions, tn   are number of 

experimental data points and pn   are number of estimated model parameters. One-way ANOVA was 

performed to determine the significance of differences among the colour parameters and firmness 

of control and treated strawberries at 95% level of confidence. 

3. Results and Discussion 

3.1. Discharge characteristics 

The I-V waveforms and the Q-V characteristics for the discharge with and without strawberries are 

shown in figures 2(a, b) and 3(a, b), respectively.  The I-V waveforms indicate the presence of a 

filamentary-type discharge without noticeable differences between the empty package and the 

package with produce. The use of high voltage permits generation of a stable discharge, even at 

large gaps of 4cm. The Q-V characteristics of figure 3 (a, b) take the shape of closed-loop 

parallelograms, where along the sides A-B and C-D the discharge is idle while during B-C and D-A it 

goes through breakdown transferring charges trough the gap for applied voltage values between 

Vmin (corresponding to breakdown voltage) and Vp (peak voltage).    

[Insert Figure 2 (a) and (b) here] 
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The electrical performances of the discharge derived from the Q-V measurements according to the 

method developed by Manley (1943), Falkenstein and Coogan (1997) are shown in Table 1[Insert 

Table , where dC  is the dielectric capacitance, gapC  is the capacitance of the discharge gap, P is the 

discharge power, QΔ  is the total charge transported over a cycle and tΔ  is the duration of the 

discharges per half voltage cycle. The capacitances are calculated from the slopes of the Q-V 

parallelogram obtained as Lissajous figure with dC  and cellC  (total capacitance of the discharge cell) 

indicated in Figure 3 (a, b) while gapC  is given by 
( )

d cell
gap

d cell

C C
C

C C

×

=

−

 . The transported charge is 

calculated as 02. .Q C QΔ = ; and 
1 min1

/ 2 sin
2 p

V
t

f V
π

π

−

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜Δ = − ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

    with 0C  the measurement 

capacitor, f the frequency (50 Hz) and minV  the breakdown voltage, pV  the peak voltage and charge 

Q  indicated in Figure 3b. The discharge power is calculated as the product of the area of the 

Lissajous charge-voltage loop and the frequency of applied voltage. The discharge performance is 

not affected in any way by the presence of fresh produce as electrical parameters for the box with 

and without produce have close values, within the range of estimation errors. 

[Insert Table 1 here] 

[Insert Figure 3 here] 

3.2. Ozone concentrations 

When high voltage is applied across the electrodes, the electric field generated produces the 

phenomenon of dielectric barrier discharge (DBD) (Amjad et al., 2012; Kogelschatz, 2003; 

Kogelschatz et al., 1997). This discharge generates energetic electrons that dissociate oxygen 

molecules by direct impact. The single O atom from the dissociation combines with oxygen molecule 

(O2) to form ozone gas. Ozone is considered as one of the most chemically stable and active species 

generated in DBD because of its relatively long lifetime and high oxidation potential. Ozone 
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concentrations, inside the package containing strawberries, were measured to be (1000 ± 100) ppm 

immediately post-treatment. We have observed that ozone concentration, generated in similar 

conditions but without strawberries, can be as high as (1500 ± 100) ppm after 2 min. The 

comparatively lower ozone concentration for packages loaded with product could be due to the 

ozone solubilising by reacting with the water at the produce surface and also the smaller volume of 

available air in the produce packages, i.e. lower initial volume of oxygen. It is worth noting that 

ozone has been granted GRAS (generally recognized as safe) status by the U.S. Food and Drug 

Administration as a direct additive to food (FDA, 2001; Rice and Graham, 2001). Besides ozone, the 

plasma apparatus employed here has also been found to generate reactive nitrogen species (Misra 

et al., 2013). 

3.3. Microbial inactivation 

The total mesophilic and yeasts/mould counts for untreated samples were 4.99 and 4.96 log10 cfu/g, 

respectively. The storage at 10° C for 24 h of untreated control samples had no effect on the 

reduction of viable population on strawberry surfaces, where the total mesophilic count recorded 

was 4.92 log10 cfu/g. Yeast and mould counts also showed similar trend and was 5.06 log10 cfu/g. The 

effect of ACP treatment on the reduction of total mesophiles and yeasts/moulds on strawberry 

surface is shown in Table 2[Insert Table . In-package, indirect ACP treatment of strawberries for 5 

min achieved reductions of 2.4 and 3.3 log cycles of total mesophiles and surface yeasts/moulds, 

respectively. 

[Insert Table 2 here] 

Critzer et al. (2007) have also reported the ability of atmospheric plasma for reduction of inoculated 

microbial populations on fresh produce surfaces. Recently, Fernandez et al. (2013) investigated cold 

atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium on fresh produce. 

The reported study achieved 2.72, 1.76 and 0.94 log-reductions of S. Typhimurium on lettuce, 
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strawberry and potato, respectively, in 15 min of plasma treatment time. The type of produce and 

its intrinsic characteristics like waxy cuticles, stomata of lettuce and the convolutions of strawberry 

surfaces were suggested to contribute to different inactivation rates. Similarly, Perni et al. (2008) 

observed a reduced efficacy of ACP in inactivating bacteria and yeast inoculated on freshly cut fruit 

surfaces compared to that on inert filter membranes. 

In this work reductions in total mesophiles and yeasts/moulds were found, which are primary 

contributors to spoilage. The efficient reduction of microorganism in a sealed package suggests the 

elimination of a possible post-process contamination of the treated products. The fact that 

temperatures that could cause microbial inactivation were never reached, suggests that the 

microbial reductions were solely due to unique chemical species obtained in plasma state (Pankaj et 

al., 2013). This was verified using a handheld infrared thermometer (IR-102, Maplin Electronics, UK) 

which recorded a maximum rise of 8±2 °C after 5 minute of treatment. Previous studies in our 

laboratory have revealed absence of any residual ozone after at least 24 h post-treatment, under 

ambient room temperature conditions (Misra et al., 2012). Therefore, it is likely that active species 

of ACP, including ozone, are retained inside the package for varying times, dependent on the species 

lifetime, leading to significant reductions in microbial load. However, this requires further 

investigation into the kinetics of degradation of post-plasma gaseous species inside the sealed 

package. 

3.4. Respiration rate of cold plasma treated strawberries 

It is well-known that processing of fresh horticultural produce promotes a faster physiological 

deterioration, biochemical changes and microbial degradation of the product even when only mild 

processing operations are used (O’Beirne and Francis, 2003; Rico et al., 2007). This is because fresh 

produce is often subjected to stress during the processing steps (Watada et al., 1996). When a 

treatment process damages the tissue or induces stress in the produce, it exhibits a higher 

respiration rate during processing which can even last after the completion of the process (Laties, 
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1978; Mitcham and McDonald, 1993). Practical experience reveals that tissues with high respiratory 

rates and/or low energy reserves have shorter postharvest lives (Eskin, 1990).  

In this study, the respiration rate was observed to decrease with time for control as well as treated 

strawberries (figure 4, 5 and Table 3). This decline is due to the decreasing O2 concentration and 

increasing CO2 concentration in the gaseous environment. The respiration rate of the treated 

produce was found to be lower than that of the control following an initial delay which is most likely 

due to the decreased microbial count. Based on these observations it can be said that ACP does not 

induce significant stress in strawberries treated within the set of conditions employed. 

[Insert Figure 4 here] 

[Insert Table 3 here] 

[Insert Figure 5 here] 

3.5. L*-a*-b* colour of strawberries 

Colour is the most obvious parameter for consumers (Del-Valle et al., 2005) and plays a key role in 

food choice, food preference and acceptability, and may even influence taste thresholds, sweetness 

perception and pleasantness (Clydesdale, 1993). A change in the L*-a*-b* colour parameters of ACP 

treated strawberries was observed (Figure 7). However, the changes in individual colour parameters 

viz. lightness, redness or greenness were statistically insignificant (p > 0.05) in comparison to the 

untreated control stored under same conditions. 

[Insert Figure 6 here] 

3.6. Firmness 

Texture is a critical quality attribute in the consumer acceptability of fresh fruits. The firmness of 

control, untreated strawberries stored at 10 °C for 24hr as well as for ACP treated strawberries are 
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shown in figure 8. A significant (p≤0.05) decrease in firmness of strawberries was recorded within 

24hr. The difference in firmness among untreated control and treated group was found to be 

statistically insignificant (p>0.05). Strawberry is a soft fruit that suffers a rapid loss of firmness during 

storage, which contributes greatly to its short postharvest life and susceptibility to fungal 

contamination (Hernández-Muñoz et al., 2008). Furthermore, the ability of ozone to retain the 

texture of strawberries has already been reported in the literature (Runguang, 2011). Besides 

instrumental colour and firmness, no obvious change in the flavour or edible quality of the 

strawberries relative to control was noticed. 

[Insert Figure 7 here] 

4. Conclusions 

In-package decontamination of fresh foods is desirable as this minimises the possibility of post-

processing contamination. In order to achieve this, atmospheric cold plasma was generated inside a 

sealed package containing strawberries, using a dielectric barrier discharge in the filamentary 

regime. The electrical characteristics of the discharge were diagnosed using Q-V measurements and 

indicated that the discharge behaviour and performance are not affected by the presence of the 

produce. 

The behaviour of plasma, its action on micro-organisms and the resulting changes in food quality are 

largely determined by the plasma chemistry. Plasma chemistry and the resultant dynamics can be 

very complex involving a large number of different species at any given point of time. For example 

chemistry of plasma in air is believed to comprise of more than 75 species and almost 500 reactions 

(Gordillo-Vázquez, 2008). These active species of post-plasma discharge inactivate the micro-

organisms before reverting back to their original or stable states (Ziuzina et al., 2013). Although the 

modified gas composition induced through complex plasma chemistry may persists for several hours 

(< 24 h) inside the package, a drastic change in respiration rate of strawberries does not occur. Thus, 
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this work demonstrates the ability of in-package ACP to reduce the background microflora present 

on strawberries without inducing significant physiological (respiratory) stress or adversely affecting 

the colour and firmness. The DBD system achieved these desired effects with a power input of only 

15-20 W, without increasing the temperature of the samples significantly. 

Future studies will focus on inactivation of inoculated bacteria inoculated on surface of fresh 

produce. Additionally, in order to assess the long term effects of ACP on food quality, shelf-life 

studies will be conducted. 
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Figure 2 (a) and 2(b) 
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Figure 4 
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 Figure 7 
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Table 1 Discharge electrical parameters derived from Q-V measurements. 

Parameter Empty box Box containing 
Strawberry 

dC  [pF] 89 ± 6 83 

gapC  [pF] 1.62 1.58 
P [W] 17.43 17.03 
QΔ  [nC] 8098 7924 
tΔ  [ms] 3.6 3.7 
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Table 2: Microbial reductions on strawberry surface by indirect atmospheric cold plasma (ACP) 

treatment in air 

Microorganisms Initial population 

(log10cfu/g) 

untreated 

Untreated control

stored at 10° C for 

24h 

ACP treated surviving 

population (log10cfu/g) 

Total mesophiles 4.99±0.02 4.92±0.14 2.56±1.82

(12-85% reduction) 

Yeast/moulds 4.96±0.08 5.06±0.04 1.56±1.29

(44-95% reduction) 
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Table 3 Regression coefficients K1 and K2 (s) of equations (1) and (2) for O2 consumption and CO2 

evolution, respectively. 

Package Principle 

undertaking the 

respiration rate 

Regression 

coefficients 

Coefficient of 

determination 

RMSE 

K1 K2

Control CO2 evolution 4.0787 300.67 0.99 0.00182 

O2 consumption 4.4978 306.96 0.99 0.00203 

 

5 min ACP 

treated 

 

CO2 evolution 5.0637 272.27 0.98 

 

0.00488 

O2 consumption 2.9615 476.76 0.99 0.00355 
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Highlights 

• In-package cold plasma processing treatment of strawberries based on dielectric barrier 

plasma discharge. 

• Electrical characterisation of the plasma discharge revealed a filamentary regime and ozone 

production. 

• A significant background microflora reduction was achieved. 

• No adverse changes in respiration rates, texture and colour of treated strawberries. 
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