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Abstract 

Skin cancer is a global epidemic that is increasing annually. However, our knowledge of 

the mechanisms involved in skin carcinogenesis is relatively poor. Investigative studies 

to date have predominantly employed fluorescent UV A and I or UVB lamps. The 

information gained from such studies has pioneered this area of research effectively, 

however, the typical unimodal Gaussian distribution of such irradiators do not reflect 

that of solar radiation nor do they account for potential waveband interactions. 

Advancing technologies in solar simulation have opened up this field to more 

environmentally and biologically relevant exposures, not only in terms of distribution 

but also irradiance. To begin, this study addressed issues regarding the biological 

relevance of four different irradiators with respect to solar radiation. During this 

investigation the different exposure media employed (cell culture medium and PBS) 

were found to elicit significantly different results in terms of cell survival which were in 

direct conflict with the transmittance properties of the exposure media. The differential 

effects of the media were further investigated using endpoints that assessed the role of 

reactive oxygen species, mechanistic processes ( caspase-3 activity, mitochondrial 

membrane potential) and genomic perturbations (mitotic index, comet assay) in 

response to solar simulated irradiation. These results prompted further investigations 

into the effects of solar simulated radiation on cell culture medium. Medium transfer 

experiments showed that cell culture medium irradiated in the absence of cells was 

cytotoxic to unirradiated cells. Solar simulated radiation induced bystander effects were 

also investigated to determine if the presence of cells during irradiation had an effect on 

the cytotoxicity of the irradiated medium. Thus, this study assessed the two most 

fundamental parameters in non-ionising radiation in vitro investigations in order to form 



solid foundations upon which more detailed investigations into the mechanisms of skin 

carcinogenesis can confidently be performed. 
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Chapter 1 Introduction 

Solar radiation plays a vital role in the sustenance of life through processes such as 

photosynthesis in plants (1) and vitamin D3 synthesis in human skin (2). However, the 

effects of solar radiation are not always innocuous. Our biosphere is predominantly 

protected from the detrimental effects of solar radiation due to the existence of the ozone 

layer in the stratosphere which absorbs most of the harmful radiation. However, short 

wavelength radiation can penetrate the atmosphere and exert detrimental effects. Radiation 

whose wavelengths occur from 400 nm down to 10 nm is termed ultraviolet (UV) radiation 

and is subdivided into three regions; UV A, UVB and UVC whose wavebands are defined 

as 400 - 315 nm, 315 - 280 nm and 280 - 10 nm respectively (3, 4). The shortest 

wavelength reported to occur at the terrestrial level is 295 nm (5). Thus, mid UVB radiation 

is the most energetic waveband incident at the terrestrial level. Solar UV radiation is 

without doubt the primary risk factor for non melanoma skin cancers (NMSC) (6). 

Although its involvement in malignant melanoma is less straightforward (7) 

epidemiological and experimental evidence clearly implicate UV radiation in malignant 

melanoma (8, 9). In 2005, over 76,000 cases of NMSC were registered in the UK (10) 

while the current incidence rate in the US is in excess of one million cases per year which 

equals all other malignancies combined (11, 12). It is expected that 20% and 66% of the 

Caucasian populations living in the US and Australia respectively will develop NMSC 

during their lifetime (12, 13) where the majority ofNMSC cases are basal cell carcinomas 

(BCC) and squamous cell carcinomas (SCC) (12). The susceptibility of an individual to 

NMSC is influenced strongly by skin phototype where at-risk individuals are those who 
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bum easily and tan minimally (14). Immunosuppression also plays a significant role in skin 

carcinogenesis, a fact that is highlighted by the increased incidence of NMSC in organ 

transplant recipients on lifetime immunosuppressants and immunocompromised chronic 

lymphocytic leukemia patients (6). Although these potentially disfiguring carcinomas are 

rarely fatal, their high incidence rates have the potential to exert a substantial burden on 

healthcare systems, both medically and financially. However, sun protection campaigns 

advocating skin cancer prevention have been found to be both preventative and cost 

effective when modelled with melanoma incidence rates (15). The cornerstone of such 

campaigns is to encourage safe sun practices such as regular use of sunscreens, use of 

protective clothing and minimising exposures. However, such stringent recommendations 

have been questioned with regard to the potentially beneficial effects of solar radiation on 

internal cancers via vitamin D3 synthesis (16-18). In tum, such beneficial assertions have 

been rebutted on the grounds that the recommended daily intake of vitamin D3 can be 

adequately obtained through dietary means and supplementation thus avoiding unnecessary 

UV exposure and potential deoxyribonucleic acid (DNA) damage (19), where the 

accumulation ofunrepaired DNA damage is an integral step in the carcinogenic pathway. 

1.1 DNA, a brief overview 

DNA is located in the nucleus of eukaryotic cells and encodes the entire genome of an 

individual. Genes are preferentially expressed through transcription (formation of 

ribonucleic acid (RNA) from DNA) and translation (formation of functional proteins from 

RNA) depending on the requirements of the cell. DNA consists of two polymer chains that 
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run anti-parallel and consist of monomeric subunits termed nucleotides. Each nucleotide 

consists of 3 components, a pentose sugar, a nitrogenous base and a phosphate group. 

Covalent phosphodiester bonds between the sugar and phosphate groups form the DNA 

backbone from which the bases extend. There are four bases in DNA; guanine (G), adenine 

(A), cytosine (C) and thymine (T) and based on their ring structure each base is termed a 

purine (G and A) or a pyrimidine (C and T). The two polynucleotide chains are held 

together via hydrogen bonding between opposing bases. Base pairing is highly conserved 

and non random where G always pairs with C and A always pairs with T forming three and 

two hydrogen bonds between each pair respectively. The abundance of conjugated bonds in 

the ring structures of DNA bases makes DNA an effective chromophore (20) that absorbs 

maximally at 260 nm (21). Although DNA does not absorb as effectively at terrestrial UV 

wavelengths, the efficacy of UV radiation with regard to damaging DNA increases 

dramatically with decreasing wavelength, particularly over the UVB region as shown in 

figure 1.1. 

1e+02 
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1e+01 
DNA-damage action spectrum --

1e+00 

1e·01 

1e-02 
-C 

1e-03 

1e-04 
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260 280 300 320 340 360 380 400 
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Figure 1.1 Erythemal and DNA damage action spectrum (22) 

12 



1.2 DNA and UV radiation 

Absorption of UVB photons induces dimerisation of adjacent pyrimidine bases. There are 

12 types of dimeric photoproducts possible including cyclobutane pyrimidine dimers 

(CPDs), pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) and its Dewar valance isomer 

formed when 6-4PPs absorb radiation at 320 nm (23). All three dimeric photoproducts can 

be formed at the four bipyrimidine sites (TT, TC, CT and CC sequences) (24). Using high 

performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), Ravanat 

et al (24) have shown that TT and TC sequences are 10 fold more reactive than CT and CC 

sequences in UVB irradiated DNA but that TT and CT favours CPD formation while TC 

and CC favours 6-4PP formation. Although the net amount of lesions formed at TT and TC 

sequences were found to be similar, CPD induction was 10 fold higher than 6-4PP 

induction at TT sequences while both lesions were generated in similar amounts at TC 

sequences. Only CPDs were produced at CT sequences while both CPDs and 6-4PP were 

formed at CC sequences but at low yields. The overall ratio ofCDP to 6-4PP formation was 

3:1, while Dewar valence isomers were barely detected at CC sequences only. These 

observations are supported by the work of Mouret et al (25) who observed near identical 

lesion distributions in normal human keratinocytes (NHK) irradiated for 1 minute in PBS at 

an irradiance of 3 wm-2 using a UVB irradiator emitting predominantly at 312 nm but no 

spectral distribution was provided. These results agree with the general consensus that 

CPDs are the predominant dimeric lesions formed in UV irradiated cells, which may be an 

artefact of preferential repair. 6-4PPs are repaired more efficiently than CPDs (25, 26) 

which may be due to the fact that 6-4PPs are more distorting than CPDs, bending the DNA 
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44° and go respectively (27) and are thus recognised more efficiently. Furthermore, 6-4PPs 

have been estimated to be 3-5 times more toxic than CPDs in nucleotide excision repair 

(NER) deficient cells (28). 

Interestingly, the work of both Ravanat et al (24) and Mouret et al (25) demonstrate that the 

dipyrimidine sequences at which CPDs are predominantly and least likely generated are the 

IT and CC sequences respectively. Furthermore, the work of Mouret et al (25) showed that 

CPD lesions occurring at TT sequences are the slowest lesions to be repaired while those at 

CC sequences are repaired far more rapidly. However, C to T and CC to TT tandem 

mutations are regarded as the hallmark of UV radiation (29). Mouret et al (25) infers that 

the lack of mutagenic potential at TT sequences is due to the A-rule. The A-rule is when the 

DNA repair or replication machinery does not recognise a damaged or mutated base and 

inserts an adenine in the opposing strand by default (30). This default mechanism maintains 

the base pairing rules for both bases involved in CPD mutations formed at TT but not 

cytosine containing sequences such as CC, CT or TC. Thus, if unrepaired, at the second 

round of replication post CPD induction the cytosine bases can give rise to C to T 

mutations. Furthermore, methylation of cytosine at C5, found exclusively at CpG 

dinucleotides, is thought to play an important role in UVB mutagenesis (31 ). A common 

hypothesis is that UV mutations only occur after base deamination (loss of an amino group) 

within the CPD (29). Deamination of cytosine and 5-methylcytosine yields uracil and 

thymine respectively, of which uracil is more evident for excision in DNA (32). Lee and 

Pfeifer (29) found methylation of cytosine at C5 promotes deamination within CPDs and 
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yields a corresponding increase in CC to TT and transition mutations at mutational 

hotspots frequently observed in the p53 gene of non melanoma skin tumours. 

Although the effects of UVB radiation are predominantly executed through direct 

excitation of DNA bases, UVB radiation also results in oxidative damage including 8-

0xoguanine (8-oxoG) (23), where 8-oxoG is the primary DNA lesion generated under 

oxidative stress and thus an excellent indicator of oxidative stress (33). However, 8-oxoG 

DNA lesions were not detected in UVB irradiated cells unless lethal doses were employed, 

at which point cell death was attributed to an overwhelming production of CPDs and not an 

effect of oxidative damage (34). In contrast to UVB, UV A radiation is poorly absorbed by 

DNA (35), thus the genotoxic effects ofUVA radiation have been predominantly attributed 

to oxidative stress via photosensitisation of, as of yet, unidentified cellular chromophore(s) 

(21). Photon absorption by endogenous photosensitiser(s) may react directly with DNA in 

an electron transfer process (type I mechanism) or by energy transfer to molecular oxygen 

generating reactive oxygen species (ROS, type II mechanism) which can then damage 

DNA (36). UV A radiation has been shown to generate intracellular ROS such as hydrogen 

peroxide, superoxide, singlet oxygen and the hydroxyl radical (37-40) which in turn can 

cause effects like protein modification ( 41) and lipid peroxidation ( 42). However, the 

qualitative and quantitative induction of such oxidative stressors and subsequent damage 

are likely to vary depending on endogenous photosensitisers present during irradiation (23). 

So called UV A fingerprint mutations, namely AT-CG transversions have been found to 

occur more frequently in the basal layer of human squamous cell carcinomas compared to 
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UVB signature mutations (C-T or CC-TT transitions) (43). These findings were later 

confirmed using engineered human skin which also showed AT-CG transversions to be the 

most frequent mutational event ( 5/10 mutations) in the basal layer post UV A irradiation 

( 44). Although 8-oxoG is considered the primary oxidative lesion generated by oxidative 

stress, its signature mutation, the GC-TA transition (33), was the least frequently observed 

mutation in UV A irradiated engineered human skin with only 1110 mutations (44). 

However, the GC-CG transversion was the second most observed mutational event with 

4/10 mutations (44), where the GC-CG transversion has been surmised to occur due to 

secondary oxidation of 8-oxoG which has an even lower ionisation potential than its 

precursor guanine (33). The prevalence of UV A mutations at the basal layer has been 

attributed to its increased epidermal penetration compared to UVB radiation. However, 

another link has been established by J averi et al ( 45) who found that the abundance of 

human DNA glycosylase OGG1, responsible for excising 8-oxoG, decreases with 

increasing epidermal depth. Thus, 8-oxoG is repaired more efficiently in superficial layers 

which may, in part, explain the prevalence of GC-CG transversions in the basal layer of 

UV A irradiated human engineered skin. 

Despite the fact that UVA radiation is poorly absorbed by DNA, there is a substantial 

amount of evidence in the literature regarding its ability to generate CPDs. Surprisingly, it 

has been reported that CPD lesions generated at TT sequences, not 8-oxoG lesions, are the 

predominant DNA lesion induced post UV A irradiation ( 46, 4 7). However, Besaratinia et al 

(34) found that the predominant UV A-induced DNA lesion generated was dose dependent 

where CPD and 8-oxoG lesions were dominant at high and low doses respectively. In 
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contrast, Schuch and Menck (36) found that the level of oxidative damage measured in 

terms of 8-oxoG exceeded that of dipyrimidine dimers in UV A irradiated DNA plasmid. 

Moreover, they found that the mutagenic effects of a continuous exposure to solar radiation 

from 1 Oam - 2pm mid summer at a latitude of 29° south of the equator (Brazil) was similar 

to that observed in the UV A-irradiated DNA plasmid (36). Although these studies appear to 

conflict with one another, the carcinogenic potential of UV A radiation has been irrefutably 

demonstrated by de Laat et al ( 48) who observed a dose dependent induction of squamous 

cell carcinomas in hairless mice irradiated daily with near monochromatic radiation at 365 

nm. The mutagenic potential of UV A radiation may be augmented by observations that 

UV A-irradiated cells display a greater affinity toward CPD production at CpG sites ( 49) 

and slower CPD repair (50) compared to UVB irradiated cells, which together increases the 

probability of deamination and subsequent mutagenicity if the aforementioned hypothesis is 

correct. 

1.3 Repair mechanisms and potential targets 

Although UV radiation is clearly a complete carcinogen, cells possess effective repair 

mechanisms capable of removing solar radiation-induced DNA lesions. The most effective 

repair mechanism for the removal of UV -induced lesions is photoreactivation which 

employs light-activated lesion specific photolyases to repair CPDs (51). However, 

photolyase encoding genes were not conserved in placental mammals including humans 

(52). Thus, the removal of pre-mutagenic lesions like CPDs in these mammals relies 

exclusively on nucleotide excision repair (NER) (53) that excises and removes a short 
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stretch of nucleotides in a 'cut and patch' type process. NER is capable of recognising a 

broad spectrum of DNA helix distorting lesions including UV lesions and is comprised of 

two sub-pathways termed global genomic repair (GGR) and transcription coupled repair 

(TCR) (28). GGR repairs DNA lesions throughout the entire genome whereas TCR, as the 

name suggests, removes transcription blocking DNA lesions on the transcribed strand, 

where the pathways differ in terms of activation but follow a common pathway thereafter 

(54). GGR is initiated by adduct recognition by the XPC-HR23B-Centrin complex (55), 

however, due to the mild distortions incurred to the helix by CPDs, GGR damage 

recognition is further assisted by XPE complexed to the UV damaged DNA binding protein 

(UV-DDB) which is comprised of DDBl and DDB2 subunits (56-58). The general 

assumption is that TCR is activated by the physical blockage of the transcribing activities 

of RNA polymerase II upon which TCR-specific factors, CSA and CSB, are recruited to 

displace the stalled polymerase from the DNA strand in order to access the lesion for repair 

(57-60). 

Upon recognition of the DNA lesion the transcription factor IIH (TFIIH), XP A and 

replication protein A (RP A) sequentially bind to the damage site. The helicases XPB and 

XPD are subunits of TFIIH and operate in a 3'-5' and 5'-3' direction along the damaged 

strand respectively opening a bubble in the double helix at the locus of the lesion. The 

lesion is excised by asymmetric dual incisions performed by endonucleases XPG and the 

XPF-ERCCl complex which hydrolyse phosphodiester bonds on the 3' and 5' sides of the 

damage site respectively. XP A and RP A function to stabilise the single strand DNA sites 
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and the now excised region is re-synthesised by DNA polymerases using the undamaged 

strand as a template and the DNA fragments are ligated by DNA ligase (28, 54-60). 

The importance of NER repair mechanisms in the prevention of skin carcinogenesis is 

highlighted by the hereditary autosomal recessive syndrome xeroderma pigmentosum (XP). 

There are eight complementation groups of XP (XP A-G and XPV) corresponding to 

different gene defects, all of which exhibit at least a 1 000 fold increased susceptibility to 

skin carcinogenesis compared to normal individuals (60, 61). The latter complementation, 

XPV, is different from the former variants in that XPV cells are NER proficient and can 

efficiently excise DNA lesions but lack DNA polymerase 11, the translesion synthesis 

polymerase necessary for CPD bypass (28). Cockayne syndrome (CS) and 

trichothiodystrophy (TDD) are two additional disorders that arise from NER defects, 

specifically TCR defects, that present a significantly different phenotype to XP patients 

including the absence of increased susceptibility to skin cancer although sun sensitivity 

may present (61). Using various XP cell lines (XPA, XPD, XPG and XPV) and NER 

proficient HeLa cells transfected with and without photolyases specific for CPD and 6-

4PPs, Lima-Bessa et al (28) demonstrated that both CPDs and 6-4PPs are strong triggers 

for apoptosis but that CPDs, not 6-4PPs, are the major apoptotic trigger inNER proficient 

cell lines (both HeLa and XPV cells). Furthermore, the work of Arlett et al (62) 

demonstrated that transfecting immortalised XPC cell lines with full length XPC eDNA to 

correct the NER defect restored normal cellular sensitivity to UV radiation as measured in 

terms of cell survival post irradiation. 
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From the above studies, it is clear that both DNA repair and cell death in response to UV 

photoproducts are important protective mechanisms by which genomic stability is 

maintained. However, mutagenic lesions must be capable of evading repair and apoptotic 

triggering in order to initiate the carcinogenic pathway. Nijhof et al (63) found that growth­

stimulated basal cells from hairless mice irradiated with repeated low doses (40 x 0.14 

MED (minimal erythmal dose)) using a broadband UV AlB irradiator retained CPDs post 

irradiation which gradually disappeared over a period of 2 weeks during which no 

apoptosis was observed and thus loss was attributed to epidermal turnover. Furthermore, 

clusters of p53+/+ over expressing cells were found to occur with the disappearance of CPDs 

in basal cells. These effects were not observed in the basal cells of mice irradiated once 

with a high dose of 6 MED. The authors concluded that the initial occurrence of CPD­

retaining cells is a prerequisite for the eventual formation of p53 clusters, a common pre­

neoplastic event in NMSC (63). 

The initiating step in carcinogenesis is the preservation of unrepaired genomic damage 

however only mutations that provide a growth advantage play a critical role (44). For the 

most part, these mutations are generally found in proto-oncogenes, tumour suppressor 

genes and I or DNA repair genes which provides favourable conditions for neoplastic 

transformation (64). Of these, the tumour suppressor gene p53 is possibly the most 

prominent target for such mutations as evidenced by that fact that it is mutated in 

approximately half of all human cancers (65). p53 is a transcriptional regulator with roles in 

cell cycle regulation, apoptosis and autophagy ( 64-66) and non transcriptional apoptotic 

roles via interactions with Bcl-2 family members (67). Furthermore, p53 is reported to be 
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mutated in 50-90 % of human NMSC depending on carcinoma type and the genomic 

susceptibility of an individual (68, 69). Although it is clear that p53 is an important target 

in skin carcinogenesis where mutations in this gene has potentially far reaching effects, 

DNA microarray analysis demonstrate that UV radiation affects a plethora of genes. Genes 

that function in a variety of processes including apoptosis, cell cycle regulation, signal 

transduction, mRNA transcription translation and protein processing, structural, 

metabolism, adhesion, proteasome, and stress responses (70-73). Although all four cited 

studies demonstrate the complexity of the molecular response in UV irradiated cells, the 

studies are inconsistent with regard to the up- or down-regulating effects of UV radiation 

on gene expression. Although Sesto et al (73) also reported that gene expression profiling 

was underestimated in comparison to northern blots which may account, in part, for such 

discrepancies, it is highly probable that these discrepancies arise from differences in 

spectral irradiance, dose, cell model and time points of gene expression analysis. Despite 

this, such studies provide important imformation regarding gene regulation of apoptotic 

cells which may help identify critical targets for mutations that provide the necessary 

conditions for tumour progression. For example He et al (70) found that Inhibitor-of­

Apoptosis (lAP) family member survivin is repressed in UV A irradiated apoptotic 

keratinocytes, while using immunohistochemistry, Grossman et al (74) found that survivin 

was expressed in 81% and 92% of human basal and squamous cell carcinomas respectively. 
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1.4 Rationale and objectives 

It is clear from the literature reviewed above that solar radiation, more specifically UV, 

radiation elicits a plethora of cellular responses. However, the exact contribution of UV 

radiation to, and the interplay of different wavebands in, skin carcinogenesis are not fully 

elucidated as of yet. Of particular interest to this study are reports that the distribution of 

DNA lesions in UV-irradiated cells are dose dependent (24, 34). Although only the effect 

of dose was observed in these studies, these effects may well be applicable to the spectral 

irradiance of an irradiator, since it is not unfathomable that the amount of energy deposited 

in a cell per second (Jm-2s-1 = wm-2
) may differentially affect the response and I or the 

ability of cells to respond to damage. Support for this conjecture is provided by the work of 

Hoerter et al (75) who found that increased UV A irradiances (Wm-2
) significantly increased 

oxidative stress in human fibroblasts as measured using four different indicators (protein 

oxidation, reduced glutathione (GSH) levels, heme oxygenase-1 (H0-1) activity and ROS). 

Furthermore, inconsistencies regarding UVA radiation and DNA mutagenesis have been 

speculated to be the result of differences in experimental systems, particularly the spectral 

distribution of the irradiator employed (23, 31). In addition, the photochemistry of UV A 

radiation has been speculated to be strongly influenced not only by the cell type but also the 

cellular environment (47). 

These observations and concerns form the basis for this current body of research. Over the 

course of this PhD project, issues pertaining to the environmental relevance of both the 

irradiator and the exposure medium were examined with the objective of establishing both 
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environmentally and biologically relevant exposure parameters upon which further and 

more detailed future investigations into the mechanistic effects of solar radiation could be 

performed. As DNA damage is predominantly manifested as cell death in UV irradiated 

cells (21 ), cell death was the predominant endpoint employed in this study, as measured 

using the gold standard radiobiological assay, the clonogenic assay. In addition, apoptotic 

markers such as caspase activation and perturbations to the mitochondrial membrane 

potential were examined to investigate the role of programmed cell death, while the comet 

assay was employed to examine the ability of solar simulated radiation to incur DNA 

damage. 
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Chapter 2 Solar simulating sources - calibration and characteristics 

2.1 Introduction 

As outlined in chapter 1, skin cancer is a globally increasing epidemic whose incidence is 

known to be related to UV radiation exposure (1-5) where UV from solar radiation is 

known to be the main environmental factor contributing to the formation of these 

malignancies. The Sun approximates a blackbody irradiator at 5800 K (6, 7) and is the 

Earth's principal source of energy via radiation emissions from the surface of the Sun. 

2.5 

2 

'E 
c: 

'1; 1.5 

~ 
Q) 

" c: I "' '0 
~ 

0.5 

0 
500 1000 1500 2000 2500 

Wavelength (nm) 

Figure 2.1 Spectral irradiance computed for a black body irradiator at a temperature of 5800 K ( • ) 

and extraterrestrial solar radiation data sampled at the top of the Earth's atmosphere (•) by Frohlich 

and Wehrli (8) which yields a total spectral irradiance of 1354Wm-2 in the solar waveband. 

Figure 2.1 depicts extraterrestrial solar spectral data sampled by Frohlich and Wehrli (8) at 

the World Radiation Centre with the spectral irradiance for a blackbody irradiator at 5800 
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K overlaid. The blackbody irradiance was computed using the Planck radiation law shown 

in equation 2.1, which describes how the irradiance (I) at wavelength (A.) varies with 

temperature (T). 

Equation 2.1 

The irradiance of solar radiation at the top of the atmosphere is computed by integrating 

extraterrestrial solar spectral data. However, the elliptical orbit of the Earth around the Sun 

gives rise to variations in the Earth to Sun distance. Thus extraterrestrial irradiance is taken 

at the mean Earth-Sun distance giving a value of approximately 1367 wm-2 known as the 

solar constant (9, 10). Integrating the extraterrestrial data provided by Frohlich and Wehrli 

(8) yields an irradiance of 1354 Wm-2 which compares well with the solar constant. 

As radiation passes through the Earth's atmosphere, the intensity of the incident radiation is 

attenuated due to various processes such as Rayleigh scattering, water vapour attenuation, 

aerosol attenuation and most significantly for the ultraviolet region, ozone absorption (11-

13). However the resulting terrestrial spectral distribution is far from a global constant since 

solar radiation levels fluctuate with geographical location/latitude, season, solar elevation 

(6) and thus relative air mass (AM). Relative AM is the atmospheric path length traversed 

by solar radiation (figure 2.2) and varies with solar elevation angle (e), related by equation 

2.2, where a minimum AM value of 1 occurs when the Sun is directly overhead thus 

yielding a solar elevation angle of 90° i.e. at the equator during an equinox. 

AM= 1/Sin(e) Equation 2.2 
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~ 
Sun 

The Earth's Surface 

Figure 2.2 Schematic depicting how the optical path length of sol;lr radiation through the Earth's 

atmosphere varies with solar elevation angle (8) (14). 

In addition to the attenuating effects of the atmosphere, the total in-adiance on a horizontal 

surface at the terTestriallevel known as global radiation, is composed of direct and diffuse 

components (12, 13 15 16). The direct component is simply the direct beam from the sun 

to the point of incidence on a holizontal surface. However diffuse radiation is complex and 

is comprised of fmward scattered radiation from the sky and swface albedo (i.e. radiation 

reflected by a surface). However in this study, only global radiation measw·ements are 

employed to ascertain simple approximations on the inadiance of a given source under 

investigation. 

All of the above illustrates the fact that solar radiation is highly variable with no absolute 

standard. However, it is reasonable to assume that inadiance values approximating those at 

near tropic latitudes (i.e. 23° nmth and south of the equator) are relevant to skin 

carcinogenesis investigations. 
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Despite these difficulties, approximations on solar irradiance at the terrestrial level can be 

ascertained using mathematical models and I or calibrated instrumentation. 

A typical mathematical approximation or solar irradiance model was published by Bird and 

Riordan (13) who used equation 2.3 to approximate global solar radiation at the terrestrial 

level (IdA.) for given atmospheric variable values. The model applies various transmittance 

functions and factors to extraterrestrial irradiance data (HoA.) to account for the attenuating 

processes that occur as radiation passes through the atmosphere. These include a correction 

factor for the Earth-Sun distance (D), a transmittance function at wavelength ').. for Rayleigh 

scattering (TrA.), a transmittance function at wavelength ').. for aerosol attenuation (T a~.), a 

transmittance function at wavelength ').. for water vapour attenuation (TwA.), ozone 

absorption at wavelength ').. (T oA.) and uniformly mixed gas absorption at wavelength /.. 

(T uA.). The extraterrestrial spectral data employed in the model was that provided by 

Frohlich and Wehrli (8) shown in figure 2.1. 

The primary irradiator employed in this study, the Q-sun solar simulator, is designed to 

provide global solar irradiance typically experienced at noon mid summer in Florida in the 

USA i.e. at latitude 25° north of the equator. A reference spectrum for comparison would 

ideally consist of solar radiation measured at latitude 25° N which was not feasible due to 

travel requirements. This point highlights the advantage of mathematical models such as 
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the Bird and Riordan (13) model which allow approximations of solar irradiance at a given 

time and location to be computed. Thus using the mathematical model shown in equation 

2.3, the global irradiance on the summer solstice (June 21st) at latitude 25°N was modelled 

to provide a reference spectrum for the Q-sun solar simulator and is shown in figure 2.3. 
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Figure 2.3 Extraterrestrial solar radiation ( •) modelled using the Bird and Riordan (13) mathematical 

model for Florida ( • ) and Dublin ( • ) on the summer solstice, Naples ( • ) on July 12th and Dublin ( • ) on 

the winter solstice. 

Since it was possible to measure solar radiation at various locations during the course of 

this project, to compare and test the model further, solar spectra were modelled for the 

same latitudes on the same dates. Figure 2.3 shows the spectral irradiance modelled for 

Naples, Italy on July 12th and Dublin, Ireland on both the winter and summer solstice 

(December and June 21st respectively). Integrating each of the curves over the UV region 

yields the UV spectral irradiance values that could be expected at these locations on the 

dates specified which are listed in table 2.1. 
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The Bird and Riordan (13) model yields a UVB irradiance of 2.86 wm-2 for solar radiation 

on the summer solstice in Florida (25°N, solar elevation 88.5°, AM value of 1). This 

concurs well with a solar UVB irradiance of 2.84 Wm-2 modelled by Garland et al (17) for 

Singapore during an equinox (1 °N, solar elevation of 89°, AM value of 1). The good 

correlation between data computed using the Bird and Riordan (13) model with data 

modelled in the literature for near identical solar elevation angles supports the Bird and 

Riordan model as a good standard against which solar simulation can be estimated. 

Table 2.1 Total and individual UV irradiance values for solar radiation spectra generated using the 

Bird and Riordan model (13). 

Location Florida Naples Dublin Dublin 

Date June 21st July 12th June 21st Dec 21st 

uv A & B (wm-2
) 75.71 66.29 61.44 7.79 

UVA(Wm-2
) 72.84 64.03 59.48 7.78 

UVB(Wm-2) 2.86 2.26 1.96 0.01 

When investigating the effects of solar radiation, the ideal situation would be to utilise solar 

radiation to elicit the biological response under investigation. However, this is rarely a 

viable option due to the stringent aseptic conditions required for cell culture and the highly 

variable nature of solar radiation. Since stability and reproducibility are essential to achieve 

trustworthy data, it is for this reason that employing an artificial irradiator is the most 

practical option. Although artificial irradiators are the more pragmatic alternatives to solar 

radiation, they are not without their challenges. There are many types of irradiator available 

for implementation in radiation studies. These sources vary broadly from the type of 
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source, wavelength range, spectral distribution, irradiance and delivery (i.e. continuous 

versus non-continuous), each asserting different advantages and disadvantages over one 

another. Since artificial irradiators provide the foundations of radiobiological 

investigations, the suitability or relevance of an irradiator for a given study must be 

determined prior to implementation. This requires prudent calibration and characterisation 

techniques to ensure reliable and trustworthy data can be collected. In addition, it has been 

shown that the irradiance of an irradiator can significantly change over the operational 

lifetime of a bulb (18), thus it is imperative that the temporal stability of a source be 

monitored to ensure the output is reproducible within a reasonable tolerance so that results 

collected from independent tests can be confidently associated with one another. 

In turn, thorough calibration processes enable data to be confidently communicated to peers 

via publications in a clear and comprehensive manner. The importance of this has been 

voiced strongly in the literature (19, 20). However there is a lack of detail in the literature 

regarding the output of irradiators utilised in many studies (19). Moreover, the results of 

meticulously performed biological experiments can be undermined or negated by either 

inadequate dosimetry and I or unrealistic exposures (19, 21). Specifying a dose, the 

waveband, the central wavelength or even just the irradiance used in a given study does not 

provide enough information for inter lab comparison or replication of experimental results 

as it reveals insufficient information regarding the spectral distribution and I or irradiance 

of the irradiator employed (19, 20, 22). For example, variable responses observed using two 

lamps centred about the same wavelength may be the result of differences in spectral 

distribution and I or irradiance of the source. Furthermore, while providing two or more key 
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pieces of information such as the irradiance (Wm-2
), the total dose administered (Jm-2

) and I 

or the exposure time is sufficient for dosimetry calculations, it still confers no information 

regarding the spectral distribution of the irradiator thus no information concerning the 

output in a particular waveband can be extracted. Hence the calibrated spectral distribution 

of a source is the best and most efficient manner to communicate the output of an irradiator 

( 6) with minimal ambiguity and is achieved using spectroradiometry. 

The objective of this chapter is to fully characterise all artificial irradiators employed in this 

study and to determine the ability of each source to produce environmentally and 

biologically relevant exposures with respect to solar radiation. Four artificial sources were 

employed in this project, two high pressure xenon arc solar simulators and two low 

pressure mercury fluorescent UV lamps, one emitting primarily in the UVB and the other in 

the UV A. Information pertaining to the spectral irradiance of each source was provided by 

their respective manufacturers, however the quality of the information supplied was 

inconsistent. The spectral irradiance for each irradiator was determined usmg 

spectroradiometry and compared to the information provided by the manufacturer. 

In addition to the spectral irradiance of an irradiator, the manner in which the output of an 

irradiator is delivered is also an integral aspect of a source. Solar radiation is a continuous 

source that varies in intensity but not delivery. Thus, the nature of output delivery for all 

four irradiators employed was investigated to determine if the output was continuous or 

non-continuous. 
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Spectroscopic analysis of the different exposure media (cell culture medium and PBS) and 

cell culture plasticware was also perfonned, to determine any possible attenuation effects 

they may have on the spectral irradiance administered by each ilTadiator. Inadiator 

characterisation was concluded with a temperature investigation for both solar simulators to 

determine if either irradiator induced any significant heating effects that may interfere with 

the normal function of biological samples. 
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2.2 Spectrometer spectral calibration 

To calibrate the spectral output of each artificial irradiator and to assess the reliability of the 

manufacturer data each irradiator was calibrated using spectroradiometry. Calibrating 

artificial sources using spectroradiometry requires that the spectrometer employed be 

calibrated over the wavelength range of interest using a calibrated and traceable standard 

(21, 23). The standard employed in this study was the Bentham CL6h spectral irradiance 

standard (Bentham Instruments Ltd, Berkshire, UK) and is traceable to National Physical 

Laboratory standards (NPL, Teddington, UK) . 

The Bentham standard is a 150 Watt quartz halogen lamp that requires a constant DC 

power supply provided by the Bentham 605 power supply. Halogen lamps are incandescent 

tungsten filament bulbs filled with an inert gas containing a halogen, typically Bromine 

(Br). Incandescence is the emission of electromagnetic radiation from a hot body due to the 

temperature of that hot body. In the case of a tungsten filament bulb, electromagnetic 

radiation is produced when a potential difference (V) is applied and the filament resists the 

induced flow of electric current (I) which in turn causes the filament to heat and emit 

radiation. Eventually a temperature is reached when the resistance (R) of the filament 

begins to increase with increasing temperature and the filament ceases to behave linearly 

according to Ohm's law (V=IR). Strict regulation of the current through the filament 

stabilises both the temperature and resistance (R), thus preventing variations in the spectral 

emissions of the irradiance standard. Figure 2.4 shows the spectral irradiance of the 
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Bentham standard between 250 and 3000 nm, which peaks at 853 nm and according to 

Bentham possesses a correlated colour temperature of 3277 K. 
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Figure 2.4 shows the spectral irradiance ofthe Bentham CL6h spectral irradiance standard which 

approximates a Blackbody irradiator at 3277 K, and is calibrated and traceable to the National 
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Figure 2.5 Temperature dependent spectralirradiance distribution of blackbody radiation which shows 

the peak intensity shift to shorter, more energetic wavelengths with increasing temperature. 

43 



The spectral distribution of the Bentham standard (figure 2.4) is similar to that of a 

blackbody irradiator, whose spectral distribution is temperature dependent as shown in 

figure 2.5. According to Weins law (AmaxT=2.90e-3 mK) the peak wavelength (Amax) of a 

blackbody irradiator occurs at 884 nm at a temperature (T) of 3277 K while a peak 

wavelength of 853 nm infers a correlated colour temperature of 4000 K. Tungsten has a 

melting temperature of 3690 K nor is it an ideal emitter thus differences are to be expected 

between ideal blackbody emission at 3277 K and that of tungsten at 3277 K. 

A miniature USB2000 fibre optic spectrometer (Ocean Optics, The Netherlands) with a 

200-1100 nm bandpass was used to calibrate all irradiators, where radiation is coupled to 

the 50~ input slit via a 600 Jlm fibre optic. A cosine corrected diffuser was mounted at 

the front end of the input fibre to ensure all of the downwelling radiation was sampled. 

When sampling radiation a detector should possess a hemispherical field of view so that it 

samples radiation from all directions (21, 24), particularly in the case of sources with direct 

and diffuse components. Detector diffusers are typically cosine weighted (6, 21, 24) so that 

they do not underestimate radiation at large incident angles. However most sensors do not 

possess "ideal" cosine weighted responses but detectors employing a PTFE diffuser can 

achieve satisfactory responses that deviate significantly from the ideal only at angles of 

incidence (8) greater than 70° (6). Thus a CC-3-UV PTFE cosine diffuser (Ocean Optics) 

was used in conjunction with the 600 Jlm fibre optic to sample over a 27t field of view to 

obtain a weighted response as shown in figure 2.6 over the wavelength range 200-1100 nm 

(25). Radiation collected by the input optics of the spectrometer is dispersed by a fixed 

grating across a 2048 pixel linear CCD array. Each source was sampled using the USB2000 
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spectrometer with an integration time of 100 ms per scan to achieve maximum signal 

without saturation and an average of 200 scans to increase the signal to noise ratio (26). 

Although the USB2000 has been reported to possess poor stray light rejection (23), it was 

also shown that with adequate correction the levels of stray light could be significantly 

reduced to less than 1% at 250 nm (23). A simple correction analogous to background 

subtraction was employed in this study where the difference in signal between blacked out 

pixels corresponding to 180 nm and at 250 nm, a wavelength at which no signal would be 

expected, was determined and subtracted at all wavelengths. This was performed for each 

independent sample due to the possibility of differing stray light profiles for each sampling. 

The irradiance of each source was relatively uniform, varying less then 10 % across the 

exposure field at which cells would be located during irradiation. 
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Figure 2.6 Angle of incidence dependent response of the CC-3-UV cosine diffuser ( •) (25) and the ideal 

cosine response ( •) 
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To calibrate the USB2000 spectrometer, the optical front end set-up described above was 

used to sample the calibrated Bentham standard. Figure 2. 7 shows the calibrated response 

for the Bentham standard, extracted from the data shown in figure 2.4 in the waveband of 

interest to this research (i.e. 280-800 nm). The spectral distribution obtained using the 

USB2000 spectrometer for the Bentham in digital numbers (DN) per nanometre (nm) is 

shown in figure 2.8. A wavelength dependent calibration factor for the USB2000 

spectrometer was computed by dividing the calibrated spectral irradiance of the Bentham 

standard in Wm-2 (figure 2.7) by the Bentham spectral distribution in DN (figure 2.8) at 

each wavelength. The resulting distribution is the calibration factor for the USB2000 

spectrometer in wm-2/DN at each wavelength and is shown in figure 2.9. The calibration 

factor shown in figure 2.9 can be applied to any spectral data sampled under the same 

parameters in order to transform the output of the data from DN to spectral irradiance in 
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Figure 2.7 The calibrated and traceable output of the Bentham spectral irradiance standard over the 

waveband of interest to this research 
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Figure 2.8 The un~calibrated spectral distribution of the Bentham standard sampled using the Ocean 

Optics USB S2000 spedrometer, 600m fibre optic, an integration time of lOOms and an average of200 

scans. 
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Figure 2.9 USB2000 calibration factor (Wm-1/DN) for the USB2000 spectrometer computed by dividing 

the c.aJib:tated spectral output of the Bentham (Wm-2
) by the un~alibrated spectral distribution of the 

Bentham (DN) sampled using the lJSB2000 spectrometer. 
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2.3 Q-sun solar simulator spectral calibration 

The principle irradiator in this study, the Q-sun solar simulator (Q-panel, Cleveland, USA), 

is a high pressure xenon arc lamp. When an electric discharge is applied to a gas, radiation 

is emitted as line spectra indicative of their atomic structure (27) which occur in the UV, 

visible and infrared (IR) regions for xenon gas. The production of continuous emission 

spectra are normally reserved for hot matter in condensed states i.e. liquids or solids at 

elevated temperatures (27). However it is possible to shift the emission of xenon from 

spectral to continuous by increasing both the gas pressure and the current density applied to 

the gas, which facilitates spectral line broadening and thus continuous emissions (28-30). 

To achieve the required current density to produce a continuum emission spectrum, the Q­

sun employs an external trigger system. A charged capacitor creates a high potential 

difference between the Q-sun bulb electrodes which is maintained by the non-ionised xenon 

gas which acts as an insulator. The trigger arm of the Q-sun makes contact with the centre 

of the quartz envelope (bulb) and applies a high voltage pulse to the envelope on ignition of 

the lamp. The applied voltage creates an electrostatic field that ionises xenon to the extent 

that it exceeds its breakdown voltage which is the point at which the gas makes the 

transition from electrical insulator to electrical conductor (31 ). When this electrical 

transition occurs in the vicinity of the electrodes, sparks form and propagate toward the 

opposite electrode. Once the length of the bulb has been traversed thus completing the 

'circuit' the charged capacitor discharges. The increased current flow between the 

electrodes induces further ionisation of xenon, thus increasing the current density and 
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temperature of the gas. Hence, it is a combination of the high gas pressure, current density 

and elevated temperature that enables xenon to produce a continuous emission spectrum. 
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Figure 2.10 Spectral irradiance data provided by the manufacturer Q-Panel for the Q-sun solar 

simulator operating at 0.68 Wm"2 at 340 om ( •) which is designed to mimic solar radiation with an AM 

value of 1 at a latitude of 25° north (i.e. Florida USA) at solar noon mid summer ( • ), data also provided 

byQ-panel. 

Figure 2.10 shows the spectral irradiance of the Q-sun solar simulator, as provided by the 

manufacturer, in Wm-2nm-1 from 280 to 800 nm. The Q-sun is designed to mimic typical 

solar irradiance that could be experienced under cloudless sky conditions at solar noon (sun 

at highest point in sky) mid summer in Florida USA i.e. at latitude 25°N. This is achieved 

using a Daylight-Q filter (Q-panel) that has a cut-off wavelength of 295 nm and provides an 

AM value of 1. An AM value of 1 is possible at latitude 25° north since on the summer 

solstice (i.e. mid summer, June 21st) the sun is directly above the tropic of Cancer (23.5° 

north). Thus the Sun is less than 2° off the overhead position at latitude 25° north, yielding 

a solar elevation of 88.5° and thus an AM value of 1. 
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The ability of an irradiator to replicate solar radiation over the entire solar spectrum is 

limited by the materials employed (6) thus sources tend to be calibrated in one region of 

their spectral distribution. As highlighted in figure 2.1 0, the Q-sun solar simulator is 

calibrated in the UV at 340 nm. The irradiance of the Q-sun output can be varied from 

0.25-0.68 Wm-2 at 340 nm which adjusts the entire spectrum accordingly. The data 

presented by Q-panel corresponds to the maximum irradiance setting of 0.68 Wm-2 at 340 

nm sampled at the calibration zone of the chamber. Integrating the Q-sun spectral 

distribution in figure 2.10 between 280 nm and 400 nm gives a total UV irradiance value of 

74 Wm-2 (72.9 Wm-2 in the UV A and 1.5 Wm-2 in the UVB). Also shown in figure 2.10 is a 

reference spectrum, provided by Q-panel, for typical mid summer solar noon irradiance in 

Florida. Comparing these spectra shows the Q-sun to be an excellent approximation of solar 

radiation, however the reliability of the data provided was checked via in house calibration. 

The irradiance at the calibration zone of the Q-sun when operating at the maximum 

irradiance setting of 0.68 Wm-2 at 340 nm was determined using the same instrumentation 

and parameter settings employed to yield the calibration factor in figure 2.9. Applying the 

calibration factor (Wm-2/DN), by simple multiplication at each wavelength, to the non­

calibrated Q-sun distribution (DN) (figure 2.11) transforms the data to spectral irradiance 

(Wm-2
) data as shown in figure 2.12. Also shown in figure 2.12 is the spectral data 

provided by the manufacturer. The spectra deviate by approximately 15 % in the visible 

and IR regions, however such deviations are not considered critical due to the reduced 

biological efficacy of these wavelengths compared to UV wavelengths where the spectra 

can be seen to exhibit excellent correlation. 
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Figure 2.11 The non calibrated Q-sun distribution sampled at the calibration zone of the Q-sun 

chamber when operating at 0.68 wm-2 at 340 nm using the USB2000 spectrometer. 
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Figure 2.12 Q-sun spectral distribution when operating at 0.68 wm-2 at 340 nm and sampled at the 

calibration zone as provided by the manufacture Q-panel ( •) and sampled using the USB2000 

spectrometer ( • ) 

The stability of the Q-sun was monitored by calibrating the irradiator at regular intervals. 

The UV irradiance values were computed for the calibrated spectra by integrating over the 
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280-400 run interval. Table 2.2 lists the spectral intensities computed for 5 independent 

measurements giving a mean lN irradiance and standard deviation of 68.7 ± 2.07 Wm-2 

( 67.3 ± 2 wm-2 in the UV A and 1.4 ± 0.1 wm-2 in the lNB), which correlates reasonably 

well with the manufacturer spectralirradiance of 74 Wm-2 (72.9 Wm-2 in the lN A and 1.5 

Wm-2 in the lNB) for the calibration zone. 

Table 2.2 UV AlB spectral intensities for the calibration zone of the Q-sun solar simulator computed by 

integrating the spectral distribution over 280--400 nm. Each replicate represents different dates on 

which the spectral distribution was sampled using the USB2000 spectrometer. 

Replicate UV AlB (Wm-2
) UVA(Wm-2

) UVB(wm-2
) 

1 69.85 68.40 1.45 

2 70.92 69.38 1.54 

3 69.45 67.95 1.50 

4 67.76 66.43 1.33 

5 65.64 64.27 1.37 

Mean 68.72 67.29 1.43 

Std dev 2.07 1.99 0.09 

The Q-sun solar simulator is a weathering chamber and was not designed with biological 

samples in mind. Uniform irradiance is provided across a tilted platform (platform A) as 

shown in figure 2.13. Photo biological experimentation required a level platform so that 

cells could be exposed in liquid media of uniform depth across the exposure vessel. Thus, 

platform A was removed and a level platform (platform B) constructed close to the 

calibration zone of the chamber. The Q-sun was calibrated at platform B when operating at 

0.68 Wm-2 at 340 run, as described for the calibration zone. The lN spectral intensities 

were computed and are presented in table 2.3. Figure 2.14 depicts the spectral irradiance at 
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both the calibration zone and the exposure level. As would be expected from the inverse 

square law (I oc 1/d2
), a loss in irradiance at the exposure level (platform B) is observed 

(table 2.3). Furthermore, platform B is inclined at an angle of 10° to the Q-sun bulb thus 

producing non-uniform irradiance across the platform. During irradiation cells are located 

at the centre of the platform, at X in figure 2.13, across which the uniformity was 

monitored and found to be within an acceptable tolerance of 8 %. 

filter 0 Bulb 

I I I 
I 

platform A 
I 

!~·~ 
platfo<m 8 ~l dZ 

Figure 2.13 Schematic outlining the internal chamber of the Q-sun solar simulator, platform A is the 

removable tilted platform supplied by the manufacturer Q-panel and platform B is the constructed 

level platform to allow exposure of cells at uniform depths in the exposure fluid. The levelled platform 

results in non uniform irradiance across the platform. 

53 



4 t:C ~ > ::::> ::::> 

' . . 
"'E' 

3 I 

~ • . • • 
~ 

. 
·u; . . 
c 2 ' . . .. 
~ t . ... 
E . :.· . . . ~ .. -· 'iv' · 

0 
300 400 500 600 700 800 

Wavelength (nm) 

Figure 2.14 Q-sun calibrated distribution spectra sampled using the USB2000 spectrometer at the 

calibration zone (centre of platform A, figure 2.13) ( • ) and at the exposure level (centre of platform B, 

figure 2,13) ( • ). 

Table 2.3 UV AlB spectral intensities at the exposure level inside Q-sun solar simulator computed by 

integrating the spectral distribution over 280--400 nm. Each replicate represents different dates on 

which the spectral distribution was sampled using the USB2000 spectrometer. 

Replicate uv AlB (Wm'2) UVA(wm-2) UVB (Wm-2) 

I 64.68 63.34 1.34 

2 65.66 64.24 1.42 

3 64.31 62.91 1.40 

4 62.74 61.51 1.24 

5 60.78 59.51 1.27 

Mean 63.63 62.30 1.33 
Std dev 1.91 1.85 0.08 

Each Q-sun bulb was employed for a maximum of 1000 operational hours. 

Spectroradiometry was performed every 150-200 operational hours. The data presented 

here represent the data sampled over the 1000 hour lifetime of a Q-sun bulb. 
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2.4 Oriel solar simulator spectral calibration 

Figure 2.15 Schematic outlining the optical path through the Oriel solar simulator (32). Solar simulated 

radiation produced by the xenon bulb is collected by the ellipsoidal reflector which is reflected through 

45° by a mirror onto the optical integrator which ensures beam uniformity prior to spectral correction 

by the optical filters. The beam is then reflected through another 45° onto a collimating lens to produce 

a parallel beam of radiation exiting the source. 

The Oriel solar simulator (Oriel-Newport, California, USA) is also a xenon arc lamp 

ignited by an external trigger as described in section 2.3. The novel attributes of the Oriel 

solar simulator include not only its continuous nature, but also its variable spectral 

irradiance via control of the current density and the working distance from the source. 

Figure 2.15 is a schematic of the optical path through the instrument. Solar simulated 

radiation produced by the xenon bulb is collected by the ellipsoidal reflector and directed 

onto the first of two mirrors which reflects the radiation through 45° onto an optical 

integrator which ensures beam uniformity. Once transmitted though the integrator, the 

spectral distribution of the radiation is shaped by optical filters. The spectral distribution of 

the radiation exiting the Oriel is dependent on the filters employed which are 
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interchangeable. The filters employed in this study are designed to mimic air mass 

conditions when the Sun is directly overhead i.e. an AM value of 1. The beam is then 

reflected through another 45° onto a collimating lens at the exit of the irradiator which 

serves to produce a minimally diverging beam, producing uniform(± 5 %) irradiance over 

a 15 em x 15 em working plane 20 em from the source (33). 
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Figure 2.16 Calibrated spectral distribution of the Oriel solar simulator as provided by the 

manufacturer, believed to be sampled at the recommended but not specified operating parameters of 50 

mA and 20 em for the current density and working distance from the source respectively and an AM 

value of 1. 

The Oriel spectral distribution as provided by the manufacturer, shown in figure 2.16, is 

believed to be sampled at the recommended working distance and current supply of 20 em 

and 50 rnA respectively. However, the manufacturer does not specify these details for the 

spectrum provided. A solar radiation reference spectrum was not provided by the 

manufacturer, since the irradiance of the Oriel solar simulator is variable and thus does not 
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reflect a particular geographic location. Integrating under the curve yields a UV spectral 

irradiance values of 52 Wm-2 (51.75 Wm-2 in the UV A and 0.25 Wm-2 in the UVB) for the 

manufacturer data provided. 

The exposure level for irradiation experiments was set at a working distance of 25 em from 

the collimating lens i.e. the distance from the lens to the bench. To determine the most 

suitable current setting for experimentation the Oriel was sampled using the calibrated 

USB2000 spectrometer. The input optics of the spectrometer were placed in the centre of 

the output beam at the exposure level and the current varied from 30-50 rnA in 5 rnA steps. 

By applying the calibration factor for the USB2000 spectrometer (figure 2.9), the non 

calibrated distribution spectra in DN were then transformed into spectral irradiance spectra 

in wm-2 and are presented in figure 2.17. 
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Figure 2.17 The calibrated spectra for the Oriel solar simulator sampled using the USB2000 at the 

exposure level25 em from the source when operating at current values of ( •) 30 rnA, ( • ) 35 rnA, ( • ) 40 

rnA, (• ) 45 rnA, (• ) 50 rnA. 
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Similar to the calibration of the Q-sun, the Oriel was sampled at regular intervals to monitor 

the irradiance over time. Irradiance spectra (Wm-2
) were generated for each independent 

measurement of each current setting using the calibration factor (Wm-2/DN) illustrated in 

figure 2.9. Figure 2.17 depicts the mean spectral irradiance (Wm-2
) of at least 4 independent 

measurements sampled on different days for each current setting. The UV A and B 

irradiance values of each independent measurement for each current setting was computed 

by integrating the curves from 280 nm to 400 nm and are presented in table 2.4 as the mean 

and standard deviation for each current setting. 

Table 2.4 UV AlB spectral intensities ± standard deviation for the Oriel solar simulator operating at 

different current settings sampled at the exposure level (25 em from the source), computed by 

integrating the spectral distribution over 28B-400 nm. Data represents the mean of at least four 

replicates sampled on different dates. 

uv AB _(_wm-2
) UVA(Wm-2) UVB(Wm-2) 

30mA 42.42 ± 1.44 40.46 ± 1.39 1.96± 0.05 

35mA 54.87 ±2.16 52.70±2.70 2.17 ± 0.10 

40mA 70.11±3.13 66.92± 3.02 3.19±0.10 

45mA 85.80±3.82 82.09 ± 3.50 3.72± 0.44 

SOmA 101.92±3.70 97.52± 3.62 4.39 ± 0.11 

The upper limit on the irradiance of solar radiation experienced at the terrestrial level would 

occur under cloudless sky conditions when the Sun is directly overhead which implies a 

solar elevation angle of 90° and corresponding AM value of 1. In section 2.1, the irradiance 

levels modelled for Florida on the summer solstice (25°N, solar elevation 88.5°, AM value 

of 1) was shown to agree with data modelled in the literature (17) for Singapore during an 

equinox (1 °N, solar elevation of 89°, AM value of 1). The models produced UVB 
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irradiance values of 2.86 wm-2 and 2.84 wm-2 respectively for a maximum AM value of 1. 

Current settings exceeding 3 5 rnA resulted in UVB irradiance values greater than those 

approximated by the mathematical models for optimal solar irradiation, thus a current 

setting of 35 rnA was employed for radiobiological exposures. The spectral distribution for 

the Oriel when operating at 35 rnA and sampled at the exposure level (25 em from the 

source) is shown in figure 2.18 with the spectral irradiance data provided by the 

manufacturer. 

300 400 500 600 700 800 
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Figure 2.18 Calibrated spectral distribution for Oriel solar simulator sampled at a working distance of 

25 em for a current setting of 35 mA ( •) compared with the calibrated data provided by the Oriel ( • ). 

Once the parameter settings were determined, uniformity across the exposure level was 

assessed. According the manufacturer, the Oriel solar simulator possesses beam uniformity 

of 5 % across a 15 em x 15 em working plane 20 em from the source but maintains 

uniformity up to 120 em from the source (33). The collimated beam exiting the Oriel 

irradiates an area of 17 em x 17 em at the exposure level i.e. 25 em from the source. The 
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uniformity of the irradiance across the footprint was measured using a UV NB PMA2107 

radiometer (Solar Light, Pennsylvania, USA) and found to be less than ± 1 0 %. 

2.5 UV fluorescent lamps spectral calibration 

Fluorescent UV lamps are commonplace in studies investigating the biological effects of 

solar UV radiation. Although implementation of solar simulators in biological 

investigations is increasing, UV lamps are the primary irradiators employed, most probably 

because of their ease of use, cost and availability. Thus, for comparison, two UV lamps 

were also examined, a fluorescent UV A lamp (Ultra Violet products Ltd Cambridge UK) 

and a fluorescent UVB lamp (UVItec, Cambridge UK). Neither are absolute standards for 

their respective wavebands but both serve as good examples to illustrate the differences 

between UV fluorescent lamps and solar simulators in terms of spectral distribution and 

irradiance. 

Fluorescent UV lamps are gas discharge lamps that produce electromagnetic radiation 

when a current is passed through an ionised gas. In general, an evacuated bulb is filled with 

a low pressure inert gas and mercury atoms (figure 2.19). When the lamp is ignited, the 

cathode is heated and electrons are emitted by thermionic emission and accelerated through 

an electric field toward the anode. Collisions between electrons and the inert gas mixture 

ionises the gas molecules thus increasing the current flow through the bulb. If the kinetic 

energy of the incident electron is sufficient on collision with a mercury atom, inelastic 

scattering occurs resulting in the emission of a high energy UVC photon. These high 
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energy UVC photons initiate the fluorescence process when absorbed by the phosphor 

coating inside the bulb. Photons are re-radiated by the coating at longer, lower energy 

wavelengths, the emission spectrum of which is manipulated via the chemical content of 

the phosphor coating itself. 

Phosphor coating 

Anode Inert gas Cathode 

Figure 2.19 Schematic depicting a mercury vapour UV lamp 

The fluorescent lamps employed for comparison are both low pressure mercury vapour 

lamps. Both emit photons in the UVC, primarily at 254 nm, which when incident on the 

phosphor coating on the inside of each bulb induces fluorescence. The distribution spectra 

as provided by the manufacturers of the UV A and UVB lamps are shown in figures 2.20 

and 2.21. However, no information regarding the intensity of either source was available 

thus, the environmental relevance, in terms of irradiance, of the sources could not be 

assessed in the absence of in house calibration. 
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Figure 2.20 UVP manufacturer data of the spectral distribution of the UV A fluorescent lamp (34) 
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•igure 2.21 UVItec manufacturer data of the spectral distribution of the UVB fluorescent lamp(35} 

Similar to the solar simulators, spectroradiomet:ric cross calibration was employed to 

calibrate the UV lamps. There were no parameter settings fo.r either lamp, just a 15 minute 

initialisation post ignition. A working distance of 12 em was chosen for both UV lamps 

since shorter working distances did not illuminate an adequate area for sample iiTadiation. 

Both inadiators were sampled 12 em from the source using the USB2000 spectrometer. 
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The non calibrated distribution spectra were transformed to irradiance spectra by applying 

the calibration factor (figure 2.9) and are shown in figure 2.22 and the corresponding UV A 

and B irradiance values computed from by integrating the irradiance spectra are shown in 

table 2.5. 
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Figure 2.22 Calibrated spectral distributions for both the (•) UV A and (• ) UVB fluorescent lamps 

Table 2.5 Exposure level UV intensities of fluorescent lamps 

Lamp UVNB (Wm-2
) UVA_(Wm-2) UVB (Wm-2

)_ 

UVA 9.5 9.49 0.01 

UVB 6.39 3.96 2.43 
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2.6 Irradiator Calibration Discussion 

The primary objective of the sections 2.2-2.5 was to calibrate each artificial irradiator 

employed in this study to ascertain reasonable approximations on the spectral irradiance of 

each source at their respective exposure levels, thus enabling the environmental and 

biological relevance of each source to be assessed. 

The calibrated spectra for all four irradiators are shown together over 280 to 800 nm in 

figure 2.23 and 280 to 400 nm in figure 2.24. To demonstrate the ability of the irradiators to 

replicate solar radiation, the spectral distribution for solar radiation sampled in Naples, Italy 

(noon, July 12th 2008, 40°N, solar elevation of 63 ° and AM value of 1.12) is also shown in 

figures 2.23 and 2.24. Agreement with the literature is demonstrated in figure 2.24 where 

spectral data for solar UV radiation measured and published by Diffey ( 6) are also shown. 

The data obtained from the literature corresponds to Albuquerque, USA (38°N, noon, July 

3rd, solar elevation of ~70°, AM value of ~1.06) and Melbourne, Australia (38°S, solar 

noon, January 17th 1990, solar elevation of 73°, AM value of 1.05) in their respective 

summer seasons. Listed in table 2.6 are the spectral intensities, solar elevation angles and 

AM values (where available) for the irradiators, measured solar radiation and modelled 

solar radiation from both this study and the literature (6, 13, 17). 
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Figure 2.23 Calibrated spectra at the exposure level for ( •) the Q-sun solar simulator ( • ) the Oriel solar 

simulator operating at 35 mA ( • ) the UV A lamp and ( • ) the UVB lamp and ( • ) solar radiation sampled 

midsummer in Naples, Italy 40°N 
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Figure 2.24 Calibrated UV spectra at the exposure level for the Q-sun solar simulator ( • ), the Oriel 

solar simulator operating at 35 mA ( • ), the UV A lamp ( • ), the UVB lamp ( • ), solar radiation sampled 

midsummer in Naples Italy 40° N (• ), solar radiation sampled midsummer in Albuquerque 38°N (6) (• ) 

and solar radiation sampled midsummer in Melbourne 38°S (6) (• ). 
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Table 2.6 Variations in spectral distribution of all sources measured using the USB2000 spectrometer 

and their equivalent AM values where available compared to solar radiation spectral intensities 

measured or modelled at different latitudes and AM values by Bird et al (13), Diffey (6) and Garland et 

al (17), Equinox= March u •t and September 21"\ S.Solstice =summer solstice June 21"\ W.Solstice = 

winter solstice, December 21"1
• 

Solar 
UVA/B UVA UVB 

Lamp/location Latitude Date elevation AM 
(W/m2

) (W/m2
) (W/m2

) (e) 

Measured using USB2000 spectrometer 

Q-sun 25°N summer n/a 1 63.63 62.3 1.33 

Oriel n/a n/a n/a 1 54.aa 52.7 2.1a 

UVA n/a n/a n/a n/a 9.50 9.49 0.01 

UVB n/a n/a n/a n/a 6.39 3.96 2.43 

Naples 40°N July 12th 63° 1.12 46.52 45.25 1.27 

Bird model generated data, Bird et al (13) 

Florida 25°N S.Solstice aao 1 75.71 72.a4 2.86 

Naples 40°N S.Solstice 72° 1.05 72.13 69.50 2.63 

Naples 40°N 121
h July 63° 1.12 66.29 64.03 2.26 

Dublin 53°N S.Solstice 60° 1.15 61.44 59.48 1.96 

Dublin 53°N W.Solstice 13° 4.45 7.79 7.78 0.01 

Sampled by Diffe, et al (6) 

Albuquerque 3aoN July 3rd -700 • t -1.06 • t 51 .93 50.2a 1.65 

Melbourne 3aos Jan 17th 73° . 1.05 . 62 .39 60 .2a 2.11 

Modelled by Garland et al (17 

SinQapore 1°N Equinox ago 1 67.54 64.7 2.a4 

Costa Rica 10°N Equinox 80° 1.02 65.a5 63.6 2.25 

Puerto Rico 1aoN Equinox n o 1.05 62 .99 60.9 2.09 

Hong Kong 22°N Equinox 6ao 1.08 61 .09 59.0 2.09 

Cuba 23°N Equinox 67° 1.09 60.45 sa.s 1.95 

Israel 32°N Equinox sao 1.1a 54.42 52.a 1.62 

Yogoslavia 45°N Equinox 45° 1.41 42 .77 41.a 0.97 

Switzerland 47°N Equinox 43° 1.47 40.72 39.a 0.92 

Iceland 6aoN Equinox 22° 2.67 1a.o2 17.a 0.22 

* Data not directly provided by Diffey (6) but the information that was provided (time, date and location) enabled the 
solar elevation at solar noon to be determined using an online database (36) . 

t Data was sampled at 12 noon and not solar noon (6). The solar elevation listed is an approximation based on the fact 
that measurements taken at 11.46 am and at solar noon in Naples (40°N) on the 12th of July 2008 resulted in solar 
elevation angles of 63° and 71° respectively, which compares well with the online database (36). From this, it was 
assumed that the rate of change in solar elevation would be relatively constant and thus was estimated that there would 
also be an -8° difference between solar elevation at 12 noon and solar noon for Albuquerque (38°N) on the 3rd of July. 
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Due to the variable nature of solar radiation there is no absolute standard for solar 

simulation. The objective of table 2.6 is to provide a frame of reference to support or refute, 

in terms ofUV irradiance values, the environmental and biological relevance of an artificial 

irradiator in the absence of such a standard. 

Mathematical models are dependent on the accuracy of the climatological data (i.e. ozone 

levels, pollution, aerosols and surface reflectivity) employed in the modelling process (37). 

Ozone is one of the primary climatological factors effecting the spectral distribution and 

irradiance of solar UV at the terrestrial level. The ozone data employed in the Garland et al 

model (17) was collected by NASA using the Total Ozone Mapping Spectrometer (TOMS) 

while the data computed using the Bird and Riordan model (13) employed a mean ozone 

thickness of 300 Dobson Units. Since the levels of ozone in the stratosphere varies with 

latitude (38), this may serve to explain the discrepancies observed between data computed 

using the Bird and Riordan model (13) and those published by Garland et al (17) for similar 

solar elevations and AM values. Despite this, there is reasonably good agreement between 

the two models which provide good approximations on the upper and lower limits of solar 

UV irradiance values that could be expected at the terrestrial level. Furthermore, the 

Garland data (17) can also be seen to be in reasonably good agreement with measured data 

published by Diffey (6). 

Although the Oriel possess an interpretation closer to solar radiation over the UV A region, 

both solar simulators provide excellent approximations of solar radiation as shown in 

figures 2.23 and 2.24. Although neither solar simulator mimics solar radiation at a 
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particular geographical location when compared to the modelled and measured data in table 

2.6, both administer radiant intensities that are environmentally feasible at mid to near­

tropic latitudes, thus demonstrating the environmental relevance of these irradiators. 

In addition to a spectral distribution that does not approach that of solar radiation as shown 

in figures 2.23 and 2.24, the UV A fluorescent lamp administers an irradiance of just 9.49 

Wm-2 at the shortest working distance feasible for radiobiological exposures. This can be 

seen from table 2.6 to be 5-6 fold less than the UV A irradiance values administered by the 

Oriel and Q-sun solar simulators respectively. While the distribution of the UV A lamp is 

environmentally irrelevant, the magnitude of its irradiance is comparable to the UV A 

spectralirradiance for Dublin on the winter solstice (7.78 Wm-2
, e = 13°, AM value of 4.45) 

computed using the Bird and Riordan model (13) which would not be expected to produce 

any detrimental photo-biological effects. 

The spectral irradiance ofthe UVB fluorescent lamp was computed to be 3.96 wm-2 in the 

UV A and 2.43 Wm-2 in the UVB. Even though the majority of the output lies in the UV A 

waveband region, UVB is the more biologically active waveband, thus such an overlap is 

not expected to be confounding. From table 2.6, it can be seen that the spectral output of the 

UVB lamp exceeds the UVB irradiance measured for all artificial irradiators. However, 

when compared to the solar UVB radiant intensities measured and modelled data in table 

2.6, it can be seen that an intensity of 2.43 wm-2 in the UVB is environmentally feasible. It 

is the spectral distribution of the UVB lamp, however, that undermines its environmental 

relevance. Close examination of figure 2.24 shows that the distribution of the UVB lamp 

68 



does not reduce toward zero at 300 nm as is the case for solar radiation and both solar 

simulators. In fact the UVB lamp does not reduce to a minimum until ~290 nm, resulting in 

relatively substantial emissions below 295 nm which is reported to be the shortest 

wavelength found at the terrestrial level (20). Therefore, in light of the increased ability of 

UV radiation to elicit damage with decreasing wavelength, as demonstrated by the 

erythemal and DNA absorption action spectra (39, 40), these spectroradiometric results 

suggest that the UVB fluorescent lamp is potentially the most hazardous irradiator under 

investigation. 

Although it is beneficial to have prior knowledge of the output emission of an irradiator 

before it is procured, the data provided by the manufacturer is no substitute for in house 

calibration prior to implementation. The primary reason for this is to monitor the temporal 

stability of the irradiator over its lifetime with the same instrumentation. Since comparing 

data collected with different instrumentation poses significant difficulties due to instrument 

idiosyncrasies such as sensitivity and resolution (37). Thus, irradiators must be calibrated 

prior to implementation with the instrument that will be employed throughout the study. 

The second reason is to determine the credibility of the spectral data provided. As shown 

above, the manufacturer of each irradiator provided information pertaining to the output of 

their respective source, however the quality of the information provided varied immensely. 

While the data provided by the manufacturers gave some indication of the spectral 

distribution of each source, the fluorescent UV lamp data did not provide any usable 

information pertaining to the spectral irradiance as shown in figures 2.20 and 2.21. 
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Furthermore, it was found that emission peaks present in the UVB lamp manufacturer 

distribution were absent from in house calibrated spectral data, suggesting the absence of a 

low pass filter during manufacturer assessment of the lamp. Although visible and UV A 

wavelengths are less biologically effective compared to UVB, discrepancies may not 

always be omissions nor favourable in terms of biological effectiveness. This serves to 

reaffirm not only the importance of in house calibration but also spectroradiometry as the 

optimal technique to employ, since effects attributed to a particular waveband may in fact 

be due to emissions at other wavelengths, if the spectral distribution of the source is 

unknown. 

The manufacturer data provided for the Oriel solar simulator was in spectral irradiance, 

however the information was incomplete. The manufacturer recommends an operational 

current density and working distance of 50 rnA and 20 em respectively, and although 

neither were specified, it is suspected that the recommended parameters were employed. 

Figure 2.18 shows the spectral irradiance of the Oriel solar simulator provided by the 

manufacturer and that obtained through in-house calibration when operating at 35 rnA and 

sampled 25 em from the source. The spectra exhibit excellent agreement however, the 

spectral line emissions of the xenon gas are more evident in the in house calibrated 

spectrum than the manufacturer data. The increased spectral broadening observed with the 

manufacturer data implies an operational current density greater than 35 rnA, which 

concurs with the conjecture that the manufacturer data provided was sampled at the 

recommended but not specified 50 rnA. In-house calibration of the Oriel when operating at 

current densities exceeding 35 rnA produced UV spectral irradiance values in excess of 
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66.92 ± 3.02 Wm-2 and 3.19 ± 0.10 Wm-2 in the UVA and UVB respectively. These UV 

spectral irradiance values were obtained 25 em from the source and would be expected to 

increase at shorter distances due to the inverse square law. However, the UV irradiance 

values computed from the manufacturer data were 51.75 Wm-2 and 0.25 wm-2 in the UVA 

and UVB respectively. Thus the Oriel manufacturer data is conflicting, the increased 

spectral broadening suggests a current density exceeding 35 rnA but the spectral intensities, 

the UVB in particular, suggest otherwise. Furthermore, irradiance spectra sampled 20 em 

and 25 em from the source when operating at 50 rnA and 35 rnA respectively would not be 

expected to exhibit the excellent agreement shown in figure 2.18. It is suspected that the 

manufacturer data was sampled using a UVB blocking filter. This provides a reasonable 

argument as to how a diminished UVB spectralirradiance (0.25 Wm-2
) is possible with a 

continuous emission spectrum indicative of a high current density. Furthermore, since ideal 

UVB blocking filters are not feasible, it is probable that the presence of a UVB blocking 

filter will also attenuate irradiance in the UV A region, thus producing an irradiance 

spectrum comparable to the in house calibrated data sampled at a lower current density and 

increased distance from the source. 

These issues highlight the importance of thorough in-house calibration and how the 

problems in photobiology with regard to dosimetry lie not only with investigators but are 

also propagated by some manufacturers whose spectral data, if believed without 

investigation, could lead to erroneous conclusions ansmg from unaccounted spectral 

emissions and I or misleading irradiance spectra. 
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2.7 Lamp nature 

In addition to the spectral distribution and irradiance of a light source, the manner in which 

the output of a given lamp is administered is yet another aspect of a light source that may 

have important implications when performing irradiations. Solar radiation is a continuous 

source, varying in intensity but not delivery, thus the delivery of each lamp was sampled to 

determine their behaviour and hence environmental relevance. 

v. 1MO 

30V 

Figure 2.25 Circuit diagram of the reverse bias GaAsP photodiode in series with a 1 Mn resistance and 

a 30 Volt power supply, where the behaviour of a source is measured in terms of voltage across the 

resistor. 

All sources were sampled using a G5842 gallium arsenide phosphide (GaAsP) 

semiconductor photodiode (Hamamatsu photonics, Japan) with a frequency response of 

3kHz, a National Instruments DAQcard 700 and a Lab VIEW™ programme designed to act 

as an oscilloscope so that output of a source could be viewed and recorded irrespective of 

its continuous or non continuous behaviour. The photodiode connected in reverse bias with 

a 30 Volt power supply (figure 2.25) was used to sample the outputs of the sources at a 

high rate of 100,000 samples per second to prevent aliasing. When connected in reverse 
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bias the resistance of the photodiode increases preventing the flow of current in the circuit. 

When irradiated, incident photons are absorbed by the photodiode material decreasing the 

resistance of the photodiode by increasing the number of charge carriers available to 

participate in current flow. 

The GaAsP photodiode has a response over the UV region only as shown in figure 2.26, 

thus voltage measurements across the resistor (V0 ) in the circuit shown in figure 2.25 are 

indicative of current flow through the photodiode due to incident UV photons. 

3l 
c:: 
0 c. 
"' & Q_1 

~ 
&! 

0.01 

.I .... ,, 
fl 

-o 
_0 • 

n • 

• • 
• 
• 
• 

260 280 300 

~ 
~ ,. - •'0.. 

·v.. 
• '& 
• 0 
• 0 

c 

• 
• -

320 340 360 380 400 

Wavlength (nm) 

Figure 2.26 Relative response curves for the ( o) Hamamatsu GaAsP photo diode G5842 and the ( •) 

Solar Light™ UV AlB PMA2107 detector 

Using a PMA20 17 UV AlB radiometer (Solar Light, Pennsylvania, USA) with a response 

over a similar wavelength interval as the photodiode (figure 2.26), the photodiode was 

calibrated using solar radiation on clear cloudless sunny days mid summer in Dublin to 

determine the relationship between irradiance incident on the photodiode and its 
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corresponding voltage measurements. Figure 2.27 shows the data collected and the linear 

relationship between the irradiance and voltage as highlighted by the linear regression fit to 

the scatter. 
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Figure 2.27 Linear relationship between voltage and solar UV irradiance on a Hamamatsu GaAsP 

photodiode G5842 

The GaAsP photodiode was used to measure the output of each irradiator in terms of 

voltage. Figure 2.28 shows the nature of the solar simulators which reveals a significant 

difference between the behaviour of the solar simulators. The Oriel has a continuous output 

due its highly regulated power supply, similar to solar radiation, with a constant voltage 

output of 0.8 Volts as measured using the photodiode. The Q-sun is a pulsed source with a 

frequency of 100 Hz with a peak output of 25 Volts for each pulse. Pulsing high for 

approximately one tenth of its cycle, it would be expected that the Q-sun voltage output 

would be approximately 10 fold higher than that of the Oriel giving a voltage output of 8 

Volts, however as demonstrated in figure 2.28, the Q-sun output is in excess of 30 times 
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that of the Oriel voltage output. The discrepancy between what would be expected and 

what is observed is the difference between an ideal and a real pulsed source. In the ideal, 

the source would pulse to 8 Volts for exactly 1 msec of its 10 msec cycle thus giving the 

same integral as would be expected from a constant source at 0.8 Volts over the full 10 

msec as shown in figure 2.28. 
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Figure 2.28 The pulsed and continuous nature of the Q-sun ( • ), the Oriel ( • ), the continuous equivalent 

of the Q-sun ( • ) and the ideal pulse ( • ) 

However the Q-sun is not an ideal source and does not pulse to a maximum over the entire 

pulse duration of 1 msec thus a consideration of the full duration at half maximum (FDHM) 

is required. At FDHM the Q-sun pulse is approximately 1129 of the entire 10 msec cycle 

(0.35 msec/1 0 msec ). 1/29 of 25 Volts yields a continuous equivalent of 0.86 Volts for the 

Q-sun solar simulator, which correlates well with the continuous voltage output of 0.8 

Volts for the Oriel solar simulator. The voltage difference between the Q-sun continuous 

equivalent and the Oriel is attributed to differences in their spectral distribution. Figure 2.29 
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plots the UV region for the Q-sun and Oriel solar simulators against the response curve for 

the GaAsP photodiode showing the Q-sun to possess an increased output compared to the 

Oriel over the UV A region where the response of the diode is at its maximum. Thus, it is 

reasonable to anticipate increased voltage output for the continuous equivalent of the Q-sun 

solar simulator. 
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Figure 2.29 UV spectral distribution ofthe Q-sun ( • ), the Oriel ( • ) the UV A ( • ) and UVB ( • ) light 

sources and the response of the GaAsP photodiode ( • ) 

While the GaAsP photodiode has a linear relationship between voltage and irradiance, the 

response of the photodiode is such that sources with different distribution spectra will incur 

different voltage outputs. The distribution of the Oriel and Q-sun are similar enough to 

allow an adjustment to determine an approximation on the irradiance delivered in a single 

Q-sun pulse. The simple adjustment employed was based on the fact that the Oriel UV 

irradiance of ~55 wm-2 produced an output voltage of 0.8 Volts. From this a UV 

spectralirradiance in the region of 1600 wm-2 is estimated to be delivered in a single pulse 
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from the Q-sun, an immense exposure over a brief period that may be more detrimental to 

biological samples than an identical exposure from a continuous source. 

The UV irradiance values of the UV A and UVB lamps were found to be ~9.5 wm-2 and 

~6.4 Wm-2 respectively as shown in the previous section. With a UV irradiance of 

~55 wm-2
, the Oriel was found to yield a voltage output of just 0.8 Volts using the GaAsP 

photodiode. With spectral intensities approximately 6-9 fold smaller, it can be expected that 

both fluorescent lamps will yield considerably smaller voltage outputs. Furthermore, the 

spectral distribution of both fluorescent lamps plotted with the GaAsP photodiode response 

in figure 2.29 show that the maximal response of the photodiode coincides with the 

maximal output of the UV A fluorescent lamp. Thus, it is expected that the voltage output of 

the UV A lamp will exceed that of the UVB lamp, which is corroborated by the results 

presented in figure 2.30. 
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Figure 2.30 Non continuous nature of the UV A (•) and UVB (• ) fluorescent lamps and the 'continuous' 

nature of the Oriel solar simulator ( • ) 
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2.8 Discussion of lamp nature 

The behaviour of each irradiator was investigated to determine the manner in which each 

lamp delivered its irradiance and the degree of similarity each source exhibits with respect 

to the continuous delivery of solar radiation. The Oriel solar simulator was the only 

irradiator observed to have a continuous delivery analogous to solar radiation. Although the 

delivery of both UV lamps can be seen to be non continuous in figure 2.30, when compared 

to the Q-sun pulsed behaviour in figure 2.28, the signal variations are mild and are not 

believed to be a major concern with respect to the manner in which the output of the source 

is administered. Moreover, the output signals of the Oriel and UV fluorescent lamps appear 

to be altered by a 50 Hz external signal which is believed to arise from the rectified tri­

phase mains voltage supply modulating the output signals of each source. However, it is the 

output delivery of the Q-sun solar simulator that elicits most concern. As shown in figure 

2.28, the Q-sun is a non-continuous source that pulses high for approximately one tenth of 

its period, where each pulse is estimated to deliver a UV spectral intensity in the region of 

1600 wm-2
. The Bunsen Roscoe or reciprocity law states that all photochemical reactions 

are dependent on the total absorbed energy irrespective of the manner in which the dose is 

delivered (41, 42). However reservations exist regarding the applicability of this law to 

highly complex biological responses ( 43). Thus despite the Q-sun possessing an excellent 

representation of the solar radiation in terms of distribution and irradiance, the highly 

pulsed behaviour of the Q-sun incurs reservations regarding its environmental relevance 

which is of primary concern as the Q-sun was employed for all experimentation since the 

Oriel solar simulator was not procured until the latter end of the project. 
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2.9 Spectroscopic analysis of media and cell culturing vessels 

Having characterised each irradiator in terms of spectral distribution, irradiance and output 

behaviour, consideration of possible attenuation processes incurred due to the vessels and 

media present during exposure must also be addressed to estimate the spectral irradiance 

incident on a sample. 

Incident radiation 

lid l 
I - - I .-vessel 

Media 

Cell monola y er/" 

Figure 2.31 Radiation for a source must pass through the lid of the vessel, if present, and the exposure 

medium before interacting with cells adhered to the base of the vessel. 

This study involves irradiating an immortalised keratinocyte cell line, HaCaT cells. Cell 

culture requires stringent aseptic conditions to ensure against contamination of cells while 

sterile cell culture medium provides the necessary nutrients for healthy growth. Cell 

cultures are maintained and passaged in sterile flasks but exposures are performed in either 

sterile multi-well plates or Petri dishes with removable lids in the presence of either cell 

culture medium or phosphate buffered saline (PBS). Radiation must therefore traverse 

through a lid, if present, and the exposure medium covering the cells before falling incident 

on the cells adhered to the base of the vessel (figure 2.31). Thus in order to assess the 

irradiance incident on cells being irradiated, the ability of the different vessels and media 

present during exposures to attenuate the irradiance of a given source must be addressed. 
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The transmission spectra of the media and plasticware used during sample irradiation were 

determined using a dual beam PerkinElmer Lambda 900 UV Nis/NIR spectrometer. Figure 

2.32 shows the transmission spectrum of a plastic lid from a Nunclon multi well plate, 

which can be seen to have relatively stable transmission in the IR and visible regions. 

However, the transmission can be seen to decrease in the UV, particularly the UVB region, 

which is the most energetic and biologically effective waveband in the solar spectrum. 

Losses in UVB irradiance levels can be expected to yield significant deviations from results 

generated with no UVB losses incurred. 
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Figure 2.32 Transmission spectra of a Nunclon multi well dish plastic lid 

The dimensions of both the UV A and UVB fluorescent lamps allowed irradiations to be 

carried out in a sterile laminar flow cabinet enabling exposures to be performed in the 

absence of lids, thus minimising attenuation of incident radiation. The physical dimensions 

of both solar simulators prevented housing in laminar flow cabinets. However there are 
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reports in the literature suggesting solar radiation possesses germicidal properties ( 44, 45). 

Thus, agar dishes were exposed to both solar simulators for 1 hour in order to determine the 

ability of the simulators to maintain a sterile environment (see appendix 1 for agar 

protocol). Agar dishes exposed to both solar simulators remained contamination free when 

incubated at 37°C for 7 days post exposure, the same time interval employed for the 

clonogenic assay. Thus with careful handling, all solar simulator exposures were also 

performed without lids and were found to be contamination free while eliminating plastic 

lid associated losses in radiant intensities. 
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Figure 2.33 Transmission spectra ofDMEM-Fl2 cell culture medium (•) and PBS (• ) 

The transmission spectra ofDMEM-F12 cell culture medium (herein referred to as DMEM-

F12) and PBS are shown in figure 2.33 where DMEM-F12 can be seen to absorb 

significant amounts of radiation below 600 nm while PBS has minimal losses in 

transmission right through to the UVC region. To determine the effect of transmission 

through PBS or DMEM-F12, the transmission spectra for both PBS and DMEM-Fl2 were 
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applied to calibrated spectral distribution (figure 2.23) for each irradiator by simple 

multiplication at each wavelength. Figures 2.34 and 2.35 illustrate the effect of PBS and 

DMEM-F12 respectively on the spectral irradiance of each source and table 2.7 lists the 

UV spectral intensities for each light source when transmitted or not transmitted through 

PBS and DMEM-F12. 

300 400 500 600 700 800 
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Figure 2.34 Calibrated spectra at the exposure level for ( •) the Q-sun solar simulator ( • ) the Oriel solar 

simulator operating at 35 mA ( • ) the UV A lamp and ( • ) the UVB lamp transmitted through PBS. 
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Figure 2.35 Calibrated spectra at the exposure level for ( •) the Q-sun solar simulator ( • ) the Oriel solar 

simulator operating at 35 mA ( • ) the UV A lamp and ( • ) the UVB lamp transmitted through DMEM-

F12. 

Table 2.7 Variation in UV intensities for each light source when transmitted through PBS or DMEM-

F12. 

Light source Media UVNB UVA UVB 
(W /m2

) I % loss (W/m2
) I %loss (W /m2

) I % loss 

Qsun No media 63.63 W/m2 62.30 W/m2 1.33 W/m2 

PBS 60.84 I -4% 59.57 I -4% 1.27 I -5% 
DMEM-F12 31.56 I -50% 31.18 I -50% 0.38 I -71% 

Oriel No media 54.88 W/m2 52.70 W/m2 2.18 W/m2 

PBS 52.47 I -4% 50.39 I -4% 2.08 I -5% 
DMEM-F12 26.86 I -51% 26.21 I -50% 0.65 I -70% 

UVAiamp No media 9.50 W/m2 9.49 W/m2 0.01 W/m2 

PBS 9.o9 I -4% 9.08 I -4% 0.01 I -o.oo% 
DMEM-F12 s.o6 I -47% 5.05 I -47% o.oo6 I - 40% 

UVB lamp No media 6.39 W/m2 3.96 W/m2 2.43 W/m2 

PBS 6.11 I -4% 3.78 I -5% 2.33 I -4% 
DMEM-F12 2.41 I -62% 1.75 I -56% 0.66 I -73% 
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2.10 Discussion of spectroscopic analysis 

Radiation incident on a surface will undergo losses inirradiance due to reflective and 

transmittance processes, which are dependent on the angle of incidence and the material the 

radiation is incident upon. However, radiation incident perpendicular to a transmitting 

surface suffers minimal losses due to reflections at the surface and is transmitted into the 

material. When passing through the material, the intensity of the incident radiation (Io) is 

attenuated (I) according to the Beer Lambert law shown in equation 2.2, where the 

absorbance (A) is dependent on the optical path length (1) traversed through the material 

and the concentration (c) of absorbing species of molar absorptivity (c). 

A= Elc = -log10(II Io) Equation 2.4 

Thus, a dual beam spectrometer was employed to determine the loss in irradiance at each 

wavelength when radiation is transmitted through a cuvette of DMEM-F12 or PBS at right 

angles, using an optically matched cuvette containing water served as the reference. 

Spectroscopic analysis of the exposure media revealed immense differences in their 

transmission spectra, where PBS was found to have minimal losses in transmission 

compared to DMEM-F12 which yields significant losses inirradiance below 600 nm as was 

shown in figure 2.33. 

Visually, transmission through PBS has virtually no effect on the spectral distribution of 

each source however computation of the UV irradiance values of the transmitted data show 

losses of 4-5 %, see table 2. 7. These losses are suspected to be the result of Fresnel 
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reflections (R) at the different interfaces between media of different refractive indexes as 

illustrated by the schematic in figure 2.36. 
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Figure 2.36 Schematic depicting the four interfaces (1 = air/quartz, 2 = quartz/media, 3 =media/quartz, 

and 4 =quartz/air) radiation traverses during spectroscopic analysis of PBS and DMEM-F12 and 

possible reflections (R) of the incident radiation if the surfaces are not optically perpendicular to the 

incident radiation. 

Applying the transmittance spectrum ofDMEM-F12 (figure 2.33) to the spectral irradiance 

of the irradiators revealed significant losses in irradiance when transmitted through 

DMEM-F12 (figure 2.35). The reduced spectral intensity experienced by each source in the 

UV region when transmitted though PBS or DMEM-F12 are listed in table 2.7 along with 

the percentage loss with respect to non transmitted spectral intensities. From table 2.7, 

DMEM-F12 can be seen to result in losses of up to 73 %, where the most significant losses 

were experienced in the UVB region of the spectra. 
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The results presented in this section indicate that the irradiance of an irradiator is attenuated 

when transmitted through DMEM-Fl2. Thus, cells irradiated in DMEM-Fl2 would receive 

a reduced dose compared to cells irradiated identically in PBS, which suggests that PBS 

exposures would have a far more detrimental effect on cell survival than DMEM-F12. 

2.11 Temperature measurements 

Environmental conditions are important for enzyme activity, where certain conditions 

favour the most active conformation of the apoenzyme, the protein moiety of a functional 

enzyme. Temperature is one such factor and as seen in figure 2.37, human enzymes work 

optimally at a temperature of 37°C (46) . Below this temperature, the kinetic energy of 

functional enzymes and their substrates decreases, decreasing both the frequency of 

collisions between molecules and the probability that the kinetic energy of the collision is 

sufficient to overcome the threshold energy required to initiate a reaction, thus slowing the 

activity of the enzyme. Increasing the temperature above 3 7°C causes a rapid decrease in 

human enzyme activity due to the increased thermal vibrations disrupting the intra 

molecular interactions, such as hydrogen bonding, resulting in protein denaturisation which 

is the loss of the protein's functional conformation (i.e. folding). 
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Figure 2.37 Effect of temperature on human enzyme activity, where 37°C is the optimum temperature 

for human enzyme activity (47) 

Both the Q-sun and Oriel solar simulators have outputs in the IR region. IR radiation is 

primarily associated with heating effects, thus the temperature sensitivity of enzymatic 

activity outlined above necessitated an investigation into possible heating effects during 

irradiation. 

The Q-sun possesses an enclosed chamber which claims a temperature controlled ambient 

air environment via a fan operated cooling system. The ability and reliability of the Q-sun 

to maintain a pre-set temperature setting of 30°C within its chamber was examined. A 

setting of 30°C for the Q-sun chamber was chosen to avoid overheating of the enclosed 

chamber and to allow for increased heat production with age since the manufacturer's 

manual states that "as the lamps age, they will operate at a higher wattage and produce 

more heat" ( 48). The Oriel solar simulator is not enclosed and thus temperature monitoring 

of the ambient air is not possible. However, temperature measurements of the exposure 
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media (DMEM-F12 and PBS) during irradiation with both the Q-sun and Oriel solar 

simulators were taken over a time period of 90 minutes in order to determine the heating 

effects, if any, that either of the simulators produces in the exposure media. All temperature 

measurements were carried out using a thermocouple thermometer (Fluke, model 16). 

Since neither of the fluorescent UV lamps employed have outputs in the infrared, neither 

lamp was investigated since UV radiation would have negligible heating effects compared 

to infrared emissions. 
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Figure 2.38 Ambient air temperature measurements within the Q-sun chamber as measured by ( •) the 

Q-sun temperature sensor and ( • ) the thermocouple probe thermometer 

The Q-sun has two operational modes, light and dark cycles i.e. lamp on and lamp off. 

Figure 2.38 shows temperature measurements of ambient air in the Q-sun chamber at the 

exposure level measured over a 90 minute interval to determine the effects, if any, of the 

initialisation process of the light cycle, commencement of the dark cycle and opening the 

door during both the light and dark cycles. The Q-sun ambient air temperature sensor 
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indicates that the temperature of the chamber increases slowly over the first 5 minutes once 

the light cycle has been initiated with a slight increase in temperature above the set 

temperature of 30°C before settling at 30±1 oc within approximately 10 minutes. The 

thermocouple probe sensor describes a far more dramatic increase in temperature during the 

initialisation process. The thermocouple registered a chamber temperature of almost 50°C 

three minutes after ignition, the temperature then stabilised at 34 oc after 6-7 minutes. The 

probe was situated in an empty Petri dish to determine if the enclosure formed by the Petri 

dish walls serves to maintain a higher temperature than would be observed in non enclosed 

areas of the chamber since this is where the cells and the exposure medium would be 

located during irradiation. The Petri dish was removed at 25 minutes which resulted in an 

immediate 2oC temperature drop in ambient air as measured using the thermocouple. 

When irradiating samples, the chamber door is opened, the chamber sprayed with alcohol, 

the door closed and reopened to insert the cells for irradiation. This process takes up to a 

maximum of 30 seconds thus the effect of opening the chamber door for 30 seconds on 

ambient air temperature was evaluated. The door was opened for 30 seconds, closed and the 

temperature noted. The thermocouple probe registered an immediate drop in ambient air 

temperature which recovered and stabilised within 2-3 minutes. The Q-sun sensor measured 

an increase in ambient air temperature although it was still lower than that measured by the 

thermocouple. On initiation of the dark cycle, the thermocouple measured a sizeable drop 

in temperature followed by a slight recovery to 27°C where the temperature stabilised and 

opening the door had no effect on the ambient air temperature measurement. The Q-sun 

temperature sensor did not register a temperature drop for the first 5 minutes when the dark 

cycle commenced, after which it observed only a 3oC drop and increased variability. 
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Figure 2.39 shows the temperature measurements of cell culture medium DMEM-F12 and 

PBS during the light and dark cycle of the Q-sun solar simulator. Both the PBS and 

DMEM-F12 were pre warmed to 37°C, the Q-sun was set at 30°C and allowed to stabilise 

for 20-30 minutes. The media were transported from the incubator to the Q-sun in vials 

with closed lids, 6 ml of the media under test was pipetted into one well of a 6 well dish to 

submerge the thermocouple temperature probe. Once submerged, the initial temperature of 

the media was noted and the timer started. The temperature of both DMEM-F12 and PBS 

can be seen to decrease at first before stabilising at a temperature of approximately 25°C 

after about 10 minutes for both media. The temperature of both media drop quite 

significantly once the dark cycle is commenced, after which the rate of change in 

temperature decrease slows but does not stabilise over a time interval of 40 minutes. 

Opening the door during either the light or dark cycle had no measurable effect on the 

temperature of the media. 
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Figure 2.39 Vehicle temperature measurements during the light and dark cycles of the Q-sun solar 

simulator as measured by the thermocouple thermometer probe ( •) in DMEM-F12 and ( • ) in PBS. 
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The Oriel solar simulator does not possess an enclosed chamber to perform exposures thus 

no temperature control is available with this simulator, however an initialisation time of 15 

minutes for the Oriel bulb is employed as recommended by the manufacturer to allow the 

bulb to stabilise after ignition. Thus the Oriel was set at 35 rnA, ignited and allowed to 

stabilise for 15 minutes. The temperature of DMEM-F12 and PBS located at the working 

distance of 25 em from the source was monitored to determine any possible heating effects 

due to the exposure of media during irradiation with the Oriel solar simulator. Again both 

media were pre warmed to 37°C and transported to the Oriel in enclosed vials. The lids 

were removed and either 6 ml DMEM-F12 or PBS pipetted onto the thermocouple in order 

to submerge the probe. The temperature was noted at zero minutes immediately before 

exposure. Figure 2.40 shows an initial decrease in the temperature of both media which 

stabilised within 15 minutes, maintaining temperatures of approximately 25°C and 26°C for 

PBS and DMEM-F12 respectively. 
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Figure 2.40 Cell culture medium ( •) and PBS ( • ) temperature measurements during Oriel solar 

simulator exposures 
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2.12 Discussion of temperature measurements 

The presence of infrared radiation in the spectra of both solar simulators in addition to 

potential age-related increases in bulb heat production required an investigation into 

possible temperature effects elicited during irradiation. The Q-sun solar simulator was of 

particular concern since samples are irradiated in an enclosed chamber. Upon ignition, the 

temperature of the chamber was found to reach almost 50°C using the thermocouple 

thermometer and didn't stabilise for approximately 6-7 minutes where no such temperature 

increase was indicated by the Q-sun temperature sensor. After the initialisation period, it 

was found that the Q-sun chamber is capable of maintaining a relatively stable ambient air 

temperature setting. However the temperature sensor employed by the Q-sun was found to 

be insensitive and slow to respond as highlighted by the rapid and sensitive response of the 

thermocouple thermometer. Based on the results obtained using the thermocouple, a period 

of 10-15 minutes was allowed between ignition and irradiation to avoid exposure of cells to 

elevated temperatures which may have detrimental effects on enzyme activity and possibly 

confound results. 

A temperature setting of 30°C was chosen primarily to avoid detrimental effects incurred to 

cells due to possible overheating as was observed by Boukamp et al who reported increased 

tumorigenic progression in HaCaT cells maintained at 40°C ( 49). A reduced temperature 

setting also helped to minimise the rates of surface evaporation in order to avoid significant 

loss of exposure media depth during irradiation. Clonogenic exposures were carried out in 

3ml of DMEM-F12 or PBS in 6-well multi well dishes. For 3ml of fluid, well dimensions 
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yield a depth of approximately 0.78 em and a surface area of approximately 9.6 cm2 

directly exposed by an irradiator. According to the Beer-Lambert law (A=Ecl), shown in 

equation 2.2, absorbance (A) is directly proportional to the concentration (c) and the path 

length (1). If significant amounts of evaporation were incurred during exposures, the depth 

of the exposure media and hence the optical path length (1) through the fluid would 

decrease which in tum would affect the concentration (c) of the exposure media making 

inter-comparison between different exposure times difficult. However no significant losses 

due to evaporation were observed. 

Another potential problem with regard to temperature effects is the excess production of 

heat as a bulb ages. As mentioned previously, the Q-sun manufacturer states that ageing 

bulbs will produce more heat due to increased wattage. The Q-sun is a xenon long arc lamp 

whose spectral emission is dependent on the current flow between the electrodes. Power (P, 

Watt) is the flow of current for a given potential difference (P=IV), thus an increase in 

power will correspond to an increase in the current density flowing between the electrodes 

of the bulb since the potential difference maintained between the electrodes is set by 

capacitors. In tum, alterations in the heat output may be indicative of spectral changes in 

the distribution of the lamp since the emission spectrum of the Q-sun is modified by the 

current density. However, no discemable changes in the spectral distribution of the bulb 

were detected with age which were only used for 1 000 operational hours as recommended 

by the manufacturer. 
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Of particular interest are the possible heating effects of the exposure media when irradiated 

with either solar simulator since it is the exposure medium that is in direct contact with the 

cells during exposure and hence any temperature increases experienced by the media would 

be conducted to the cells. Two studies published by Aragane et al (50) and Kabsch and 

Alonso (51) both observed reduced rates of apoptosis in HaCaT cells in their experiments 

performed at 10°C and 22°C as measured by the expression of CD95 clustering and 

Caspase-3 cleaved substrate P ARP respectively. Although the rates of apoptosis in both 

studies were reduced neither were completely inhibited, which considering the temperature 

dependent enzyme activity curve for human cells shown in figure 2.39 is unsurprising since 

sub optimal temperatures of 10°C and 22°C will impede but not halt enzyme activity. 

Thermocouple temperature measurements of both PBS and DMEM-F12 have shown that 

neither solar simulator heats the exposure media, in fact the opposite holds true. The 

temperature of the exposed media was found to decrease from 37°C to approximately 25-

260C. Ideally a temperature of 3 7°C would be maintained, however, as shown in figure 

2.39, a reduction of just~ 20 % in enzyme activity would be expected at 25°C. Compared 

to the detrimental denaturing effects at elevated temperatures, this was considered a 

tolerable loss in activity. 
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2.13 Conclusions 

The objective of this chapter was to characterise each irradiator pnor to biological 

experimentation in order to determine their spectral distribution, spectral irradiance and 

behaviour and thus assess the biological relevance of each source. 

It has been shown that the spectral irradiance values computed for each irradiator are 

environmentally feasible at the terrestrial level when compared to the highly variable solar 

radiation radiant intensities possible at different latitudes around the globe. However, it is 

the spectral distribution of the irradiators, obtained through spectroradiometry, that support 

or oppose the environmental relevance of a lamp. Both fluorescent UV lamps have been 

shown to possess distribution spectra that do not replicate solar radiation. The UV A lamp 

has a Gaussian distribution centred on 365 nm whose irradiance is possible at high latitudes 

during winter months and thus would not be expected to induce detrimental photo 

biological effects. The UVB lamp when plotted alongside the spectral distribution for both 

solar radiation and the solar simulators appears to give an excellent representation of UVB 

as implied by the UVB spectral irradiance of the lamp. However on closer inspection, the 

UVB lamp can be seen can be seen to have an output at wavelengths below 295 nm, the 

lowest terrestrial wavelength, while the spectral distribution of both solar simulators have 

been shown to give excellent approximations on the spectral distribution of solar radiation. 

Analysis of the exposure media have shown both to maintain temperatures of 

approximately 25°C which may impede enzyme activity but will not result in temperature 

95 



related damage possible at elevated temperatures. Spectroscopic analysis of the media 

revealed DMEM-F12 to be highly absorbing while PBS is highly transmitting, suggesting 

that PBS exposures would be far more detrimental than DMEM-F12 exposures. However, 

it is the pulsed behaviour of the Q-sun solar simulator that incurs most concerns, since 

approximations regarding the spectral irradiance administered per pulse shows the UV 

irradiance to be in excess of 1600 wm-2 which irrespective of exposure medium employed 

is a massive insult. Based on the results presented in this chapter, the abilities of each 

irradiator to induce cell death in both DMEM -F 12 and PBS are examined in chapter 3. 
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Chapter 3 Spectral dependant cell survival 

3.1 Introduction 

A plethora of studies exists in the literature looking at the biological effects ofUV radiation 

where the type of source employed in such studies can vary immensely in spectral 

distribution and irradiance (1, 2). The majority of the work to date that has provided vital 

information regarding the ability of UV radiation to elicit both detrimental ( erythma, 

mutagenesis, immunosuppression, oxidative stress and skin cancer initiation (3-9)) and 

positive (vitamin D synthesis, skin disorder treatment (10, 11)) effects have been 

determined through the use of fluorescent sunlamps. The information obtained from such 

irradiators has provided the foundations for solar radiation investigations. However, as the 

necessity for more detailed information regarding radiation-induced impairment of cellular 

function grows, attention must tum to the instrumentation employed and their relevance to 

the study at hand. Wavelength and energy are inversely proportional where the increasing 

efficacy of radiation to elicit damage with decreasing wavelength is demonstrated by the 

relative spectral effectiveness of radiation (12) and biological action spectra (13, 14). This 

combined with the ability of a source to administer environmentally relevant emissions as 

would be experienced at the terrestrial level stresses the importance of spectral distribution 

and irradiance of a given source when attempting to elucidate the mechanisms involved in 

skin carcinogenesis. 
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In the previous chapter, four artificial irradiators (Q-sun, Oriel, UV A lamp and UVB lamp) 

were thoroughly calibrated using spectroradiometry and their output behaviour was 

characterised. While it was found that the irradiators varied significantly in terms of 

spectral irradiance, it was the non-continuous behaviour of the Q-sun solar simulator that 

evoked most concern since the Q-sun was found to administer its output in a pulsed manner 

delivering an exaggerated UV spectral irradiance of approximately 1600 wm-2 per pulse. 

The objective of this chapter is to perform radiobiological experiments on a human 

keratinocyte cell line, HaCaT cells, to determine the ability of each irradiator to elicit cell 

death as measured using the clonogenic assay. However, particular emphasis is placed on 

the ability of the non-continuous Q-sun compared to the continuous Oriel in order to 

determine if the Q-sun is in fact environmentally relevant despite its excellent 

approximation of solar radiation in terms of spectral distribution. 
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3.2 Methods 

3.2.1 Cell culturing procedures 

A human keratinocyte cell line, HaCaT cells, originally obtained as a kind gift from Dr. 

Petra Boukamp, DKFZ, Germany, was used for this study. HaCaT cells are immortal but 

non-malignant with a doubling time of21 hours (15) and mutations in both p53 alleles (16). 

HaCaT cells were cultured in Dulbecco's MEM-F12 (1:1) medium (DMEM-F12) 

(Cambrex, U.K.) containing 10% fetal calf serum (Gibco, Irvine, U.K.), 1% penicillin­

streptomycin solution 1000IU (Gibco) and 1 J..lg/ml hydrocortisone (Sigma, Dorset, U.K.). 

Cells were incubated under humid conditions at 37°C, with 5% C02 in air. Subculture was 

routinely performed when cells were 80-90% confluent, using a 1: 1 solution of 0.2% 

trypsin and 1 mM versene at 37°C. Cells from flasks with sub-confluent cultures were 

removed using the 1:1 trypsin/versene solution. Once the cells detached, the trypsin/versene 

solution was neutralised using DMEM-F12. After centrifugation, the supernatant was 

decanted off and the pellet re-suspended in fresh DMEM-F12. Single cell suspensions were 

obtained using a pipette or vortex and cell counts were determined using a haemocytometer 

(see appendix 1). 

3.2.2 Clonogenic Assay 

Clonogenic expansion of single cells was determined using the method devised by Puck 

and Marcus (17) which allows survival of single cells to be quantified post exposure to 
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some toxic event. Survival is determined by the ability of single cells to form macroscopic 

colonies distinguishable from one another (figure 3.1) after a predetermined incubation 

period for a given cell line, where a colony is said to be a group of approximately 50 or 

more cells which should arise from a single cell. 

Figure 3.1 Colonies stained using carbolfuchsin in a 6 well plate (Nunc). As the colonies were counted 

they were marked with a blue dot to ensure the colony was counted once only. 

The HaCaT cell line has a plating efficiency of27.2 ± 3.6% determined using equation 3.1. 

In order to obtain a reasonable number of colonies, cells were seeded at 400 cells in 3 ml 

DMEM-F12 per well in Nunclon 6 well plates (figure 3.1) and incubated (conditions as 

above) overnight for 16 hours prior to irradiation. The extended incubation period between 

seeding and irradiation was employed for all experiments since exposures that required cell 

washes resulted in reduced and irregular control colony numbers compared to non-washed 

secondary controls, termed incubator controls, when insufficient time for attachment was 
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allowed. However, dishes were checked prior to irradiation to confirm that the plated cells 

were still predominantly single cells. 

Plating Efficiency (PE) = Number of colonies obtained * 100 
Number of cells seeded 

Equation 3.1 

With a doubling time of 21 hours, a 7 day incubation period is sufficient for HaCaT cells to 

form macroscopic colonies. Thus post exposure, cells were incubated for 7 days, after 

which cells were stained using a 20% carbol fuchsin solution for 5 minutes and scored. 

3.2.3 Cell exposures 

Cells were directly irradiated in either 3 ml DMEM-F12 or 3 ml PBS without lids using the 

Q-sun, the Oriel, the UV A or UVB lamp. Cells exposed in DMEM-F12 were removed from 

the incubator, exposed and returned to the incubator immediately post exposure with no 

medium change. 

For PBS exposures, the DMEM-F12 cell culture medium was harvested from cells, filtered 

and stored in the incubator during irradiation. The cells were washed once with 1ml PBS 

and the wash discarded, 3 ml fresh PBS was added and the cells exposed. Post exposure, 

the exposed PBS was discarded and cells received 3 ml per well of the stored DMEM-F12 

immediately post exposure and returned to the incubator. All samples were re-incubated for 

7 days post exposure prior to clonogenic staining. 
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3.2.4 Statistics 

The type and number of factors contributing to a response under investigation dictate the 

statistical model required. In all analyses performed throughout this study, there are 3-4 

treatment variables (exposure medium (M), exposure duration (t), replicate (E) and 

Irradiator employed (I)) contributing to the effect under investigation (cellular response 

(Y)). Thus, the analysis required is a factorial statistical analyses of variance (ANOVA), 

which assumes the data under analysis are normally distributed, independent and possess 

equal variance (homoscedasticity) (18). Transforming data using logarithms is a method of 

reducing possible violations of the above assumptions by making the distribution more 

normal, eliminating multiplicative effects (dependence) and reducing the variance within 

data populations to acceptable limits (19). Thus, the response data (Y) was Log transformed 

to ensure the model complies with the requirements of ANOVA as shown in equation 3.4. 

Once the raw data was Log transformed, ANOV A was performed on the data from which 

the Least Square Means (LSM) ± 95% confidence interval (95CI) of at least 3 independent 

replicates (unless otherwise stated) and pair-wise data using the Bonferroni adjustment 

were computed. All analyses were done using statistical software package SAS 9.1 and 

SAS enterprise guide 3.0. Significance was taken at a level ofp ~ 0.05. 

Y=MxtxExl 

Log(Y) = Log(M x t x E x I) 

Log(Y) = Log(M) + Log(t) + Log(E) + Log(I) 
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3.3 Results and discussion 
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Figure 3.2 Direct exposure of HaC aT cells in DMEM-Fl2 ( •) and PBS ( • ) using the Q-sun solar 

simulator with an irradiance of -64 wm-2 
; data are presented as the LSM ± 95CI in (A) and (C) or 

normalised to their respective controls ±the standard deviation in (B) and (D). (A) and (B) show the 

data plotted against the exposure time in minutes and the corresponding UV dose administered by the 

Q-sun for a given exposure duration. (C) and (D) account for the attenuating effects of the exposure 

medium and show the survival data plotted against the actual dose received. The 10 minute exposures 

are highlighted by the blue circles and dotted lines. * represents significant difference between 

different exposure media for a given exposure time. 
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Once fully characterised, each irradiator was employed to perform radiobiological 

experiments, as described in the methods section above. The survival of HaCaT cells 

irradiated in either DMEM-F12 or PBS using the Q-sun and Oriel are shown in figures 3.2 

and 3.3 respectively. As shown in figure 3.2 A and B, minimal survival is achieved after a 

10 and 50 minute exposure in DMEM-F12 and PBS respectively using the Q-sun. Although 

both the LSM and normalised data (percentage survival) clearly demonstrate the dose 

response of irradiated cells, the normalised data can be seen to violate the ANOVA 

assumption of homoscedasticity as demonstrated by the high degree of variance in the data, 

which demonstrates the validity of log transformation prior to statistical analysis. Similarly 

for the Oriel, exposures of 10 and 30 minutes in DMEM-Fl2 and PBS respectively 

produced minimal cell survival as shown in figure 3.3. 
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Figure 3.3 Direct exposure of HaC aT cells in DMEM-F12 ( •) and PBS <•) to the Oriel operating at 

35mA; * represents significant difference between different exposure media for a given exposure time. 
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simulators; * represents significant difference between different exposure media for a given exposure 

time and n; represents significant differenc.e between a dose and its respective control. 
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Figure 3.5 Direct exposure of HaC aT cells in PBS using the Q-sun (•) and the Oriel <•> solar 

simulators; * represents significant difference between different exposure media for a given exposure 

time and 1t represents significant difference between a dose and its respective control. 
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A direct comparison of the DMEM-F12 and PBS dose response curves for each simulator 

shows the Oriel solar simulator to elicit increased cell killing, irrespective of exposure 

media, compared to exposures performed under identical conditions using the Q-sun solar 

simulator as shown in figures 3.4 and 3.5. 

Exposures performed using the Q-sun solar simulator fall under the heading of flash 

photolysis due to the high frequency at which the lamp pulses (20). An initial concern using 

the Q-sun solar simulator was the possibility that the response of HaCaT cells would be 

rapid enough to discern the pulsed nature of the Q-sun and I or that the exaggerated dose 

administered during the duty cycle of the Q-sun would elicit responses different to those 

incurred by a continuous source. The Bunsen-Roscoe or reciprocity law states that all 

photochemical reactions are dependent on the total absorbed energy irrespective of the 

factors that determine the total dose i.e. irradiance and exposure time (20, 21). Although 

there are some reservations on the applicability of this law to biological systems due to the 

complex cellular responses to damage (22, 23), if the reciprocity law is obeyed then the 

same photo-response should be observed when the integral of the total dose administered is 

the same regardless of how the dose is delivered (20). Comparisons of the dose response for 

HaCaT cells exposed using the Q-sun and Oriel show that the survival of cells exposed 

using the Q-sun is consistently and significantly elevated compared to cells exposed under 

identical conditions using the Oriel regardless of exposure medium. These data show that 

the Q-sun flash photolysis nature does in fact obey the reciprocity law, abating concerns 

regarding the environmental relevance of the Q-sun output delivery. The difference in cell 

survival observed between the two solar simulators is attributed to differences in their 
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spectral irradiances, specifically the UVB region where the Oriel solar simulator provides 

an output of 2.18 wm-2 compared to the Q-sun UVB output of 1.33 wm-2
, and not 

behavioural differences. However, it is suspected that a critical or threshold frequency for 

biological irradiations exists, since a decrease in frequency would require an increase in 

irradiance delivered per pulse in order to achieve the same integral exposure. Thus it is not 

unreasonable to believe that if the frequency of delivery is sufficiently reduced, an 

irradiance value would be reached where the response of cells would begin to deviate 

significantly from those elicited under continuous irradiation conditions due to the immense 

insult administered per pulse and I or the response of the cells irradiated. 

A reciprocity study performed by Miyamoto et al (24) found that pulsed wave laser 

photodynamic therapy (PDT) and continuous wave PDT elicited apoptotic and necrotic 

deaths respectively. Based on the hypothesis that increased cytotoxicity is required to incur 

necrosis, Miyamoto et al (24) concluded that pulsed exposures are less cytotoxic than 

continuous exposures. 

Similar to the work done by Miyamoto et al (24), the results presented here show non 

continuous exposures to be less detrimental than continuous exposures. Although the 

differences observed in survival have been surmised to arise from differences in spectral 

output, there is the possibility that simulators elicit different mechanisms of cell death. The 

clonogenic assay measures cell death where little information regarding the modes of cell 

death incurred (apoptosis or necrosis) can be extracted from the dose response curves. 

However comparisons of the cell survival curves exposed in DMEM-F12 for both solar 
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simulators (figure 3.4) and similarly for cells exposed in PBS (figure 3.5) show that the 

dose response incurred for a given exposure medium to either solar simulator are 

comparable, particularly for DMEM-Fl2. These results suggest that the solar simulators do 

not differ significantly, if at all, in their modes of cell death induced for a given exposure 

medium, however the possibility cannot be ruled out without further investigation. 

Irradiation of HaCaT cells using the UV A lamp resulted in no cell death even with an 

exposure of 20 minutes regardless of the exposure media (figure 3.6). However, cells 

irradiated using the UVB fluorescent lamp produced the most dramatic dose response 

curves (figure 3.7) of all irradiators under investigation. Cells irradiated in DMEM-F12 and 

PBS resulted in minimal survival after 7 and 3 minute exposures respectively. 
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Figure 3.6 Direct exposure of HaC aT cells in DMEM-F12 ( •) and PBS <•> to the UV A fluorescent lamp 
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Figure 3.7 Direct exposure ofHaCaT cells in DMEM-F12 (•) and PBS (• ) to the UVB fluorescent 

lamp; * represents significant difference between different exposure media for a given exposure time 

In contrast to the solar simulator results, the UVB lamp exposures performed in PBS and 

DMEM-F12 produced results that concur with the transmittance functions presented in 

figure 2.36, where PBS exposures resulted in increased cell killing compared to DMEM-

F12 exposures. The UVB lamp has an intensity of 2.43 Wm-2 in the UVB region which is 

not exceptionally different to the UVB output of the Oriel at 2.18 Wm-2
. However, Oriel 

PBS exposures resulted in minimum survival after a 30 minute exposure whereas UVB 

lamp PBS exposures resulted in maximal cell killing within 3 minutes, a 10 fold difference 

in the tolerable exposure duration despite the lamps administering similar radiant 

intensities. Revisiting the UV spectral distribution of both the Oriel and the UVB lamp in 

figure 2.27, it can be seen that the radiobiological results for the UVB lamp confirm the 

conjecture proposed in chapter 2 that the UVB lamp is the most hazardous irradiator under 

investigation, owing to the sizeable and environmentally irrelevant emissions at 

wavelengths below 300 nm. Thus, due to the increasing efficacy of radiation with 
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decreasing wavelength, it is clear that the UVB lamp provides a far greater biologically 

effective, yet environmentally irrelevant irradiance. 

An intriguing effect regarding the exposure medium was revealed as a by-product of the 

study presented in this chapter. The spectroscopic results presented in figure 2.36 showed 

that the irradiance and thus the dose received by a cell is greatly reduced for DMEM-F12 

exposures compared to an identical exposure in PBS. Radiobiological experiments 

performed using the UVB lamp concur with the spectroscopic results in figure 2.36. 

However, exposures carried out with both the Q-sun and Oriel solar simulators yield 

contradictory results since DMEM-F12 exposures were found to be far more effective than 

PBS exposures with regard to cell killing (figures 3.2 and 3.3). The ability of the exposure 

medium to attenuate the dose received is demonstrated in figures 3.2 C and D where the 

UV dose administered by the Q-sun (38178 Jm-1
) in 10 minutes is attenuated to 18936 Jm-1 

and 36504 Jm-1 by DMEM-F12 and PBS respectively. Despite this, maximal cell killing is 

achieved with a 10 minute DMEM-F12 exposure whilst cells irradiated in PBS for the same 

duration and receiving nearly twice the dose as their DMEM-F12 counterparts yield 

survival not significantly different from their respective controls. A possible explanation for 

these conflicting results could be photosensitiser(s) present in DMEM-F12 cell culture 

medium whose absorption spectra may occur at longer less energetic wavelengths than 

those present in the spectral output of the UVB lamp. It is suspected that these 

hypothetically photosensitising wavelengths fall in the UVA waveband, although the 

possibility of visible and infrared radiation effects, synergistic or otherwise, cannot be 

disregarded since the UV A lamp elicits no cell death. However, this may be due to 

116 



insufficient irradiance at, or omission of, said hypothetically photosensitising wavelengths 

in the spectral distribution of the UV A lamp. The results presented here support both the 

importance of spectral distribution and reciprocity law compliance of the Q-sun solar 

simulator. It can also be concluded that DMEM-F12 medium augments the effects of solar 

simulated irradiation via some medium-mediated effect. 

3.4 Conclusions 

The importance of instrumentation calibration, spectral distribution and irradiance cannot 

be emphasised enough when attempting to discern the ability of solar radiation to elicit 

biological effects, as illustrated by the results presented in this chapter. Of particular 

interest with respect to spectral distribution, are the results obtained using the UVB lamp. 

The deleterious spectral distribution of the UVB irradiator is not obtrusively evident when 

compared to solar radiation, artificial and natural, yet its effect on survival was far more 

devastating than that elicited using solar simulated radiation. These results demonstrate 

how even an apparently low output at sub terrestrial level wavelengths can significantly 

alter cellular responses. Furthermore, without comprehensive knowledge of the UVB lamp 

spectral distribution, it may have been erroneously concluded that the augmented cell 

killing ability of the UVB irradiator was merely due to increased irradiance and not the 

presence of environmentally irrelevant wavelengths with enhanced biological efficacy. 

The unforeseen effects due to the exposure media not only demonstrate the importance of 

initial experimental parameters, but also highlight the implications of full spectrum 
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irradiation. Although it is desirable to know the contributions of individual wavebands, the 

possibility of interactions between different wavelengths present in solar radiation, whether 

the effects are synergistic, antagonistic, or purely additive, cannot be neglected and may 

yield significantly different results from individual waveband analysis. Although full 

spectrum irradiators can provide excellent approximations of solar radiation, it is not only 

the spectral distribution and irradiance that determines the environmental relevance of an 

irradiator but also the nature of their output delivery. The comparative study performed 

here using the Oriel and Q-sun solar simulators demonstrated that the pulsed nature of the 

Q-sun complies with the reciprocity law despite the exaggerated manner in which the Q­

sun output is delivered. However, this may not hold true for all irradiators and is most 

probably frequency dependent and thus is yet another aspect of an artificial irradiator that 

may potentially confound radiobiological experiments. 

Although the modes of cell death for given exposure medium were surmised to not 

different significantly, if at all, from one another, the same supposition cannot be extended 

to the different exposure medium where DMEM-F12 can be seen to be significantly more 

cytotoxic than PBS. Thus, the next chapter investigates the role of ROS in DMEM-F12 

mediated cell death. 
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Chapter4 Investigating the role of reactive oxygen species in medium-mediated 

cell death 

4,1 Introduction 

While investigating the abilities of different irradiators to incur cell death in HaCaT 

cells in chapter 3, an unexpected effect due to the exposure medium was observed. It 

was found that cells irradiated in DMEM-F12 cell culture medium with solar simulated 

radiation produced increased cell death compared to identical exposures performed in 

PBS. These results contradict the spectroscopic results in chapter 2 which imply that 

irradiation in PBS would incur greater levels of cell death due to increased 

transmittance of incident radiation compared to DMEM-F12. The unexpected ability of 

DMEM-F12 to yield such a dramatic dose response is further investigated in this 

chapter. As previously mentioned, UV A radiation is thought to elicit its effects 

primarily through oxidative processes involving as of yet unidentified non-DNA 

chromophore(s). Since UVA radiation is the predominant UV waveband in the spectral 

irradiance of the Q-sun solar simulator and cell culture medium provides the nutrients 

readily available in vivo to in vitro cultures, it is possible that the enhanced cell death 

observed in cells irradiated in DMEM-F12 is due to the production ofROS in DMEM­

F12 itself. Thus different antioxidants were employed to examine the potential role of 

ROS in the extensive cell killing observed when cells are irradiated with solar simulated 

radiation in DMEM-F12. 
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4.2 Methods 

4.2.1 Cell culturing, seeding and the clonogenic assay 

HaCaT cells were cultured, seeded and the clonogenic assay performed as outlined in 

chapter 2, sections 3.2.1 and 3.2.2. Briefly, HaCaT cells were cultured in DMEM-F12 

cell culture medium containing 10% FBS, 1% penicillin-streptomycin and 1 llg/ml 

hydrocortisone. Cells were incubated under humid conditions at 37°C, with 5% C02 in 

air and subcultured when cells were 80-90% confluent. Cells for direct and indirect 

(unexposed recipient cell) exposures were seeded at a density of 400 cells in 3 ml 

DMEM-F12 per well16 hours before irradiation or treatment. For the clonogenic assay, 

cells were exposed or treated and then incubated for 7 days after which they were 

stained using carbol fuchsin for 5 minutes and scored. 

4.2.2 Concentrations and dose responses of antioxidants and inhibitors 

Dimethyl sulfoxide (DMSO) has been reported to exhibit both therapeutic and toxic 

abilities (1-3) thus a dose response to determine a non toxic concentration for HaCaT 

cells was performed over the range 0-5% (v/v). 

Cells are reported to contain endogenous reduced glutathione (GSH) at a concentration 

between 3-5 mM (4). Although supplementation ofGSH at a concentration of5 mM has 

been used in the literature (5), a dose response study over the range 5x10-3
- 5x103 ~ 

was performed to determine the effect, if any, that exogenous supplementation of GSH 

would have on HaCaT cells under normal redox conditions. 
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L-buthionine-S,R-sulfoximine (BSO) prevents de novo synthesis of GSH (6, 7) by 

inhibiting the enzyme y-glutamylcysteine synthetase involved in GSH biosynthesis (7). 

To determine a non toxic BSO concentration for HaCaT cells under normal redox 

status, a dose response was performed over the range 0-1 06 ng/ml. 

Direct and indirect exposures were then performed with and without the presence of 

antioxidants at concentrations of 0.5% (v/v) DMSO, 0.1 mg/ml superoxide dismutase 

(SOD, EC 1.15.1.1) (8), 5 mM GSH (EC 200-725-4) (5) and 20 J..Lg/ml Catalase (EC 

1.11.1.6) (8) as found via dose response experiments and/or concentrations used in 

literature. 

4.2.3 Direct exposures in cell culture medium ± antioxidants 

All exposures were performed 16 hours post cell seeding in the pre sterilised Q-sun 

solar simulator chamber without lids. Prior to exposure, antioxidants were added 

directly to the 3 ml DMEM-F12 covering cells to give final concentrations of 0.1 mg/ml 

SOD, 0.5% (v/v) DMSO, 20 J..Lg/ml catalase or 5 mM GSH and allowed to incubate for 

30 minutes. Cells were directly exposed in DMEM-F12 with or without antioxidants 

with no medium change post exposure. Immediately post exposure cells were returned 

to the incubator for 7 days before survival was assayed using the clonogenic assay. 

Controls were handled identically but received sham irradiations i.e. 'irradiated' in the 

dark with the bulb off. 
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4.2.4 Indirect blank medium exposures ± antioxidants 

Blank (no cells) DMEM-F12 cell culture medium with and without antioxidants at final 

concentrations of 0.1 mg/ml SOD, 0.5% (v/v) DMSO, 20 J..Lg/ml catalase or 5 mM GSH 

was irradiated in the pre sterilised Q-sun solar simulator chamber. Immediately, 1 hour, 

24 hours and 48 hours post exposure the blank medium ± antioxidants was harvested, 

filtered and transferred to unirradiated recipient cells seeded 16 hours prior to treatment. 

Recipient cells were then incubated for 7 days with no further medium changes before 

survival was assayed using the clonogenic assay. Irradiated DMEM-F12 earmarked for 

the later times of transfer was stored in the incubator post exposure until the time of 

transfer occurred. Controls were handled identically but received sham irradiations. 

4.2.5 Statistics 

Results represent a minimum of 3 independent tests unless otherwise stated, with a 

minimum of 2 replicates per independent test. The data was log transformed and 

ANOV A was performed on the linear regressions and pair-wise data were computed 

using the Bonferroni adjustment. Data are presented as the LSM of the log transformed 

colony counts ± 95CI. All analyses were done using statistical software package SAS 

9.1 and SAS enterprise guide 3.0. Significance was taken at a level ofp ~ 0.05. 
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4.3 Results and discussion 

The role of ROSin the propagation of DMEM-F12 cell killing was investigated using 

various antioxidants. Prior to irradiation with and without antioxidants, suitable 

antioxidant concentrations were determined. SOD and catalase at concentrations of 0.1 

mg/ml and 20 Jlg/ml respectively, which were found effective for HaCaT cells in 

previous studies performed in our laboratory, were employed to determine the role of 

superoxide and hydrogen peroxide respectively. In order to determine a suitable non-

toxic concentration of DMSO for HaCaT cells, a dose response was performed, the 

results of which are shown in figure 4.1. Based on these results a non-toxic 

concentration of 0.5% (v/v) DMSO was chosen to determine the role of the hydroxyl 

radical. 
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Figure 4.1 DMSO dose response, cells exposed to varying concentrations of DMSO in DMEM-F12, 

data presented as LSM ± 95CI for n =3 independent tests, * indicates significant difference 

compared to untreated control (p~0.05). 
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The dose response of HaCaT cells treated with varying concentrations of GSH shows 

that GSH supplementation up to 5 mM has no effect on survival or plating efficiency 

(figure 4.2). A concentration of 5 mM GSH was chosen to investigate the role of 

hydrogen peroxide which is consistent with concentrations used in the literature (5). 
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Figure 4.2 Effect of GSH supplementation on the colony forming ability of HaC aT cells, data 

presented as LSM ± 95CI for n =3 independent tests, * indicates significant difference compared to 

untreated control (pS0.05). 

The results for direct exposure of cells in DMEM-F12 with and without antioxidants 

(0.1 mg/ml SOD, 0.5% v/v DMSO, 5 mM GSH or 20 IJ.g/ml catalase) are shown in 

figure 4.3. Antioxidants were added directly to DMEM-F12 covering cells and allowed 

to incubate for 30 minutes prior to irradiation in the Q-sun solar simulator. The results 

presented in figure 4.3 show that SOD had a slightly negative but not significant effect 

on cell survival. Edwards and Silva (9) investigated the source of photoinactivation of 

the enzyme lysosome and found that inclusion of SOD resulted in increased 

photoinactivation. This fmding was attributed to increased levels of hydrogen peroxide 

produced during the dismutation process (02-· + Ot ~ H202 + 02). Thus, it is possible 
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that the superoxide radical does play a small but negligible role in the cell killing 

abilities of DMEM-F12 that gives way to slight but not significant increases in cell 

death due to the production of hydrogen peroxide in the dismutation process when SOD 

is present during irradiation. Due to the low permeability of SOD (10), the production 

of superoxide and thus hydrogen peroxide is believed to be extracellular. DMSO, which 

is membrane permeable (11), had no effect on survival implying that the hydroxyl 

radical does not play a measureable role in the propagation of medium mediated cell 

death when irradiated with solar simulated radiation. 
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Figure 4.3 Direct exposure dose response plots; HaCaT cells irradiated in DMEM-F12 with and 

without the presence of SOD (0.1 mglml), DMSO (0.5% v/v), GSH (5 mM) or catalase (20 IJ.g/ml): 

(•) sham irradiated controls, (• ) 2 minutes, (• ) 5 minutes, (11) 10 minutes. Solid and thatched bars 

indicate the absence and presence of antioxidants respectively. Data are presented as the LSM ± 

95CI for n =3 independent tests, * indicates significant difference between time matched exposures 

between antioxidant treated and untreated cells. 

Both GSH and catalase convert hydrogen peroxide to water (12). Survival of cells 

exposed directly in DMEM-F12 supplemented with GSH and catalase both yield 

significant increases in survival compared to cells directly exposed for the same 
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duration in DMEM-F12 without antioxidant supplementation. This suggests a 

significant role for hydrogen peroxide mediating solar simulated radiation induced cell 

death in DMEM-F12. Although both antioxidants yield significant increases in cell 

survival, catalase appears to be the most effective. The difference in efficacy of GSH 

and catalase may result from differences in activity and I or that GSH is cell membrane 

permeable whereas catalase is not (5). If the latter is the predominant effect then this 

would suggest the difference between GSH and catalase survival is due to diminished 

GSH concentrations at the time of exposure due to cellular uptake which in turn 

suggests that the production of hydrogen peroxide is predominantly extracellular. Thus, 

the effects, if any, that irradiation may have on DMEM-F12 cell culture medium itself 

and consequently on cell survival was investigated. 

Pre-warmed (37°C) blank DMEM-F12 was irradiated for 2, 5 and 10 minutes and 

transferred to unexposed recipient cells immediately, 1 hour, 24 hours and 48 hours post 

exposure. Control recipient cells were treated with sham irradiated blank DMEM-F12 

transferred immediately, 1 hour, 24 hours and 48 hours post sham irradiation. Figure 4.4 

shows the survival of unexposed recipient cells treated with blank irradiated DMEM­

F12 at all times of transfer. A dose response with increasing exposure time of blank 

DMEM-F12 was observed. This effect was observed at all times of transfer but only 

blank DMEM-F12 irradiated for 10 minutes produced a significant decrease in recipient 

cell survival compared to their respective controls at all transfer times. 
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Figure 4.4 Survival curves for unexposed recipient cells treated with blank DMEM-F12 irradiated 

and transferred immediately, 1 hour, 24 hours and 48 hours post exposure; (•) sham irradiated 

controls, (• ) 2 minutes, (• ) 5 minutes, (t:o) 10 minutes; data presented as the LSM ± 95CI for n =3 

independent tests, * indicates significant difference between dose and its respective control. 

Blank DMEM-F12 transfer experiments were repeated with and without the presence of 

antioxidants to establish whether or not ROS contribute to the decrease in recipient cell 

survival observed in figure 4.4. Pre-warmed blank DMEM-F12 supplemented or not 

with 0.5% v/v DMSO, 5 mM GSH or 20 f.!g/ml catalase was irradiated for 2, 5 and 10 

minutes and controls were sham irradiated. At the appropriate time post exposure the 

medium with and without antioxidants was harvested, filtered and transferred to 

unexposed recipient cells. Figure 4.5 illustrates the survival of unexposed recipient cells 

treated with irradiated or sham irradiated blank DMEM-F12 with and without 

antioxidants immediately post exposure. 
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Figure 4.5 Cell survival for unexposed recipient cells treated with irradiated blank DMEM-F12 

with and without DMSO (0.5% v/v), catalase (20 J.~.g/ml) or GSH (5 mM) transferred to unexposed 

recipient cells immediately post exposure: (•) sham irradiated controls, (• ) 2 minutes, (• ) 5 

minutes,(!!;;) 10 minutes. Solid and thatched bars indicate the absence and presence of antioxidants 

respectively. Data are presented as the LSM ± 95CI for n=3 independent tests, * indicates 

significant difference between time matched exposures with and without antioxidants. 

As expected, the presence of DMSO confers no protection against possible ROS 

formation. However, the presence of GSH or catalase in blank DMEM-F12 produced 

significant increases in recipient cell survival. Interestingly, the increase in recipient cell 

survival due to the presence of catalase in indirect exposures (figure 4.5) produced a 

similar response to that observed when cells were directly irradiated in DMEM-F12 

supplemented with catalase (figure 4.3). However, the differential effects of GSH 

supplementation of DMEM-F12 in direct and indirect irradiation of cells (figures 4.3 

and 4.5) are most intriguing. Although the increase in survival due to the presence of 

GSH in both direct and indirect exposures are significant, direct exposure survival still 

exhibits a dose response, while recipient cells treated with blank DMEM-F12 

supplemented with GSH produced survival not significantly different from controls at 

all exposure times (i.e. 2, 5, and 10 minute exposures). These results support the 
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hypothesis that the production of hydrogen peroxide is predominantly extracellular and 

that the difference in cell survival due to the presence of GSH and catalase during direct 

exposures is due to cellular uptake. 

Although generation of ROS is known to be rapid and short lived, irradiated blank 

DMEM-F12 transfers with and without antioxidants were also performed 1, 24 and 48 

hours post exposure as shown in figures 4.6, 4.7 and 4.8 respectively. The rationale for 

carrying out blank irradiated DMEM-F12 transfers in the presence of antioxidants at the 

later time intervals was based on the supposition that the reduced survival observed at 

the later times of transfer in figure 4.4 may be due to ROS-induced damage of one or 

more of the components ofDMEM-F12 . 
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Figure 4.6 Cell survival for unexposed recipient cells treated with irradiated blank DMEM-F12 

with and without DMSO (0.5% v/v), catalase (20 j.lglml) or GSH (5 mM) 1 hour post exposure: (•) 

sham irradiated controls, (• ) 2 minutes, (• ) 5 minutes,(>,;) 10 minutes. Solid and thatched bars 

indicate the absence and presence of antioxidants respectively. Data are presented as the LSM ± 

95CI for n=3 independent tests, * indicates significant difference between time matched exposures 

with and without antioxidants. 

132 



2.6 

2.4 
,...., ..... 
c::: 
:::J 2.2 0 
u 
>-c::: 
0 2 .0 0 
u ....... 
Cl 
0 

...J 

~ 

~ 

DMSO Catalase GSH 

Figure 4.7 Survival for unexposed recipient cells treated with irradiated blank DMEM-F12 with 

and without DMSO (0.5% v/v), catalase (20 J.Lg/ml) or GSH (5 mM) 24 hours post exposure: (•) 

sham irradiated controls, (• ) 2 minutes, (• ) 5 minutes, (•) 10 minutes. Solid and thatched bars 

indicate the absence and presence of antioxidants respectively. Data are presented as the LSM ± 

95CI for n=3 independent tests, * indicates significant difference between time matched exposures 

with and without antioxidants. 
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Figure 4.8 Cell survival for unexposed recipient cells treated with irradiated blank DMEM-F12 

with and without DMSO (0.5% v/v), catalase (20 J.lgfml) or GSH (5 mM) 48 hours post exposure: 

(•) sham irradiated controls, (• ) 2 minutes, (• ) 5 minutes, (111) 10 minutes. Solid and thatched bars 

indicate the absence and presence of antioxidants respectively. Data are presented as the LSM ± 

95CI for n=3 independent tests, * indicates significant difference between time matched exposures 

with and without antioxidants. 
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The results show that the presence of DMSO or catalase has no effect on cell survival. 

Although a significant difference was observed at the DMSO 48 hour time of transfer, 

the difference is not thought to be due to pro-survival properties of DMSO since there 

was no evidence in either the direct or earlier indirect exposure results of any such 

processes within this system. GSH supplementation yielded increases in survival for all 

exposure times (2, 5 and 10 minutes) at all times of transfer (1, 24 and 48 hours). This 

increase in survival is believed to arise from the ability of GSH to permeate the cell 

membrane causing the intracellular ratio of reduced to oxidised glutathione 

(GSH:GSSG) to increase thus providing improved defences against the production of 

endogenous ROS. The possibility that GSH provides a protective effect against damage 

incurred to the cell culture medium by hydrogen peroxide at the time of irradiation is 

undermined since catalase confers no such protective effect. 

These improved defences against the production of endogenous ROS is also a more 

reasonable hypothesis then the possibility that GSH exerts a 

To determine whether 5 mM GSH was an excessive supplementation concentration for 

indirect exposures, the ability of lower concentrations of GSH to overcome reduced 

survival incurred when blank DMEM-F12 was irradiated for 10 minutes and transferred 

immediately post exposure to unexposed recipient cells was investigated. Although 

figure 4.9 shows that a concentration of 0.5 mM significantly increases survival (p < 

0.05) above that experienced in the absence of GSH, only 5 mM GSH was found to 

increase survival to a level that was found to be not significantly different from controls, 

thus validating the use of GSH at a concentration of 5 mM for indirect exposures. 
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Figure 4.9 Survival of unexposed recipient cells treated with blank DMEM-F12 supplemented with 

GSH and irradiated for 10 minutes (• ) or sham irradiated (•) and transferred immediately post 

exposure to unexposed recipient cells. Data are presented as the LSM ± 95CI for n=3 independent 

tests, * indicates significant difference between irradiated and sham irradiated survival for a given 

GSH concentration. 

Although GSH is taken up by cells, it is not done so directly. GSH is hydrolysed into its 

constituent amino acids (L-glutamate, L-cysteine and L-glycine) which are transported 

into the cell (13). De novo synthesis of intracellular GSH is carried out via two 

sequential ATP dependent enzymatic reactions, the first of which is catalysed by y--

glutamylcysteine synthase which binds L-glutamate and L-cysteine (12). The ability of 

HaCaT cells to synthesise GSH was determined using BSO, an inhibitor of y--

glutamylcysteine synthase. Figure 4.10 shows the survival of HaCaT cells treated with 

increasing concentrations of BSO under normal redox conditions where a reduction in 

survival is observed at concentrations greater than 104 nglml (1 0 J..Lg/ml). These results 

demonstrate that HaCaT cells do synthesise GSH, thus it is possible that exogenous 

supplementation does contribute to the reducing potential of HaCaT cells by increasing 

the GSH:GSSG ratio. 
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Figure 4.10 Dose response for cells exposed to varying concentrations of BSO in DMEM-F12. Data 

are presented as LSM ± 95CI for n:::;3 independent tests, * indicates significant difference between 

BSO treated and untreated cells. 

Whether or not GSH supplementation elicits its pro survival effects by increasing the 

reducing potential of HaCaT cells was investigated in both direct and indirect 

exposures. Exposures were perfonned using a non-lethal concentration of BSO (1 0 

ngiml) with and without the presence of 5 mM GSH, and compared to cell survival 

results obtained from exposures performed with and without 5 mM GSH, the results for 

which are presented in figures 4.11 and 4.12. 
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Figure 4.11 Direct exposure of cells in DMEM-F12 supplemented with (•) nothing , (• ) 5 mM GSH, 

(• ) 5 mM GSH and 10 ng!ml BSO or (•) 10 ng!ml BSO. Data are presented as the LSM ± 95CI for 

n=3 independent tests, *indicates significant difference between time matched supplemented and 

unsupplemented exposures. 
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Figure 4.12 Indirect exposure of cells in DMEM-F12 supplemented with (•) nothing, (• ) 5 mM 

GSH, (• ) 5 mM GSH and 10 ng/ml BSO or (•) 10 ng!ml BSO. Data presented as the LSM ± 95CI 

for n=3 independent experiments, * indicates significant difference between time matched 

supplemented and unsupplemented exposures. 

The presence of BSO during direct exposures had no effect on cell survival compared to 

unsupplemented exposures (figure 4.11). Furthermore, the increased survival of cells 
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directly irradiated in the presence of GSH was not abrogated due to the presence of 

BSO (figure 4.11 ). As expected, the presence of GSH in the indirect exposures 

eliminated the dose response observed with unsupplemented indirect exposures (figure 

4.12). Although the presence of BSO with GSH significantly diminished the 

effectiveness of GSH in the indirect exposures, its presence did not inhibit GSH from 

abrogating this dose response (figure 4.12). However, it is suspected that the significant 

reduction in the effectiveness of GSH is an artefact of plating efficiency and not a 

detrimental effect due to the presence of BSO. This is suspected because indirect 

exposures performed with DMEM-F12 supplemented with GSH alone or GSH and BSO 

together are not significantly different to their respective controls for all exposure times. 

However, the GSH control and the GSH and BSO control are significantly different not 

only from one another, but also to the unsupplemented control. Figures 4.9 and 4.10 

both show that the presence of 5 mM GSH and 10 ng/ml BSO respectively does not 

yield significant differences in survival. The plating effect is thought to arise due to the 

low precision in cells counts. Cells plated for the clonogenic assay are of the order of 

102 (i.e. 400 cells per well) but are calculated from a volume of fluid normally 

containing 105 cells precise to one decimal place (i.e. 5.5 x 105 cells mr1
). Thus, 

calculating low seeding densities from high density stock solutions with low precision 

can result in a high probability of variation between seeding densities computed from 

independent stock solutions. To minimise this variation/effect, one independent test for 

each supplementation should ideally be generated from one independent cell stock 

solution and this repeated for further independent tests. This will ensure that the 

variance between independent tests is the same for each supplementation. However, 

only the BSO exposures with and without GSH were performed in this manner which is 
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reflected in the lack of significant difference between their controls as shown in figure 

4.12. 

Although both the direct and indirect BSO results suggest that GSH does not exact its 

pro survival effects by increasing the reducing capacity of HaCaT cells, it is believed 

that the non-toxic concentration of BSO chosen was too low. Since BSO binds to the 

active site of y-glutamylcysteine synthase irreversibly (14-17), it is consumed in the 

process. The concentration of BSO employed was chosen due to its lack of toxicity 

under normal redox conditions but was thought that under oxidative stress, this 

concentration would become toxic to cells due to a potentially higher demand for GSH. 

Thus, although a BSO concentration of 10 ng/ml will inhibit a portion of the y­

glutamylcysteine synthase population, its effect on cell survival can be seen to be 

undetectable. Thus, it is probable that the BSO concentration used was ineffective 

despite increased demands on the reducing capacity of cells due to radiation induced 

toxic conditions. 

4.4 Conclusions 

Both direct and indirect DMEM-F12 antioxidant exposure results show that reduced 

survival of cells irradiated in DMEM-F12 is mediated predominantly by the production 

of extracellular hydrogen peroxide. However, the indirect results also showed that blank 

DMEM-F12 irradiated and transferred to unexposed recipient cells 1 hour or more post 

exposure resulted in significantly reduced survival that cannot be overcome with the 

inclusion of antioxidants except GSH. Although the ability of GSH to increase survival 

at the late times of transfer was surmised to be the result of increased reducing 
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capabilities of supplemented cells, it is possible that the presence of GSH at the later 

time points enabled cells to overcome possible deleterious photo degradation effects of 

DMEM-Fl2. 
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Chapter 5 Mechanistic effects 

5.1 Introduction 

When performing non-ionising radiation investigations, the exposure media in which 

biological samples are maintained during irradiation is a fundamental parameter to 

consider prior to experimentation, however the reasoning behind the choice of exposure 

medium is rarely specified. Cell culture medium and PBS appear to be primary 

exposure media employed, with a possible bias toward PBS (1-11 ). The results 

presented in the previous chapters have demonstrated a significant difference in the 

capabilities of the different exposure media to elicit cell death when irradiated with 

solar simulated radiation. This was shown in chapter 4 to be primarily attributed to the 

extracellular production of hydrogen peroxide in DMEM-F12 medium. Cell death was 

measured using the clonogenic assay which is generally considered the gold standard in 

radiobiological studies for determining radio-sensitivity. However, the clonogenic assay 

does not provide information regarding the events leading to and the mechanism(s) by 

which cell death is incurred. 

Cell death is a normal component of the health and development of multicellular 

organisms and is conventionally subdivided into regulated and unregulated mechanisms 

known as apoptosis and necrosis respectively (12). Although evidence is emerging that 

necrosis is in fact a regulated event (13), it is primarily associated with extensive 

damage leading to uncontrolled cell degradation and localised inflammation (12) while 

apoptosis is an energy dependent systematic degradation of the cell (14) from which 

pre-committed cells are capable of withdrawing (15). Thus, this chapter investigates 
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whether apoptosis plays a role in solar simulated radiation induced cell death enabling 

further investigation into the differential effects of irradiating cells in DMEM-F12 and 

PBS in terms of apoptotic activity. 

Apoptosis is a highly complex and tightly regulated form of programmed cell death in 

which cells actively participate in their own demise. Apoptosis can be triggered by both 

external and internal stimuli. Consequently, the two predominant pathways by which 

apoptosis can be executed are aptly termed the extrinsic and intrinsic pathways. The 

extrinsic pathway is triggered when trans membrane death receptors of the tumour 

necrosis factor receptor-1 (TNFR-1) superfamily are activated by their respective 

ligand(s) while the intrinsic pathway is triggered in response to internal signals such as 

DNA damage (16, 17). Both pathways are dependent on the activity of a family of 

proteins, termed caspases that are one of the main effectors of apoptosis. Caspases are a 

group of cysteine proteases that exist within the cell as inactive pro-forms or zymogens 

that require cleavage for activation, and are divided into two groups, initiator (-2, -8, -9 

and -10) and effector (-3, -6, -7) caspases (16, 17). Although the initiator caspases 

primarily associated with the extrinsic and intrinsic pathways differ, these pathways 

converge at effector caspase activation since both caspase-8 and -9 of the extrinsic and 

intrinsic pathways respectively activate caspase-3 (14), a critical death effector in 

caspase mediated cell death (18). 

In the extrinsic pathway, ligation of the appropriate extracellular signalling molecules 

triggers transmembrane death receptor trimerisation. The intracellular death domains 

(DD) of the now trimeric receptor recruit adaptor molecules that possess death effector 

domains (DED) which in tum recruits inactive procaspase-8, see figure 5.1. Together, 
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these proteins form the death inducing signalling complex (DISC). Procaspase-8 is 

cleaved at its DED releasing activated caspase-8, which is believed to occur by 

autoproteolysis due to the clustering ofprocaspase-8 at the DISC (19, 20). 

Ugand 
(F1111l, TNF-G, TRAIL) 

Adaptors 
(fADD,TRADOI 

Figure 5.1 Receptor mediated activation of caspase-8 at the death inducing signalling complex 

(DISC) (21) 

Activation of the intrinsic pathway is dependent on the release of a mitochondrial intra-

membrane space protein, cytochrome c. The release of cytochrome c is tightly regulated 

by the Bcl-2 family of proteins (22). This family consists of pro and anti apoptotic 

proteins that actively participate in the demise (Bid, Bax, Bak) or maintenance (Bcl-2, 

Bcl-xL) of the mitochondrial membrane integrity, the functions of which are reviewed 

elsewhere (23-26). In response to death inducing stimuli, the pro-apoptotic proteins 

(Bid, Bax, Bak) are up-regulated, overcoming the inhibiting effects of the anti-apoptotic 

proteins (Bcl-2, Bcl-xL), thus resulting in mitochondrial membrane permeablisation and 

cytochrome c release. When released, cytochrome c binds to the cytosolic protein 
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apoptotic protease activating factor-1 (Apaf-1) (16). This interaction results in an 

adenine triphosphate (ATP)-dependent conformational change in Apaf-1 which, allows 

7 molecules of Apaf-1 to associate with each other forming a multi-protein complex 

known as the apoptosome (27, 28), see figure 5.2. This wheel-like structure recruits 

inactive procaspase-9 which is then cleaved to form activated caspase-9. Thus, once 

activated, initiator caspases proteolytically activate effector caspases, such as caspase-3, 

which serve to mediate and amplify the death signal that ultimately results in the demise 

ofthe cell (16, 17). 

1'~~~. ~ 
'() dATP ~-

Apaf-1 

Apoptosome 

Pro­
Caspaae-9 --. 

Figure 5.2 Formation of the apoptosome and activation caspase-9 (21) 

In this study, apoptotic induction was measured in terms of caspase-3/7 activity since 

both the intrinsic and extrinsic pathways converge at caspase-3 activation (14). The 

assay employed measures the activity of both effector caspases-3 and -7 (29) since there 

is a high level of functional redundancy between these two effector caspases (20). 

Although mitochondrial membrane permeablisation is largely associated with the 

intrinsic pathway, the ability of solar simulated radiation to incur losses in 

mitochondrial membrane potential (MMP) was investigated since UVB radiation has 

been predominantly associated with the intrinsic pathway (30). 
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5.2 Methods 

5.2.1 alamarBlue™ cell viability assay 

Cells were seeded in clear plastic 96 well dishes at densities of 10,000 and 5,000 cells 

per well for the 24 and 48 hour post exposure analysis respectively. Cells were exposed 

without lids in the Q-sun solar simulator in either 200 ~1 DMEM-F12 or 200 ~1 PBS. 

Prior to PBS exposures, the medium covering cells was discarded, the cells washed 

twice with 1 00 ~1 PBS per well, the washes discarded and 200 ~1 fresh PBS per well 

added prior to exposure. Post irradiation, the exposed PBS was discarded and 200J..Ll 

fresh cell culture medium re-added. All samples were re-incubated post exposure. At 21 

and 45 hours post exposure, samples were washed twice with 100 ~1 PBS per well and 

treated with 100 ~ 5% v/v alamarBlue™ solution (1/20 dilution of alamarBlue™ 

solution (Biosource, Camarillo CA, USA) in phenol free DMEM-F12 cell culture 

medium, see appendix 2 for reconstitution procedure) per well and incubated for 3 

hours. Using a Tecan GENios plate reader, the fluorescence was measured usmg 

excitation and emission wavelengths of 540 nm and 595 nm respectively. 

5.2.2 Caspase-317 activity 

Promega multiplexing CellTiter-Blue® and Caspase-Glo® 3/7 assay kits were 

employed. These assays permit cell viability and caspase 3/7 activity to be determined 

in the same cell populations post treatment. Cells were seeded at 10,000 cells per well in 

opaque white walled 96 well plates 16 hours prior to irradiation. Cells were irradiated in 

either DMEM-F12 or PBS. 
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The assay protocols recommend adding the CellTiter-Blue® and Caspase-Glo® 

reagents to the medium covering cells at ratios of 1:5 and 1:1 respectively for 

maximum sensitivity. Thus, the volume of medium covering cells post irradiation is an 

important parameter to consider for the DMEM-F12 exposures. Based on the number of 

independent tests and replicates per independent test using the recommended 100 Jll 

Caspase-Glo® reagent per well, a volume of 84 Jlf of DMEM-F12 post exposure was 

desirable. Prior to experimentation, it was found that 90, 95 and 105 Jll DMEM-F12 per 

well resulted in, on average, 84 Jll DMEM-F12 post exposure when irradiated for 2, 5 

and 10 minutes respectively due to radiation induced evaporation. Thus, prior to both 

PBS and DMEM-F12 exposures, the medium covering cells during the 16 hour 

incubation was discarded. For DMEM-F12 exposures, the cells were not washed and 

either 84, 90, 95 or 105 Jll DMEM-F12 per well was added to plates denoted for sham, 

2 minute, 5 minute or 10 minute irradiations respectively. Immediately post exposure, 

16.8 Jll (16.8:84 = 1 :5) CellTiter-Blue® reagent per well was added to cells giving a 

final volume of 100.8 Jll. For PBS exposures, cells were washed twice in 100 )..ll PBS, 

the washes discarded and the cells irradiated in 200 Jll fresh PBS. Immediately post 

exposure, the PBS was discarded and 84 Jll DMEM-F12 and 16.8 Jll CellTiter-Blue® 

reagent per well was added to cells also giving a final volume of 100.8 Jl].. Cells were 

incubated with the CellTiter-Blue® reagent for 1 hour. After 1 hour, the fluorescence 

was read using the Tecan GENios plate-reader with excitation and emission filters 

peaking at 540 nm and 595 nm respectively. Immediately after the fluorescence was 

read, 100.8 Jll ((84 + 16.8):100.8 = 1 :1) Caspase-Glo® reagent was added per well and 

incubated for 1 hour after which the luminescence was read using the Tecan GENios 

plate-reader with an integration time of 1 second. 
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The time at which the Caspase-Glo® reagent was added to cells post irradiation was 

optimised using a 5 minute exposure in DMEM-F12 since this was the minimum 

exposure duration at which cell death was observed. The manufacturers (Promega) 

recommend allowing an incubation time of 1-2 hours with the CellTiter-Blue® reagent, 

the fluorescence of which is measured before caspase activity dependent luminescence. 

Thus, the earliest point at which the Caspase-Glo® reagent could be added was 1 hour 

post irradiation which allows a 1 hour CellTiter-Blue® incubation when added 

immediately post exposure. Luminescence increases with caspase activity, table 5.1 

shows the fold increase over controls in luminescence at different times post irradiation 

for cells exposed for 5 minutes in DMEM-F12 and the corresponding cell viability. 

Based on these results, cells were assayed for viability and caspase activity 1 and 2 

hours post exposure respectively for all exposures in both DMEM-F12 and PBS. 

Table 5.1 Kinetics study results to optimise the time post irradiation at which caspase-3/7 would be 

measured 

Time point Cell viability fluorescence Caspase 3/7 activity luminescence 

(FI & Lum) Ctrl 5min Ratio (5min/Ctrl) Ctrl 5min Ratio (5min/Ctrl) 

1 & 2hr 38853.8 31902.2 0.82 100.3 240.5 2.4 

3 &4hr 42608.0 32364.7 0.76 104.8 187.8 1.8 

5 & 6hr 58426.2 43088.8 0.74 153.2 261 .3 1.7 
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5.2.3 Mitochondrial membrane potential 

Cells were seeded on glass bottomed Petri dishes at a density of 20,000 cells per dish, 

cells were plated on the glass inserts at a volume of 150-220 Jll and allowed to adhere 

for 2-3 hours before 3 ml of cell culture medium was added and samples incubated 

overnight. Samples were exposed in the Q-sun solar simulator in either 3 m1 cell culture 

medium or 3 ml PBS without lids. For samples exposed in PBS, cell culture medium 

was removed prior to exposure, filtered and stored. Samples were washed once in 1 m1 

PBS, the wash discarded and 3 ml fresh PBS added to the samples. Immediately post 

exposure, the exposed PBS was discarded and 3 ml stored cell culture medium re-added 

to samples. All samples were incubated at 37°C post exposure until their respective time 

points. Twenty minutes prior to each time point, samples were washed twice in 0.5 ml 

PBS with lmM CaCh I MgCh (see appendix 2), washes discarded and incubated with 1 

ml 5 ~rhodamine 123 (Sigma) for 20 minutes. After dye incubation, samples were 

washed three times with 0.5 ml PBS with 1mM CaCh I MgC}z, washes discarded and 

1ml fresh PBS with 1mM CaCh I MgCh added to each sample. Confocal microscopy 

was employed to measure the fluorescence of rhodamine 123 in conjunction with 

LSM51 0 software. The dye was excited at 488 nm with an argon ion laser and using an 

emission filter, fluorescent emissions were recorded at 520 nm. 

5.2.4 Statistics 

Results represent a minimum of 3 independent tests unless otherwise stated, with a 

minimum of 2 replicates per independent test. Data was log transformed and ANOV A 

was performed on the linear regressions and pair-wise data were computed using the 
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Bonfertoni adjustment. Data are presented as the LSM ± 95CI. All analyses were done 

using statistical software package SAS 9.1 and SAS enterprise guide 3.0. Significance 

was taken at a level ofp ~ 0.05. 
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5.3 Results and discussion 

Resazurin is a non-fluorescent blue indicator dye that is reduced by metabolically active 

cells to the highly fluorescent pink compound, Resorufin (31). Both the alamarBlue™ 

and CellTiter-Blue® assays are commercial preparations of Resazurin which allows the 

innate metabolic activity of viable cells to be monitored through their capacity to reduce 

resazurin to resorufin. Although the capacity of cells to reduce resazurin has been linked 

to electron transport chain modifications (32), Gonzalez et al (33) found cytosolic and 

microsomal enzymes, as well as mitochondrial enzymes, capable of catalysing the 

reduction of resazurin and thus, advise against interpreting losses in viability solely as 

mitochondrial damage. 

Figures 5.3 and 5.4 illustrate the viability of cells irradiated in DMEM-F12 and PBS 

respectively as measured using the alamarBlue™ viability assay. Cell viability was 

assessed 24 and 48 hours post exposure for both exposure media. Both the DMEM-F12 

and PBS results exhibit a dose-dependent loss in viability 24 hours post exposure, with 

further losses experienced 48 hours post exposure. Examining the 10 minute exposure 

point for both PBS and DMEM-F12 shows that a 10 minute exposure in PBS is not 

significantly different to controls 24 or 48 hours post exposure, while a 10 minute 

exposure in DMEM-F12 can be seen to be significantly reduced with respect to controls 

at 48 hours post exposure. This concurs with the dose response data shown in figure 3.2 

in chapter 3. 
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Figure 5.3 HaCaT cells irradiated in DMEM-F12 using the Q-sun solar simulator and cell viability 

measured 24 hours (e) and 48 hours (0) post exposure using the alamarBlue™ cell viability assay, 

data is presented as the LSM ± 95CI computed using ANOV A on the log transformed data, * 

significantly different to control (p S 0.05). 
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Figure 5.4 HaCaT cells irradiated in PBS using the Q-sun solar simulator and cell viability 

measured 24 hours (e) and 48 hours (0) post exposure using the alamarBlue™ cell viability assay, 

data is presented as the LSM ± 95CI computed using ANOV A on the log transformed data, * 

significantly different to control (p S 0.05). 
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The CellTiter-Blue® viability assay was multiplexed with the Caspase-Glo® 317 assay 

1 and 2 hours post irradiation respectively, thus enabling cell viability and caspase-317 

activity to be monitored in the same cell populations. Figures 5.5 and 5.6 show the 

viability and caspase activity for cells irradiated in DMEM-F12 and PBS respectively. 

Cells irradiated in DMEM-F12 clearly demonstrate a dose dependent increase in 

caspase-317 activity with a corresponding decrease in cell viability as would be expected 

in a population of cells undergoing apoptosis. Interestingly, cells irradiated in PBS do 

not exhibit any changes in viability or caspase-317 activity with respect to controls, even 

when irradiated for 60 minutes. 
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Figure 5.5 Multiplexed assay data showing caspase-3/7 activity (e) and cell viability (0) measured 

as luminescence and fluorescence in the same cell populations 1 and 2 hours post Q-sun irradiation 

in DMEM-F12 respectively, data is presented as the LSM ± 95CI computed using ANOV A on the 

log transformed data, * significantly different to control (p S 0.05). 
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Figure 5.6 Multiplexed assay data showing caspase-317 activity (e) and cell viability (0) measured 

as luminescence and fluorescence in the same cell populations 1 and 2 hours post Q-sun irradiation 

in PBS respectively, data is presented as the LSM ± 95CI computed using ANOVA on the log 

transformed data, * significantly different to control (p S 0.05). 

UVB radiation has been surmised to induce apoptosis predominately through the 

intrinsic pathway (30). A key event in the intrinsic pathway is MMP depolarisation (34). 

The fluorescent probe rhodamine 123 was employed to determine the effect(s), if any, 

that solar simulated radiation may have on MMP, since rhodamine 123 has long been 

known to specifically stain intact mitochondrial membranes (35). If the integrity of the 

mitochondrial membrane is compromised, then rhodamine 123 will fail to stain the 

damaged mitochondria which will be reflected as a loss in fluorescence with respect to 

unirradiated controls. 

Figure 5.5A, B and C show the MMP results when cells are irradiated for 2, 5 and 10 

minutes in DMEM-F12 respectively, and analysed at various times post exposure. 

Time-matched sham irradiated controls were included for each exposure duration where 

all time-matched controls were found to be not significantly different to one another. 
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Figure 5.7 HaCaT cells irradiated for 2 (A), 5 (B) and 10 (C) minutes in DMEM-F12 or for 10 (D), 

30 (E) and 60 (F) minutes in PBS using the Q-sun solar simulator. The mitochondrial membrane 

potential was measured at different time points post exposure, time matched controls (e) were run 

simultaneously with irradiated samples (0). Data is presented as the LSM ± 95CI computed using 

ANOV A on the log transformed fluorescence data, * significantly different to time matched control 

(p :s; 0.05). 
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With the exception ofthe 2 minute DMEM-F12 exposure analysed 1 hour post exposure 

(figure 5.5A), irradiating HaCaT cells in DMEM-F12 for 2 and 5 minutes resulted in a 

significant loss in MMP post exposure with respect to time matched controls. This 

significant loss in MMP was found to be transient since the loss in MMP 6 hours post 

irradiation for both the 2 and 5 minute exposures were found to be not significantly 

different to their respective time matched controls. Conversely, the MMP of cells 

irradiated for 10 minutes in DMEM-F12 was found to decrease in a time dependent 

manner over the 6 hour interval analysed post exposure. In stark contrast to the DMEM­

F12 results, analysis of the MMP in cells irradiated in PBS show that these cells, 

irrespective of the exposure duration, do not experience a loss in MMP with respect to 

controls for at least 24 hours post irradiation, (figure 5.5D-F). 

The DMEM-F12 results suggest that cells irradiated in DMEM-F12 with solar 

simulated radiation experience a loss in MMP within the first 2 hours post exposure, 

irrespective of the exposure duration. After this, depending on the extent of the insult, 

the MMP either recovers or further losses are incurred. These events may, in part, be 

related to the association between cytochrome c and cardiolipin, a membrane lipid 

predominantly found in the mitochondria (36, 37). An electrostatic attractive force 

exists between cytochrome c and cardiolipin which must be disrupted in order for 

cytochrome c to be released (38, 39). Oxidative stress has been shown to be capable of 

mediating this dissociation ( 40) where both UV A and UVB radiation have been shown 

to increase oxidative stress in human keratinocytes (41, 42). In chapter 4, evidence that 

strongly implicates hydrogen peroxide in DMEM-F12 mediated cell death was 

presented. The ability of catalase to inhibit cell death implies that the hydrogen peroxide 

generated is predominantly extracellular. However, the smaller yet still significant 
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increases in survival observed with GSH, which is readily taken up by cells (8), may be 

indicative of intracellular ROS quenching. Thus, it is possible that solar simulated 

radiation generates intracellular ROS in a dose dependent manner which in tum 

regulates the dissociation of cytochrome c from cardiolipin. Although the release of 

cytochrome c has been shown to be a complete, enzyme-independent and rapid event 

occurring within 5 minutes of initiation irrespective of the type or strength of apoptotic 

stimulus, the time elapsed between apoptotic stimulation and cytochrome c release was 

found to vary (43). While such temporal discrepancies have recently been reported to be 

a complex balance between caspase-3 initiators and inhibitors (15), it could be reasoned 

that a threshold level of damaging agents, such as ROS, is required to tip the balance in 

favour of apoptotic induction including cardiolipin dissociation and the subsequent 

release of cytochrome c. Thus, it could be that all three DMEM-F12 exposures (2, 5 and 

10 minutes) generate sufficient damage to compromise the integrity of the MMP but 

only the 5 and 1 0 minute exposures attain the threshold level required to initiate the 

demise of the cardiolipin-cytochrome c association. The work of Garg and Chang ( 44) 

supports this hypothesis. They observed that the level of intracellular ROS generated in 

cells treated with hydrogen peroxide saturated at a concentration of 0.5 mM hydrogen 

peroxide where further increases in the concentration of hydrogen peroxide did not 

result in further increases in the level of intracellular ROS generated. However, cell 

death was not observed unless a concentration of ~ 1 mM hydrogen peroxide was 

employed. They also observed that cells degrade hydrogen peroxide at a constant rate, 

reducing the concentration of hydrogen peroxide by 50% within one hour. Thus, they 

concluded that the discrepancy between the concentrations of hydrogen peroxide 

required to incur cell death and saturation of intracellular ROS generated was due to the 

fact that at a fixed cell density higher concentrations of hydrogen peroxide were better 
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maintained due to fixed degradation rates in cultures ( 44). Furthermore, this conjecture 

compliments both the caspase-317 activity in figure 5.5 and the cell survival results 

presented in figure 3.4, where both the 5 and 10 but not the 2 minute exposures were 

found to be significantly different to controls. 

Although this model agrees with the review by Assefa et a1 (30), who found that the 

literature strongly implicates the intrinsic pathway in UVB mediated apoptosis, the 

predominant UV waveband in solar simulated radiation is UV A which is believed to 

elicit its effects predominantly through oxidative stress ( 45). Thus, due to the 

production of extracellular hydrogen peroxide in DMEM-F12 upon irradiation and the 

strong presence of UV A radiation in solar simulated radiation, it is possible that 

apoptosis is concurrently or predominantly induced via the death receptor mediated 

extrinsic pathway. 

The extrinsic pathway can also incur losses in MMP via caspase-8 mediated activation 

of the pro-apoptotic Bcl-2 family member Bid (46, 47). Once cleaved, the truncated 

form of Bid (tBid) relocates to the mitochondria (48) where it facilitates outer 

membrane pore formation via Bax!Bak oligomerisation (49). In addition, tBid has also 

been reported to facilitate cytochrome c release by direct binding to cardiolipin at 

mitochondrial contact sites (50). Although it has been reported that tBid is not required 

for Bax translocation during UV induced apoptosis, the irradiator employed in these 

studies was a UVC lamp emitting at 254 nm (51, 52). As discussed in chapter 1, the 

absorption spectrum of DNA peaks at ~ 260 nm (53). Thus, DNA is a potent 

chromophore for this environmentally irrelevant wavelength (254 nm) and as such, it 

would not be unreasonable to expect significantly different responses to that which 
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would be incurred by environmentally relevant wavelengths which are poorly absorbed 

by DNA in comparison to 254 run. 

Alternatively, it could be that mitochondrial membrane permeablisation facilitates the 

efflux of intra-membrane space proteins other than cytochrome c, such as Smac/Diablo, 

apoptosis inducing factor (AIF) and endonuclease G (endoG), whose function(s) may be 

integral to the initiated response. For example, Smac/Diablo functions by binding to the 

inhibitors of apoptosis proteins (lAPs), which in the absence of Smac/Diablo inhibit 

caspases-3, -7 and -9 (54) while AIF and endoG function to induce caspase-independent 

cell death (55). 

Mitochondrial membrane permeablisation, which is associated with the dissipation of 

MMP, is considered the point at which a cell irreversibly commits to apoptosis (56). 

Thus, the apparent recovery of MMP post irradiation in cells irradiated in DMEM-F12 

may be an artefact of an insufficient number of replicates. The statistical data presented 

was derived from just 2 independent tests from which 3 different areas were imaged per 

independent experiment, and the fluorescence intensity of 10 individual cells per image 

was measured. Although further replicates would be desirable to increase the power of 

these observations, it is unlikely that the Bonferroni statistical adjustment resulted in 

false positives in the significance between groups since its conservative corrections has 

been reported to lead to the opposite problem, increasing false negative rates, but only 

when the number of tests exceeds a few hundred (57). Although cytochrome c has been 

speculated to re-enter the inter membrane space after it has exited ( 43) which may serve 

to prevent mitochondrial dysfunction by enabling oxidative phosphorylation to 

continue, it was also speculated that maintenance of this metabolic pathway is done so 
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primarily to fuel the ATP dependent processes involved in apoptosis (43). Furthermore, 

once the mitochondrial outer membrane is permeablised, proteins involved in caspase­

independent cell death pathways are also released and should, in the absence of caspase 

activity, ensure the demise of the cell. However, in a study examining the effects of 

hydrogen peroxide on cardiac myocytes, Cook et al (58) found that treated cell 

populations experienced an early loss in MMP which was restored but then 

subsequently lost again. Cook et al (58) speculated that this effect is due to two distinct 

cell death events. They proposed that the initial loss and subsequent recovery in MMP 

may be indicative of a subpopulation of cells undergoing rapid cell death. Such cells 

would not be present in the cell populations examined at the later time points due to loss 

of adhesion and cell washes which could present as a recovery in MMP if the remaining 

cells are less damaged than the initial subpopulation. Although, the time interval (3 

hours) over which Cook et al (58) observed these effects is substantially different to the 

time interval examined here, it is possible that if the MMP analysis for cells irradiated 

in DMEM-Fl2 was extended to later time points, that further reductions in MMP would 

be observed. 

Most of the conjectures presented above, however, do not appear to be applicable to 

cells irradiated in PBS. The absence of caspase activity in PBS irradiated cells 

implicates necrosis and I or caspase-independent cell death pathways. However, the 

alamarBlue™ results undermine the possibility that necrosis is the predominant form of 

cell death since cells irradiated in PBS were found to be viable 24 and 48 hours post 

irradiation. Furthermore, MMP dissipation has been observed in necrotic cells (59). 

Mitochondrial membrane permeablisation is essential for the release of proteins 

involved in caspase-independent cell death (55) and since the alamarBlue™ results 
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indicate that cell death does occur within 24 hours, this eliminates caspase-independent 

cell death pathways. 

Caspase-3 activation in human keratinocytes has been reported to occur from 4 to as 

much as 12 hours post UV irradiation (60-62). Thus, the apparent lack of caspase-3/7 

activation in cells irradiated in PBS may merely be a temporal issue. Caspase-3/7 

activity was measured 2 hours post irradiation in this study. This time point was based 

on the optimal activity observed in a kinetics study of caspase-3/7 activity in cells 

irradiated for 5 minutes in DMEM-Fl2. The kinetics of caspase-3/7 activity was 

optimised using a 5 minute DMEM-F12 exposure because this was found to be the 

shortest exposure duration at which cell death was observed to be significantly different 

to controls. However, it appears as though optimising caspase activity based on the 

minimum exposure duration required to elicit cell death and not the exposure medium 

fails to account for potentially different induction mechanisms or at least temporal 

differences in capase-3/7 activation. Since cytochrome c release has been observed in 

UV irradiated human keratinocytes in the absence of MMP dissipation ( 4), it is quite 

possible that caspase-3 is activated in PBS irradiated cells later than 2 hours post 

exposure. Alternatively, caspase-12 has been shown to be a direct activator of caspase-9 

in the absence of cytochrome c release (63) where activation of caspase-9 has been 

shown to be necessary for UVB radiation induced apoptosis in human keratinocytes 

(64). 
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5.4 Conclusions 

While the results presented in this chapter do not clarify which pathway(s) are triggered 

in response to solar simulated radiation, they clearly demonstrate that under identical 

exposure parameters, the response of cells irradiated in DMEM-F12 and PBS are 

significantly different. Whether the differences observed are merely temporal 

differences in the same pathway(s) or that different pathways are triggered that are 

dependent on the exposure media employed is unknown at present and requires further 

investigation. 
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Chapter 6 Solar radiation induced DNA damage 

6.1 Introduction 

Using the Q-sun solar simulator, chapters 3-5 have shown that the response of cells is 

dependent on the exposure medium employed during irradiation which is primarily 

attributed to the extracellular generation of hydrogen peroxide in the cell culture 

medium DMEM-F12. This chapter further investigates the differential effects of the 

exposure medium in terms of DNA damage. 

DNA is the fundamental building block of life (1) from which the phenotype of all 

living organisms is derived. The importance of DNA is reflected in genetic disorders, 

particularly single gene disorders where just a single gene defect can give rise to 

diseases such as cystic fibrosis, sickle cell anemia and achondroplasia dwarfism (2-4). 

Although in recent years, the significance of non-nuclear targets have come to the 

forefront in radiation biology, direct interactions between the genome and incident 

radiation are still vitally important. This point may be of particular relevance for skin 

carcinogenesis, since melanin, the innate UV filter in skin, forms nuclear caps covering 

the 'sunny-side' of proliferating cells in the basal layer (5) which may be an intrinsic 

mechanism by which the skin naturally protects the genomic material of a cell from a 

phototoxic insult. 

This chapter specifically addresses the ability of solar simulated radiation to elicit 

genomic perturbations in directly irradiated kertinocytes, and if the exposure medium 

potentiates any such effects. Mitotic inhibition and the comet or single cell gel 
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electrophoresis assay were employed as markers of checkpoint efficiency and DNA 

damage respectively. Mitotic inhibition is a measure of how a cell is prevented, or not, 

from progressing through the cell cycle (6), while the comet assay measures damage in 

the form of single strand breaks (SSBs), double strand breaks (DSBs), alkali-labile sites 

i.e. nucleotides that have lost their purine (apurinic) or pyrimidine (apyrimidinic) base 

and are collectively termed abasic (AP) sites (7). 
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6.2 Methods 

6.2.1 Cytogenetics I mitotic inhibition 

Cells were grown to approximately 70-80% confluence and irradiated or sham 

irradiated using the Q-sun solar simulator, as outlined in chapter 2, in either cell culture 

medium or PBS. In the case of PBS exposures, immediately before irradiation the cell 

culture medium was removed and stored, the cells washed once in 1 ml PBS and 3 ml 

fresh PBS added and the cells were irradiated. Immediately post exposure, the PBS was 

discarded and replaced with 3 ml of the stored cell culture medium. All cells were 

incubated for 30 minutes to post exposure tore-acclimatise to 37°C prior to adding the 

pre-warmed (37°C) spindle inhibitor Colcemid (Gibco). Colcemid was added to each 

sample at a concentration of 1 0 J..Ll per ml of cell culture medium and the cells incubated 

for a further 2 hours, after which the cells were trypsinised. Once trypsinised, the cells 

were stored on ice to prevent DNA repair until they were centrifuged at 1200 rpm for 10 

minutes at 4°C. After centrifuging, the supernatant was decanted and 5 ml KCl (0.075 

M at 4 °C) hypotonic was added to lyse the cell membrane and swell the chromosomes 

and incubated on ice for 20 minutes. The cells were then centrifuged at 1200 rpm for 10 

minutes at 4°C. The supernatant was decanted and 10 ml ofCarnoy's fixative (methanol 

to acetic acid ratio 3: 1 at 4 °C) was added and centrifuged at 1200 rpm for 1 0 minutes at 

4°C, the supernatant decanted and 10 ml fresh Camoy's fixative added before 

refrigerating overnight. 

Samples were removed from the refrigerator and allowed to reach room temperature. 

The samples were then centrifuged for 10 minutes at 1200 rpm and the supernatant 
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decanted. 1 0 ml fresh fixative was added, the samples aspirated and centrifuged for 10 

minutes at 1200 rpm. The fixative was removed leaving an approximate volume ratio of 

1 part cell pellet and 2 parts fixative. Using slides pre cleaned in methanol, the cell 

samples were dropcast onto the slides from a height (1 0-15 em) to ensure the cell 

membrane broke and released intact metaphases which were fixed to the slide using a 

Bunsen flame. Once cooled the slides were stained in a 3% Giemsa solution (Gibco) 

prepared in pH 8.0 buffer (BDH) for 10 minutes and washed twice in the same buffer 

and allowed to dry standing at room temperature overnight. The slides were then 

mounted with coverslips using DPX and allowed to dry overnight before scoring the 

mitotic index. Mitotic index was calculated as the percentage of cells in mitosis in a 

count of 2000 cells and mitotic inhibition was calculated as the percentage reduction in 

mitotic index in irradiated cells compared to unirradiated cells using equation 6.1 as 

described in the literature (6, 8) 

Mitotic Inhibition(%)= (Control Mitotic Index- Irradiated Mitotic Index) x 100 
Control Mtotic Index 

Equation 6.1 

5.2.2 FPG modified comet assay 

Cells were grown to -80% confluence in 85 mm Petri dishes and exposed without lids 

in either cell culture medium or PBS using the Q-sun solar simulator. Cells were 

trypsinised immediately post exposure and then centrifuged at 1200 rpm for 10 minutes 

at room temperature. The supernatant was discarded and the cells re-suspended in 1 ml 

of medium. A 10% cell suspension in Trypan Blue was used to perform cell counts and 

determine cell viability using a haemocytometer (see appendix 2). One millilitre 

176 



aliquots containing 2 x 105 cells was generated for each dose point. The negative and 

positive control aliquots were produced using sham irradiated and untreated cells 

respectively. 

6.2.2.1 Generating positive controls 

The untreated control aliquot was centrifuged at 1200 rpm for 10 minutes at 4°C. Once 

centrifuged, the supernatant was discarded and the cells re-suspended in 1 ml of a 

chilled ( 4 °C) 1 00 ~ hydrogen peroxide solution (diluted in PBS) and treated on ice for 

5 minutes, after which 2 m1 cell culture medium was added to dilute the hydrogen 

peroxide. 

For the hydrogen peroxide dose response, nine untreated control cell aliquots were 

generated, centrifuged and treated with varying concentrations of hydrogen peroxide (0-

1 OOmM, see appendix 6) for 5 minutes on ice and subsequently diluted with cell culture 

medium. 

6.2.2.2 Slide generation 

Once the positive controls were produced, all aliquots were centrifuged at 1200 rpm for 

10 minutes. Dealing with each pellet sequentially, the supernatant was removed and the 

cell pellet re-suspended in 400 j...Ll of 0.8% low melting point (LMP) agarose at 37°C. 60 

j..!l of each LMP agarose cell suspension was dropcast onto four pre-coated slides (see 

appendix 3), covered with cover-slips and placed on an ice block for 1 minute to set the 

agarose. Slides were removed from the ice block and the coverslips removed from each 
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slide. This was repeated for each pellet, where each aliquot gave rise to four slides as 

shown in figw·e 6.1. 

Negative control aliquot Positive control aliquot Treated aliquot 

Slides Slides Slides 

Figure 6.1 Schematic depicting bow each aliquot gives rise to four slides. Each independent 

experiment had a positive control, a negative control and 3 treated aliquots; 2, 5 and 10 minutes for 

ceUs irradiated in DMEM-F12 medium and 10 30 and 60 minutes for cells irradiated in PBS. 

6.2.2.3 Lysis 

Once the slides were prepared and coverslips removed, slides were racked and 

transferred into light tight box. The slides were then immersed in chilled (4°C) lysis 

solution (see appendix 3) and refrigerated for 1 hour at 4°C. 
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6.2.2.4 Enzyme incubation 

After lysis, the solution was discarded and the slides washed three times in chilled ( 4 °C) 

enzyme buffer (see appendix 3) for 5 minutes each at 4°C. 

After the enzyme buffer washes, two slides from each dose were treated with either 50 

J.Ll of fpg enzyme (0.16 J.Lg/ml) (see appendix 3) in enzyme buffer or 50 Jll of enzyme 

buffer only, see figure 6.2. Coverslips were placed on all slides and the slides 

transferred to a moistened light tight box and incubated for 30 minutes at 37°C. 

Negative control aliquot Positive control aliquot Treated aliquot 

Slides Slides Slides 

Figure 6.2 Schematic illustrating that two slides from each aliquot was treated with 50 j.Ll of fpg 

(0.16 J.lglml) in enzyme buffer (blue slides) or 50 j.Ll of enzyme buffer only (red slides) 

6.2.2.5 DNA unwinding 

After the enzyme incubation, the coverslips were removed from the slides, the slides 

were re-racked and transferred into clean light tight boxes. The slides were immersed in 
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electrophoresis buffer at room temperature (see appendix 3). Slides were treated at room 

temperature for 40 minutes to facilitate DNA unwinding. 

6.2.2.6 Electrophoresis 

After the DNA unwinding step, the slides were removed from the electrophoresis buffer 

and randomly distributed in the electrophoresis tank (figure 6.3). The tank was filled 

with fresh electrophoresis buffer at room temperature until the buffer covered the slides. 

The tank was closed and connected to a voltage supply set at 23 Volts and current ~300 

mA for 20 minutes. 

Aerial view of 
electrophoresis tank 

Side view of 
electrophoresis tank 

Figure 6.3 Schematic depicting how slides (red and blue) are randomly arranged and submerged in 

buffer (cyan) in the electrophoresis tank 

6.2.2. 7 Neutralisation 

Once electrophoresis was complete, the slides were transferred to clean racks and light 

tight boxes, immersed in chilled (4°C) neutralisation buffer (see appendix 3) and 

refrigerated for 5 minutes 4°C. 
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6.2.2.8 Staining and scoring 

Once neutralised, each slide was treated with 50 ,.U of ethidium bromide (25 J..lg/ml in 

dH20) and covered with a coverslip. Using an excitation wavelength of 525 nm, the 

fluorescence of fifty cells per slide were scored within 24 hours using a Nikon Eclipse 

E600 fluorescence microscope equipped with a filter cube consisting of a 540/25 nm 

bandpass (BP) excitation filter, a 565 nm dichroic mirror and 605/55 nm BP emission 

filter, and an Andor Luca camera (model no DL-658M-TIL) in conjunction with Komet 

5.5 software. The software employs an adjustable reading frame, the size of which is set 

prior to the scoring session, which is overlaid on the comet as shown in figure 6.4. Once 

scored, indicators known as callipers appear in the reading frame denoting the head and 

tail regions of the comet, also shown in figure 6.4. Based on the DNA content in the 

head and tail regions as denoted by the callipers, the software determines various 

parameters including percentage head DNA content, percentage tail DNA content, tail 

length, olive and extent tail moments and the tail length to head diameter ratio using the 

fluorescence emissions within the reading frame. The parameter used in this study is the 

percentage tail DNA content, which is a ratio of the DNA detected in the tail region 

with respect to the total DNA content detected in both the head and tail regions. 

Figure 6.4 Image of a comet captured using the Komet 5.5 software and illustrating both the 

reading frame and the callipers used to detect and the different regions of the comet. 
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5.2.3 Statistics 

Results represent a minimum of 3 independent tests with 2 replicate slides per dose I 

treatment in each independent test from which 50 cells were scored per replicate slide. 

The percentage tail DNA was log transformed and ANOV A performed. Pair-wise data 

were computed using the Bonferroni adjustment. All analyses were done using 

statistical software package SAS 9.1 and SAS enterptise guide 3.0. Significance was 

taken at a level of p ::; 0.05. Data are presented as the LSM ± 95CI derived from the 

statistical model. 
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6.3 Results and discussion 

The ability of solar radiation to induce chromosome breaks was investigated using 

cytogenetics. However, after one independent test it was clear that HaCaT cells were 

intrinsically aneuploid which agrees with the characterisation of HaCaT cells by 

Boukamp et al (9). Although the cytogenetics study was not pursued any further, the 

data collected does provide useful information regarding the mitotic index and the 

ability of solar simulated radiation to inhibit mitotic processes in irradiated cells. 

Mitotic inhibition is considered an indicator of G2 checkpoint efficiency where high 

mitotic inhibition is considered indicative of longer cell cycle delays so that cells can 

execute the appropriate response ( 6) whether that be repair or apoptosis. 

Table 6.1 Mitotic index and mitotic inhibition for HaCaT cells exposed in DMEM-F12 cell culture 

medium. Mitotic index results were based on a minimum count of 2000 cells per dose. 

Medium exposures Mitotic index % Mitotic inhibition % 

Control 6.36 

2 minutes 3.91 2.45 

5 minutes 1.28 5.08 

10 minutes 1.58 4.78 

The mitotic index results in table 6.1 show that cells irradiated in DMEM-F12 medium 

are inhibited in a dose dependent manner that appears to saturate when cells are 

irradiated for 5 minutes or more. Although the mitotic inhibition data was computed 

from counts of at least 2000 cells for each exposure time, additional independent tests 

would be desirable before this saturation effect can be conclusively confirmed. 

Interestingly though, the saturation of mitotic inhibition concurs with the oxidation-
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mediated dissociation of cardiolipin and cytochrome c theory presented in the previous 

chapter. Nonetheless, mitotic inhibition, as observed, is indicative of cell cycle arrest. 

Cell cycle arrest facilitates DNA repair or apoptosis which prevents potentially 

mutagenic cells from passing damaged genomes to future progeny. One of the principle 

regulators of cell cycle arrest is p53 (1 0). In response to cell damage, this transcription 

protein up-regulates p21 expression (10) which through its ability to inhibit cyclin 

dependent kinases (cdks) is an important mediator of cell cycle arrest (11). HaCaT cells 

are p53 null (p53-1) and thus do not possess functional p53 protein (12). However, the 

mitotic index results demonstrate that HaCaT cells retain the ability to arrest when 

irradiated in DMEM-F12 and, to a lesser extent, in PBS. Cells were not cell cycle 

synchronised prior to irradiation thus, it is unlikely that cells arrested in the same phase 

of the cell cycle. From this, it is clear that HaCaT cells must retain one or more p53 

independent cell cycle arrest pathways that possess the ability to arrest cells in different 

cell cycle phases. One possible candidate is the INK4 family protein member p16JNK4
a 

which inhibits cdk4 and cdk6 from phosphorylating the protein product of the 

retinoblastoma gene known as Rb (13). Rb is normally conjugated to E2F transcription 

factors but upon phosphorylation, Rb dissociates from its E2F conjugate (14), freeing it 

to transcribe genes necessary to progress from 0 1 to S-phase. Thus, expression of p16 

causes cells to arrest in G1. Furthermore, p16 has been demonstrated to play a role in 

both G1 and G2 cell cycle arrest following UV irradiation (15-17). Alternatively, the 

protein responsible could be p33, a tumour suppressor that shares many biological 

functions with p53 and has been shown to be upregulated in UV A irradiated apoptotic 

HaCaT cells (18). 

184 



Table 6.2 presents the mitotic index and mitotic inhibition results for cells irradiated and 

sham irradiated in PBS. The mitotic index for sham irradiated PBS controls can be seen 

to be substantially different to that observed for cells sham irradiated in DMEM-F12, 

1.46% versus 6.36% respectively. The sham irradiated controls were treated identically, 

in that both were transported to the Q-sun and sham irradiated for 30 seconds using the 

dark cycle of the Q-sun and returned to the incubator immediately post sham irradiation. 

Cells were 70-80% confluent in 90 mm Petri dishes at the time of (sham) irradiation 

thus cell washing when replacing the culture medium prior to PBS exposures would not 

be expected to significantly reduce the number of cells present during (sham) 

irradiation. Thus, the drop in mitotic index between the sham irradiated controls is 

attributed to the absence of nutrients in PBS sham irradiated. However, as mentioned, 

the mitotic data presented are the result of one independent test where additional 

independent tests would be desirable in order to statistically confirm any effects. 

Table 6.2 Mitotic index and mitotic inhibition for HaCaT cells exposed in PBS. Mitotic index 

results based on a minimum count of 2000 cells per dose point 

PBS exposures Mitotic index % Mitotic inhibition % 

Control 1.46 

10 minutes 1.17 0.29 

30 minutes 2.10 -0.64 

60 minutes 2.29 -0.83 

In contrast to the mitotic inhibition observed in cells irradiated in DMEM-F12, the 

percentage of cells entering M-phase post irradiation in PBS can be seen to increase at 

the longer exposure times as shown in table 6.2. It is possible that the increased mitotic 

index observed in cells irradiated for extended durations in PBS is due to poor 0 2 
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checkpoint efficacy and I or premature exit of G2 arrest resulting in increased cell 

populations progressing to, but unable to exit M-phase due to treatment with the spindle 

inhibitor Colcemid 30 minutes post exposure. From the dose response of cells irradiated 

in PBS (figure 3.2), it is known that the survival of cells irradiated for 30 and 60 

minutes in PBS is significantly reduced with respect to controls, p-values of 0.0012 and 

< 0.0001 respectively. This suggests that cells extensively irradiated in PBS may 

become endocyclic. Endocycling ( endoreplicating I endoreduplicating) cells possess 

alternating Sand Gap phases but no cell divison (19). DNA damage has been suggested 

to provide a molecular environment conducive to endocycle entry at the 0 2 checkpoint 

to which p53_,_ cells are particularly susceptible since most checkpoints in the cell cycle 

are regulated by p53 (20). After a small number of cycles it is postulated that 

endocycling cells can undergo mitotic cell death rather than apoptosis ( 6). Interestingly, 

Mehrotra et al (21) found that apoptosis is repressed in endocycling cells due to, in part, 

silencing of proapoptotic gene promoters which could serve to explain the absence of 

proapoptotic events in PBS irradiated cells presented in chapter 5. Thus, to establish the 

ability of solar simulated radiation to induce DNA damage, the comet assay was 

employed. 

As shown in chapter 4, the cellular response of cells irradiated in DMEM-F12 is more 

representative of medium photosensitisation than of solar simulated radiation induced 

damage where exposures performed in the presence of catalase and GSH show that 

hydrogen peroxide is the predominant oxidant generated. Of the four DNA nucleotides, 

guanine is the most susceptible to oxidation (22) due to its low ionisation energy (23). 

In the presence of an oxidant, guanine readily oxidises to form 8-oxoG (24). The DNA 

repair mechanism primarily responsible for the repair of oxidative lesions such as 8-

186 



oxoG is base excision repair (BER) (25). BER is initiated by a DNA glycosylase which 

excises the damaged base (26). The resulting AP site(s) are then cleaved by AP­

endonuclease-1 (APE-1) to facilitate repair (27). Although there are an array of DNA 

glycosylases that respond to different types of base damage, there also exists a degree of 

functional redundancy between glycosylases due to partial overlapping of initiating 

lesions (28). Formamidopyrimidine-DNA glycosylase (fpg) used in this assay is the 

bacterial homolog of the human DNA repair glycosylase hOGG1, both of which excise 

8-oxoG (29). Thus, if the treatment under analysis promotes oxidative lesions in the 

form of 8-oxoG, incorporating an fpg incubation step in the comet assay will either 

equal or exceed the amount of DNA damage detected in fpg untreated cells. This was 

found to be true for all durations of exposure to solar simulated radiation in both PBS 

and DMEM-F12. 

Prior to assessing the level of DNA damage incurred due to solar simulated irradiation, 

HaCaT cells were treated with various concentrations of hydrogen peroxide in order to 

establish a suitable concentration to employ as the positive control in solar simulated 

irradiation experiments. Figure 6.5 illustrates the dose response obtained when HaCaT 

cells were treated with various concentrations of hydrogen peroxide for 5 minutes on 

ice. Maximal damage was achieved with 0.1 mM and reached a plateau with increasing 

concentration thereafter. A concentration of 0.01 mM was found to be not significantly 

different to untreated control cells, irrespective of the presence of fpg, thus indicating a 

steep gradient over which hydrogen peroxide switches from being relatively benign to 

cytotoxic. Based on the results presented in figure 6.5, a concentration of 0.1 mM 

hydrogen peroxide was employed as the positive control for all irradiation experiments. 
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Figure 6.5 Comet assay results for the hydrogen peroxide dose response for HaCaT cells. Cells were 

treated with various concentrations of hydrogen peroxide and treated with (e) or without (0) fpg. 

The data is presented as the LSM ± 95CI for n = 4 independent experiments, consisting of 2 

replicates per independent from which 50 cells were scored per replicate, § indicates significant 

difference between both fpg treated and untreated cells and their respective controls (p~ 0.05). 

Figure 6.6 shows the comet assay results for cells irradiated in DMEM-F12. 

Interestingly, no significant difference was found between fPg treated and untreated 

cells irradiated in DMEM-F12 for 5 or 10 minutes despite the production of 

extracellular of hydrogen peroxide in DMEM-F12 which was established in chapter 4 to 

be responsible for the dramatic dose response observed in figure 3.2. Limitations on the 

sensitivity of the Komet software employed appear to impair its ability to detect tail 

DNA content in excess of 80%. When such highly damaged cells were scored, the 

software failed to differentiate between the head and tail regions of the comet. Although 

it is possible to manually score comets, this was not done in order to avoid possible bias 

associated with manual scoring. Thus, these comets were excluded from the scoring 

process. Although omitting highly damaged cells may yield underestimations of the 

actual damage incurred, particularly for fPg treated cells, it is possible that lack of 
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significance between fpg treated and fpg untreated cells is in fact due to enhanced single 

and /or double strand break detection in fpg untreated cells. 
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Figure 6.6 Comet assay results for HaCaT cells irradiated or sham irradiated in DMEM-F12 using 

the Q-sun solar simulator and 0.1 mM hydrogen peroxide as the positive control. Cells were treated 

with (e) or without (0) fpg. The data is presented as the LSM ± 95CI for n = 5 independent 

experiments, consisting of 2 replicates per independent from which 50 cells were scored per 

replicate. § indicates significant difference between both fpg treated and untreated cells and their 

respective controls, * indicates significant difference between fpg treated and untreated cells for a 

given exposure, ¥ indicates significant difference between fpg treated exposed and control cells (pS 

0.05). 

As demonstrated previously, hydrogen peroxide is generated in DMEM-F12 upon 

irradiation, which has been shown to generate 8-oxoG in vitro (30). Furthermore, 

HaCaT cells have been shown to constitutively express the human DNA glycosylase 

OGG 1 in a cell cycle dependent manner under normal redox conditions (31 ). Thus, it is 

possible that the enhanced production of hydrogen peroxide induces excessive oxidative 

lesions such as 8-oxoG which may be excised by OGG 1 leading to enhanced single 

strand breaks which if in close proximity to one another may be detected as double 
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strand breaks (32). In turn, this would increase the amount of damage detected in fpg 

untreated cells whilst simultaneously limiting the amount detected in fpg treated cells. 

The progressive decrease in the amount of damage detected between fpg treated and 

untreated cells with increasing exposure time is believed to be a dose dependent effect 

resulting from the increased generation of hydrogen peroxide with increasing exposure 

time. As the concentration of hydrogen peroxide generated increases, a corresponding 

increase in the yield of oxidative lesions such as 8-oxoG would also be expected, which 

through the actions of endogenous DNA glycosylase OGG1 may be increasingly 

detected as SSBs and I or DSBs. Although an intriguing conjecture, it necessitates that 

OGG 1 is constitutively expressed in sufficient quantities to offset the efficacy of fpg 

treatment since the comet assay is initiated immediately post irradiation which negates 

the possibility of de novo protein synthesis. The results further suggest that the 

glycosylase activities of OGG 1 requires a threshold level of oxidative damage to trigger 

its response since the amount of DNA damage measured in cells irradiated for 2 

minutes was significantly increased when treated with fpg. This suggests that the OGG 1 

glycosylase endogenous to HaCaT cells does not reduce the efficacy of fpg treatment by 

excising 8-oxoG lesions formed by the concentration of hydrogen peroxide generated 

when DMEM-F12 is irradiated for 2 minutes. This is supported by reports that OGG1 

relocates from the nucleoplasm to euchromatin (33), regions of lightly packed 

chromatin that are rich in gene content and are often under active transcription (34), in 

response to oxidative stress and not transcription blockage (35). Furthermore, human 

OGG 1 has been reported to exhibit increased specificity for 8-oxoG than fpg (36). 

Interestingly, fpg treated cells were also found to be not significantly different from 

their untreated counterparts at all concentrations in the hydrogen peroxide dose response 
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study. It can, however, be seen that the level of damage in fpg treated control cells and 

those treated with non-toxic concentrations of hydrogen peroxide is consistently 

elevated, albeit not significantly, with respect to their fpg untreated counterparts, an 

effect that is not maintained at concentrations ~ 0.1 mM. Based on the similarities 

between the data elicited with non-toxic and toxic concentrations of hydrogen peroxide 

and that of the control and 10 minute DMEM-F12 exposures respectively, it is tempting 

to speculate that irradiation of DMEM-F12 for 10 minutes generates an extracellular 

concentration of at least 0.1 mM hydrogen peroxide. Following on from this, it could 

also be speculated that the 2 and 5 minute exposures generate hydrogen peroxide 

concentrations between 0.01 and 0.1 mM which according to the hydrogen peroxide 

dose response curve is the narrow range over which hydrogen peroxide becomes 

increasingly toxic to HaCaT cells. 

Furthermore, the level of oxidative damage in DMEM-F12 irradiated cells can be seen 

to saturate when cells are irradiated for 5 minutes while the level of DNA damage in fpg 

untreated cells continues to increase with increasing exposure duration. It was 

previously demonstrated in chapter 3 that cells irradiated for 5 minutes in DMEM-F12 

using the Q-sun solar simulator results in significantly but not maximally reduced 

survival. Together, these data concur with the results of Garg and Chang (37) who, as 

discussed in chapter 5, observed that the level of intracellular ROS generated saturated 

when cells were treated with a dose of 0.5 mM hydrogen peroxide although no cell 

death was observed unless a concentration of ~ 1 mM was employed. Based on the 

above comparative speculations made between cells irradiated in DMEM-F12 and those 

treated with hydrogen peroxide, the concentration of hydrogen peroxide at which 

oxidative damage saturates in HaCaT cells appears to occur between 0.01 and 0.1 mM. 
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Although the median concentration of this range (0.055 mM) is approximately 10 fold 

less than the concentration at which Garg and Chang (3 7) found saturation effects to 

occur, the discrepancy in the concentration required to induce saturation effects is not 

unreasonable when the differences in endpoints and cell lines employed are considered. 

The saturation effects reported by Garg and Chang (3 7) were observed in terms of 

intracellular ROS generated in a human retinal pigment epithelial cell line (APRE-19) 

treated with a definite concentration of hydrogen peroxide. While the saturation effects 

presented here are in terms of oxidative lesions induced in a human keratinocyte cell 

line (HaCaT) exposed to an undefined concentration of hydrogen peroxide generated 

extracellularly in response to solar simulated irradiation. Although HaCaT cells may 

simply be more sensitive to hydrogen peroxide than APRE-19 cells, it is important to 

consider that solar simulated radiation may generate higher concentrations than those 

speculated to occur. Furthermore, although extracellular production of hydrogen 

peroxide is clearly the dominant effect when cells are directly irradiated in DMEM-F12, 

the effect of direct interactions between incident radiation and cells may significantly 

contribute to intracellular effects such as the induction of oxidative DNA lesions. 

Figure 6. 7 shows that cells irradiated in PBS also exhibit a dose dependent increase in 

DNA damage that, similar to cells irradiated in DMEM-F12, saturates in fpg treated 

cells at the 30 minute exposure which also corresponds to a significant but not maximal 

reduction in cell survival. In contrast to the DMEM-F12 results, however, the 

progressive decrease in the difference between fpg treated and untreated cells with 

increasing exposure is not as pronounced in PBS irradiated cells. In fact, fpg treated 

cells can be seen to display a clear and significant increase in the amount of tail DNA 

with respect to their fpg untreated counterparts for all exposure times. This suggests that 
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different oxidising agent(s) with reduced capabilities of generating 8-oxoG are formed 

in PBS irradiated cells and I or that the oxidising agent(s) are formed in significantly 

lower quantities despite being irradiated up to 6 times longer than DMEM-F12 

exposures. The lack of photosensitising agents in unsupplemented PBS indicates that 

the oxidising agent(s) responsible are generated intracellularly. Furthermore, the results 

of K vam and Tyrrell (3 8) indicate that singlet oxygen is the agent responsible for 8-

oxoG induction in cells irradiated in PBS with UV A radiation. 
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Figure 6.7 Comet assay results for HaCaT cells irradiated or sham irradiated in PBS using the Q-

sun solar simulator and 0.1 mM hydrogen peroxide as the positive control. Cells were treated with 

(e) or without (0) fpg. The data is presented as the LSM ± 95CI for n = 5 independent 

experiments, consisting of 2 replicates per independent from which 50 cells were scored per 

replicate. § indicates significant difference between both fpg treated and untreated cells and their 

respective controls, * indicates significant difference between fpg treated and untreated cells for a 

given exposure, ¥ indicates significant difference between fpg treated exposed and control cells (p:$; 

0.05). 
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6.4 Conclusions 

Ifleft unrepaired, 8-oxoG lesions produce in GC-TA transversions as shown in figure 

6.8, and are considered the signature mutation of 8-oxoG (39). 
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Figure 6.8 The base pairing pathway by which 8-oxoG causes GC~TA transversions using the A-

rule (39). 

However, reports in the literature regarding the mutagenic capacity of 8-oxoG lesions 

are somewhat conflicting. Kozmin et al ( 40) concluded UV A radiation is highly 

mutagenic in yeast cells incapable of repairing 8-oxoG and found that the mutagenic 

contribution of CPDs is trivial compared to 8-oxoG. In direct contrast with this, 

Courdavault et al ( 41) reported enhanced CPD induction compared to 8-oxoG induction 

in primary human fibroblasts and keratinocytes post UV A irradiation. This concurs with 

the work of Jiang et al (42) and Kappes and Riinger (43) who reported that UVA 

radiation is capable of directly generating CPDs in DNA plasmids and that 8-oxoG does 

not play a significant role in UV A mutagenesis in mouse embryonal fibroblasts 

respectively. Although the cell type and endogenous photosensitisers will play a role in 

the mutagenic capabilities of UV A radiation, the aforementioned studies employed 
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UV A irradiances of 800, 550; 450 and 300 Wm-2 respectively. If 60 Wm-2 is taken as a 

coarse guide for solar UV A irradiance at the terrestrial level, the W A irradiances 

employed by these studies are 5-13 fold greater than that administered by solar 

radiation. Although mutagenic studies were not performed, it is clear from the work 

presented in the literature that mutagenic investigations using solar simulated radiation 

are urgently needed in biologically _relevant cell lines since the initiating step in any 

cancer including skin carcinogenesis, is dependent on the ability of the damaging agent 

involved to induce mutations. 
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Chapter 7 Spectroscopic analysis of cell culture medium exposed to solar 

simulated radiation 

7.1 Introduction 

The results thus far have demonstrated that the response of cells is not only critically 

dependent on the irradiator (chapter 3) but also the exposure medium employed (chapter 3-

6) where the extensive cell killing observed when cells were irradiated in DMEM-F12 was 

attributed to the extracellular production of hydrogen peroxide (chapter 4). Cell culture 

medium is a complex soup of nutrients and amino acids necessary for healthy cell growth 

where degradation and I or photosensitisation of one or more of these constituent 

ingredients may be the mechanism responsible for this excessive cell killing. There are 

reports in the literature that elements of cell culture media such as riboflavin and 

supplements such as HEPES (2-[ 4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) 

possess the ability to generate reactive species (1-5). However, only a few studies have 

examined the effects on cells and within that cohort of studies found, the cell lines 

employed were non skin related (6, 7). Thus not only is it desirable to determine the effects 

of solar simulated irradiation on DMEM-F12 medium and its components, their effects on 

relevant cell lines such as HaCaT keratinocyte skin cells is vital for studies attempting to 

elucidate the contributions of solar radiation in skin carcinogenesis. To further investigate 

the effects of solar-simulated radiation on DMEM-F12 medium, a more in-depth 

spectroscopic analysis was conducted, on both individual components of, and complete 
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DMEM-F12 medium, in order to identify the possible component(s) responsible for the 

increased cell killing observed when irradiated with solar simulated radiation. 
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7.2 Methods 

7 .2.1 Spectroscopic analysis 

Absorption spectra were measured using a dual beam PerkinElmer Lambda 900 

UV Nis/NIR spectrometer with 1 em optically matched quartz cuvettes where the reference 

cuvette contained deionised water. The emission spectra were measured using a LS 55 

PerkinElmer Luminescence spectrometer and a 1 cm2 quartz cuvette. 

7 .2.2 Cell culturing, seeding and the clonogenic assay 

HaCaT cells were cultured, seeded and the clonogenic assay performed as outlined in 

chapter 3, sections 3.2.1 and 3.2.2. Briefly, HaCaT cells were cultured in DMEM-F12 cell 

culture medium containing 10% FBS, I% penicillin-streptomycin and 1 J..Lg/ml 

hydrocortisone. Cells were incubated under humid conditions at 3 7°C, with 5% C02 in air 

and subcultured when cells were 80-90% confluent. Cells for direct and indirect (unexposed 

recipient cell) exposures were seeded at a density of 400 cells in 3 ml DMEM-F12 per well 

16 hours before irradiation or treatment. For the clonogenic assay, cells were exposed or 

treated and then incubated for 7 days after which they were stained using carbol fuchsin for 

5 minutes and scored. 
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7.2.3 Direct exposures performed in DMEM-F12 

Cells were seeded 16 hours prior to irradiation. The cells were directly irradiated in 3 ml 

DMEM-F12 without lids using the Q-sun and returned to the incubator immediately post 

exposure. For some experiments, medium changes were conducted immediately, 1, 2, 4, 6, 

8 and 24 hours post exposure or not at all. The cells were returned to the incubator on 

receipt of fresh medium post exposure. 

7.2.4 Direct exposures performed in L-15 or PBS with and without reagents 

The cells were seeded 16 hours prior to irradiation. Immediately before irradiation, 

DMEM-F12 cell culture medium was harvested from the cells, filtered and stored in the 

incubator. Cells were washed once with 1 ml pre warmed (37°C) PBS and the wash 

discarded. Cells were covered in 3 ml fresh pre warmed exposure medium (PBS, phenol red 

in PBS (0.00863 g/1), riboflavin in PBS (0.00022 g/1), phenol red and riboflavin together in 

PBS (0.00863 g/1 and 0.00022 g/1 respectively), or L-15 riboflavin free cell culture medium 

(Sigma, Dorset, U.K.) containing 10% FBS, 2 mM L- glutamine, 1% penicillin­

streptomycin and 1 !J.g/ml hydrocortisone) and then exposed. Post exposure, the exposure 

media was discarded and the stored DMEM-F12 replaced at 3 ml per well before the cells 

were returned to the incubator for 7 days. All medium changes were carried out 

immediately post exposure except for L-15 exposures which were changed 4 hours post 

exposure, the reasons for which are outlined in the results and discussion section. 
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7 .2.5 Statistics 

Results represent a minimum of 3 independent tests unless otherwise stated, with a 

minimum of 2 replicates per independent test. ANOV A was performed on the log 

transformed data and the pair-wise data were computed using the Bonferroni adjustment. 

Data are presented as the LSM ± 95CI. All analyses were done using statistical software 

package SAS 9.1 and SAS enterprise guide 3.0. Significance was taken at a level of p ~ 

0.05. 
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7.3 Results and discussion 

Fluorescence is the re-emission of photons at longer and less energetic wavelengths than 

the initiating photons absorbed which induce the electronic transition to an excited state 

required for fluorescence to occur. The absorption and emission wavelengths of a 

fluorophore are characteristic of the molecular structure of the absorbing species. It is on 

this premise that fluorescence spectroscopy was employed to determine if solar simulated 

irradiation of DMEM-F12 and select components of DMEM-F12 undergo structural 

changes at the molecular level that may in turn compromise their functionality and thus 

nutrient value. Prior to fluorescence analysis, knowledge of the wavelengths at which the 

substance under investigation absorbs is required in order to determine appropriate 

excitation wavelengths. Thus, absorption spectroscopy was employed first. In order to 

simplify presentation the absorption data are presented as transmittance spectra. 

Both riboflavin and phenol red are constitutive components of DMEM-F12 and were 

examined. Riboflavin was examined because, as previously mentioned, it has been reported 

to possess photosensitising capabilities. Phenol red was chosen because some studies 

irradiate cells in phenol red free cell culture medium (8-1 0) where the reasons for its 

absence are not always given but assumed to be due to concerns regarding 

photosensitisation. Thus, individual solutions of riboflavin (0.00022 g/1) and phenol red 

(0.00863 g/1) in PBS at concentrations similar to those found in DMEM-F12 (11) were 

examined. However, there is also evidence in the literature showing that phenol red not 

only produces negligible amounts of reactive species but that the ability of riboflavin to 
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produce reactive species is diminished due to the presence of phenol red (12). It is for this 

reason that a composite solution of riboflavin and phenol red together in PBS was also 

examined alongside complete DMEM-F12, undiluted foetal bovine serum (FBS), phenol 

red free DMEM-F12 with and without 10% FBS and PBS. 

Figure 7.1 shows the transmittance spectra for the aforementioned solutions. As seen in 

figure 2.33 and presented again in figure 7.1, DMEM-F12 absorbs significantly below 600 

nm with transmission minima observed at 410 nm and 558 nm. Analysis of the components 

ofDMEM-F12 reveals how the transmittance spectrum ofDMEM-F12 is an amalgamation 

of the transmittance properties of its components, particularly phenol red and FBS. At the 

same concentration found in DMEM-F12, phenol red in PBS can be seen to have maximal 

absorption, observed as troughs in the transmittance spectrum, at 435 nm and 558 nm 

which coincides with the absorption troughs observed with DMEM-F12 but absent in 

phenol red free DMEM-F12 with and without 10% FBS. However, the maximal absorption 

of DMEM-F12 in the blue region occurs at 410 nm and not 435 nm as phenol red would 

suggest. This discrepancy in maximal absorption is due to the presence of 10% FBS in 

DMEM-F12, as verified by the transmittance spectra of undiluted FBS and phenol red free 

DMEM-F12 containing 10% FBS, both of which can be seen to possess absorption troughs 

at 410 nm as is the case for DMEM-F12. Interestingly the transmittance spectrum for 

riboflavin in PBS shows that at the same concentration to that found in DMEM-F12, 

riboflavin has minimal absorption but still retains absorption troughs at 370 nm and 440 nm 

as shown in the inset of figure 7.1, which concurs with values listed in the literature (13). 

The transmittance of phenol red and riboflavin together is identical in distribution to phenol 
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red alone but with increased losses in transmission with decreasing wavelength most 

probably due to the combined absorption of both reagents. 
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Figure 7.1 Transmittance spectra for DMEM-F12 {-), undil.uted FBS (- ),phenol red in PBS{- ), 

phenol red and riboflavin iu PBS(- ) riboflavin in PBS {- ),phenol free DMEM-F12 (- ),and phenol 

free DMEM-F12 with 10% FBS ( ) where the troughs indicate absorption maxima. 

Based on the transmittance spectra shown in figure 7.1, excitation wavelengths of 370 nm, 

410 nm, 440 nm and 558 nm were chosen to perform fluorescence spectroscopy on all eight 

solutions. Solutions were exposed for 10 minutes in the Q-sun solar simulator which as 

shown in chapter 3 was the exposure time that yielded the most cell death. Irradiated 

solutions were compared to unexposed solutions examined under identical conditions. 

Although fluorescence spectroscopy was performed using excitation wavelengths of 370 

nm, 410 nm, 440 nm and 558 nm, the emission spectra obtained using an excitation 

wavelength of 370 nm was found to provide the most detailed account of changes incurred 

to irradiated media, hence only these emission spectra are presented and discussed. 
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Figure 7.2A shows the emission spectra of irradiated and unirradiated DMEM-F12 with 

10% FBS. Similar to the transmittance spectrum ofDMEM-F12, the emission spectrum for 

unexposed DMEM-F12 can be primarily attributed to the presence of FBS and phenol red. 

Peak emission wavelengths for DMEM-F12 were observed at 450 nm, 508 nm and 584 nm. 

Emission at 584 nm is attributed to the presence of phenol red where irradiation ofDMEM­

F12 yields a reduction in intensity at 584 nm similar to that observed for phenol red in PBS 

when irradiated as shown in figure 7 .2C. The emission peaks at 450 nm and 508 nm are 

attributed to the presence of FBS. Irradiating DMEM-F12 yields a loss of the peak at 508 

nm which is also observed when undiluted FBS is irradiated as shown in figure 7.2B. 

Figures 7.2A and 7.2B also show that the emission intensity of irradiated DMEM-F12 and 

irradiated undiluted FBS exceeds that of their respective controls. However, when 

undiluted FBS is irradiated the peak emission is redistributed from 448 nm to 458 nm, an 

effect that is not observed when DMEM-F12 is irradiated, and may be attributable to one or 

a combination of radiation induced structural changes and I or concentration dependent re­

absorption processes (14, 15). 
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As mentioned, absorption and emiSSion wavelengths are dependent on the chemical 

structure of a fluorophore. Since UV radiation has been demonstrated in the literature to be 

capable of producing CPDS (16-18) and in chapter 6 solar simulated radiation was shown 

to produce 8-oxoO, it is not unreasonable to believe that solar simulated radiation can incur 

modifications to the chemical structure of a reagent. Thus, it is possible that solar simulated 

irradiation induced structural changes to the fluorophore(s) in FBS responsible for 

emissions at 508 nm, produce a blue shift (spectral movements toward shorter more 

energetic wavelengths) in the absorption and emission spectra of the fluorophore. The 

absorbing potential of this modified fluorophore may supersede that of the original 

fluorophore responsible for emissions at 448 nm when excited at 370 nm thus yielding an 

emission spectrum dominated by the structurally altered molecule. Alternatively, increases 

in fluorophore concentration via radiation induced evaporation may result in overlapping 

absorption and emission spectra (14, 15). These overlapping spectra may in turn, result in 

re-absorption of emitted photons that are re-emitted at an even lower wavelength thus 

producing an apparent red shift (spectral movements toward longer less energetic 

wavelengths) in the emission spectrum such as that observed for FBS (448 nm to 458 nm). 

The absence of such a red shift from the emission spectrum of DMEM-F12 may be due to 

the dilution ofFBS in DMEM-F12 and I or the presence of phenol red. 

Comparing the emission spectra of three unirradiated solutions with and without phenol red 

shows the presence of phenol red to reduce the fluorescence intensity of all three solutions. 

The emission spectra for unirradiated PBS with and without phenol red are shown in 

figures 7 .2C and 7 .20. The fluorescence spectrum of PBS without phenol red (figure 7 .20) 
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shows PBS to have an emission peak at 420 nm despite PBS being minimally absorbing as 

shown in figure 2.33. In the presence of phenol red, the emission peak ofunirradiated PBS 

is still visible at 420 nm (figure 7 .2C). However, the intensity can be seen to be reduced by 

75-80% due to the presence of phenol red. Similar for DMEM-F12, the unirradiated 

emission spectra of the cell culture medium with and without phenol red presented in 

figures 7 .2A and 7 .2F show the presence of phenol red to reduce the peak emission 

intensity by approximately 25%. The third solution examined was riboflavin in PBS with 

and without phenol red, shown in figures 7 .2E and 7 .2D respectively, where the peak 

emission can be seen to be reduced by more than 50% due to the presence of phenol red. It 

is clear from these results that phenol red reduces the fluorescence emission of different 

fluorophores excited at 370 nm. This suggests that phenol red acts as a quencher due to a 

combination of the facts that phenol red is a potent absorber of radiation below 600 nm 

(figure 7.1), and yet is minimally fluorescent (figure 7.2C). When a solution is irradiated, 

the ability of that solution to absorb incident radiation is dependent on the abilities of the 

absorbing species present in the solution to absorb at a given wavelength. Thus, it is 

reasonable to assume that the emission spectrum of a given solution is dependent on the 

absorbing potential of the different fluorophores present in the solution. Compared to PBS, 

phenol red free DMEM-F12 and riboflavin in PBS, the absorption potential of phenol red in 

PBS at 370 nm far exceeds that of the aforementioned solutions (figure 7.1). Although 

addition of 10% FBS to phenol red free DMEM-F12 results in an absorption potential 

indistinguishable from that of phenol red at 370 nm, it can be seen that phenol red complete 

DMEM-F12 supplemented with 10% FBS is more absorbing again. Hence inclusion of 

phenol red in DMEM-F12, PBS and riboflavin in PBS reduces the intensity of their 
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respective emission spectra since the number of incident photons available for absorption to 

initiate fluorescence is much reduced compared to the availability in the absence of phenol 

red. 

Furthermore, since phenol red is minimally fluorescent, its presence in the emission 

spectrum of a solution can be poorly represented despite its ability to modify the optical 

properties of the solution. This is demonstrated by the visibility of riboflavin in the 

emission spectrum of DMEM-F12 in the presence (figure 7.2A) and absence (figure 7.2F) 

of phenol red. The peak emission ofunirradiated riboflavin occurs at 515-520 nm as shown 

in both figures 7.2D and 7.2E where the presence of phenol red reduces the fluorescence 

intensity of this peak emission by approximately 50% (figure 7.2E). Thus, only in the 

absence of phenol red can the presence of riboflavin be detected in the emission spectrum 

of unirradiated DMEM-F12, peaking at 515 nm and over shadowing the emission of 10% 

FBS at 508 nm as shown in figure 7 .2F. Moreover, irradiating riboflavin in the absence or 

presence of phenol red can be seen to reduce emissions at 515-520 nm and introduce a new 

emission peak at 460 nm. This new feature at 460 nm is attributed to radiation induced 

structural alterations of the riboflavin molecule leading to a blue shift in the absorption and 

emission spectra of the modified riboflavin molecule, thus reducing emissions at 515-520 

nm. However, it can be seen that the emission at 515-520 nm is still the dominant emission 

in the presence of phenol red (figure 7 .2E). This is attributed to the ability of phenol red to 

absorb incident radiation more effectively than riboflavin resulting in fewer alterations of 

the riboflavin molecule and thus less emission at 460 nm compared to the emission 

spectrum of irradiated riboflavin in the absence of phenol red. 
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Thus from the spectroscopic results presented it is clear that DMEM-F12 cell culture 

medium is optically dominated by the presence of FBS and phenol red. Although 

minimally absorbing, riboflavin has been shown to be a potent fluorophore which is poorly 

represented in the emission spectrum of DMEM-F12 due to the absorbing capabilities of 

phenol red and FBS. Moreover, irradiation of riboflavin has been shown to result in de 

novo emissions at 460 nm which were found to persist for at least 48 hours as shown in 

figure 7.3 where such spectral movements toward higher energy wavelengths, i.e. blue 

shifts, are indicative of structural changes in the form of conjugation losses ( 19). 
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Figure 7.3 Emission spectra of 0.00022 gil riboflavin in PBS irradiated for 10 minutes using the Q-sun 

solar simulator and analysed immediately (•• .. •), 24 hours(----) and 48 hours(-.. -) post exposure 

and compared to unirradiated solutions (-) excited at 370 nm. 

Based on the fluorescence results, the effects of phenol red and riboflavin on cell survival 

were investigated. Cells were irradiated in PBS containing phenol red (0.00863 g/1) and I or 

riboflavin (0.00022 g/1) and in L-15 riboflavin free cell culture medium as outlined in the 
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materials and methods section. Medium changes were carried out immediately post 

exposure for all variant PBS exposures to limit the length of time cells were without 

nutrients. To minimise differences between direct DMEM-F12 and L-15 exposures, cells 

irradiated in L-15 cell culture medium would ideally be maintained in L-15 for the 7 days 

prior to clonogenic staining with no medium change post exposure. However, HaCaT cells 

cultured in L-15 showed reduced proliferative abilities compared to cells cultured in 

DMEM-F12, thus eliminating the possibility of clonogenic expansion in L-15 medium. 

This concurs with the results of Werner et al (20) who observed decreased proliferative 

rates in HepG2 cells cultured in riboflavin deficient medium. Hence, it was necessary to 

find a time point to perform medium changes at which changing the medium of direct 

DMEM-F12 exposures would yield survival not significantly different from DMEM-F12 

exposures with no medium change. 

Cells were irradiated in DMEM-F12 for 10 minutes in the Q-sun solar simulator. The 

irradiated DMEM-F12 was then replaced, or not, with fresh unirradiated DMEM-F12 at 

different times post exposure and the cells incubated for the remainder of the 7 day 

clonogenic incubation period. The results in figure 7.4 show that cells irradiated in DMEM­

F12 undergo two distinct cell death events. The first is a rapid event exacted within 1 hour 

of exposure followed by a slower event with maximal cell death observed after 24 hours 

exposure to the medium. In fact it was the 24 hour time point that was found to result in 

survival not significantly different from cells that did not receive a medium change post 

exposure (p = 0.5071 ). However, a medium change time point of 24 hours post irradiation 

was deemed unsuitable for L-15 exposures due to the reduced proliferative capacity of 
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HaCaT cells in L-15 medium. Although medium changes performed 1 to 8 hours post 

exposure were all significantly (p < 0.05) increased with respect to no medium change 

(figure 7.4), none were found to be significantly different to one another (p = 1) thus a 

median time point of 4 hours was employed for cells exposed in L-15 before the stored 

DMEM-F12 was re-introduced post exposure. 
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Figure 7.4 Survival ofHaCaT cells irradiated for 10 minutes in DMEM-F12 and receiving a medium 

change post exposure or not (none). Data are presented as the LSM ± 95CI for n=3 independent 

experiments, * implies significant difference with respect to the 10 minute exposure that did not receive 

a medium change post exposure i.e. none (p ~ 0.05). 

The survival curves for cells irradiated in the aforementioned solutions are shown in figure 

7.5. The medium was changed immediately post exposure except for L15 medium which 

was changed 4 hours post exposure as described above. Exposure in all media resulted in 

survival not significantly different to their respective controls when irradiated for up to 10 

minutes which concurs with the survival of cells irradiated in DMEM-F12 for 10 minutes 

and receiving a medium change immediately post exposure (figure 7.4). A 60 minute 
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exposure resulted in minimal survival irrespective of the exposure medium. It was the 30 

minute exposures that showed the most intriguing results. Although all media elicited 

survival significantly different to their respective controls when irradiated for 30 minutes, 

the results clearly demonstrate a dependence on the exposure medium employed for 

irradiation. 
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Figure 7.5 Direct exposure dose response curves for cells irradiated using the Q-sun solar simulator in 

PBS (n=3, 0), L-15 riboflavin free cell culture medium (n=3, A), Phenol red in PBS (0.00863 gil) (n=3, 

A), Phenol red (0.00863 gil) & Riboflavin (0.00022 gil) together in PBS (n=3, •>, riboflavin in PBS 

(0.00022 gil) (n=3, C) and DMEM-F12 (n=2, e). All medium changes were conducted immediately post 

exposure except for L-15 exposures which were carried out 4 hours post exposure. Data are presented 

as the LSM ± 95CI for n independent experiments, * implies all exposures irrespective of the exposure 

medium is significant difference to their respective to control (p ~ 0.05). 

Figure 7.5 indicates that the most cytotoxic solution is riboflavin in PBS, which resulted in 

minimal survival after a 30 minute exposure and was found to be significantly different to 

all other 30 minute exposures (p < 0.05) in figure 7.5 except DMEM-Fl2. Although the 
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presence of phenol red in PBS was also found to significantly increase cell death above that 

observed with PBS alone (p < 0.0001), it was also found to significantly reduce the 

cytotoxic abilities of riboflavin (p = 0.0001). In fact, the survival of cells irradiated for 30 

minutes in phenol red with and without riboflavin was found to be not significantly 

different to one another (p = 1). These results concur with the literature (12, 21) and the 

fluorescence results by showing phenol red to be a mild photosensitiser that possesses 

significant quenching abilities. 

Based on the results presented in figure 7.5, it is believed that riboflavin is the most 

cytotoxic nutrient present in cell culture medium and is primarily responsible for the 

dramatic dose response curve observed in figure 3.2. This is supported by the fact that the 

survival of cells irradiated for 30 minutes in DMEM-F12 and receiving a medium change 

immediately post exposure were found to be not significantly different from the survival of 

cells irradiated for 30 minutes in riboflavin in PBS (p = 1) (figure 7.5). These results show 

that cells irradiated identically in PBS and DMEM-F12 containing the same concentration 

of riboflavin produces survival not significantly different from one another. The cytotoxic 

abilities of riboflavin are further demonstrated by the absence and presence of riboflavin in 

cell culture media during irradiation. Cells that received a medium change 4 hours post 

exposure when irradiated for 10 minutes in L-15 riboflavin free cell culture medium (figure 

7 .5) resulted in significantly increased survival compared to an identical exposure in 

DMEM-F12 (p < 0.0001) (figure 7.4). 
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Moreover, no significant difference was found between the survival of cells irradiated in 

PBS and L-15 (p = 1) for all exposure durations, irrespective of the difference in medium 

change time points (immediately and 4 hours post exposure respectively) or the presence of 

phenol red in L-15 which as shown augments the cytotoxicity of PBS (figure 7.5). The 

discrepancy between the L-15 and phenol red exposures could be the result of inefficient 

cellular functions due to the absence of nutrients during phenol red exposures compared to 

cells irradiated in L-15 culture medium. Concomitantly or alternatively, the discrepancy 

may be due to the absence of other reagents competing with phenol red in terms of 

radiation absorption in the PBS solution, which implies that absorption of incident radiation 

by phenol red in PBS is virtually uninhibited. And since phenol red is minimally 

fluorescent, it dissipates excess energy via non radiative energy transfers where the only 

substrates are the PBS solvent and cells. Thus, it is possible that the absence of other 

reagents may serve to increase the probability of direct non radiative energy transfer to 

cells. This may explain the increased cytotoxicity of phenol red in PBS compared to L-15 

cell culture medium, particularly when it is known that the concentration of phenol red in 

L-15 (0.011 g/1 (22)) is ~27% greater than that in DMEM-F12 which was the same 

concentration of phenol red used in PBS (0.00863 g/1). 

If cells irradiated in L-15 received a medium change immediately post exposure like those 

irradiated in PBS, it would not be unreasonable to expect an increase in survival since it is 

unlikely that riboflavin and phenol red are the only photosensitisers present in cell culture 

media. However, any such increases in survival would not be expected to be significant 

since photosensitisers elicit their effects rapidly and thus will be accounted for in the L-15 
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results presented in figure 7.5. This suggests that any possible photosensitiser(s) present in 

L-15 are minimally effective compared to riboflavin. And is supported by the fact that cells 

irradiated in L-15 for 30 minutes and medium changed 4 hours post exposure resulted in 

survival significantly increased above that for cells irradiated for 30 minutes in DMEM-F12 

and medium changed immediately post exposure (figure 7 .5). 

The evidence presented in this chapter strongly implicates riboflavin as the component 

responsible for the production of extracellular hydrogen peroxide in DMEM-F12 when 

irradiated with solar simulated radiation. This is supported by reports in the literature that 

riboflavin is capable of producing hydrogen peroxide when irradiated (21, 23). 

Furthermore, the two distinct cell death events observed in figure 7.4 when cells are 

irradiated in DMEM-F12 are attributed to riboflavin. The first event is believed to be 

propagated by hydrogen peroxide generated via the photosensitisation of riboflavin in 

DMEM-F12 which can be abrogated by the presence of catalase and GSH as shown in 

chapter 4. The second event is attributed to riboflavin deficiency resulting from radiation 

induced structural alteration and thus defunctionalisation of riboflavin as reflected in its 

emission spectrum (figure 7.2F) which was shown to persist for at least 48 hours (figure 

7.3) and supported by the reduced proliferative capacity ofHaCaT cells in L-15 riboflavin 

deficient medium. 
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7.4 Conclusions 

Riboflavin is required for the culture of healthy cells and its absence has been demonstrated 

in the literature to lead to cellular stress events (20, 24, 25). It is the precursor to coenzymes 

flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (20, 26). FAD is 

involved with various metabolic processes such as protein folding in the endoplasmic 

reticulum (20, 27) and the redox cycle of glutathione where FAD is a coenzyme for 

glutathione reductase (20, 28, 29) which serves to reduce GSSG to GSH (30). In chapter 4 

it was surmised that GSH supplementation during indirect exposures resulted in survival 

not significantly different to controls at all times of transfer (0-48 hours) due to the ability 

of GSH to permeate the cell membrane and increase the GSH:GSSG ratio. In light of the 

results supporting defunctionalisation of riboflavin, it is believed that GSH supplementation 

not only serves to increase the capacity of cells to process endogenous ROS but also 

enables the coenzymes formed from the remaining functional riboflavin to participate in 

metabolic processes other than the redox cycle of glutathione such as protein folding. 

The objective of this chapter was to determine the agent responsible for the excessive cell 

death observed when cells are irradiated in DMEM-Fl2 compared to PBS. Although the 

results presented in this chapter show riboflavin to be a modest fluorophore, exposures 

performed in riboflavin supplemented PBS yielded results not significantly different from 

DMEM-Fl2 exposures while exposures performed in riboflavin free cell culture medium 

yielded results not significantly different to PBS exposures. From this, it is concluded that 

riboflavin is the photosensitising agent responsible for the dramatic dose response observed 
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when cells are irradiated in DMEM-Fl2. Thus, the cell death observed when cells are 

in·adiated in DMEM Fl2 medium is more a reflection of riboflavin photosensitisation and 

degradation than of solar simulated radiation induced cell death. 
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Chapter 8 Solar radiation induced medium mediated bystander effects 

8.1 Introduction 

In chapter 4 direct irradiation of cells in DMEM-F12 or treatment of unirradiated 

recipient cells with blank (no cells) irradiated DMEM-F12 was shown to elicit 

significant decreases in cell survival. Increased cell death was observed when cells were 

directly exposed in the absence of antioxidants (figure 4.3) compared to recipient cell 

survival when treated with blank irradiated medium immediately post exposure (figure 

4.4). The difference in survival may be the result of one or a combination of direct 

interaction of incident radiation with cells during exposure, the time taken to exact 

immediate medium transfers thus treating recipient cells with DMEM-F12 with reduced 

levels of reactive species compared to cells directly exposed and I or factors secreted by 

irradiated cells. Thus, this chapter investigates the possibility of cell secreted factors 

post solar simulated irradiation. 

Traditionally, radiation biology is the study of biological mechanisms including cell 

death that occur in biological samples post exposure to ionising radiation or particles. 

Central to the field of radiation biology was the belief that in order to observe biological 

effects, damage must be incurred directly to the nucleus of the cell (1, 2). However, a 

new branch has budded in this field which conflicts with this paradigm, due to radiation 

effects occurring in unirradiated samples. This relatively new field, aptly titled 

bystander responses, stems from unexpected observations of irradiated effects in 

unirradiated cells due to their proximity to irradiated cells. In 1992 Nagasawa and Little 

(3) reported that the induction frequency of sister chromatid exchanges (SCEs) in cells 
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irradiated with low doses of a-particles was significantly increased above the 

population of cells actually traversed by an a-particle. Although the term 'Bystander' 

was not yet adopted in radiobiology this study has since been accredited with being the 

first report of bystander signalling ( 4), however abscopal effects or long distance 

bystander effects (5) were first described by Mole in 1953 (6). The majority of the work 

to date regarding bystander responses have been performed using low linear energy 

transfer (LET), x- and y-radiation, and high LET, a-particle radiation, and include 

effects such as DNA damage, transformation, mutations, adaptive responses and cell 

death, see recent reviews (7 -1 0). The scope of this field has expanded and now 

encompasses non-ionising UV radiation. In fact 8 years prior to the work of Nagasawa 

and Little (3), a study conducted by Schorpp et al (11) observed UVC bystander effects 

in skin fibroblasts where unirradiated recipient cells treated with medium harvested 

from directly irradiated cells 24 and 48 hours post exposure were found to have the 

same protein expression observed in directly irradiated cells. However, compared to 

ionising radiation, UV induced bystander investigations are still in their infancy which 

is reflected by the small volume of work in this field in the different UV wavebands; 

UVC (11-13), UVB (14-16), UVA (15-18), and solar simulated radiation (19). 

In contrast to that observed by Mothersill et al (20), but in agreement with that reported 

by Lehnert's group (21, 22) for ionising radiation, it was demonstrated in chapter 4 that 

solar simulated radiation can elicit bystander responses when cell culture medium is 

irradiated in the absence of cells. This effect was found to be dependent both on dose 

and on the time of medium transfer. The bystander effects observed by Lehnert's group, 

however, were enhanced when cells were present during irradiation (22, 23) thus this 
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chapter investigates the possibility of solar simulated radiation induced bystander 

effects in human keratinocyte HaCaT cells. 
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8.2 Methods 

8.2.1 Cell culturing, seeding and exposure 

As described in sections 3.2.1 and 3.2.2 of chapter 3, HaCaT cells were cultured in 

DMEM-F12 cell culture medium containing 10 % FBS, 1 % penicillin-streptomycin 

and 1 !lg/ml hydrocortisone. Cells were incubated under humid conditions at 3 7°C, with 

5 % C02 in air and subcultured when cells were 80-90 % confluent. Cell counts were 

performed using a haemocytometer. Both donor cells and recipient cells were seeded 16 

hours prior to irradiation and treatment respectively. 

Donor cells were seeded, in 6 well plates, such that at the time of transfer post exposure 

densities of 1 x 105
, 2 x 105

, 5 x 105 and 1 x 1 06 cells would be expected in untreated 

samples. Donor cells were either sham irradiated or irradiated for 10 minutes without 

lids in 3 ml DMEM-F12 in the Q-sun solar simulator with an irradiance setting of 0.68 

wm-2 at 340 nm which as described in chapter 2 provides a UV spectral irradiance of 

~64 wm-2 at the level platform constructed in the chamber. 

Post exposure, the irradiated donor cell medium was harvested, filtered and transferred 

to unirradiated recipient cells 0 (immediately), 1 hour, 24 and 48 hours post exposure. 

Donor cells designated for the late times of transfer were returned to the incubator post 

exposure until the appropriate time of transfer. 

Recipient cells were seeded 16 hours before treatment with donor cell medium at a 

density of 400 cells per well in 6 well plates. The DMEM-F12 covering recipient cells 
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was discarded and the donor cell medium transferred. On receipt of the donor cell 

medium, recipient cells were returned to the incubator for 7 days prior to clonogenic 

staining. 

8.2.2 Statistics 

Results represent a minimum of 3 independent tests with a minimum of 2 replicates per 

independent test. The data was log transformed and ANOV A was perfonned on the 

linear regressions and pair-wise data were computed using the Bonferroni adjustment. 

Data are presented as the LSM of the Log( colony count)± 95CI. All analyses were done 

using statistical software packa,ge SAS 9.1 and SAS enterprise guide 3.0. Significance 

was taken at a level ofp ~ 0.05. 
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8.3 Results and discussion 

To investigate the possibility of cell secreted factors, donor cell medium transfer 

experiments were performed. Such effects have been shown in response to ionising 

radiation exposures, i.e. radiation induced bystander effects, where the donor cell 

density has been shown to be important (20). 
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Figure 8.1 Recipient cell survival treated with donor cell medium harvested immediately post 

exposure. Donor cells seeded at a density of 1 x 105
, 2 x 105

, 5 x 105 or 1 x 106 cells per well were 

irradiated (D) or sham irradiated <•> using the Q-sun. Data presented as the LSM ± 95%CI; * 

indicates significant difference between irradiated and sham irradiated controls, all exposures 

tagged with ¥ are significantly different to one another; § indicates significant difference with 

respect to donor cell density lx105
, p s; 0.05. 

Figure 8.1 illustrates the survival of unexposed recipient cells treated with donor cell 

medium immediately post exposure. A clear and significant decrease in recipient cell 

survival with increasing donor cell density is observed. Statistical analysis showed no 

significant difference between control recipient cells despite receiving sham irradiated 

DMEM-F12 from differing donor cell densities thus eliminating reservations regarding 
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nutrient consumption. All 10 minute exposures were found to be significantly different 

from their respective controls. Furthermore, all recipient cells treated with exposed 

donor cell DMEM-F12 transfers were found to be significantly different from one 

another except for 1 x 1 05 and 2 x 1 05 donor cell densities which were not significantly 

different from one another. 

These results show that the presence of cells during irradiation accentuates medium 

mediated cell killing effects of unirradiated recipient cells in a donor cell density 

dependent manner, supporting the conjecture that cells present during solar simulated 

irradiation release factor(s) into the medium. However this effect was found to be 

transient, lasting less than 1 hour, since donor cell medium transfers carried out 1, 24 

and 48 hours post exposure were found to elicit survival not significantly different from 

controls at all times of transfer, (figures 8.2- 8.4). 
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Figure 8.2 Recipient cell survival treated with donor cell medium harvested 1 hour post exposure. 

Donor cells seeded at a density of 1 x lOs, 2 x lOs, 5 x lOs or 1 x 106 cells per well were irradiated 

(D) or sham irradiated <•> using the Q-sun. Data presented as the LSM ± 95%CI; 
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Figure 8.3 Recipient cell survival treated with donor cell medium harvested 24 hours post exposure. 

Donor cells seeded at a density of 1 x 105
, 2 x lOs, 5 x lOs or 1 x 106 cells per well were irradiated 

(D) or sham irradiated <•> using the Q-sun. Data presented as the LSM ± 95%CI; 
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Figure 8.4 Recipient cell survival treated with donor cell medium harvested 48 hours post exposure. 

Donor cells seeded at a density of 1 x lOs, 2 x lOs, 5 x lOs or 1 x 106 cells per well were irradiated 

(D) or sham irradiated (•) using the Q-sun. Data presented as the LSM ± 95%CI; 

These results conflict with the work of Banerjee et al (14) who found that apoptosis was 

initiated in unexposed recipient HaCaT cells treated with UVB irradiated donor cell 

medium when the medium transfers were performed~ 12 hours post exposure of the 
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donor cells but not before. However Banerjee et al (14) assayed cell survival using the 

method of transcriptional and translational (MTT) assay, which measures the reduction 

of tetrazolium salts by viable cells with active mitochondrial dehydrogenases to a blue 

formazan end product that is then measured spectrophotometrically (24). Although the 

chemosensitivity of the MTT assay has been found to yield a high level of correlation 

with the clonogenic assay (25), a study investigating the radiosensitivities of the 

clonogenic and MTT assays found the clonogenic assay to be most sensitive while the 

MTT assay was reported to be relatively insensitive especially at lower radiation levels 

(26). Thus the temporal differences observed between this and the study performed by 

Banerjee et al (14) may be due to radiosensitivity differences in the assays employed. 

However, a further discrepancy regarding apoptotic induction at the late times of 

transfer also exists between the two studies. In chapter four, it was demonstrated that 

blank (no cells) DMEM-F12 irradiated for 10 minutes produced a significant decrease 

in unirradiated recipient cell survival compared to their respective controls at all transfer 

times; immediately, 1 hour, 24 and 48 hours post exposure (see figure 4.4). The results 

presented in this chapter show that the induction of cell death is transient, lasting less 

than 1 hour, which implies that the presence of cells during solar simulated irradiation 

incurs a 'protective' effect that overcomes the detrimental effects observed with blank 

irradiated DMEM-F12 at the later times of transfer. In contrast to this, Banerjee et al 

(14) observed decreasing cell viability with increasing time of transfer of the donor cell 

medium post exposure as measured by the MTT assay. 

In addition to the MTT data, Banerjee et al (14) also reported an increase in mRNA 

levels ofpro-apoptotic Bcl-2 family member Bax and the cell surface death receptor Fas 
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in bystander cells. Although both are indicative of apoptotic induction, their expression 

together is somewhat incongruous since Bax and Fas are involved in the intrinsic and 

extrinsic apoptotic pathways respectively. However, it is possible that these bystander 

cells fall under the heading of type II extrinsically apoptotic cells, which are cells in 

which the extrinsic apoptotic signalling is insufficient to activate the necessary caspase 

cascade required and thus induce the intrinsic apoptotic pathway (27, 28). This could 

explain not only the expression of Bax and Fas together · but also the temporal 

differences in their expression where the expression ofBax was found to lag that ofFas. 

Activation of Bax and/or Bak: is required for mitochondrial pore formation (29, 30) 

where mitochondrial outer membrane permeablisation is generally considered as the 

point of no return regarding apoptosis (31 ). However the reduced viability of UVB 

irradiated HaCaT cells has been shown to be abrogated by 5 ~M of a ginseng derivative, 

ginsenoside, as measured using the MTT assay with no corresponding reduction in Bax 

mRNA expression (32). Furthermore, evidence has been presented that extrinsically 

apoptotic cells partially committed to apoptosis can recover and survive (33). This 

combined with the potentially pro-survival disposition of HaCaT cells due to their p53 

homozygous mutant genotype (34) suggests that the discrepancy between the results 

presented by Banerjee et al (14) and this study may not be differences in bystander 

effect(s) but more reflective of experimental procedures and time points. 

The proliferative response incurred in bystander cells, and shown in figures 8.2 - 8.4, 

that overcome the detrimental effects of solar simulated irradiated blank medium may 

be related to the findings of Lehnert and colleagues (21-23), Dissanayake et al (35, 36) 

and McMillan et al (37). 
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Over the course of several publications investigating the bystander response incurred by 

low dose a-particle irradiation, Lehnert and colleagues (21-23) found elevated 

intracellular ROS and a time of transfer dependent induction of SCEs in bystander cells 

not only treated with medium harvested from irradiated donor cells but also irradiated 

blank cell culture medium. Interestingly though, only cell conditioned medium 

modulated protein expression in a manner that favoured a pro-mitogenic state which 

concurred with the enhanced proliferation of bystander cells. No such effects were 

observed in bystander cells treated with blank fresh irradiated medium thus indicating 

that the factor(s) involved were cell derived. Based on their experimental observations, 

they postulated that this radiation induced transmissible factor was a cytokine, 

specifically, transforming growth factor beta (TGF-Pl) which was found to be secreted 

into the supernatant of irradiated cells. Further investigation found TGF-Pl capable of 

inducing enhanced intracellular ROS, the same protein expression and the enhanced 

proliferative state observed in bystander cells when untreated cells were supplemented 

with concentrations ofTGF-Pl similar to that secreted into the supernatant of irradiated 

cells. Moreover, effects that are observed in bystander cells such as enhanced 

intracellular ROS and reduced p53 protein levels could be abrogated by addition of a 

TGF-Pl neutralising antibody. Collectively, the work by Lehnert's group presents 

strong evidence that TGF-Pl, at least in part, mediates a-particle induced bystander 

effects. In a study examining the effects of UV A and UVB radiation on primary human 

keratinocytes derived from neonatal foreskin, Dissanayake et al (35, 36) showed that 

both UV A alone or UV A and UVB combined induced enhanced secretion of TGF -P 1 

into the cell culture medium. In contrast to the results presented in this chapter, when 

this medium was harvested from directly irradiated cells and transferred to unirradiated 

primary keratinocytes 24 hours post exposure, the unirradiated recipient bystander cells 
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were found to exhibit decreased proliferation but increased cornification (epidermal 

thickening) with respect to sham irradiated donor cell medium transfers. However, 

Dissanayake et al (36) do state that cornification is not only the result of increases in the 

stratum corneum but also increased keratinocyte proliferation. There are some 

differences in methodology between the work presented here and that ofDissanayake et 

al (35, 36) that may significantly contribute to the different proliferative effects 

observed. In the work by Dissanayake et al (35, 36), cells were irradiated in PBS with 

UVA and UVB irradiances of 2 Wm-2 and 0.8 Wm-2 or 3.7 Wm-2 and 0.02 Wm-2 

respectively but no distribution spectra were provided. Pre and post exposure cells were 

maintained in DMEM cell culture medium supplemented with 10 mM HEPES, a potent 

photosensitiser that is sensitised even by fluorescent room lighting in the presence of 

riboflavin (3 8). There was no mention of donor cell medium filtration prior to medium 

transfer thus it is possible that directly irradiated keratinocytes were unintentionally 

transferred and co-incubated with the unirradiated recipients which may potentially 

confound results. The irradiated donor cell medium was diluted in unirradiated DMEM 

at a ratio of 3 :7 when immediately before transfer to unirradiated recipient cells. 

Genotypic differences between primary and immortalised keratinocytes may potentially 

provide growth advantages in the latter. Furthermore, proliferation was determined via 

cell counts just 36 hours post medium transfer when the primary keratinocytes could 

potentially be arrested to facilitate repair and thus may not reflect actual cell death but 

merely a transient lull in proliferative capacity. 

Thus, from the results presented by both Lehnert's group (21-23) and Dissanayake et al 

(35, 36), it is postulated that TGF-~1 may have a role in solar simulated bystander 

responses that results in the enhanced proliferation observed in HaCaT bystander cells 
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(figures 8.2-8.4). Further support stems from the fact that TGF-~1 activates reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) (39) which when inhibited was 

found to attenuate UV A radiation induced bystander effects (3 7). Furthermore, 

extracellular ROS can activate latent TGF-~1, thus establishing a positive feedback 

mechanism for the activation of TGF-~1 (39) which through its ability to elevate 

intracellular production of ROS (23, 39) may actively participate in sustaining oxidative 

stress which has been linked to UV induced genomic instability (40, 41). 

In fact, increased oxidative stress was observed in UV A and UVB irradiated V79 

hamster fibroblasts (41) which were found to possess both early and delayed mutations 

in the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene (15). The induction 

of hprt mutations was attributed to bystander effects via gap junction intercellular 

communication (GJIC) and also extracellular factors secreted into the medium 

(unpublished preliminary results) (15). Furthermore, the occurrence of such mutations 

was found to be inhibited with antioxidants (16). However, this work conflicts with that 

presented by Whiteside and McMillan (17) who observed bystander effects with UV A 

but not UVB radiation in human keratinocyte and fibroblast cell lines. Although these 

discrepancies may be the result of differing cell models, it must be noted that the 

bystander effects reported by Dahle et al (15, 16) were in fact observed in directly 

irradiated cell populations which may in itself impair the ability of a study to observe 

bystander effects without direct effects confounding the observations. A non contact co 

incubation technique similar to that employed by Whiteside and McMillan (17) was 

used by Muller et al (19) who reported UVB induced bystander effects in unirradiated 

marine aquatic 3D cell cultures. However, the irradiator employed was a solar simulator 

with outputs in the UV A, visible and infrared regions as well as UVB. Thus, it cannot 
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be conclusively drawn that the effects observed were specific to UVB radiation. 

Although UVC radiation is not an environmentally relevant waveband, bystander 

signalling has been report with UVC radiation (11-13), thus it would be reasonable to 

believe that UVB radiation can elicit bystander responses since both UV A and UVC 

radiation effects have been demonstrated. 

T bl 81 P . . J a e nncapJe exposure parame ers o t fkn own 'YS au er roves 1ga ons m era ure UVBb t d ti ti . lit t 

Author Cell line Expo lrradiance 
Waveband (nm) Bystander 

medium (Wm-2) effect 

Whiteside and HaCaT PBS 2-4 280-380 No McMillan (17) 
Whiteside and MRC5 PBS 2-4 280-380 No McMillan {17) 
Dahle et al (15) V79 PBS 23.3 290-320 Yes 

Bane~ee et al (14) HaCaT PBS n/a UVA+B Yes 

Muller et al (19) Demosponge Seawater n/a UVA/B vis & IR Yes 

The discrepancies between studies reporting UVB bystander effects might be 

attributable to the irradiance employed. Table 8.1 illustrates some of the principal 

parameters of the different UVB bystander investigations cited in this chapter. As 

discussed in chapter 2, a UVB irradiance greater than 3 wm-2 would not be expected at 

the terrestrial level. Although their irradiator emits radiation below the lowest terrestrial 

wavelength of 295 nm ( 42), Whiteside and McMillan (17) is the only study that can be 

confirmed to employ an irradiance reflective of that found at the terrestrial level, nor do 

their results appear to be cell line specific. And since it is not possible, in the absence of 

optical filtering, to discern which waveband predominantly contributes to full spectrum 

solar simulated bystander responses, it could well be that at environmentally relevant 

irradiances, UV A radiation is the dominant waveband regarding bystander effects. 
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Despite the variability of UV bystander effects from different groups, the results 

presented by Whiteside and McMillian (17) demonstrate an intriguing effect. They 

showed that irradiated HaCaT cells, which have been likened to suprabasal layer 

epidermal cells ( 43), can not only elicit autocrine bystander responses in unirradiated 

identical cell types but also paracrine bystander responses in unirradiated dermal 

fibroblasts via non contact co-incubation of the two cell populations (irradiated and 

unirradiated) (17). It is known that the capacity of radiation to penetrate the skin 

decreases with decreasing wavelength (44, 45). Using ex vivo full thickness epidermal 

samples, it has been shown that UV radiation is predominantly absorbed in the 

epidermal layer of the skin with less than 20 % of the incident radiation at 365 nm 

exiting the basal layer ( 46). In addition, epidermal keratinocytes obtain nutrients via 

diffusion across the basal membrane ( 4 7) since the dermal but not the epidermal layer is 

vascularised (44, 47). Thus, it is not unreasonable to believe that signals produced by 

epidermal keratinocytes in response to UV radiation could be transmitted to dermal 

fibroblasts which due to epidermal absorption of radiation remain relatively unexposed 

to UV radiation. Such bystander responses could potentially increase the senescence of 

dermal fibroblasts. 

Using primary human keratinocytes, Kuhn et al (48) showed that cells irradiated with 

UVB radiation in medium devoid of exogenous growth factors that activate IGF-IR 

(insulin like growth factor I receptor) were significantly more apoptotic than those 

irradiated in the presence of IGF-IR activators. The pro-survival response of IGF-IR 

activation was found to result in post mitotic cells (incapable of replicating) whereas 

IGF-IR inactivated cells that survived irradiation were fully capable of proliferating 

with potentially mutagenic genomes. Physiological concentrations of both insulin and 
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IGF-I (insulin like growth factor I) were found to activate IGF-IR, however insulin 

provided only partial protection while IGF-I fully protected keratinocytes from UVB 

induced apoptosis. Dermal fibroblasts but not epidermal keratinocytes, unless involved 

in foetal growth or wound healing, produce and secrete IGF-I (49). Furthermore the 

production of IGF-I has been shown to be depleted in senescent human fibroblasts in 

vitro (50). Thus based on their results, Kuhn et al (48) speculated that the response of 

epidermal keratinocytes to UVB radiation is tightly linked to the health of dermal 

fibroblasts and their ability to secrete IGF-I in vivo. This conjecture was recently 

confirmed by the same group who observed reduced expression of both IGF-I mRNA 

transcripts and IGF-I protein in in vivo geriatric dermal fibroblasts (volunteers ~ 65 

years old) compared to in vivo young adult dermal fibroblasts (volunteers age 20-28 

years old) (51). The reduced IGF-I expression in geriatric dermal fibroblasts was found 

to promote proliferating DNA damaged epidermal keratinocytes in vivo post UVB 

irradiation, an effect that was not observed when IGF-I proficient young adult skin was 

irradiated and was abrogated when geriatric skin was supplemented via intradermal 

injection with recombinant human IGF-I prior to UVB irradiation (51). 

8.4 Conclusions 

The results presented here and in the literature clearly demonstrate that human skin cells 

are capable of both autocrine and paracrine bystander signalling in response to UV 

radiation. The biological relevance may be highly significant in light of the recent work 

by Lewis et al (51) whose results suggest a new paradigm for the induction of skin 

carcinogenesis via dermal fibroblast senescence in vivo. Furthermore, Lewis et al (51) 

also showed that IGF-I expression silencing could be equally induced in primary 
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cultured normal human fibroblasts via continuous replication and oxidative stress. UV A 

radiation, the predominant solar UV waveband, is believed to elicit its effects primarily 

through oxidative processes (52). Thus, the hypothesis presented here is that solar UVA 

radiation contributes to and I or accelerates the senescence of dermal fibroblasts via 

TGF-~1 sustained oxidative paracrine bystander signalling which may ultimately 

undermine the capability of epidermal keratinocytes to execute the appropriate response 

to solar UVB radiation induced damage due to reduced secretion of IGF-1 by the now 

senescent dermal fibroblasts. This hypothesis needs to be tested, but the potential of 

solar radiation induced bystander signalling and its relevance to the in vivo situation 

clearly exists and warrants further investigation. 

243 



8.5 References 

(1) W. F. Morgan (2003) Non-targeted and delayed effects of exposure to ionizing 

radiation: I. Radiation-induced genomic instability and bystander effects in vitro Radiat 

Res 159, 567-80. 

(2) K. M. Prise, G. Schettino, M. Folkard & K. D. Held (2005) New insights on cell 

death from radiation exposure Lancet Oncol6, 520-8. 

(3) H. Nagasawa & J. B. Little (1992) Induction of sister chromatid exchanges by 

extremely low doses of alpha-particles Cancer Res 52, 6394-6. 

( 4) H. Matsumoto, A. Takahashi & T. Ohnishi (2004) Radiation-induced adaptive 

responses and bystander effects Biol Sci Space 18, 247-54. 

(5) J. M. Kaminski, E. Shinohara, J. B. Summers, K. J. Niermann, A. Morimoto & J. 

Brousal (2005) The controversial abscopal effect Cancer Treatment Reviews 31, 159-

172. 

(6) R. H. Mole (1953) Whole body irradiation--radiobiology or medicine? Br J Radial 

26, 234-241. 

(7) W. F. Morgan & M. B. Sowa (2007) Non-targeted bystander effects induced by 

ionizing radiation Mutat Res 616, 159-64. 

(8) K. M. Prise & J. M. O'Sullivan (2009) Radiation-induced bystander signalling in 

cancer therapy Nat Rev Cancer 9, 351-60. 

(9) D. Averbeck (2010) Non-targeted effects as a paradigm breaking evidence Mutation 

Research/Fundamental and Molecular Mechanisms of Mutagenesis In Press, Accepted 

Manuscript. 

244 



(10) D. T. Goodhead (2010) New radiobiological; radiation risk and radiation protection 

paradigms Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 

In Press, Accepted Manuscript. 

(11) M. Schorpp, U. Mallick, H. J. Rahmsdorf & P. Herrlich (1984) Uv-induced 

extracellular factor from human fibroblasts communicates the uv response to 

nonirradiated cells Cell37, 861-8. 

(12) R. Ghosh & G. Bhaumik (1995) Supernatant medium from uv-irradiated cells 

influences the cytotoxicity and mutagenicity ofv79 cells Mutat Res 335, 129-35. 

(13) L. C. DeVeaux, L. S. Durtschi, J. G. Case & D. P. Wells (2006) Bystander effects 

in unicellular organisms Mutation Research/Fundamental and Molecular Mechanisms 

of Mutagenesis 597, 78-86. 

(14) G. Banerjee, N. Gupta, A. Kapoor & G. Raman (2005) Uv induced bystander 

signaling leading to apoptosis Cancer Letters 223, 275-84. 

(15) J. Dahle, 0. Kaalhus, T. Stokke & E. Kvam (2005) Bystander effects may 

modulate ultraviolet a and b radiation-induced delayed mutagenesis Radiat Res 163, 

289-95. 

(16) J. Dahle, E. Kvam & T. Stokke (2005) Bystander effects in uv-induced genomic 

instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet a and b 

radiation Journal of Carcinogenesis 4, 11. 

(17) J. R. Whiteside & T. J. McMillan (2009) A bystander effect is induced in human 

cells treated with uva radiation but not uvb radiation Radiat Res 171, 204-11. 

(18) J. Dahle, S. Bagdonas, 0. Kaalhus, G. Olsen, H. B. Steen & J. Moan (2000) The 

bystander effect in photodynamic inactivation of cells Biochimica et Biophysica Acta 

(BBA) - General Subjects 1475, 273-280. 

245 



(19) W. E. G. Muller, H. Ushijima, R. Batel, A. Krasko, A. Borejko, I. M. Muller & H.­

C. Schroder (2006) Novel mechanism for the radiation-induced bystander effect: Nitric 

oxide and ethylene determine the response m sponge cells Mutation 

Research/Fundamental and Molecular Mechanisms of Mutagenesis 597, 62-72. 

(20) C. Mothersill & C. Seymour (1997) Medium from irradiated human epithelial cells 

but not human fibroblasts reduces the clonogenic survival of unirradiated cells Int J 

Radiat Biol71, 421-7. 

(21) B. E. Lehnert, E. H. Goodwin & A. Deshpande (1997) Extracellular factor(s) 

following exposure to alpha particles can cause sister chromatid exchanges in normal 

human cells Cancer Res 57,2164-71. 

(22) P. K. Narayanan, E. H. Goodwin & B. E. Lehnert (1997) Alpha particles initiate 

biological production of superoxide anions and hydrogen peroxide in human cells 

Cancer Res 57,3963-71. 

(23) R. Iyer, B. E. Lehnert & R. Svensson (2000) Factors underlying the cell growth­

related bystander responses to alpha particles Cancer Res 60, 1290-8. 

(24) P. Lemieux, M. Michaud & M. Page (1993) A new formazan amplified clonogenic 

assay for cytotoxicity testing Biotechnology Techniques 7, 1573-6784. 

(25) K. Kawada, T. Yonei, H. Ueoka, K. Kiura, M. Tabata, N. Takigawa, M. Harada & 

M. Tanimoto (2002) Comparison of chemosensitivity tests: Clonogenic assay versus mtt 

assay Acta Med Okayama 56, 129-34. 

(26) D. Banasiak, A. Bametson, R., R. Odell, A., H. Mameghan & P. Russell, J. (1999) 

Comparison between the clonogenic, mtt, and srb assays for determining 

radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line 

Radiation Oncology Investigations 7, 77-85. 

246 



(27) Z. Assefa, A. Van Laethem, M. Garmyn & P. Agostinis (2005) Ultraviolet 

radiation-induced apoptosis in keratinocytes: On the role of cytosolic factors 

Biochimica et Biophysica Acta -Reviews on Cancer 1755, 90-106. 

(28) C. Sheridan & S. J. Martin (2008) Commitment in apoptosis: Slightly dead but 

mostly alive Trends in Cell Biology 18, 353-357. 

(29) M. C. Wei, W.-X. Zong, E. H. Y. Cheng, T. Lindsten, V. Panoutsakopoulou, A. J. 

Ross, K. A. Roth, G. R. MacGregor, C. B. Thompson & S. J. Korsmeyer (2001) 

Proapoptotic bax and bak: A requisite gateway to mitochondrial dysfunction and death 

Science 292,727-730. 

(30) W. X. Zong, T. Lindsten, A. J. Ross, G. R. MacGregor & C. B. Thompson (2001) 

Bh3-only proteins that bind pro-survival bcl-2 family members fail to induce apoptosis 

in the absence ofbax and bak Genes Dev 15, 1481-6. 

(31) D. R. Green & G. Kroemer (2005) Pharmacological manipulation of cell death: 

Clinical applications in sight? The Journal of Clinical Investigation 115, 2610-2617. 

(32) E. H. Lee, S. Y. Cho, S. J. Kim, E. S. Shin, H. K. Chang, D. H. Kim, M. H. Yeom, 

K. S. Woe, J. Lee, Y. C. Sim & T. R. Lee (2003) Ginsenoside fl protects human hacat 

keratinocytes from ultraviolet-b-induced apoptosis by maintaining constant levels of 

bcl-2 J Investig Dermatol121, 607-613. 

(33) J. G. Albeck, J. M. Burke, B. B. Aldridge, M. Zhang, D. A. Lauffenburger & P. K. 

Sorger (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single 

cells Mol Cell30, 11-25. 

(34) T. A. Lehman, R. Modali, P. Boukamp, J. Stanek, W. P. Bennett, J. A. Welsh, R. 

A. Metcalf, M. R. Stampfer, N. Fusenig, E. M. Rogan & et al. (1993) P53 mutations in 

human immortalized epithelial cell lines Carcinogenesis 14, 833-9. 

247 



(35) N. S. Dissanayake, G. E. Greenoak & R. S. Mason (1993) Effects of ultraviolet 

irradiation on human skin-derived epidermal cells in vitro J Cell Physio/157, 119-27. 

(36) N. S. Dissanayake & R. S. Mason (1998) Modulation of skin cell functions by 

transforming growth factor-beta1 and acth after ultraviolet irradiation J Endocrino/159, 

153-163. 

(37) T. J. McMillan, E. Leatherman, A. Ridley, J. Shorrocks, S. E. Tobi & J. R. 

Whiteside (2008) Cellular effects of long wavelength uv light (uva) in mammalian cells 

J Pharm Pharmacal 60, 969-76. 

(38) R. G. Keynes, C. Griffiths & J. Garthwaite (2003) Superoxide-dependent 

consumption of nitric oxide in biological media may confound in vitro experiments 

Biochemical Journa/369, 399-406. 

(39) A. Sanchez-Capelo (2005) Dual role for tgf-[beta] 1 in apoptosis Cytokine & 

Growth Factor Reviews 16, 15-34. 

(40) R. P. Phillipson, S. E. Tobi, J. A. Morris & T. J. McMillan (2002) Uv-a induces 

persistent genomic instability in human keratinocytes through an oxidative stress 

mechanism Free Radic Bioi Med 32, 474-80. 

(41) J. Dahle & E. Kvam (2004) Increased level of oxidative stress in genomically 

unstable cell clones Journal of Photochemistry and Photobiology B: Biology 74, 23-28. 

(42) D. B. Brown, A. E. Peritz, D. L. Mitchell, S. Chiarello, J. Ditto & F. P. Gasparro 

(2000) Common fluorescent sunlamps are an inappropriate substitute for sunlight 

Photochemistry and Photobiology 72, 340-4. 

(43) K. M. Lee, J. G. Lee, E. Y. Seo, W. H. Lee, Y. H. Nam, J. M. Yang, S. H. Kee, Y. 

J. Seo, J. K. Park, C. D. Kim & J. H. Lee (2005) Analysis of genes responding to 

ultraviolet b irradiation of hacat keratinocytes using a edna microarray Br J Dermatol 

152, 52-9. 

248 



( 44) F. R. de Gruijl (1997) Health effects from solar uv radiation Radiat Prot Dosimetry 

72, 177-196. 

(45) S. E. Freeman, H. Hacham, R. W. Gange, D. J. Maytum, J. C. Sutherland & B. M. 

Sutherland (1989) Wavelength dependence of pyrimidine dimer formation in DNA of 

human skin irradiated in situ with ultraviolet light Proc Nat! Acad Sci US A 86, 5605-9. 

(46) W. A. Bruls, H. Slaper, J. C. van der Leun & L. Berrens (1984) Transmission of 

human epidermis and stratum corneum as a function of thickness in the ultraviolet and 

visible wavelengths Photochem Photobiol 40, 485-94. 

(47) K. U. Schallreuter & J. M. Wood (1995) The human epidermis Proc Nutr Soc 54, 

191-5. 

(48) C. Kuhn, S. A. Hurwitz, M. G. Kumar, J. Cotton & D. F. Spandau (1999) 

Activation of the insulin-like growth factor-1 receptor promotes the survival of human 

keratinocytes following ultraviolet b irradiation Int J Cancer 80, 431-8. 

(49) S. R. Edmondson, S. P. Thumiger, G. A. Werther & C. J. Wraight (2003) 

Epidermal homeostasis: The role of the growth hormone and insulin-like growth factor 

systems Endocr Rev 24,737-764. 

(50) A. Ferber, C. Chang, C. Sell, A. Ptasznik, V. J. Cristofalo, K. Hubbard, H. L. Ozer, 

M. Adamo, C. T. Roberts & D. LeRoith (1993) Failure of senescent human fibroblasts 

to express the insulin-like growth factor-1 gene Journal of Biological Chemistry 268, 

17883-17888. 

(51) D. A. Lewis, J. B. Travers, A. K. Somani & D. F. Spandau (2009) The igf-1/igf-lr 

signaling axis in the skin: A new role for the dermis in aging-associated skin cancer 

Oncogene. 

249 



(52) M. Schauen, H.-T. Hornig-Do, S. Schomberg, G. Herrmann & R. J. Wiesner 

(2007) Mitochondrial electron transport chain activity is not involved in ultraviolet a 

(uva)-induced cell death Freel?adical Biology and Medicine 42, 499-509. 

250 



Chapter 9 Conclusions and future work 

As outlined in the chapter 1, the purpose of this study was to address some of the key issues 

that are potentially hindering the progress of skin carcinogenesis investigations. The results 

presented in this thesis clearly emphasise the importance of both the irradiator and exposure 

medium employed in in vitro investigations. 

Although dosimetry is rarely the endpoint of a given study, it is however, one of the 

founding parameters of radiobiological investigations. From the literature, it is evident that 

the provision of dosimetric measurements in UV investigations is justly gaining 

momentum. However, the environmental irrelevance and I or inadequate dosimetry in some 

studies suggest that there is still much confusion in this area. While the importance of 

dosimetry is undisputed, the dose administered is not the only aspect of an irradiator that 

necessitates analysis. Both spectral distribution and output delivery are also highly 

important when determining the relevance of an irradiator. Furthermore, analysing and 

measuring the characteristics of an irradiator alone is not enough, a frame of reference is 

required. For skin carcinogenesis investigations, this reference is solar radiation where a 

reference spectrum that reflects solar radiation at mid to near tropic latitudes is reasonable 

in light of studies that have found that the rates of melanoma and non melanoma skin 

cancers increase with decreasing latitude in America, Norway and New Zealand (1-3). 

Utilising a reference spectrum of solar radiation enables investigators to better identify the 

environmental relevance of an irradiator in terms of irradiance, spectral distribution and 

output delivery. This is effectively demonstrated in the recently published work presented 
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in chapters 2 and 3 ( 4), see appendix four for cited publication. While this work was 

intended to demonstrate the vastly different capabilities of different irradiators to elicit cell 

death due to differences in their spectral distribution, irradiance and nature, it clearly 

demonstrates how competent dosimetry and reference to solar radiation can aid 

investigations. Based on the distribution spectra presented in figure 2.24, it was speculated 

that the UVB lamp was the most detrimental irradiator under investigation which was later 

confirmed by radiobiological experimentation. These pre-experimental observations re­

affirm spectroradiometry as the superior technique to calibrate irradiators since 

radiometers, although advantageous in their own right, do not provide any information 

regarding the spectral distribution of a source. Furthermore the ability of spectroradiometric 

data to unambiguously communicate the spectral irradiance of an irradiator not only 

permits visual inter comparison of sources including solar radiation but also confirms the 

credibility, or lack thereof, of manufacturer data thus reiterating the above points. 

In addition to the spectral distribution and irradiance, the output delivery is another aspect 

of an irradiator that has the potential to confound investigations. The environmental 

relevance of the Q-sun solar simulator was found to be reciprocity law compliant despite 

delivering an exaggerated irradiance per pulse. This was based on the increased cell 

survival observed when cells were irradiated using the Q-sun compared to a similar 

exposure using the Oriel solar simulator and was attributed to the increased irradiance in 

the UVB waveband of the Oriel. However, a threshold pulse frequency is suspected at 

which cells would begin to deviate significantly from the response expected when an 

equivalent dose is administered using a continuous source since a decrease in pulse 
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frequency would require an increase in radiant intensity delivered per pulse in order to 

achieve the same integral exposure. However, the pulse frequency of the Q-sun is fixed, 

thus preventing further investigation into frequency mediated reciprocity effects. The 

possibility, however, that the Q-sun would result in enhanced cell death compared to the 

Oriel for equivalent effective doses remains to be elucidated. Furthermore, it is possible 

that intracellular death effector pathways activated in response to equivalent effective doses 

delivered in a pulsed and continuous manner are significantly different to one another. In 

addition, reciprocity studies examining the effects of energy delivered per second 1.e. 

irradiance based reciprocity effects, are feasible using the Oriel solar simulator. As 

demonstrated in chapter 2, the Oriel is a continuous source and the spectral irradiance is 

variable by means of its current settings. Thus, irradiance based reciprocity studies are 

possible by (a) employing a fixed exposure distance and varying the spectral irradiance via 

the current settings, (b) employing a fixed exposure distance and a fixed current setting in 

conjunction with a series of neutral density filters and I or (c) by making use of the inverse 

square law and employing a fixed current setting but varying the exposure distance. In 

order to determine the required exposures needed to deliver equivalent effective doses the 

spectral irradiance of the Q-sun and the Oriel would need to be spectrally weighted prior to 

further radiobiological investigation into these reciprocity effects. However, due to the 

rapidly increasing efficacy of action spectra with decreasing wavelength particularly in the 

UVB, weighting requires rigorous stray light rejection to minimise erroneous 

overestimations in irradiance particularly at biologically effective wavelengths such as 

those in the UVB. Stray light rejection is determined by the bandpass and hence optical 

resolution of a spectroradiometer (5), which are nominally achieved with double 
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monochromator spectroradiometers (6). Thus, despite stray light corrections outlined in 

chapter 2, the precision of data collected using a USB2000 spectrometer is not believed to 

be of a level at which weighting irradiance spectra would be appropriate. Thus, in the 

absence of a bench top double monochromator spectroradiometer, further reciprocity 

studies were not feasible for this current body of research. However, while it is important to 

acknowledge instrumental limitations, it is important to emphasise that data collected using 

the USB2000 spectrometer effectively served its intended purpose which was to obtain 

reasonable approximations on the irradiance spectra of the irradiators under investigation. 

Another founding parameter that appears to be given little attention in the literature is the 

exposure medium employed during non-ionising investigations which varies widely from 

cell culture medium to water, seawater, saline solutions, phenol red free media and PBS (7-

12). The primary exposure media appear to be cell culture medium and PBS, thus 

exposures in this study were performed in both DMEM-Fl2 cell culture medium and PBS. 

It was during the radiobiological investigations examining the differential effects of 

different irradiators on cell survival that the disparate effects of irradiation in DMEM-F12 

and PBS were observed. 

Although further investigation is required to clarify the pathways by which cell death is 

incurred in the different exposure media, all endpoints examined here demonstrated 

significant differences between the response of cells irradiated in PBS and DMEM-Fl2. 

Although the absence of proapoptotic events in cells irradiated in PBS may be due to the 

induction of non intrinsic apoptotic pathways(s) or merely temporal discrepancies between 
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measurement and induction of intrinsic apoptotic events, the inability of cells to arrest at 

the G2 checkpoint suggests that cells irradiated in PBS for extended durations become 

endocyclic. Furthermore, the inclusion of fpg in the comet assay of PBS irradiated cells 

demonstrates a similar pattern to that observed in cells irradiated in DMEM-F12 in terms of 

oxidative damage saturation. However, in contrast to DMEM-F12 irradiated cells, fpg 

treated and untreated cells irradiated in PBS were found to be significantly different at all 

exposure durations. Although this may be indicative of lower levels of oxidative damage, 

the fact that DNA damage is the trigger for endocycle entry (13), which does not occur in 

DMEM-F12 irradiated cells, implies that a sufficient level of damage does occur and I or 

that the distribution of DNA damage induced in PBS irradiated cells is different to that 

induced in DMEM-F12 irradiated cells. Since the dose has been reported to play a 

significant role in the distribution of UVB induced mutations (14), it would not be 

unreasonable to expect differences due to the exposure media if only due to differences in 

their transmittance spectra. The possibility that this effect may be cell specific cannot be 

overlooked since HaCaT cells are p53 deficient which provides a susceptibility to 

endocycle entry (13). However, working with primary human keratinocytes is not always 

feasible and immortalisation of human keratinocyte cell lines commonly employs 

deregulation of at least one tumour suppressor such as Rb and I or p53 (15, 16). Thus, the 

induction of endocycles in cells may pose a significant obstacle for solar simulated 

irradiation investigations if exposures are performed in PBS. 

In contrast to cells irradiated in PBS, cells irradiated in DMEM-F12 are mitotically 

inhibited post irradiation and undergo apoptosis where caspase-3 activation is observed 2 

255 



hours post irradiation. However, the ability ofDMEM-F12 to augment cell death above that 

observed when cells were irradiated in PBS was greatly perplexing in light of their 

transmittance properties. Further investigation revealed that this extensive cell killing in 

DMEM-F12 was due to the extracellular production of hydrogen peroxide attributed to the 

photosensitisation of riboflavin which is most probably enhanced by the radiation induced 

degradation of riboflavin in DMEM-F12 demonstrated by its emission spectrum. 

Riboflavin photosensitisation in DMEM-F12 when irradiated with solar simulated radiation 

is supported by exposures performed using the UVB irradiator. As shown in chapter 3, cells 

irradiated in DMEM-F12 and PBS with the UVB lamp yielded cell survival curves that 

concur with their transmittance properties such that increased cell death was observed when 

cells were irradiated in PBS. This was suggested to occur due to the omission of 

hypothetically photosensitising wavelengths in the output of the UVB irradiator. Riboflavin 

was demonstrated to absorb at 370 nm and 440 nm which are not present in the spectral 

distribution of the UVB irradiator. However, it is well documented in the literature that 

riboflavin is a photosensitiser (17-21) that absorbs at 365 nm and 440 nm (22). In fact, it is 

for this reason that Mahns et al (23) recommend using PBS during UV A irradiation. 

Although this may effectively overcome the photosensitising effects observed when cells 

are UV A irradiated in the presence of riboflavin, performing UVB exposures in PBS does 

not appear to be beneficial in light of the results presented by both Kuhn et al (24) and 

Lewis et al (25). Whose results suggest that UVB irradiation in the absence of extracellular 

growth factors facilitates the survival of potentially mutagenic keratinocytes, albeit at low 

levels. 
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Such discrepancies highlight the need to identify a suitable exposure medium that can be 

employed in UV A, UVB and solar simulated radiation investigations with minimal 

modifications, in order to aid not only the biological relevance of an investigation but also 

inter lab comparison. Although PBS clearly possesses superior transmittance properties 

compared to DMEM-F12 as shown in chapter 2, the capacity of radiation to penetrate the 

skin is known to decrease with decreasing wavelength (26, 27), where less than 20% of the 

incident radiation at 365 nm was found to exit the basal layer of ex vivo full thickness 

epidermal samples (28). Thus, PBS does not simulate in vivo conditions by permitting 

increased transmission of short wavelengths to proliferating cells which are found 

predominantly in the basal layer, which would not occur in vivo due to absorption in 

suprabasallayers. The biological relevance of PBS is further questioned by the absence of 

nutrients in the extracellular environment during irradiation since keratinocytes in the non 

vascularised epidermal layer obtain nutrients that diffuse across the basal membrane into 

the extracellular space (29). Thus under 'normal' conditions, in vivo epidermal 

keratinocytes are not devoid of nutrients in their extracellular environment during solar 

irradiation. The importance of this has been demonstrated in vitro (24) and in vivo (25). 

Whilst it is recognised that in vitro experimentation will never truly mimic the in vivo 

situation, it is important that in vitro studies attempt to bridge the gap separating them in 

order for progress to be made in skin carcinogenesis investigations. Thus, based on 

evidence in the literature and the results presented here, it is recommended that serum 

supplemented riboflavin free cell culture media is employed as the exposure medium 
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during non-ionising radiation investigations. Furthermore, the ability of phenol red to 

quench riboflavin photosensitisation suggests that phenol red free cell culture media are 

substantially more phototoxic not only because of uninhibited photosensitisation of 

riboflavin but also because amino acids such as tryptophan and tyrosine have been 

demonstrated to augment the oxidising potential of riboflavin (30). Thus, it is further 

recommended that phenol red free cell culture media are not used during non-ionising 

radiation investigations. 

Despite the above recommendations, a fmal point to contemplate is the biological relevance 

of riboflavin's presence during irradiation. Riboflavin is necessary for healthy growth and 

its absence has been demonstrated to lead to cellular stress events (31-33). Thus, it is 

possible that riboflavin is maintained in the extracellular environment of proliferating 

epidermal cells. Since molecules move down their concentration gradient it would be 

reasonable to assume that if riboflavin is maintained in the epidermis, it would be found at 

concentrations less than that found in blood plasma levels which have been reported to 

occur between 12.7-53.4 nM and 8.2-57.8 nM for infants and adolescents respectively (34). 

Notably the concentration of riboflavin found in DMEM-F12 (0.58 J..LM) is approximately 

10 fold higher than the maximum blood plasma concentration of riboflavin reported by 

Capo-chichi et al (34). Thus, although excessive photosensitisation is undesirable, if it is 

confirmed that riboflavin is maintained in the epidermis at some threshold level, the 

presence of riboflavin in the exposure medium during in vitro solar radiation investigations 

may need to be re-addressed. 
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However, in the absence of such evidence, investigations into the effects of solar simulated 

radiation on human skin cells are planned using riboflavin free cell culture medium as the 

exposure medium. Further investigations into the different apoptotic pathways activated 

when cells are irradiated in DMEM-F12, PBS and L-15 in order to highlight their 

differential effects, if any, and to determine whether or not cells irradiated in PBS do in fact 

become endocyclic or whether the absence of apoptotic markers in PBS irradiated cells are 

merely temporal issues. The proliferative bystander effect observed in chapter 8 will be 

further investigated in order to determine if human keratinocytes do secrete factors in 

response to solar simulated radiation and if this factor is indeed the cytokine TGF-Pl or if 

some other transmissible factor(s) are responsible. In addition, the abilities of both UV A 

and UVB radiation to influence these effects will also be performed using optical filters. 
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Appendix 1 

Protocol for making Agar dishes for sterility assessments 

17.5 g of plate count Agar (Oxoid, tryptone 5g1L, yeast extract 2.5 giL, glucose 1 giL 

and Agar 9 giL) was suspended in 1 litre deionised water and autoclaved at 121 °C for 

15 minutes. Once sterilised, 15 ml agar was decanted into 90 mm Petri dishes and 

allowed to cool. Prior to use, the agar dishes were stored in the refrigerator. Agar dishes 

were used to determine the sterility of the exposure field for both the Q-sun and Oriel 

solar simulators. The solar simulators were ignited and allowed to initialise for at least 

15 minutes. The exposure field of each irradiator was cleaned and sterilised using 

Virkon and 100% methanol as would be used prior to irradiation experiments. The 

maximum exposure employed in this study was 60 minutes, thus, agar dishes were also 

irradiated for 60 minutes. After irradiation the dark cycle employed to sham irradiate 

controls was initiated and a further set of agar dishes were sham irradiated for 30 

seconds as was every sham irradiated control. Agar dishes were handled identically to 

cell cultures during both the irradiation and sham irradiation procedures. Once the agar 

dishes were irradiated or sham irradiated, the agar dishes were incubated for 7 days as 

would be the case for the clonogenic assays. The agar dishes were monitored over the 7 

day incubation but no growth was observed in either the irradiated or sham irradiated 

agar plates. 
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Cell counts using a Haemocytometer 
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Figure Al.l Ariel and side view of a haemocytometer with coverslip. 

The haemocytometer is a microscope slide on which two counting chambers are etched 

as shown in figure A1.1. Each counting chamber consists of a grid divided into 9 

chambers (figures A1.1 and A1.2A). A cover slip is mounted on the haemocytometer 

and the cell suspension is taken up by capillary action where the volume of fluid held 

between the haemocytometer grid and the cover slip is known (0.1 em x 0.1 em x 0.01 

Under the microscope, a detailed view of the grid can be seen along with any cells in the 

suspension. Cells present in chambers 1-5 (figure A1.2A) are counted in both the top 

and bottom grids and the mean cell count of the 10 chambers obtained. Counts in the 

top and bottom grids should be within 10% of one another. Cells located on the 

perimeter lines of the chambers are counted or ignored depending on where they are 

situated. Figure A1.2B shows a sample chamber that contains 20 cells. Of the 20 cells, 

11 are located on the perimeter. Cells located on the left and upper perimeter are 
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counted whilst cells located on the right and lower perimeter are not. Thus for this 

particular chamber only the green cells are counted, yielding a final cell count of 15. 

The concentration of cells per millilitre is determined using equation A1 .1 where n is 

the mean number of cells counted in all 10 chambers and d is the dilution factor. If the 

cell suspension was not diluted then d = 1. 
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Figure A1.2 (A) Schematic of the haemocytometer grid and the 5 chambers in a given grid 

that are used when determining the concentration of cells in a solution and (B) an example 

showing a counting chamber with the cells that should be counted (green) and not counted 

Cellslml = nxl0
4 

d 

(red). 
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Cell viability assay using the Trypan Blue exclusion method 

The percentage viability of cells can be obtained using the haemocytometer in 

conjunction with Trypan Blue stain. A 1/10 dilution (d=l/10) of the cell stock in Trypan 

blue is used as the cell suspension. Non-viable cells take up the dye and appear blue 

whereas viable cells do not and appear white. The percentage viability is ascertained 

using equation Al.2. 

EquationAl. 2 Percentage viability = 
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Appendix 2 

Protocol to make 100 ml phenol free DMEM-F12 cell culture medium 

1.56g DMEM-F12 powdered medium (Sigma, Dorset, U.K), 0.12g Sodium 

bicarbonate (Sigma) and 90ml deionised water are mixed together to give 90 % of the 

final volume. Stir the solution until and the powdered medium and sodium bicarbonate 

have gone into solution and then measure the pH, adjusting if necessary using HCl or 

NaOH to achieve pH 6.9 ± 0.3. Once the solution is at the desired pH the final 10 ml 

deionised water is added to the solution and is then filter-sterilised using a 0.22 J...lill 

filter. 

Protocol to make MgCaPBS 

The below reagents at the concentrations listed generates the stock solution of Mg Ca 

PBS, which is subsequently diluted to 1 %in PBS to achieve the working stock. 

Reagent Fomula weight Concentration Making 1 OOml 

NaCl (Sigma) (FW 58.44g/l) want 130mM 759.72mg 

KCl (Sigma) (FW 74.55g/l) want 5mM 37.275mg 

Na2NP04 (Sigma) (FW 141.96g/l) want 1mM 14.196mg 

MgCh (Sigma) (FW 203.31 g/1) want lmM 20.33lmg 

CaCh (Sigma) (FW 147.0lg/l) want lmM 14.70lmg 

PBS (Sigma) lOOml 
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Appendix 3 

1% Normal agarose (50ml) 

Add 0.5g normal agarose to 50ml PBS; heat until clear. 

Use this solution to coat slides. Submerge sample-end of slide into solution, remove and 

wipe one side. Lie on tissue paper over night at room temperature to allow dry. Coat 

slides quickly before solution sets in beaker/container. 

0.8% Low Melting Point (LMP) agarose (25ml); 

Add 0.2g normal agarose to 25ml PBS; heat until clear. Use this to re-suspend cells. 

Make on same day as assay. 

For H202 dose response or H202 positive control; 

So1utionA 9ml PBS+ 1ml H202 = 106J.!M 

Solution B 9ml PBS+ 1ml soluA = 105JlM 

Solution C 9ml PBS + 1ml soluB = 1 04JlM 

SolutionD 9ml PBS + 1ml soluC = 1 03J.!M 

Solution E 9ml PBS+ 1ml soluD = 102J.!M* 

Solution F 9ml PBS + 1ml soluE = 1 01f.!M 

Solution G 9ml PBS + 1ml soluF = 1 0°f.!M 

Solution H 9ml PBS + 1ml soluG = 10-1f.!M 

*Concentration used for positive controls 
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Ly i solution (200ml)· 

2.5M Sodium Chloride (NaCI) 29.2g, 

lmM EDTA 0.07g, 

lOmM Tris base 0.2g 

Dissolve in 178mls distilled water. 

Bring to pHlO with sodium hydroxide (NaOR) 

Immediately before use add . .. 

10% dimethyl sulphoxide (DMSO) - 17 .8ml 

1% TritonX-100 - 1.78ml 

Enzyme Buffer (500ml)· 

40mM Hepes 4.8 g 

O.lM potassium chlotide (KCl) 3.7g 

0.5mM EDTA 0.09g 

0.2mglml Albumin from Bovine Serum (BSA) 

Dissolve in 500ml distilled water 

Bring to pH8 with potassium hydroxide (KOH) 

Electrophoresis Buffer (2L); 

0.3M Sodium hydroxide (NaOH) 24g 

lmM EDTA 0.7g 

Dissolve in 2000ml distilled water 

Ensure pH> 13 
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Neutralisation Buffer (lL); 

0.4M Tris base 48.5g 

Dissolve in 900ml distilled water 

Bring to pH7.5 with cone. HCl 

Add 1 OOml distilled water to make up 1 L 

Fpg aliquots for freezing; 

Using fresh enzyme buffer as described above make a 20ml aliquot of enzyme buffer 

containing 10% glycerol (EG buffer) and vortex to obtain uniform solution. 1 OJ.Lg fpg 

enzyme is diluted in 1 Oml of the EG buffer giving a concentration of 1 J.Lg/ml. Dispense 

the fpg containing EG buffer into 100x100).11 aliquots and store at -80°C. Each stock 

aliquot is 1 OOJ.Ll at a concentration of 1 J.Lg/ml. Dilute the stock aliquot with 500ml fresh 

enzyme buffer to obtain working concentration of 0.16J.Lg/ml on day of assay. 
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Appendix 4 Awards, publications and conferences 

Awards 

Awarded an Oncology Scholars Travel Award 2005 from Cancer Research Ireland in 

order to attend the American Association of Cancer Research (AACR) annual meeting 

in held in Washington DC April2006. 

Awarded the Marie Curie training fellowship 2006 which facilitated 3 months training 

in the comet assay at the LIGHT laboratories in Leeds University from June -

September 2006. 

Publications 

Maguire, A. Lyng, F. M. Walsh, J. E. (2010) Solar simulated radiation induced cell 

death depends on spectral distribution and irradiance but not output delivery. Radiat 

Prot Dosimetry. 2010 Jul;140(2):147-57. Epub 2010 Mar 4. 

Maguire, A. Walsh, J. E. Lyng, F. M. (2011) Medium mediated effects increase cell 

killing in a human keratinocyte cell line exposed to solar simulated radiation. Int J 

Radiat Bioi. 2011 Jan;87(1):98-111. Epub 2010 Oct 25. 
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Conferences 

Oral presentation at the Association for Radiation Research (ARR), Manchester UK, 

March2008 

Oral presentation at the Association for Radiation Research (ARR), Belfast NI, April 

2007 

Poster presentation at the 11th World Congress on Cancers of the Skin, Amsterdam, The 

Netherlands. June 2007 

Poster presentation at the Microscopical Society Ireland (MSI) annual meeting 2006 in 

NUl Galway, Ireland, August 2006 

Poster presentation at the American Association for Cancer Research (AACR) annual 

meeting 2006 in Washington DC, USA, April 2006 

Poster presentation at the Irish Association for Cancer Research (IACR) annual meeting 

2006 in Galway, Ireland, March 2006 

Poster presentation at the European Radiation Research (ERR) annual meeting 2005 

Leicester, UK, September 2005 

Poster presentation at the Irish Association for Cancer Research (IACR) annual meeting 

2005 in Kilkenny, Galway, Ireland, March 2005 

274 




	Solar Radiation Investigations; a Foundation Study
	Recommended Citation

	tmp.1322143672.pdf.U0t6d

