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Abstract

A subgroup P of an Abelian p-group G is said to be projection-invariant
in G, if Pπ ≤ P for all idempotent endomorphisms π in End(G). Clearly
fully invariant subgroups are projection invariant, but the converse is not
true in general. Hausen and Megibben have, however, shown that in many
familiar situations these two concepts coincide. In a different direction,
the authors have previously introduced the notions of socle-regular and
strongly socle-regular groups by focussing on the socles of fully invariant
and characteristic subgroups of p-groups. In the present work the authors
examine the socles of projection-invariant subgroups of Abelian p-groups.

1 Introduction

Recall that a subgroup P of an Abelian p-group G is said to be projection-
invariant in G, if Pπ ≤ P for all idempotent endomorphisms π in End(G).
Clearly fully invariant subgroups are projection invariant, but the converse is not
true in general. It is an easy exercise to show that P is projection-invariant in G
if, and only if, Pπ = P∩Gπ for every projection π ∈ End(G). Like fully invariant
subgroups, projection-invariant subgroups distribute across direct sums i.e., if
G = A ⊕ B and P is projection-invariant, then P = (A ∩ P ) ⊕ (B ∩ P ). In
fact in some situations the notions coincide: Hausen [9] and Megibben [14] have
established that for separable p-groups, and for transitive, fully transitive groups

0AMS subject classification: primary: 20K10, 20K12. Key words and phrases: Abelian
p-groups, projection-invariant subgroups, fully invariant subgroups, transitive and fully tran-
sitive groups, socles.
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G satisfying a certain technical condition (∗) on Ulm invariants, all projection-
invariant subgroups are in fact fully invariant. For the readers’ convenience
we list this condition (∗): If α1, · · · , αn and β1, · · · bm are two disjoint finite
sequences of ordinals such that the Ulm-Kaplansky invariants fG(αi) 6= 0 for
each positive integer i, then there is a direct decomposition G = A ⊕ B where
fA(αi) = 1 for i = 1, · · · , n and fA(βj) = 0 for j = 1, · · · ,m.

In a different direction, the authors have recently investigated the socles of
fully invariant and characteristic subgroups of Abelian p-groups. This led to
the notions of socle-regular and strongly socle-regular groups, see [3, 4]. Recall
the definitions: a group G is said to be socle-regular (strongly socle-regular) if
for all fully invariant (characteristic) subgroups F of G, there exists an ordinal
α (depending on F ) such that F [p] = (pαG)[p]. It is self-evident that strongly
socle-regular groups are themselves socle-regular, whereas the converse is not
valid (see [4]). Motivated by these concepts we make the following definition: a
p-group G is said to be projectively socle-regular if, for each projection-invariant
subgroup P of G, there is an ordinal α (depending on P ) such that P [p] =
(pαG)[p].

It is immediate that projectively socle-regular groups are socle-regular.
Throughout our discussion all groups will be additively written Abelian

groups; our notation and terminology are standard and may be found in the
texts [7, 12].

In [3] the following ad hoc terminology was introduced; it has been useful in
[3, 4, 5] and we find it convenient to use it again here:

Suppose that H is an arbitrary subgroup of the group G. Set α = min{hG(y) :
y ∈ H[p]} and write α = minG(H[p]); clearly H[p] ≤ (pαG)[p]. If there is no
possibility of confusion we omit the subscript and just write min(H[p]).

In the light of the results of Hausen [9] and Megibben [14], our first result is
not too surprising.

Proposition 1.1 If P is a projection-invariant subgroup of the p-group G and
minG(P [p]) = n, a positive integer, then P [p] = (pnG)[p]. Consequently, if G is
separable, then G is projectively socle-regular.

Proof. Suppose that P is a projection-invariant subgroup of G and min(P [p]) =
n, a finite integer. Then there is an element x ∈ P [p] such that hG(x) = n and
so x = pny where y is the generator of a direct summand of G; G = 〈y〉 ⊕ G1

say. Suppose that z ∈ (pnG)[p] \ (pn+1G)[p], so that z = pnw for some w
of height zero; thus G = 〈w〉 ⊕ G2. Note that 〈w〉 ∼= Z(pn+1) ∼= 〈y〉. Then
we have that w = ry + g1 for some integer r and some g1 ∈ G1. Now define
φ : 〈y〉 ⊕ G1 → 〈y〉 ⊕ G1 by yφ = g1, G1φ = 0. It follows easily, or see the
proof of Lemma 5 in [9], that φ is the difference of two idempotent endomor-
phisms of G. Now define ψ : G → G by gψ = r(gπ) + gφ, where π is the
projection map given by yπ = y, G1π = 0. Note that ψ is a sum of integer
multiples of idempotents and yψ = ry + g1 = w. Since xψ = pn(yψ) = pnw = z
and x ∈ P , which is a projection-invariant subgroup of G, we conclude that
z ∈ P [p]. Hence (pnG)[p] \ (pn+1G)[p] ⊆ P [p]. However, if u ∈ (pn+1G)[p],
then z + u ∈ (pnG)[p], and so, by the argument above, z + u ∈ P [p]. Thus,
we have that (pnG)[p] ≤ P [p] and since the reverse inclusion holds by virtue of
min(P [p]) = n, we have equality. The final deduction is immediate.
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Corollary 1.2 If G is a p-group such that pωG ∼= Z(p), then G is projectively
socle-regular.

Proof. Suppose P is a projection-invariant subgroup of G. If P [p] 6≤ pωG,
then minG(P [p]) is finite and we therefore apply Proposition 1.1 above to obtain
that P [p] = (pnG)[p] for some integer n. So, we may assume that P [p] ≤ pωG.
But since the latter group is cyclic of prime order p, it follows at once that
either P = P [p] = 0, whence P [p] = (pω+1G)[p], or P [p] = pωG = (pωG)[p] as
required.

The property of a p-group being projectively socle-regular is inherited by
subgroups of the form pαG.

Proposition 1.3 If G is a projectively socle-regular p-group, then so also is
pαG for all ordinals α.

Proof. Let H = pαG and suppose that P is a projection-invariant subgroup
of H. Let π be an arbitrary idempotent in End(G). Then π∗ = π ¹ H is an
idempotent endomorphism of H. Thus Pπ = Pπ∗ ≤ P since P is a projection-
invariant subgroup of H. Consequently P is a projection-invariant subgroup of
G and so there is an ordinal β such that P [p] = (pβG)[p]. Since P is contained
in pαG, we conclude that β ≥ α; say β = α + γ. But then P [p] = (pα+γG)[p] =
(pγH)[p], showing that H is also a projectively socle-regular group.

Projectively socle-regular groups of length < ω + ω are easy to construct:

Proposition 1.4 If H is an arbitrary finite p-group, then there exists a projec-
tively socle-regular group G with pωG = H.

Proof. It is convenient to make use of Corner’s realization theorem [2, The-
orem 6.1]. Let A = End(H), so that A is certainly countable. Then applying
Corner’s result we find a group G such that pωG = H, End(G) ¹ H = A and
Aut(G) ¹ H acts as the units of A. Moreover, there is a semigroup homo-
morphism, ∗ say, from the multiplicative semigroup A× → End(G)× such that
φ∗ ¹ H = φ for every φ ∈ A. Note that the group G is transitive and fully
transitive since finite groups have this property; it follows from [3, Theorem 0.3]
and [4, Theorem 2.4] that G is strongly socle-regular and hence socle-regular.

We claim that G is also projectively socle-regular. Let P be a projection-
invariant subgroup of G; if min(P [p]) is finite, we are finished by Proposition
1.1. So suppose that min(P [p]) is infinite, so that P [p] ≤ pωG. Note that
P [p] is also a projection-invariant subgroup of G. Observe firstly that P [p]
is actually a projection-invariant subgroup of pωG = H: for if π ∈ A is an
idempotent, there is a mapping π∗ ∈ End(G) such that π∗ ¹ H = π; since
∗ is a semigroup homomorphism, the mapping π∗ is also an idempotent and
we have (P [p])π = (P [p])π∗ ≤ P [p]. Since H is a finite group, it is certainly
projectively socle-regular so that P [p] = (pnH)[p] for some integer n. But then
P [p] = (pω+nG)[p] and so G is projectively socle-regular, as required.

As observed above, projectively socle-regular groups are socle-regular. How-
ever, when p 6= 2, we can say a little more.
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Proposition 1.5 If p 6= 2, then a projectively socle-regular p-group is strongly
socle-regular.

Proof. Let C be an arbitrary characteristic subgroup of the p-group G,
where p 6= 2. If π is an idempotent in End(G), then (2π − 1)2 = 1, so that
2π− 1 is an involutary automorphism of G. Thus C(2π− 1) ≤ C implying that
2(Cπ) ≤ C. Since, by assumption, p 6= 2, this implies that Cπ ≤ C. Hence C is
a projection-invariant subgroup of G. If G is a projectively socle-regular group,
then C[p] = (pαG)[p] for some ordinal α. Since C was an arbitrary characteristic
subgroup of G, we have that G is strongly socle-regular, as required.

Our next example shows that the class of socle-regular groups is strictly
larger than the class of projectively socle-regular groups. First we derive a
technical lemma.

Lemma 1.6 If G is a p-group in which pωG is homogeneous, then if G is fully
transitive but not transitive, every subgroup of pωG is a projection-invariant
subgroup of G.

Proof. Let P be an arbitrary subgroup of pωG and let π ∈ End(G) be an
arbitrary idempotent endomorphism. Then G = G1 ⊕ G2, where G1 = Gπ,
G2 = G(1 − π). Now if pωGi > 0 for i = 1, 2, it follows from Proposition
2.2 in [2] that G is transitive - contrary to hypothesis. So either pωG1 = 0 or
pωG2 = 0.

It is well known, and easy to show, that if ν is an idempotent endomorphism
of G, then (pωG)ν = pω(Gν). Thus, either (pωG)π = 0 or (pωG)(1 − π) = 0.
Hence, either Pπ = 0 or P (1 − π) = 0; in either case Pπ ≤ P and so P is a
projection-invariant subgroup of G.

Proposition 1.7 For each prime p, there exists a socle-regular p-group which
is not projectively socle-regular.

Proof. Let G be a non-transitive fully transitive p-group with pωG ∼= ⊕
ℵ0

Z(p)

- for example the groups of length ω+1 constructed by Corner in [2]. Since G is
fully transitive, it is socle-regular by [3, Theorem 0.3]. However, G is certainly
not projectively socle-regular, since it follows from Lemma 1.6 above that any
non-zero proper subgroup of pωG cannot have a socle of the form (pαG)[p] for
any ordinal α.

Remark 1.8 Corner’s example of a non-transitive fully transitive p-group G
used in Proposition 1.7 above, provides an easy example of a group which does
not satisfy the condition (∗) introduced by Megibben. If it did satisfy (∗), then,
since fG(ω) = ℵ0, there would be a direct decomposition G = G1⊕G2 in which
fG1(ω) = 1 and so fG2(ω) = ℵ0. Thus, G would decompose as G1 ⊕ G2 with
both pωG1, p

ωG2 > 0; as pointed out in Lemma 1.6, no such decomposition
exists for G.

We have seen in Proposition 1.3 that the projective socle-regularity of a
group G is inherited by subgroups of the form pαG. We now wish to investigate
the converse situation. Before doing so, we establish an elementary result of
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independent interest regarding the lifting of idempotents; we remark that we
shall need much deeper results than this to handle the situation for subgroups
of the form pαG, when α ≥ ω.

Proposition 1.9 If G is a p-group which has no non-trivial pn-bounded pure
subgroups and φ ∈ End(G) is such that φ ¹ pnG is an idempotent endomorphism
of pnG, then there is an idempotent endomorphism θ of G such that θ ¹ pnG =
φ ¹ pnG.

Proof. Assume, for the moment that we have shown that if G has no non-
trivial pn-bounded pure subgroups, then an endomorphism ψ of G such that
pnψ = 0 satisfies the relation ψn+1 = 0.

Let I = {ϕ ∈ End(G)|ϕ ¹ pnG = 0}; it is easily checked that I is a 2-
sided ideal of End(G). Moreover, any ϕ ∈ I satisfies the relationship pnϕ = 0,
and so, by the observation above, ϕn+1 = 0; in particular I is a nil ideal of
End(G). Since φ ¹ pnG is an idempotent, it is immediate that φ + I is an
idempotent of End(G)/I. It now follows from standard ring theory - see e.g. [1,
Proposition 27.1] - that idempotents lift modulo I. Thus there is an idempotent
endomorphism θ of G such that θ + I = φ + I and so θ ¹ pnG = φ ¹ pnG. It
remains only to verify the claim in the first paragraph. This follows from the
next lemma.

The next result is true in a wider context than p-groups; the second author
learned it from an unpublished manuscript of Tony Corner and the proof below
is taken from that source.

Lemma 1.10 If G is a p-group which has no non-trivial pk-bounded pure sub-
groups and ψ is an endomorphism of G such that pkψ = 0, then ψk+1 = 0.

Proof. If k = 0 there is nothing to prove; so we suppose that k ≥ 1. Note
first that if x ∈ G and the exponent of x, E(x) = 1, then hG(x) ≥ k. For if
hG(x) = l < k, then x = ply for some y ∈ G, and it is clear that 〈y〉 is a pure
subgroup of order pl+1, a factor of pk, contrary to our hypothesis.

Let P(n) denote the proposition: x ∈ G,E(x) = n ≤ k ⇒ xψn = 0. We
prove P(n) by induction on n. Since P(0) is trivial, we may suppose that
1 ≤ n ≤ k and that P(r) is true for r < n. If x ∈ G and E(x) = n, then
E(pn−1x) = 1, so hG(pn−1x) ≥ k and therefore pn−1x = pkz for some z ∈ G.
So pn−1(xψ) = z(pkψ) = 0, whence E(xψ) ≤ n − 1 and so (xψ)ψn−1 = 0 i.e.
xψn = 0.

Since for each x ∈ G we have pk(xψ) = 0, so that E(xψ) ≤ k, therefore it
follows that xψk+1 = (xψ)ψk = 0. Thus ψk+1 = 0.

We now have all the ingredients to prove:

Theorem 1.11 If G is a p-group and π ∈ End(pnG) is an idempotent, then
there is an idempotent θ ∈ End(G) such that θ ¹ pnG = π.
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Proof. Let G = (B1 ⊕ · · · ⊕ Bn)⊕X be the Baer decomposition of G; thus
(B1 ⊕ · · · ⊕ Bn) is a pn-bounded summand of a basic subgroup B of G. It
follows by a well-known theorem of Szele [7, Theorem 33.2], that X has no non-
trivial pn-bounded pure subgroup (or equivalently no non-trivial pn-bounded
summand). Note that pnG = pnX, so that π ∈ End(pnX) and π2 = π.

Since every endomorphism of pnX lifts to an endomorphism of X - this
follows by a simplification of the proof of [7, Proposition 113.3] - there is an
endomorphism φ of X such that φ ¹ pnX = π. Now apply Proposition 1.9 to
obtain an idempotent endomorphism θ1 of X such that θ1 ¹ pnX = φ ¹ pnX = π.
Define θ : G → G by θ = 0⊕ θ1; clearly θ is an idempotent endomorphism of G
and θ ¹ pnG = π.

We can now prove the desired partial converse to Proposition 1.3.

Theorem 1.12 If n is a non-negative integer and pnG is a projectively socle-
regular p-group, then G is a projectively socle-regular p-group.

Proof. Let P be a projection-invariant subgroup of G. If min(P [p]) is finite,
k say, then P [p] = (pkG)[p] by Proposition 1.1. If min(P [p]) ≥ ω, then P [p] ≤
pωG ≤ pnG. We claim that P [p] is a projection-invariant subgroup of pnG: if
π is any idempotent endomorphism of pnG, then by Theorem 1.11, there is an
idempotent endomorphism θ of G such that θ ¹ pnG = π. Hence, (P [p])π =
(P [p])θ ≤ P [p] since Pθ ≤ P . As pnG is projectively socle-regular, we have that
P [p] = (pα(pnG))[p] for some ordinal α. Thus P [p] = (pγG)[p] where γ = n + α
and G is projectively socle-regular.

We have already seen in Proposition 1.7 that there is a socle-regular p-group
which is not projectively socle-regular. We now exhibit a strongly socle-regular
2-group which is not projectively socle-regular.

Proposition 1.13 There is a strongly socle-regular 2-group which is not pro-
jectively socle-regular.

Proof. Consider any of the groups C constructed by Corner in [2] which
were transitive but not fully transitive; these groups had the property that
2ωC = 〈a〉 ⊕ 〈b〉 where o(a) = 2, o(b) = 8 and End(C) ¹ 2ωC = Φ, where Φ is
the subring generated by the automorphisms of 〈a〉 ⊕ 〈b〉.

It is shown in [8, Example 3.16] that the elements of Φ can be described
by two families {θiλ} and {φjµ} with the parameters 1 ≤ i, j ≤ 4 and λ ∈
{±1,±3}, µ ∈ {0,±1, 2}. A straightforward check using the definitions given
in Example 3.16 of [8], reveals that the only idempotent endomorphisms in Φ
are 0 and 1.

Let P = 〈a〉; we claim that P is a projection-invariant subgroup of C. For if
π ∈ End(C) is an idempotent, then π ¹ P is an idempotent in Φ and so is either
0 or 1. In either case Pπ ≤ P and so P is a projection-invariant subgroup of
C. However direct calculation shows that P [2] = P is not any of the subgroups
(2ωC)[2], (2ω+1C)[2], (2ω+2C)[2], (2ω+3C)[2] = 0. Since a ∈ P [2] has height ω
in C, P [2] 6= (pnC)[2] for any finite n. Thus C is not projectively socle-regular
but it is strongly socle-regular since it is transitive - see [4, Theorem 2.4].
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The class of projectively socle-regular groups is, however, large. Recall that
Megibben [14] has shown that a transitive fully transitive group G, which sat-
isfies the technical condition (∗) on its Ulm invariants, has the property that
every projection-invariant subgroup P of G is fully invariant; in particular he
noted that the class of totally projective groups satisfies the property (∗). Con-
sequently we have:

Proposition 1.14 Transitive, fully transitive p-groups satisfying the condition
(∗) are projectively socle-regular. In particular, totally projective p-groups and
Cλ-groups of length λ, where λ has cofinality ω, are projectively socle-regular.

Proof. If P is a projection-invariant subgroup of G, then it follows from
Megibben’s theorem [14] noted above, that P is fully invariant in G. In view
of [3, Theorem 0.3], G is socle-regular. Thus P [p] = (pαG)[p] for some ordinal
α, whence G is projectively socle-regular as required. Since a totally projective
group is both transitive and fully transitive by Theorems 1.2 of [10] and satisfies
the condition (∗), it is projectively socle-regular.

To show the projective socle-regularity of Cλ-groups of length λ, where λ
has cofinality ω - see e.g., [16, Chapter 5], [13] or [17] for further details of
Cλ-groups - note that, as observed by Megibben [14, p. 179], such a Cλ-group
satisfies the technical condition (∗) - this is essentially because a Cλ-group of
length λ, where λ has cofinality ω, has a λ-basic subgroup whose decompositions
lift to the whole group (see [16, Lemma 30.2] and the λ-basic subgroup satisfies
(∗) since it is totally projective. Hence, if we can show that G is both transitive
and fully transitive, the desired result will follow from the argument above.

Now such a Cλ-group G of length λ, is λ-separable when λ has cofinality
ω - see [16, Corollary 31.3]. Hence if x, y ∈ G with UG(x) = UG(y) (resp.
UG(x) ≤ UG(y)), there is a direct summand H of G, say G = H ⊕ K, such
that H is totally projective and 〈x, y〉 ≤ H. Since H is a direct summand of
G, we have UH(x) = UG(x) and UH(y) = UG(y). However, a totally projective
group is both transitive and fully transitive, so there exists an automorphism
θ (resp. an endomorphism φ) of H with xθ = y (resp. xφ = y). Since θ, φ
extend to maps θ ⊕ 1K , φ ⊕ 1K which are, respectively, an automorphism and
an endomorphism of G, we have that G is both transitive and fully transitive,
as required.

We return now to consideration of the converse of Proposition 1.3; recall that
in Theorem 1.12 we showed that the property of being projectively socle-regular
lifts from the subgroup pnG to the whole group G. To extend this result to the
ordinal ω and beyond, it seems inevitable that we need some condition relating
to total projectivity.

Theorem 1.15 (i) If G/pωG is a direct sum of cyclic groups and pωG is pro-
jectively socle-regular, then G is projectively socle-regular;

(ii) If α is an ordinal strictly less than ω2 such that pαG is projectively socle-
regular and G/pαG is totally projective, then G is projectively socle-regular;

(iii) If G/pβG is totally projective and pβG is separable, then G is projec-
tively socle-regular.
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Proof. (i) Arguing as in the proof of Theorem 1.12, it suffices to consider
an arbitrary projection-invariant subgroup P of G, where P ≤ pωG. We claim
that P [p] is a projection-invariant subgroup of pωG. Assuming this, it follows
immediately that P [p] = (pα(pωG))[p] = (pω+αG)[p] for some ordinal α and so
G is projectively socle-regular. To complete the proof of (i) it remains only to
substantiate the the claim.

Suppose π is an arbitrary idempotent endomorphism of pωG, then it follows
from [11, Theorem 11] that there is an idempotent endomorphism η of G such
that η ¹ pωG = π. But then P [p]π = P [p]η ≤ P [p] since P is a projection-
invariant subgroup of G.

The proof of (ii) is by transfinite induction; note that when α is finite or
equal to ω, the result follows from Theorem 1.12 and (i) above. Since the
argument follows exactly as in the proof of Proposition 1.6 (v) of [4], we simply
refer the reader there.

For the final part (iii) we note firstly that if l(pβG) = n < ω, then pβG
is a direct sum of cyclic groups and so G itself is totally projective by a well-
known theorem of Nunke [15]. The result then follows from Proposition 1.14
above. Suppose then that l(pβG) = ω. Observe that G is then a Cλ-group
of length λ = β + ω and λ has cofinality ω. To see this note that if σ ≤ β,
then pσ(G/pβG) = pσG/pβG and so G/pσG ∼= (G/pβG)/pσ(G/pβG) is totally
projective by the previously quoted result of Nunke. If β < σ < λ, then σ has
the form β + n and so if X = G/pβ+nG, pβX = pβG/pβ+nG implying that
X/pβX ∼= G/pβG is totally projective. Since pβX = pβG/pβ+nG, we have that
pβX is a direct sum of cyclic groups and so X is again totally projective. It
follows then G is a Cλ-group and clearly it has length λ. The result then follows
from Proposition 1.14 above.

The next assertion demonstrates that certain subgroups inherit projective
socle-regularity.

Proposition 1.16 If G is a projectively socle-regular p-group and P is a projection-
invariant subgroup of G with the same first Ulm subgroup, then P is projectively
socle-regular.

Proof. Suppose K is an arbitrary projection-invariant subgroup of P . Since
the projection-invariant property is obviously transitive, it follows that K is a
projection-invariant subgroup of G. Therefore there is an ordinal α such that
K[p] = (pαG)[p]. If α ≥ ω, it follows at once that K[p] = (pαP )[p] and we are
done. If now α is a finite ordinal number, say t, then K[p] = (ptG)[p] ≥ (ptP )[p]
and so it is easy to check that minP (K[p]) is finite. Furthermore, Proposition
1.1 applies to infer that K[p] = (psP )[p] for some natural s, as required.

Let L denote a large subgroup of a p-group G. Using standard group-
theoretic facts about L (see, e.g., [16]), a direct consequence is the following:

Corollary 1.17 If G is projectively socle-regular p-group and L is a large sub-
group of G, then L is projectively socle-regular.

Remark 1.18 It is worthwhile noticing that the direct sum of two projectively
socle-regular groups need not be projectively socle-regular. In fact, consider the
example based on an idea of Megibben that has been used in [3] and [4]: let A

8



and B be p-groups with pωA ∼= pωB ∼= Z(p) such that A/pωA is a direct sum of
cyclic groups and B/pωB is torsion-complete. We have shown in [3, Theorem
1.6] that their direct sum G = A⊕B is not socle-regular and hence it is clearly
not projectively socle-regular. However, utilizing Corollary 1.2, we observe that
both A and B are projectively socle-regular but their direct sum is not.

However, as observed in Proposition 1.1, separable p-groups are always pro-
jectively socle-regular and so one would expect that the addition of a separable
summand to a projectively socle-regular group would result in a projectively
socle-regular group; this is, indeed, the case: if G is projectively socle-regular
and H is separable, then A = G ⊕ H is projectively socle-regular. The proof
follows exactly as the proof of the corresponding statement for strongly socle-
regular groups - see [4, Proposition 3.2]. The converse situation i.e., if G is a
summand, with separable complement, of a projectively socle-regular group A,
whether G is necessarily projectively socle-regular is not clear and one encoun-
ters similar difficulties to those experienced for strongly socle-regular groups -
see the discussion and results following the proof of [4, Proposition 3.2].

2 Direct Powers

There is another source of projectively socle-regular groups which can be easily
exhibited. In fact groups G of the form G = H(κ), where H is any p-group and
κ is a cardinal, have the property that every projection-invariant subgroup of G
is fully invariant in G. We begin with a result which is presumably well known
but we could not find an explicit reference to it.

Proposition 2.1 Let R be an arbitrary ring, then every ∆ ∈ Mn(R), the ring
of (finite) n × n matrices over R (n > 1), can be expressed as a finite sum
∆ = ∆1 + · · · + ∆k, where each ∆i is either idempotent or a product of two
idempotents.

Proof. We consider first the case where n = 2. Let ∆ = ( r s
u v ) and set ∆1 =

( 0 s
0 1 ), ∆2 = ( 0 0

u 1 ), ∆3 = ( r 0
0 0 ) and ∆4 =

(
0 0
0 v−2

)
; clearly ∆ = ∆1+∆2+∆3+∆4.

A straightforward check shows that ∆1, ∆2 are both idempotent.
However, ∆3 = ( 1 1

0 0 )
(

1 0
r−1 0

)
= XY say, and it is easy to check that both

X, Y are idempotent.
Finally ∆4 =

(
0 0

v−3 1

)
( 0 1

0 1 ) = ZW say, and again it is straightforward to
check that both Z, W are idempotents.

So the result is true for n = 2. Proceeding by induction, assume the result
holds for n = k and consider ∆ =

(
A b
c d

)
, a (k + 1) × (k + 1) matrix, where A

is k × k, d ∈ R, b is a k × 1 column vector and c is a 1 × k row vector. Let O
denote the k × k zero matrix.

Then ∆ = ( O b
0 1 ) + ( O 0

c 1 ) + ( A 0
0 0 ) +

(
O 0
0 d−2

)
.

The first two matrices in this sum are easily seen to be idempotent and an
identical argument to that used in the 2× 2 case, shows that the final matrix is
a product of two idempotents.

By induction the matrix A may be expressed as A = A1 + · · · + At where
each Ai is either idempotent or a product of two idempotents. However, if X
is an idempotent k × k matrix, then ( X 0

0 0 ) is an idempotent (k + 1) × (k + 1)
matrix, while if X, Y are idempotent then ( XY 0

0 0 ) = ( X 0
0 0 ) ( Y 0

0 0 ) is a product
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of two (k + 1)× (k + 1) idempotent matrices. Thus the remaining matrix ( A 0
0 0 )

can be expressed as a sum of idempotents and products of two idempotents.
Therefore the matrix ∆ has the same property and the proof is completed by
induction.

Proposition 2.2 If G has the form G = H(κ), for some group H and some
cardinal κ, then every projection-invariant subgroup of G is fully invariant in
G.

Proof. If κ is finite, then every endomorphism of G can be expressed as a
κ× κ matrix ∆ over the ring R = End(H). Thus if P is a projection-invariant
subgroup of G, then P∆ = P (∆1 + · · ·+∆t) where each ∆i is either idempotent
or a product of idempotents. It is immediate that P∆ ≤ P and hence P is fully
invariant in G. If κ is infinite, then G = A ⊕ A, where A ∼= H(κ) and so every
endomorphism of G is a 2 × 2 matrix over the ring S = End(A). Again every
endomorphism of G is a sum of products of idempotent matrices over S by
Proposition 2.1 and so is a sum of products of idempotent endomorphisms of
G. The result follows as before.

It is now easy to exhibit many projectively socle-regular groups.

Theorem 2.3 If G is socle-regular, then G(κ) is projectively socle-regular for
all κ > 1. In particular, if G is projectively socle-regular, then so also is G(κ)

for all κ.

Proof. Suppose that P is a projection-invariant subgroup of G(κ) for some
κ > 1, then, by Proposition 2.2, P is a fully invariant subgroup of G(κ).
However, it follows from [3, Theorem 1.4] that G(κ) is socle-regular and so
P [p] = (pαG(κ))[p] for some α. Hence G(κ) is projectively socle-regular. The
final comment is immediate.

The next surprising statement illustrates that in some cases socle-regularity,
strong socle-regularity and projective socle-regularity do coincide.

Theorem 2.4 Suppose κ > 1. Then the following four points are equivalent:
(i) G is socle-regular;
(ii) G(κ) is socle-regular;
(iii) G(κ) is strongly socle-regular;
(iv) G(κ) is projectively socle-regular.

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow from [4, Corollary
3.7] and [5, Corollary 3.2]. Moreover, the implication (i) ⇒ (iv) follows from
Theorem 2.3, whereas the implication (iv) ⇒ (ii) is trivial.

However, the class of projectively socle-regular groups is not closed under
taking summands.

Proposition 2.5 There exists a projectively socle-regular group H having a
direct summand G which is not projectively socle-regular.
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Proof. Let G be a socle-regular group which is not projectively socle-regular-
for example, the group in Proposition 1.7. Then if H = G⊕G, it follows from
Theorem 2.3 that H is projectively socle-regular, but clearly its direct summand
G is not projectively socle-regular.

We close the paper with some open questions:

Problem 1. Are Krylov transitive p-groups satisfying condition (∗) projectively
socle-regular groups?
Problem 2. If G is a socle-regular p-group with finite pωG, does it follow that
G is projectively socle-regular?
Problem 3. Is it true that projectively socle-regular 2-groups are strongly
socle-regular?
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