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Abstract
Oral squamous cell carcinoma (OSCC)

is one of the most common malignan-

cies worldwide, and new protocols for

routine and early detection are required.

Raman spectroscopy is an optical based

method that can provide sensitive and

non-invasive real time detailed information on the biochemical content of a sample

like saliva, through the unique vibrations of its constituent molecules and this is

sensitive to changes associated with disease. A comprehensive systematic review

of the available scientific literature related to Raman spectroscopy of human saliva

for diagnosis of OSCC was performed. The 785 nm laser line was most applied

wavelength along with principal components analysis associated with linear dis-

criminant analysis. The main salivary components possibly associated with the

presence of OSCC were proteins and lipids. Measurement in the liquid physical

state, and with no addition of nanoparticles for signal enhancement, seemed to best

conserve the salivary integrity. However, in terms of sampling protocols, no differ-

entiation was generally made between stimulated and non-stimulated saliva.

Raman spectroscopy of saliva holds a promising future for clinical applications

such as early detection of OSCC. However, more systematic analyses are still

required for a better elucidation regarding sampling procedure, storage and

degradation.
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1 | INTRODUCTION

Oral squamous cell carcinoma (OSCC) is one of the most
frequently encountered malignant tumours worldwide, and
its incidence is expected to reach around 350 000 new cases

Abbreviations: CCD, charge coupled device; ELISA, enzyme-linked
immunosorbent assay; MALDI-Q-TOF, ionisation-quadrupole-time-of-
flight; OSCC, oral squamous cell carcinoma; PCA-LDA, principal
components analysis associated with linear discriminant analysis; PLSDA,
partial least squares discriminant analysis; SERS, surface-enhanced Raman
spectroscopy; SVM, support vector machine.
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per year [1]. In 2018, OSCC, the histopathological variant
present in more than 95% of tumours of the head and neck
region, was also responsible for more than 150 000 thousand
deaths [1]. Furthermore, an exponential growth of the mor-
tality rate related to this pathologic entity can be foreseen for
the coming years [1–3].

OSCC, along with other head and neck tumours such as
oropharygeal cancer, is the sixth most common malignant
tumour worldwide. [2]. This neoplasm seems to be more
prevalent in males, in a ratio of 1.5 male:1 female [2]. This
gender difference could be explained by the more frequent
exposure to predisposing factors (such as tobacco and alco-
hol) and those associated with occupational conditions [2, 3].

Early detection followed by appropriate treatment can
increase cure rates in 80%-90% of OSCC cases and signifi-
cantly improve patient quality of life, minimising the need
for extensive and debilitating treatments [4]. In addition, the
medical and scientific community currently recognises that,
without the development and implementation of new
standardised screening procedures, the vast majority of cases
of oral cancer are found in the late stage, often presenting
peripheral metastases and infiltration of the regional
liphonodal chain [5, 6].

Usually, the clinical diagnosis of head and neck neopla-
sias, including oral cancer, is performed through invasive
biopsies followed by an expensive histological examination
of excised tissue. This may result in psychological trauma
and risk of infection for patients. In addition, it is well
accepted that this type of diagnostic method is limited as it
is a subjective histological gradation of the pathology in
question, as represented by morphological abnormalities in
the tissue [7]. In addition, clinically innocuous premalignant
lesions, or even ‘hidden’ lesions (such as lesions located in
the retromolar region), can easily go undetected by routine
clinical examination.

Adjuvant techniques for the early detection and diagnosis
of oral cancer include exfoliative cytology, toluidine blue
staining, chemiluminescence and optical mapping [8, 9].
Although some of these diagnostic aids show some promise
for clinical everyday application, none have yet demon-
strated better performance than conventional visual examina-
tion [9]. Thus, the accepted gold-standard method for
diagnosis of oral cancer and potentially malignant lesions is
still clinical examination and histopathological examination
of the biopsied tissue [10–12]. However, given the difficulty
of early detection of oral cancer and the increased prevalence
of this type of neoplasm worldwide, any method that
improves or contributes to the diagnostic process should also
improve screening capacity across a large population. Signif-
icant efforts have been devoted to development of less inva-
sive and at the same time effective diagnostic modalities for
the early diagnosis of oral cancer [13, 14]. In this context,

optical techniques that are efficient, precise, low-cost, porta-
ble and easy to handle seem to overcome most of the present
difficulties in this process and are of great value in clinical
applications [15, 16].

Raman spectroscopy is a technique that consists basically
of the analysis of light scattering [17]. It has been known as
a means of studying molecular structural properties of solids,
liquids and gases since its discovery in 1928 by C. V.
Raman and K. S. Krishnan. The impact of the light onto
molecules results in either elastic scattering (same frequency
as that of the incident light and known as Rayleigh) and
inelastic scattering (frequency different from that of the inci-
dent light). By interacting with vibrations in the material, the
dispersed photon can either lose energy (a phenomenon
known as Stokes scattering) or gain energy (known as anti-
Stokes) (Figure 1). Finally, the Raman spectrum shows the
energy difference between incident photons and dispersed
photons as a variation in intensity associated with the range
of vibrational modes in the material [16, 17].

The Raman spectroscopic signature is a set of several
characteristic peaks that represent the most important and
specific spectral variations of the sample being studied. The
application potential of these multidimensional signatures
obtained is almost unlimited and may also be used for the
spectral typing of a heterogeneous sample, such as saliva
samples. Furthermore, newer modalities of Raman analysis,
such as surface-enhanced Raman spectroscopy (SERS), have
been applied recently, aiming to obtain a better performance
regarding spectral acquisition as well as to increase the sen-
sitivity and specificity of this technique [13]. SERS takes
advantage of the enhancement of the local field in the
regions of surface plasmon resonances on the surfaces of
many metals, such as gold, silver or copper, which can result
in increases in the Raman signals by many orders of magni-
tude [13].

A Raman spectrometer (Figure 2), coupled to a light
microscope, is capable of characterising the molecular struc-
ture of the salivary components through the incidence of
light (laser) at a specific wavelength, and detecting the
energy that is dispersed due to the vibration of the respective

FIGURE 1 Schematic illustration of Rayleigh and Raman
scattering processes
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salivary molecules [16]. As a result, a specific spectral signa-
ture (or fingerprint) is acquired containing peaks/bands
(shown in cm−1 or nm) which, as a whole, could be taken
into account for the development of a multivariate analysis
algorithm for the classification of saliva from, and conse-
quent diagnosis of, patients with OSCC, for example [16].

Recent Raman spectroscopic studies have achieved speci-
ficity and sensitivity of >90% for differentiating normal and
neoplastic specimens of malignant tumours of the mouth in
oral tissues based on the water content values from OSCC
[18]. Also, Hole et al. [19] established a confusion matrix
that enables the correct classification of 82% and 92% of
tumour and oral cell spectra, respectively, when a spectra-
wise cross validation was performed. In a subject-wise cross
validation, 100% of oral normal cells and 90% of oral
tumour cells spectra were correctly classified. These results
are based on a large number of plasma and tissue proteins
indicative of malignancy, supporting the application of
Raman spectroscopy for the diagnostic purpose for this type
of malignant neoplasm [20, 21].

While spectroscopic analysis of tissues and cells for clini-
cal applications has been explored over at least two decades,
analysis of bodily fluids has emerged more recently [22, 23].

In this sense, human saliva has gradually gained interest
from researchers and scientists as a means of diagnosis
because it represents a non-invasive source of safe, low-cost
complex biomolecular information that can easily be
obtained from the oral cavity [24]. Recent studies have
shown that saliva can be used as a diagnostic medium not
only for diseases of the oral cavity, but also for systemic dis-
eases, exhibiting versatility and merit in the diagnostic field
[25]. However, although the development of diagnostic tools
for salivary analysis to monitor diseases of the oro-maxillo-
mandibular complex has been witnessed in recent years, the
main challenge of clinical diagnosis from saliva is the dis-
covery of the varied potential of this type of sample and the
standardisation/confirmation of analytical techniques for the
correct use of this biofluid [26].

Knowing the importance and urgency of the implementa-
tion of more accurate and less expensive diagnostic methods
such as Raman spectroscopy, and the clinical versatility of
the salivary sample, it is important to develop methodologies
for this type of sample. However, studies involving spectral
analysis of human saliva through Raman spectroscopy for
the diagnosis of oral cancer are still limited and diverse in
terms of methodology and results. Therefore, this work aims

FIGURE 2 Schematic diagram of a Raman microspectrometer. The laser applied is the source of the monochromatic incident light that can be
of different wavelengths. The interference filter is a clean-up tool that allows only the laser output through. A microscope coupled to the system
holds the sample and makes possible the analysis of samples. The notch (or edge) filter removes all the Rayleigh (elastic) scattered light and
everything outside this range is taken as Raman (inelastic) scatter, to be transmitted further. The grating or spectrograph is used to disperse the light.
The charge coupled device (CCD) permits a Raman spectrum be detected
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to perform a systematic review of the literature on the appli-
cation of Raman spectroscopy for human saliva analysis for
the diagnosis of OSCC. It also aims to describe aspects that
concern the instrumentation and preparation of saliva which
could translate to a better standardised and reproducible pro-
tocol, a better assessment of the technique itself, as well as
to describe spectral salivary components of verifiable signifi-
cance for the applicability of this technique for routine clini-
cal diagnosis.

2 | METHODOLOGY

The parameters adopted for this systematic review were
based upon the PRISMA (Preferred Reporting Items for
Systematic reviews and Meta-analyses) system [27].
An extensive electronic search was conducted in the
Pubmed, B-On and other domains (eg, Scopus, Google,
Google Scholar, etc.) using the following terms: ‘Raman
Spectroscopy’, ‘Oral Cancer’, ‘Oral dysplasia’ and ‘Saliva’.
In addition, the Boolean terms ‘AND’ and ‘OR’ were used
to combine keywords. Only scientific articles in English
were considered for this bibliographic review.

All the identified articles were initially assessed by title
and respective abstract. When such elements were unclear or
not available, full articles were retrieved and examined.
Studies that appeared in more than one database, or appeared
more than once in the same database, were considered only
once. Titles/abstract screening was performed by one
reviewer and full text articles collected. Full text articles
were independently assessed for eligibility by two reviewers.
The bibliographic research was carried out between August
2018 and February 2019.

Review articles, opinion articles, and articles that were
not related to oral cancer/oral epithelial dysplasia diagnosed

with Raman spectroscopy through salivary samples were ini-
tially excluded from the proposed systematic review. Theses
of any nature were also considered in this systematic review.
Due to the scarcity of the literature on the proposed theme,
no criteria of temporal restriction of the publication of the
chosen articles were applied.

Scientific articles involving the use of saliva as a biologi-
cal sample in the diagnosis of some type of cancer through
the use of Raman spectroscopy were included for the sys-
tematic analysis of the treatment (methodology) of the sam-
ple (saliva). However, only studies that aimed at the
diagnosis of oral cancer or oral epithelial dysplasia were
analysed in relation to the biological component of the sali-
vary spectral profile as well as to the sensitivity, specificity
and/or classificatory efficiency (also known as accuracy and
described as the capability of efficiently detect the true posi-
tive and true negative samples over all observations) [28] of
the mathematical models.

3 | RESULTS

The bibliographic search identified a total of 828 scientific
articles (Figure 3). Duplicate studies were then excluded
(n = 65), resulting in a total of 763 articles. After a thorough
review of the title and/or abstracts, a total of approximately
525 articles were excluded because they were not consistent
with the systematic review topic. Associated with this, litera-
ture reviews of any nature were also excluded from the final
systematic analysis (n = 230). Finally, only eight studies
were deemed to be fully consistent with the proposed theme
[29–36], including those that did not specifically diagnose
oral cancer (n = 3) but used salivary samples for Raman
spectroscopy [32, 34, 35].

FIGURE 3 Flowchart showing
the results of the research and the
selection procedure of the papers
included for analysis
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Important aspects of each study were also analysed,
including the year of the study, sample size, the nature of
saliva collection, the physical state of the sample at the
time of analysis, the laser wavelength used as source, the
use of nanoparticles as enhancers for Raman analysis
(SERS), the type of statistical analysis adopted, whether
principal components analysis associated with linear dis-
criminant analysis (PCA-LDA), partial least squares dis-
criminant analysis (PLSDA) or support vector machines
(SVM) were used, and the size of the spectral range
analysed (Table 1). Further details related to the type of
nanoparticles, and the incorporation state (colloid or sub-
strate) of these particles listed by each of the groups was
also noted and are presented in the same table (Table 1).
Statistical results related to the differentiation between the
group of patients with OSCC and control group of each
study (Table 2) were defined as sensitivity and specificity
and/or classification efficiency (accuracy) (not necessarily
present in every analysis, but mandatory when sensitivity
and specificity were not mentioned) and were also noted as
important features of each study. In addition, the spectral
profile of the predominant salivary components responsible
for differentiation of the same groups (Table 3) were also
indicated and, based on the spectral profile of isolated com-
ponents, were correlated with possible biochemical salivary
associations found in the current literature.

In general, the work of Kho et al. was the only one to
mention the method of collection of the saliva samples
(non-stimulated) [29]. Saliva in the liquid state was used
by Feng et al. [30, 31] and Rekha et al. [32] while dried
saliva (after evaporation of water) was used in four studies,
Kho et al. [29], Qiu et al. [33], Connolly et al. [34] and
Quian et al. [36] (Table 1). One of the groups did not men-
tion the physical state of the samples that were
analysed [32].

The wavelength of 785 nm was chosen for sample exci-
tation in almost all salivary sample studies (Table 1). Kho
et al. was the only group to apply a laser source of
632.8 nm for spectral analysis [29].

In relation to the use of nanoparticles for spectral
enhancement (SERS), Kho et al. [29], Feng et al. [30, 31],
Qiu et al. [33], Connolly et al. [34] and Quian et al. [36]
used metal nanoparticles to enhance the vibrational signal
from saliva, while Jaychandran, Meenapriya and Ganesan
[35] and Rekha et al. [32] did not use SERS to enhance the
Raman signal of their samples (Table 1).

The type of nanoparticles varied in the different studies,
as well as how they were incorporated (Table 1). Silver
nanoparticles were the most common spectral enhancer and
were used in four studies [30, 31, 33, 34] while gold
nanoparticles were used in two studies [29, 36]. The parti-
cles were used as a colloidal solution in four of the studies T
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[29–31, 33] while only two studies used nanoparticles incor-
porated in the substrate [34, 36]. Notably, however, none of
the studies indicated whether the choice of the type of metal
nanoparticle and/or the wavelength were correlated.

The choice of PCA-LDA was almost common among all
studies involving analysis of saliva for the diagnosis of can-
cer through the use of Raman spectroscopy (Table 1). Only
Feng et al. [30] and Quian et al. [36] used PLSDA and
SVM, respectively, as the statistical method of choice. Kho
et al. performed a simple visual comparison between mean
spectral profile of saliva from healthy people and patients
with oral cancer [29].

The spectral range of analysis, however, was quite
diverse across all studies (Table 1). Kho et al. [29] and
Quian et al. [36] used a broad fingerprint region (between
400 and 1800 cm−1), while Jaychandran, Meenapriya and
Ganesan [35] used the smallest range in fingerprint region of
all the studies analysed (600-1000 cm−1).

Studies involving the use of saliva samples for the diag-
nosis of oral cancer through Raman spectroscopy were
restricted to three studies (Table 2): Connolly et al. [34],
Jaychandran, Meenapriya and Ganesan [35] and Rekha et al.
[32]. Connolly et al. [34] were able to obtain a sensitivity
and specificity of 89% and 57%, respectively, when using
Raman spectroscopy for differentiation between salivary
samples from patients with oral cancer and from healthy
controls (Table 2). In addition, according to this analysis,
some specific spectral features of saliva components were
assigned as responsible for the classification obtained: 870, 1126
(proteins), 1204 (phenylalanine), 1224, 1275, (starch), 1409 (gly-
coproteins) and 1417 cm−1 (C C bonds) (Table 3).

On the other hand, Jaychandran, Meenapriya and Ganesan
[35] report the following bands as establishing the difference
between patients with oral cancer (or some form of oral epi-
thelial dysplasia) and the control group: 444 (mucin),
752 (glycoproteins), 1158 and 1525 cm−1 (lipids) (Table 3).
Nevertheless, a classification efficiency of approximately
91% was obtained between the two groups (Table 2).

A lower classification efficiency obtained between the
groups was determined by Rekha et al. [32] of approxi-
mately 55% (Table 2). Although not statistically significant,
this study found that the amino acid-associated
(870, 986 cm−1), glycoproteins (918 cm−1), proline rich pro-
teins (948, 969 cm−1), phenylalanine (1015 cm−1), starch III
(1288 cm−1) and starch I (1636 cm-1) bands appeared to be
associated with the presence of OSCC (Table 3).

4 | DISCUSSION

Human saliva is considered a ‘mirror’ of body health and plays
an important role in the repair and lubrication of soft and hard
tissues, formation and ingestion of the alimentary bolus, diges-
tion, taste and control of the microbial population [37].

Schipper et al. determined, through mass spectroscopy,
that the salivary collection method seems to be very impor-
tant for the variability and concentration of proteins and

TABLE 2 Statistical results of the mathematical models in the
salivary sample classification process of patients with OSCC/oral
dysplasia

Authors
Sensitivity/
specificity (%)

Classification
efficiency (%)

Connolly et al. 89/57 Not mentioned

Jaychandran,
Meenapriya and
Ganesan

Not mentioned 91.3

Rekha et al. Not mentioned 55.4

TABLE 3 Main peak positions and tentative vibrational mode
assignments of saliva components associated with OSCC/oral epithelial
dysplasia

Wavenumber
(cm−1) Biological assignments Reference

444 Protein Jaychandran,
Meenapriya
and Ganesan

752 Glycoproteins Jaychandran,
Meenapriya
and Ganesan

870 Amino acid Rekha et al.

885 Protein Connolly et al.

918 Glycoprotein Rekha et al.

948 Proline rich proteins Rekha et al.

969 Proline rich proteins Rekha et al.

986 Amino acids Rekha et al.

1015 Phenylalanine (proteins) Rekha et al.

1126 Protein Connolly et al.

1158 Lipids Jaychandran,
Meenapriya
and Ganesan

1204 Phenylalanine (proteins) Connolly et al.

1224 Amide III Connolly et al.

1275 Amide III Connolly et al.

1288 Amide III Rekha et al.

1409 Glycoproteins Connolly et al.

1417 C C stretching Connolly et al.

1525 Lipids Jaychandran,
Meenapriya
and Ganesan

1636 Amide I (glycoproteins) Rekha et al.
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substances detected in each type of saliva [38]. An interest-
ing study examined the levels of parotid and submandibular/
sublingual salivary IgA through ELISA (enzyme-linked
immunosorbent assay) in response to experimental gingivitis
in humans, where a statistically significant increase in the
IgA secretion rate in stimulated parotid saliva was observed
after 6 and 12 days without oral hygiene, not seen in resting
parotid saliva [39].

The literature has also reported that Raman spectroscopy
for saliva analysis can be applied for the detection of nar-
cotics in forensic medicine and periodontal disease [40, 41].

In terms of salivary nature, several factors can influence
salivary secretion and composition, such as non-stimulated
and stimulated saliva collection. Salivary collection
is basically termed non-stimulated (resting) when no exoge-
nous or pharmacological stimulation is present and termed
stimulated when secretion is promoted by mechanical or
gustatory stimuli or by pharmacological agents. When the
secretion is stimulated mechanically, inert stimuli are com-
monly used (chewing of paraffin wax or rubber bands) [42].

The studies identified in this systematic review were not
conclusive or used only one form of salivary collection for
analysis, consequently, limiting a more detailed analysis of
the spectral profile of each type of sample. Calado et al.
recently published an abstract in which a better and compre-
hensive analysis of the type of collection of saliva was per-
formed [43]. In this study, stimulated saliva was considered
as the sample type of choice for analysis with Raman spec-
troscopy, as it is more suited to the standard operating proce-
dure for clinical applications and results in a more prominent
Raman signal from the saliva samples.

The physical state of the sample would also be a very
important element in the process of instrumentation and
analysis. Feng et al. [30], Qiu et al. [33], Connolly et al.
[34], Jaychandran, Meenapriya and Ganesan [35] and Quian
et al. [36] used solid (dry) or liquid samples for analysis by
SERS. Such methodologies using enhancement particles
(SERS), or modifying the physical state of the saliva, add
complexity to the sample preparation and/or resulting in
indubitable loss of salivary quality when in a physical state
other than the one of origin [40, 44].

SERS is a special type of Raman spectroscopy, in which
irregular or patterned metal substrates or metal nanocolloids
are used for signal enhancement [45–47]. Typically, the best
enhancement effect is achieved with silver induced SERS
[48]. As a substance, silver holds antimicrobial properties
and, consequently, may affect the sample under inspection,
which could be the reason for the widespread use of silver
nanoparticles in the studies reviewed. However, it is chemi-
cally quite reactive, and the stability and reproducibility of
the silver substrates and colloids can also be an issue [45,
46]. On the other hand, gold is preferred in microbe

detection having the optimal excitation wavelength in the
near-infra red region [46].

In terms of spectral resemblance or peak compatibility
among studies with SERS, some similarities in spectral fea-
tures and profile were observed, such as cancer saliva pro-
teins showing higher intensities at 1004, 1340 and
1134 cm−1 [30, 31]. However, the SERS studies found in
this review did not show major similarities regarding the
general spectral pattern, possibly due to the fact that they
detect different histopathological entities. Also, the variabil-
ity in intensity is an intrinsic property of SERS measure-
ments. It is already known that the aggregation and
adsorption mechanisms cause constant fluctuations in the
intensity in a time-independent manner [49].

PCA-LDA was the method of choice for the statistical
analysis of the obtained spectra. In Raman spectroscopy,
PCA is used to reduce a mathematical matrix based on the
spectral data of measured objects (in this case the
individualised spectra), with a large number of variables
(wavelength of each peak/band), while retaining the variabil-
ity within the probabilistic data [50]. The LDA method,
when used in conjunction with PCA, uses the PCA scores as
latent variables to find a linear hyperplane that best classifies
one or two groups of PCA scores [50].

PLSDA, another method of statistical analysis, can also
represent a tool of classification. Similar to PCA-LDA,
PLSDA is a supervised form of multivariate analysis which
works as a linear classifier that aims to maximise the vari-
ance between groups and minimise the variance within
groups. It is based on partial least squares regression
(PLSR), a method used for constructing predictive models
when the factors are many and highly collinear [51].

In a similar way, the use of SVM is considered an effec-
tive method for building a classifier. It aims to create a deci-
sion boundary between two classes that enables the
prediction of labels from one or more feature vectors. This
decision boundary, known as the hyperplane, is orientated in
such a way that it best differentiates the identified classes.
These closest points are called support vectors [52].

Despite the widespread use of PCA-LDA for human saliva
analysis through Raman spectroscopy of the studies reviewed,
other studies have already demonstrated that PLSDA or SVM
can also provide excellent or even superior classification effi-
ciency to PCA-LDA between samples analysed by Raman
spectroscopy, for example 90% accuracy for colon diagnosis
[53] and 96.72% sensitivity for lung cancer [36].

The precedent of previous studies employing PCA-LDA
to categorise spectral profiles of samples could explain the
continued preference over PLSDA or SVM in the reviewed
studies, in spite of the similar statistical basis of these three
different techniques. Notably, there have been no reports of
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a direct comparison of the three approaches applied to the
same dataset.

In terms of sensitivity and specificity, the studies involv-
ing Raman analysis of saliva for detection of oral cancer/oral
dysplasia have revealed significant discrepancies related to
the detection capabilities, even using the same statistical
analysis method (PCA-LDA), the reported classification effi-
ciency ranging from 55.4% to 91.3% [32, 35]. The use of
SERS did not seem improve this performance to any great
extent, yielding sensitivity of 89% and specificity of 57% in
the SERS study of Connolly et al. [34], compared to 91.3%
of classification efficiency in other studies [35].

Among the SERS studies that analysed saliva, indepen-
dent of the tumour type, the highest sensitivity and specific-
ity achieved were 95.08% and 100%, respectively [36]. The
similarity of results obtained by conventional Raman and
SERS analysis therefore brings into question the need or
benefit of SERS for the analysis of saliva. Due to the lack of
analysis in some of the SERS studies, the sensitivity and
specificity could not be further correlated to use of a specific
metal nanoparticle (gold or silver). However, the SERS
incorporation in colloid state can usually reach a slightly bet-
ter sensitivity [54] as highlighted by Feng et al. [30], yield-
ing a diagnostic sensitivity of 91.9%.

Regarding the source wavelength, 785 nm was the most
commonly used for saliva analysis, but no reasonable expla-
nations have been addressed in order to clarify its use. This
situation could be explained by the ‘convenience factor’ of
not having other laser lines available. Notably, the Raman
scattering efficiency scales according to 1/(wavelength)4,
and so, the shorter the wavelength the better, but, at shorter
wavelengths, Rayleigh and Mie scattering also increase,
increasing the background, and the chance of being resonant
with fluorophores also increases [55].

The fingerprint region selected by the studies reviewed
was very variable. In Raman spectroscopy, the fingerprint
region 400 to 1800 cm−1 can detect the majority of biologi-
cal components of a sample. A smaller fingerprint range,
consequently, can limit the information acquired from the
sample in question [56].

In the case of SERS, different kinds of metallic enhance-
ment material, silver, gold, or copper, on substrates or in col-
loidal form, can be used, enabling this technique to be
applied in a Raman setup [57]. The enhancement effect
derives from the resonant excitation of the surface plasmon
of the nanoparticle, which varies according to the constituent
metal, the nanoparticle size, and aggregation state [58]. This
means that the optimum type of metal particle is directly cor-
related to the wavelength applied or vice-versa. However, no
specific rationale governing choice of nanoparticle type/size
or state was provided by the studies covered in this review.

The reported spectral profiles of saliva are usually complex
and show contributions of multiple chemical compounds. The
spectral bands correlated with the salivary composition of all
studies are suggestions based on available literature on specific
components previously isolated and analysed. In the studies
included in the analysis, peaks related to Amide I and Amide
III of proteins were among the main biochemical components
associated with the differentiation between saliva samples of
patients with OSCC or oral dysplasia and the control group.

Many salivary proteins and glycoproteins have already been
reported as biomarkers for the diagnosis of OSCC [59]. The
current literature is rich in reports that correlate proteins such as
c-erbB2, CA-125 and P53 as well as some antibodies, such
CA15-3 antigen, in saliva to the development of OSCC and so
act as biomarkers to detect this type of neoplasm [60]. In addi-
tion, other studies have also detected an overexpression of
zinc-α-2-glycoprotein in the saliva of patients through matrix-
assisted laser desorption ionisation-quadrupole-time-of-flight
(MALDI-Q-TOF) and mass spectrometry [61].

Results indicative of associations between C C and
C H vibrations from the salivary Raman spectrum have also
been previously reported in the clinical profile of epithelial
cells or in the detection of lung cancer [62]. In addition,
Feng et al. reported that those vibrational features are corre-
lated with proteins that were involved in the salivary
response of breast cancer patients [31]. The vibrational sig-
nals were seen to be stronger in benign breast tumour sam-
ples, indicating that the amount of proteins increases in the
saliva samples from patients this type of lesion [31].

Specifically related to OSCC, biological vibration assign-
ments from saliva can also be seen in some other Raman stud-
ies involving different types of oral samples. In vivo and
ex vivo Raman studies, for example, have described the similar
prominence of other similar protein Raman spectral bands in
oral tissue such as 1126 and 1204 cm−1. They have also
reported that the protein content of these samples was also
responsible (in 86%) for the differentiation of dysplastic sam-
ples from controls [63, 64]. Furthermore, Guze et al. have
described other the prominence similar protein/glycoprotein
bands in oral tissue specimens, such as 758 and 1288 cm−1

[65]. This study has also shown that peaks in the range 850 to
950 cm−1 (protein backbone vibrations) and 1200 to
1300 cm−1 (Amide III) were more intense in the tumour
region, particularly within the nucleus [65]. Results like these
reinforce the importance of the protein content of saliva/oral
tissues for the diagnosis process of these neoplasms as well as
the Raman capability of detecting these alterations.

Raman spectroscopy has already shown its versatility for
the diagnosis of other types of cancers based on protein dif-
ferentiation. Lyng et al. demonstrated the ability of Raman
spectroscopy to classify cervical cancer based on relevant
changes of essential proteins [66]. Sensitivity and specificity
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values could be calculated as high as 99.5% and 100%,
respectively, for normal tissue and 98.5% and 99%, respec-
tively, for invasive cervical carcinoma. Also, Raman spec-
troscopy was able to demonstrate that the secondary
structures of serum proteins and the contents of amino acids
can change during cancer colorectal progression [67].

It is important to highlight the fact that, even though
Raman spectroscopy is a highly accurate and sensitive vibra-
tional technique, the biochemical compositions correlated to
the Raman vibrations of saliva have been assigned through
the spectral profile of components acquired and present in
the published literature. Raman spectroscopy, unlike other
techniques such as mass spectroscopy or other molecular
biology techniques, when used for salivary analysis, fully
analyses the entire salivary molecular profile. The greatest
advantage of Raman spectroscopy, often neglected by those
working in the area of microscopy/molecular biology, is in
the label free definition of saliva as a whole for the determi-
nation, through mathematical models, of the presence of
early-stage OSCC (or dysplastic lesions) without any visible
clinical and/or histopathological alterations, bringing possi-
bilities for the development of technologies derived for
application in vivo not only in the diagnosis of OSCC but
also for biopsy guidance for example.

5 | CONCLUSION

The current systematic review serves as a basis for a more
complete methodological approach to salivary samples by
means of Raman spectroscopy for future investigations,
besides signalling its promising application in the oral cancer
diagnosis process, even in the face of differences in the
instrumentation setups and statistical analysis applied.

Regarding the sample collection process, the nature/collec-
tion of the saliva samples from each study was not highlighted
as an important factor for the adopted methodologies nor its
correlation with the results obtained. However, new research
indicates that stimulated salivary samples appear to have more
diagnostic potential in terms of the number of biological com-
ponents present and of greater clinical applicability for analysis
by Raman spectroscopy according to the results obtained [43].
In addition, it is expected that SERS methodologies are more
costly for a possible routine clinical application. In the same
way, drying the sample prior to analysis undeniably results in
a loss of salivary component quality.

The most used wavelength for application of Raman
technology was 785 nm according to the great majority of
the studies examined. Also, it was confirmed that PCA-LDA
was the most applied statistical method for analysis of the
salivary spectrum, able to obtain values in sensitivity, speci-
ficity and/or classification efficiency higher than 90% when
in the diagnosis of OSCC.

The peaks/bands correlated with the salivary components
such as proteins, glycoproteins and lipids appeared to be
altered and they were possibly associated with the presence
of OSCC/oral epithelial dysplasia in all the studies reviewed.

Notable, however, is the inconsistency of the methodolo-
gies employed to date, and there is need for a systematic
approach to optimisation of analysis protocols, to establish a
standard Raman setup for saliva samples as well as to better
clarify factors correlated to the sampling procedure, such as
type of collection, degradation and so on.

Finally, once more clearly elucidated, an optimised meth-
odology based on salivary analysis through Raman spectros-
copy may contribute to the implementation of this technique
in routine clinical diagnosis.
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