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SOLUTIONS TO QUASI-RELATIVISTIC
MULTI-CONFIGURATIVE HARTREE-FOCK
EQUATIONS IN QUANTUM CHEMISTRY

C. ARGAEZ AND M. MELGAARD

Abstract. We establish existence of infinitely many distinct so-
lutions to the multi-configurative Hartree-Fock type equations for
N -electron Coulomb systems with quasi-relativistic kinetic energy√
−α−2∆xn

+ α−4−α−2 for the nth electron. Finitely many of the
solutions are interpreted as excited states of the molecule. More-
over, we prove existence of a ground state. The results are valid
under the hypotheses that the total charge Ztot of K nuclei is
greater than N − 1 and that Ztot is smaller than a critical charge
Zc. The proofs are based on a new application of the Lions-Fang-
Ghoussoub critical point approach to nonminimal solutions on a
complete analytic Hilbert-Riemann manifold.
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1. Introduction

In this paper, we prove the existence of a solution in the form of a
minimizer for a system of quasi-relativistic semilinear elliptic equations
arising when one goes beyond the Hartree-Fock approximation in the
modelling of an atom or molecule. Moreover, we prove the existence
of infinitely many solutions to these equations, finitely many of them
being interpreted as excited states for a molecule.

Within the Born-Oppenheimer approximation and expressed in Ry-
dberg units, the quantum energy of N quasi-relativistic electrons in-
teracting with L static nuclei with charges Z = (Z1, . . . , ZL), Zl > 0,
is given by E(Ψe) = 〈Ψe, TN,Z,αΨe〉, where TN,Z,α is the N -particle
quasi-relativistic energy operator 1

TN,Z,α =
N∑
n=1

{
T̃0,n + α−1Ven(xn)

}
+

∑
1≤m<n≤N

Vee(xm − xn) (1.1)

acting on a dense subspace of the N -particle Hilbert space
∧N
n=1 L

2(R3)

of antisymmetric functions. Here T̃0,n =
√
−α−2∆xn + α−4−α−2 is the

quasi-relativistic kinetic energy of the nth electron located at xn ∈ R3

(∆xn being the Laplacian with respect to xn), α is Sommerfeld’s fine
structure constant, Ven is the attractive interaction between an electron
and the nuclei, and Vee is the standard two-particle repulsive interac-
tion between the electrons. In general, determining the infimum of E(·)
is inaccessible to direct calculation, due to the excessive dimension of
the underlying Euclidean space R3N on which wave functions are de-
fined. For this reason, quantum chemists have introduced ab initio
approximations which provide a simplified, but still quantum mechan-
ical description of the electronic structure about the nuclei. The idea

1Requires that Ztot < Zc := 2/(απ). See Section 3 for details. In what follows,
we ignore the spin variable but the entire contents can be trivially carried over to
the spin-valued setting.
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of the Hartree-Fock approximation [28, 38] or, for short HF, is to re-
place the underlying space by a smaller space while maintaining the
form of the energy E(·). Specifically, the HF approximation consists
in restricting the variational space to that of functions of the vari-
ables (x1, ..., xN) ∈ R3N that can be written as a single Slater deter-
minant (i.e. an antisymmetrized product, see Section 2) of N func-
tions defined on R3. The corresponding Euler-Lagrange equations are
known as the HF equations. For the non-relativistic setting, a review
on classical results on existence of a ground state and its properties
is found in Lions [31]. In the latter paper, Lions studied both mini-
mal and nonminimal (“excited states”) solutions to the equations by
using critical point theory in conjunction with Morse data (see be-
low). Lions’ idea is to construct convenient min-max levels which yield
the desired solutions through abstract critical point theory. For the
non-relativistic HF model, Lions verifies a Palais-Smale (compactness)
condition which, roughly speaking, amounts to “being away from the
continuous spectrum” or, equivalently (when the so-called Morse infor-
mation is taken into account), showing that certain Schrödinger oper-
ators with Coulomb type potentials have enough negative eigenvalues.
Lions’s method for recovering compactness from second order infor-
mation was later pursued in its full generality by Fang and Ghoussoub
[15, 19], in particular leading to streamlined versions of Lions’s work on
the Hartree-Fock equations. Subsequently, their work has been applied
to more complicated Hartree-Fock type equations.

The multi-configurative (abbreviated MC) Hartree-Fock type equa-
tions arise as the Euler-Lagrange equations of the following varia-
tional principle [28, 38]: minimize EN(·) over all N -electron functions
Ψ : (R3)N → R which are normalized and antisymmetric and, in addi-
tion, satisfy the constraint

rank(DΨe
) ≤ K

where DΨe
is the one-body density operator of Ψe

(DΨe
φ)(x) =

∫
DΨe

(x, x′)φ(x′) dx′ (1.2)

with integral kernel given by

DΨe
(x, x′) = N

∫
R3(N−1)

Ψe(x, x2, . . . , xn)Ψe(x
′, x2, . . . , xN) dx2 · · · dxN .

We let rank (Ψe) := rankDΨe . A result by Löwdin (see Lemma 2.2)
asserts that rank (Ψe) ≤ K if and only if there exist K L2-orthonormal
one-particle functions {φn}Kn=1 such that Ψe can be written as a linear
combination of the

(
K
N

)
Slater determinants (see Section 2) obtained
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by selecting any N of the φn’s. When K = N one obtains the above-
mentioned HF approximation. We shall use the standard formalism of
MC methods (characterized by a set J ) which incorporates most of
the those used by chemists [23, 28, 38] (See Section 6). Since an arbi-
trary antisymmetric wavefunction of N variables can be expressed as
an infinite sum of such determinants, the MC approximation aims at
recovering more generality on the wavefunction than the HF approxi-
mation. The MC methods are thus essential to the understanding of
electron correlation effects and, for this reason an enormous literature
exists within Quantum Physics and Chemistry.

The aim of the present paper is threefold. Under the assumption
that the total charge Ztot of K nuclei is smaller than some critical
charge Zc and Ztot + 1 is greater than the total number of electrons
N , we establish the following results for the quasi-relativistic multi-
configurative Hartree-Fock type equations: (1) For arbitrary K ≥ N
and any MC method J , a ground state exists. (2) For any K ≥ N and
any J , an infinitude of solutions to the equations exist. (3) For any
K ≥ N and any J , only a finite number of the infinitude of solutions
are related to the true eigenfunctions of the full Hamiltonian TN,Z,α.
We refer to Theorems 10.1, 11.1 and 12.1 for the full statements. The
results generalize those by Enstedt and Melgaard [14], who proved the
existence of a ground state and an infinite number of solutions to the
quasi-relativistic HF equations by implementing the above-mentioned
Lions-Fang-Ghoussoub approach. We shall follow the same approach
in the present paper.

We proceed to sketch the proof of Theorem 10.1. We consider the
MC energy functional EK,N , see (4.12), on the Stiefel manifold CK,N , a
complete metric space defined in (4.5). Since the C2-functional EK,N
is bounded from below, we may try to find a critical point at the level
l = infCK,N EK,N by determining whether the infimum is achieved. As
we shall see, it is easy to find an almost critical sequence at the level l,
that is, a sequence {h(j)} in CK,N satisfying

lim
j→∞
EK,N(h(j)) = l, and lim

j→∞
dEK,N(h(j)) = 0. (1.3)

The hard part is to prove the existence of a converging subsequence of
{h(j)}. Unfortunately, loosely speaking due to ionization, the energy
functional will not satisfy a Palais-Smale condition at level l. To make
sure that we can extract a convergent subsequence, we use second order
information of EK,N .

Additional technicalities for the quasi-relativistic setting, compared
to the non-relativistic, have to be resolved in order to implement these

HTTP://WWW.MMELGAARD.DK
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ideas. For instance, the Coulomb potential is not relatively compact
(in the operator sense) with respect to the quasi-relativistic energy
operator. In particular, compact Sobolev imbeddings are not avail-
able (for a recent survey of such problems, we refer to Bartsch-Wang-
Willem [3]). As we shall discuss below, another complication for the
functional EK,N(·) is that, contrary to the HF functional, it is not in-
variant under unitary transformations.

To address the existence of infinitely many nonminimal solutions, we
invoke the direct method developed by Fang and Ghoussoub [15, 19].
Since we are looking for nonminimal (or unstable) critical points, we
consider a collection H of compact subsets of the complete analytic
Hilbert-Riemann manifold CN,K (see Theorem 4.1) which is stable un-
der a specific class of homotopies and then we show that EK,N has a
critical point at the level

l = lEK,N ,H = inf
M∈H

max
h∈M
EK,N(h).

As we shall see, the method gives us an almost critical sequence at
the level l, that is, a sequence {h(j)} in CK,N satisfying (1.3), with
additional Morse information (as mentioned above) which is crucial
for proving that the sequence is convergent. The method was first
applied to re-derive Lions’ results in the non-relativistic HF setting
[15]. In fact, two different min-max levels will be introduced in order
to establish Theorem 11.1, respectively Theorem 12.1.

Within the non-relativistic setting Le Bris [27] studied a variant of
the case K = N + 2 by considering the minimization problem for lin-
ear combinations of two N -electron Slater determinants which differ by
two orbitals. The existence of a ground state was established provided
N ≤ Ztot. The proof, however, does not carry over as the number
of Slater determinants is increased. The general non-relativistic case,
allowing many determinants under the condition N − 1 < Ztot, was
treated in a torce de force by Friesecke [17] who established the exis-
tence of a ground state. Lewin [29] later derived results for the non-
relativistic MC equations analogous to Lions’ in the non-relativistic HF
setting [31]. He applied the Lions-Fang-Ghoussoub approach and, for
the latter, his main contribution was to devise a strategy to overcome
the loss of orthogonal invariance of the functional and the possible loss
of rank. We follow his scheme but several modifications are necessary.

The quasi-relativistic HF equations were investigated by Dall’Acqua
et al [9], who used the Lieb-Simon method to prove the existence of a
ground state for an atom provided Ztot > N−1. In addition, regularity
of the ground state away from the nucleus and pointwise exponential
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decay of the orbitals were established in [9]. For both the HF and MC
orbitals, real-analyticity away from the nuclei has recently been estab-
lished by Dall’Acqua et al [8]. By combining the approach of Lions-
Fang-Ghoussoub with density operator techniques, the mathematical
knowledge of the quasi-relativistic HF model was put on the same level
as the non-relativistic model by Enstedt and Melgaard [14]. Other
work related to our study of semilinear elliptic equations and critical
point theory includes: the existence of solutions with finite Morse in-
dices established by Dancer [10], de Figueriredo et al [11], Flores et al
[16], and Tanaka [39], the existence of multiple solutions established by
Cingolani-Lazzo [7] and Ghoussoub-Yuan [20], “relaxed” Palais-Smale
sequences as in Lazer-Solimini [25] and Jeanjean [22], and problems on
noncompact Riemannian manifolds found in Mazepa [33] and Tanaka
[40].

2. Preliminaries

Throughout the paper we denote by c and C (with or without in-
dices) various positive constants whose precise value is of no impor-
tance. Moreover, we will denote the complex conjugate of z ∈ C by z.

Function spaces. For 1 ≤ p ≤ ∞, let Lp(R3) be the space of (equiva-
lence classes of) complex-valued functions φ which are measurable and
satisfy

∫
R3 |φ(x)|p dx < ∞ if p < ∞ and ‖φ‖L∞(R3) = ess sup |φ| < ∞

if p = ∞. The measure dx is the Lebesgue measure. For any p
the Lp(R3) space is a Banach space with norm ‖ · ‖Lp(R3) = (

∫
R3 | ·

|p dx)1/p. In the case p = 2, L2(R3) is a complex and separable
Hilbert space with scalar product 〈φ, ψ〉L2(R3) =

∫
R3 φψdx and cor-

responding norm ‖φ‖L2(R3) = 〈φ, φ〉1/2L2(R3). Similarly, L2(R3)N , the N -

fold Cartesian product of L2(R3), is equipped with the scalar prod-

uct 〈φ, ψ〉 =
∑N

n=1〈φn, ψn〉L2(R3). The space of infinitely differentiable
complex-valued functions with compact support will be denoted C∞0 (R3).
The Fourier transform is given by

(Fψ)(ξ) = ψ̂(ξ) = (2π)−1/2

∫
R3

e−ixξψ(x) dx.

Define

H1/2(R3) = {φ ∈ L2(R3) : (1 + |ξ|)1/2φ̂ ∈ L2(R3) },
which, equipped with the scalar product

〈φ, ψ〉H1/2(R2) =

∫
R3

(1 + |ξ|)φ̂(ξ)ψ̂(ξ) dξ,

HTTP://WWW.MMELGAARD.DK
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becomes a Hilbert space; evidently, H1(R3) ⊂ H1/2(R3). We have that
C∞0 (R3) is dense in H1/2(R3) and the continuous embedding H1/2(R3) ↪→
L3(R3) holds; more precisely, the Sobolev inequality

‖φ‖2
L3(R3) ≤ csob‖φ‖2

H1/2(R3) (2.1)

is valid with csob = 2−1/2π−2/3. Moreover, we shall use that any weakly
convergent sequence in H1/2(R3) has a pointwise convergent subse-
quence.

Operators. Let T be a self-adjoint operator on a Hilbert space H with
domain D(T ). The spectrum and resolvent set are denoted by σ(T ) and
ρ(T ), respectively. We use standard terminology for the various parts
of the spectrum; see, e.g., [12, 24]. The resolvent is R(ζ) = (T − ζ)−1.
The spectral family associated to T is denoted by ET (λ), λ ∈ R. For
a lower semi-bounded self-adjoint operator T , the counting function is
defined by

Coun (λ;T ) = dim RanET ((−∞, λ)).

We need the following abstract operator result by Lions [31, Lemma
II.2].

Lemma 2.1. Let T be a self-adjoint operator on a Hilbert space H, and
let H1, H2 be two subspaces of H such that H = H1 ⊕ H2, dimH1 =
h1 < ∞ and P2TP2 ≥ 0, where P2 is the orthogonal projection onto
H2. Then T has at most h1 negative eigenvalues.

Antisymmetric wavefunctions. Let {φn}∞n=1 be an orthonormal basis of
L2(R3). If we set

(φn1 ⊗ · · · ⊗ φnN )(x1, . . . , xN) = φn1(x1) · · ·φnN (xN),

then the sequence {φn1⊗· · ·⊗φnN}∞nm=1 constitutes an orthonormal ba-
sis of L2(R3N) = ⊗Nn=1L

2(R3). The antisymmetrized (wedge) products
(φn1 ∧ · · · ∧ φnN ) defined by

(φn1 ∧ · · · ∧ φnN )(x1, . . . , xN)

=
1√
N !

∑
σ∈SN

ε(σ)φn1(xσ(1)) · · ·φnN (xσ(N)) =
1√
N !

det (φnl(xm))l,m

=
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(x1) · · · φ1(xN)
· ·
· ·
· ·

φN(x1) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.2)
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then give an orthonormal basis of the subspace L2
a(R3N) of L2(R3N)

consisting of antisymmetric functions (expressing the Pauli exclusion
principle)

Ψe(x1, . . . , xN) = sign (σ)Ψe(xσ(1), . . . , xσ(N)) a.e. , ∀σ ∈ SN ,

where SN is the group of permutations of {1, . . . , N}, with the signa-
ture of a permutation σ being denoted by sign (σ). We write L2

a(R3N) =∧N
n=1 L

2(R3). In the language of Quantum Chemistry, a function of the
form (2.2) is called a Slater determinant. Any antisymmetric wavefunc-
tion Ψ is thus an infinite linear combination of such Slater determinants

Ψe =
∑

1≤n1<···<nN<∞

an1,...,nNφn1 ∧ · · · ∧ φnN ,

which converges in L2
a(R3N); in particular, the condition ‖Ψ‖L2 = 1 is

equivalent to the condition
∑

n1<···<nN |an1<···<nN |2 = 1.

Fix an integer K ≥ N and consider the subset of L2
a(R3N) consisting

of wave functions

Ψ =
∑

1≤n1<···<nN≤K

an1,...,nNφn1 ∧ · · · ∧ φnN , (2.3)

which are finite linear combinations of the
(
K
N

)
Slater determinants built

from a set of K orthonormal functions {φn}Kn=1 of L2(R3). If {φn}Kn=1

is an orthonormal basis of the range of DΨ, defined in (1.2), then each
φn is called an orbital of Ψ. If, in addition, they are eigenfunctions
of DΨ, the functions φn are referred to as natural orbitals, and the
corresponding eigenvalues are known as the occupation numbers [38].
If φ = {φn}n∈N is any orthonormal basis of L2(R3), then the creation
operator a† is defined as a†(φ)φn1 ∧ · · · ∧ φnN = φ ∧ φn1 ∧ · · · ∧ φnN
if φ is not contained in {φn1 , . . . , φnN}, and zero otherwise, and the
annihilation operator a(φ) is defined as the adjoint of a†(φ) [38]. The
following facts goes back to Löwdin [32].

Lemma 2.2.
1. Let {φn}n∈N be an orthonormal basis of L2(R3), respectively H1/2(R3).
Then {φn1 ∧ · · · ∧ φnN}n1<···<nN is an orthonormal basis of L2

a(R3N),

respectively H
1/2
a (R3).

2. The set of N-electron wave functions of rank K is nonempty if and
only if

K

 = 1 N = 1
≥ 2, even N = 2,
≥ N, 6= N + 1, N ≥ 3.

HTTP://WWW.MMELGAARD.DK
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3. If Ψ is an N-electron wavefunction of rank K and if {φn}Kn=1 is any
orthonormal basis of RanDΨ, then Ψ is a linear combination of Slater
determinants composed of the φn, i.e., Ψ =

∑
J aJΦJ for some aJ ∈ C,

where the sum runs over multiindices J = (n1, . . . , nN) ∈ {1, . . . , K}N ,
n1 < · · · < nN , and ΦJ = φn1 ∧ · · · ∧ φnN . Conversely, any wave
function which is a linear combination of Slater determinants is of
finite rank.

Assertion 1 of Lemma 2.2 merely expresses that L2
a(R3N) equals∧N

n=1 L
2(R3). Although achievable from elementary computations us-

ing the creation and annihilation operators, a† and a, for fermions and
duality theory for density operators, Friesecke [17] seems to be the
first who has carried out the classification of MC methods described in
assertion 2. Assertion 3 is Löwdin’s expansion theorem [32].

3. Atomic and molecular Hamiltonians

By p we denote the momentum operator −i∇ on L3(R3). The op-

erator T0 =
√
p2 + α−2 is generated by the closed, (strictly) positive

form t0[φ, φ] = 〈T 1/2
0 φ, T

1/2
0 φ〉H on the form domain D(t0) = H1/2(R3).

Set S(x) = Zα/|x|, Z > 0, Zc = 2α−1π−1, and let T̃0 = T0 − α−1. The
following facts are well-known for the perturbed one-particle operator

H1,1,α = T̃0 − S(x) [21, 24]:

Small perturbations. If Z < π
2
Zc then S is T̃0-bounded with relative

bound equal to two. If, on the other hand, (2α)−1 < Z < Zc then S is

T̃0-form bounded with relative bound less than one.

We prove the above-mentioned form-boundedness. It follows from the
following inequality (first observed, it seems, by Kato [24, Paragraph V-
SS5.4]):

〈Sφ, φ〉L2(R3) ≤ (Z/Zc)‖φ‖2
H1/2(R3), ∀φ ∈ H1/2(R3). (3.1)

Indeed, if, for any ψ, φ ∈ H1/2(R3), we define the sesquilinear forms

s[ψ, φ] := 〈S1/2ψ, S1/2φ〉L2(R3),

t0[ψ, φ] := 〈T 1/2
0 ψ, T

1/2
0 φ〉L2(R3),

t̃0[ψ, φ] := t0[ψ, φ]− α−1〈ψ, φ〉L2(R3),

then (3.1) shows that s is well-defined and also, by invoking the in-
equality | − i∇| ≤ T0 , we infer that, for all φ ∈ H1/2(R3),

s[φ, φ] < t0[φ, φ] provided Z < Zc. (3.2)
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This is the Coulomb uncertainty principle in the quasi-relativistic set-
ting. The KLMN theorem (see, e.g., [24, Paragraph VI-1.7]) implies
that there exists a unique self-adjoint operator, denoted H1,1,α, gener-
ated by the closed sesquilinear form

h1,1,α[ψ, φ] := t̃0[ψ, φ]− s[ψ, φ], ψ, φ ∈ D(h1,1,α) = H1/2(R3), (3.3)

which is bounded below by −α−1. It is well-known [21] that

σ(H1,1,α) ∩ [ − α−1, 0 ) is discrete

(3.4)

σ(H1,1,α) ∩ [ 0,∞ ) is absolutely continuous

In particular,

σess(H1,1,α) = [ 0,∞ ). (3.5)

The form construction of the atomic Hamiltonian H1,1,α can be general-
ized to the molecular case, describing a molecule with N electrons and
K nuclei of charges Z = (Z1, . . . , ZK), Zk > 0, located at R1, . . . , RK ,
Rk ∈ R3, if we substitute s by

ven[ψ, φ] =
K∑
k=1

〈V 1/2
k , ψ, V

1/2
k φ〉, ψ, φ ∈ H1/2(R3), (3.6)

where Vk is defined in (4.2) and by assuming that Ztot < Zc.

4. The quasi-relativistic multi-configurative model

Within the Born-Oppenheimer approximation, the quantum energy
of N quasi-relativistic electrons interacting with L static nuclei with
charges Z = (Z1, . . . , ZL), Zl > 0, is given by

E(Ψe) = 〈Ψe, TN,Z,αΨe〉L2

=α−1

N∑
n=1

{
〈T

1
2

0,nΨe, T
1
2

0,nΨe〉L2 − α−1〈Ψe,Ψe〉L2 + 〈Ven(xn)Ψe,Ψe〉L2

}
+

∑
1≤m<n≤N

〈Vee(xm − xn)Ψe,Ψe〉L2 , Ψe ∈
N∧
n=1

H1/2(R3). (4.1)

where x = (x1, . . . , xN) ∈ R3N , xn = (x
(1)
n , x

(2)
n , x

(3)
n ) ∈ R3 is the posi-

tion of the nth electron, T0,n =
√
−∆xn + α−2 is the quasi-relativistic

(one-particle) energy operator (∆xn being the square of the gradient

HTTP://WWW.MMELGAARD.DK
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∇xn with respect to xn and α being Sommerfeld’s fine structure con-
stant), the potentials Vee and Ven are given by

Vee(x) = 1/|x| and Ven(y) =
K∑
k=1

Vk(y) ; Vk(y) = − Zkα

|y −Rk|
(4.2)

with Rk ∈ R3 being the position of the kth nucleus, and TN,Z,α is the
N -particle quasi-relativistic energy operator given in (1.1).

The wave function Ψe : (R3)N → R in (4.1) belongs to He :=∧N H1/2(R3), i.e., the N -particle Hilbert space consisting of antisym-
metric functions, where the Sobolev space H1/2(R3) has been intro-
duced in Section 2. The operator TN,Z,α is bounded from below and
the minimum of its spectrum equals the N -particle ground state energy
or, equivalently,

EQM(N,Z, α) = inf
{
E(Ψe) : Ψe ∈ He, ‖Ψe‖L2(R3N ) = 1

}
. (4.3)

The bottom of the essential spectrum, Σ := inf σess(TN,Z,α), is de-
scribed by the HVZ theorem, see Lewis et al [26], and the nuclei are ca-
pable of binding theN electrons in their vicinity provided EQM(N,Z, α)
< Σ. For Ztot ≥ N , Zhislin and Vugalter [41] have shown that there
are infinitely many eigenvalues below Σ; hence we have that

σ(TN,Z,α) = {EQM(N,Z, α) = ν1 ≤ ν2 ≤ · · · νi ≤ · · · } ∪ [Σ,∞),

where {νi}i≥2 are eigenvalues strictly less than Σ. Their eigenfunctions
are called excited states.

4.1. Slater and Stiefel manifolds. To determine EQM(N,Z, α) di-
rectly turns out to be too difficult, even for small N . One of the
classical approximation methods for determining EQM(N,Z, α) is the
HF theory, introduced by Hartree and improved by Fock and Slater in
the late 1920s (see, e.g., [38, 28]), which consists of restricting attention
to simple wedge products Ψe ∈ SN , where the Slater manifold is given
by

SN =
{

Ψe ∈ He : ∃Φ s.t. Ψe =
1√
N !

det (φn(xm))
}

and the (infinite-dimensional) Stiefel manifold CN is given by

CN =
{

Φ = {φn}Nn=1, φn ∈ H1/2(R3), 〈φm, φn〉L2 = δmn, 1 ≤ m,n ≤ N
}
.

(4.4)
In the variational MC method of rank K the set of admissible wavefunc-
tions is restricted to those which can be written as a linear combination
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of Slater determinants, as in (2.3), constructed from K L2-orthonormal

functions φ1, . . . , φK . Let HK
N = R(KN) × (H1/2(R3))K and define 2

CK,N =

{
(a,Φ) ∈ HK

N :
∑

n1<···<nN

|an1,...,nN |2 = 1,

∫
R3

φmφn = δmn

}
,

where (4.5)

a = (an1···nN ) ∈ R(KN), Φ = (φ1, . . . , φK)T ∈ H1/2(R3)K .

To ensure that the MC energy functional, to be defined below is well-
defined, we emphasize that H1/2(R3) regularity are imposed on the
elements of Φ. When no ambiguity is possible, we shall use the notation

Ψe =
∑

J⊂{1,...,K},|J |=N

aJΦJ ,

where aJ = (an1...nN ) and ΦJ = φn1∧· · ·∧φnN for J = {n1 < · · · < nN}.
Chiumiento and Melgaard [6] have proved the following result, which

is needed in order to implement the Lions-Fang-Ghoussoub approach.

Theorem 4.1. The variational space CK,N is a complete, analytic
Hilbert-Riemann manifold.

4.2. The energy functional. The quasi-relativistic multi-configurative
energy functional is defined by the formula

E(Ψ(a,Φ)) = 〈Ψ(a,Φ), TN,Z,αΨ(a,Φ)〉

Ψ(a,Φ) =
∑
J

aJΦJ =
∑

1≤n1<···<nN<∞

an1,...,nNφn1 ∧ · · · ∧ φnN .

Definition 4.2. Let Z = (Z1, . . . , ZL), Zl > 0, l = 1, . . . , L, and let N
be a nonnegative integer. The N -particle quasi-relativistic MC ground
state energy is

EK,N = EK,N(Z, α) =

= inf
{
E(Ψe) : Ψe ∈ H1/2

a (R3N),

‖Ψe‖L2(R3N ) = 1, rank(Ψe) ≤ K
}
. (4.6)

If a minimizer exists, i.e., there exists some Ψe such that

E(Ψe) = EK,N (4.7)

then it is said that the molecule has a quasi-relativistic MC ground
state described by Ψe.

2The an1...nN
are arranged in a column vector a using, e.g., the lexicographical

order.
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Since any wavefunction Ψe can be expressed as a (infinite) linear
combination of Slater determinants (Lemma 2.2), one has limK→∞EN,K =
EQM(N,Z, α). Moreover, it is convenient to write

Ψ =
∑

n1,...,nN

bn1,...,nNφn1 ∧ · · · ∧ φnN .

where 3

bn1···nN =

{
0 if #{n1 · · ·nN} < N,
ε(σ)√
N
anσ(1)<nσ(2)<···nσ(N)

otherwise

Expressed in terms of bJ and φn the functional E equals

E(Ψ) = N
∑

1≤k2...≤kN≤K

{
t̃0

[
K∑
n=1

bn,k2,...,kNφn,
K∑
n=1

bn,k2,...,kNφn

]

+ ven

[
K∑
n=1

bn,k2,...,kNφn,
K∑
n=1

bn,k2,...,kNφn

]}
(4.8)

+
Ñ

2

∑
1≤k3...≤kN≤K

∫
R3

∫
R3

(∑
1≤m,n≤K bm,n,k3,...,kNφm(x)φn(y)

)2

|x− y|
dxdy.

where Ñ = N(N − 1). Let φ be as in (4.5) and let 〈φ, φ̃〉L2(R3)K =∑N
n=1

∫
R3 φmφ̃n dx. By introducing the K × K matrices D and Eφ

given by

Dm,n = N
∑

k2,...,kN

bm,k2,...,kN bn,k2,...,kN (4.9)

(Eφ)m,n(x) =
Ñ

2

∑
k3,...,kN

∑
i,j

bm,i,k3,...,kN bn,j,k3,...,kN

×
(
φiφj ∗

1

|x|

)
(x), (4.10)

we can re-express the functional in (4.8) as follows, understood in the
sense of quadratic forms as above,

E(Ψ) =
〈((

T̃0 + Ven

)
D +Eφ

)
φ,φ

〉
L2(R3)K

, (4.11)

3σ is the permutation of {1, . . . , N} such that nσ(1) < nσ(2) < · · ·nσ(N).
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or, alternatively, for elements (a,φ) belonging to the Stiefel manifold
CK,N defined in (4.5),

EK,N(a,φ) :=
〈((

T̃0 + Ven

)
D +Eφ

)
φ,φ

〉
L2(R3))K

, (a,φ) ∈ CK,N .
(4.12)

On CK,N the first derivative, respectively the second derivative, of EK,N
with respect to Φ will be denoted by dΦEK,N , respectively d2

ΦEK,N .
By standard arguments (see, e.g., [31, 29, 13]) we obtain the following
result on the regularity and orthogonal invariance of the functional
EK,N(·).

Lemma 4.3.
1. Regularity. The functional EN(·), respectively EK,N(·), belongs to
C2(H1/2(R3)K ,R), respectively C2(CK,N ,R).

2. Orthogonal invariance. If (ã, φ̃) = U · (a,φ) = (a,Uφ) for U ∈
OK(R) (the set of K × K orthogonal matrices) then D̃ = UDUT,

Ẽφ̃ = UEφU
T and EK,N is invariant under the group action of OK(R)

on CK,N .

5. Continuity properties of energy functional

Lemma 5.1. The functional EK,N , defined in (4.11), is continuous on
CK,N and it is weakly lower semicontinuous on HK

N .

Proof. The continuity of EK,N on CK,N is easily shown. To establish
weakly lower semicontinuity, we recall that φi ⇀ φ in H1/2(R3) implies
that (see, e.g., [9])

lim inf
i→∞

(̃t0 + ven)[φi, φi] ≥ (̃t0 + ven)[φ, φ]. (5.1)

Suppose that a sequence (a(j),φ(j)) ∈ HK
N satisfies a(j) → a and

φ(j) ⇀ φ weakly in (H1/2(R3))K . Then, after extracting a subsequence

if necessary, we may assume that φ(j) → φ strongly in (L2
loc(R3))K (and

a.e.) and, furthermore, EK,N(a(j),φ(j)) → E, where we have defined

E := lim infj→∞ EK,N(a(j),φ(j)). Now, for all k2, . . . , kN we have that

K∑
n=1

b
(j)
n,k2,...,kN

φ(j)
n ⇀

K∑
n=1

bn,k2,...,kNφn

HTTP://WWW.MMELGAARD.DK
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weakly in H1/2(R3) and strongly in L2
loc(R3) and, therefore, the prop-

erty (5.1) implies that

lim inf
j→∞

(̃t0 + ven)

[(
K∑
n=1

b
(j)
n,k2,...,kN

φ(j)
n

)
,

(
K∑
n=1

b
(j)
n,k2,...,kN

φ(j)
n

)]

≥ (̃t0 + ven)

[(
K∑
n=1

bn,k2,...,kNφn

)
,

(
K∑
n=1

bn,k2,...,kNφn

)]
. (5.2)

Furthermore, as in [29], Fatou’s lemma yields

lim inf
j→∞

∫
R3

∫
R3

(∑
1≤m,n≤K b

(j)
m,n,k3,...,kN

φ
(j)
m (x)φ

(j)
n (y)

)2

|x− y|
dxdy.

≥
∫
R3

∫
R3

(∑
1≤m,n≤K bm,n,k3,...,kNφm(x)φn(y)

)2

|x− y|
dxdy.

and we easily conclude. �

6. The MC Hartree-Fock type equations

The Euler-Lagrange equations of the minimization problem in Defi-
nition 4.2 can be derived in the same way as the HF equations, and one
then obtains the multi-configurative HF type equations [38, 28, 17, 29],
which take the following form, for 1 ≤ k ≤ K,

dk

(
T̃0 + Ven

)
φk +

∑
klmn

cklmn

(
φlφm ∗

1

|x|

)
φn =

K∑
l=1

λklφl, (6.1)

Tφ · a = ζ · a, (6.2)

where the clkmn are real numbers which can be expressed via a and
the λkl are Lagrange multipliers corresponding to the orthonormal-
ity of the φn. The equations consist of K HF type nonlinear partial
differential equations for φn, coupled to a Schrödinger type linear sys-
tem for the a arising as the Euler-Lagrange equations for the aJ with
ζ = EK,N(a,φ) being the multiplier, and Tφ = {〈φI , TN,Z,αφJ〉}I,J
being the

(
K
N

)
×
(
K
N

)
matrix of the Schrödinger operator TN,Z,α on

span {φJ : J}. The dk =
∑

J |k∈J |aJ |2 are the so-called occupation
numbers. For our purpose it is convenient to write the HF type equa-
tions (6.1) as in (11.1)-(11.2) (see Theorem 11.1), wherein D and Eφ
are defined in (4.9)-(4.10), and Λ is the Lagrange multiplier matrix
corresponding to the constraints 〈φm, φn〉L2(R3) = δmn. This form was
given by Lewin [29] (but similar calculations are found in many books,
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e.g., [38]).

Define
JK,N = { J ⊂ {1, . . . , K} : |J | = N }.

By choosing a set J ⊂ JK,N and restricting the energy EK,N to the
submanifold

CJ ,K,N = { (a,Φ) ∈ CK,N : ∀J 6∈ J , aJ = 0 } ⊂ CK,N ,
we obtain a partial MC method of rank K with corresponding ground
state energy defined by

EJ ,K,N = inf
CJ ,K,N

EK,N .

Then the critical points of EK,N on CJ ,K,N will be solutions of the
equations ((

T̃0 + Ven

)
D + 2EΦ

)
Φ + Λ · Φ = 0,

TJΦ · aJ = ζ · aJ .

}
(6.3)

with aJ = {aJ}J∈J and TJΦ = {〈ΦI , TN,Z,αΦJ〉}I,J∈J being the |J | ×
|J | matrix of the Schrödinger operator TN,Z,α on span {ΦJ : J ∈ J }.

The “natural MC methods” (as pioneered by Löwdin) and used by
chemists is defined as follows [32, 38, 28, 23, 29]:

Definition 6.1. A natural multi-configurative method of rank K is
defined by a J ⊂ JK,N for which:
(i) There exists a (a,Φ) ∈ CJ ,K,N of rank K;
(ii) for every (a,Φ) ∈ CJ ,K,N there exists

U ∈ OJ = {U ∈ OK(R) : U · CJ ,K,N ⊂ CJ ,K,N }
such thatD′, corresponding to (a′,Φ′) = U(a,Φ), is a diagonal matrix.

Definition 6.1(ii) asserts that any wave function can be written in
terms of its natural orbitals.

Assumption 6.2. Let J define a natural MC method of rank K and
let {(a(j),φ(j))}∞j=1 be a sequence in CJ ,K,N such that

(i) limj→∞ EK,N(a(j),φ(j)) = l,
(ii) For each J ∈ J ,

lim
j→∞

dφEK,N(a(j),φ(j)) = 0 and lim
j→∞

∂aEK,N(a(j),φ(j)) = 0.

(iii) There exists m and a sequence of positive real numbers {δ(j)}j
with δ(j) ↘ 0 such that for every j d2

φEK,N(a(j),φ(j)) has at most m

eigenvalues below −δ(j).

HTTP://WWW.MMELGAARD.DK
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Mixed configuration. Assume Ψ =
∑
aJΦJ where {φ1, . . . , φK} is a

set of orthonormal orbitals, ΦJ = φj1 ∧ · · · ∧ φjN , and the multiindex
J = (j1, . . . , jN) runs over 1 ≤ j1 < · · · < jN ≤ K. The following
lemma is attributed to Friesecke [18].

Lemma 6.3. Let Ψ, ΦJ and J be as above. Suppose I = (i1, . . . , iN)
is any multi-index such that aI 6= 0. Then, either

〈Ψ, TN,Z,αa
†(χ)a†(η)a(φi2)a(φi1)ΦI〉 = 0

for any χ, η satisfying 〈χ, φn〉 = 〈η, φn〉 = 0 for all n = 1, . . . , K, or Ψ
is not a ground state of TN,Z,α.

Since we shall refer to the contents of its proof later, we give the
short proof of this lemma.

Proof. We let Ψ′ := a†(η)a(φi2)a(φi1)ΦI and also C2 = 〈Ψ′,Ψ′〉. Then

C 6= 0 for χ 6= η, and we may define Ψ̃ = Ψ′/C. Moreover, for any

ε ∈ (0, 1), we define Ψε = (ε/C)Ψ̃ + (1− ε)1/2Ψ. Then the expectation
of the energy for TN,Z,α in the state Ψε can be expanded in ε:

E(Ψε) = E(Ψ) + ε(1− ε2)1/2
(
〈Ψ, TN,Z,αΨ̃〉+ c.c.

)
+ε2

(
E(Ψ̃)− E(Ψ)

)
By taking ε small enough, we can ensure that the ε2 term is dominated
y the ε(1− ε2)1/2 term and, consequently, the right-hand side is strictly

less than E(Ψ) provided there exist χ and η such that E(Ψ̃)−E(Ψ) is
negative. The latter inequality holds if and only if there exist χ and η

such that 〈Ψ, TN,Z,αΨ̃〉 6= 0 because, in this case, we can just multiply
χ by a trivial phase factor. �

7. The quasi-relativistic Fock operator

Herein we introduce the quasi-relativistic Fock operator.

Lemma 7.1. Assume Ztot < Zc. Let

Kxc(x, x′) =
D(x, x′)

|x− x′|
(7.1)

be the integral kernel of the exchange operator Kxc. Then the unique
self-adjoint operator F associated with the differential expression

α−1T̃0φ+ α−1Venφ+ ρ ∗ 1

|x|
φ−Kxcφ, (7.2)
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is generated by the sesquilinear form

f[φ, ψ] = α−1t̃0[φ, ψ] + α−1

∫
R3

Ven(x)φ(x)ψ(x) dx

+

∫
R3

∫
R3

ρ(x)φ(y)ψ(y)

|x− y|
dxdy −

∫
R3

∫
R3

D(x, y)
φ(y)ψ(x)

|x− y|
dydx. (7.3)

Proof. Bear in mind the definitions of t0, t̃0 and ven from Section 3.
Define vρ∗(1/|x|) as the third form on the right-hand side of (7.3). Then
(3.1) yields the estimate

vρ∗(1/|x|)[φ, φ] ≤ C(Zc, N)t0[φ, φ]. (7.4)

Under the hypothesis, we already know from Section 3 that the qua-
dratic form t0 + ven is nonnegative on H1/2(R3). Evidently, vρ∗(1/|x|) is

a nonnegative form and, consequently, f̃ = t0 + ven + vρ∗(1/|x|) is a non-

negative form on H1/2(R3). Closedness of the nonnegative quadratic

form f̃ is equivalent to lower semicontinuity of f̃ on H1/2(R3). In fact, f̃
is continuous. Indeed, (3.1), respectively (7.4), enables us to show con-

tinuity of the second, respectively the third term, in f̃. For instance, we
consider ven and assume that φj → φ in H1/2(R3). Then an application
of Hölder’s inequality and (3.1) yields

|ven[φj]− ven[φ]| ≤
∫
R3

|Ven||φj − φ||φj + φ| dx

≤ c

(∫
R3

|Ven||φj − φ|2 dx

)1/2

≤ C‖φj − φ‖H1/2(R3).

We conclude that f̃ is a closed quadratic form on H1/2(R3). The first
representation theorem [12, Theorem VI.2.4] informs us that the non-

negative, closed form f̃ is associated to a unique self-adjoint operator,

say F̃ . Furthermore, the exchange operator Kxc is a Hilbert-Schmidt
operator. Indeed, using, in this particular order, the weak Young in-
equality, the Hölder inequality and (3.1) we find that Kxc(x, x′) ∈
L2(R3 × R3). It is clear that the form f̃[·, ·] − α−1〈·, ·〉L2 − 〈Kxc·, ·〉L2

is closed and, once again applying the first representation theorem, we
obtain a unique self-adjoint operator F associated with the form in
(7.3). �

8. Lower spectral bound

We will later need the following spectral result.
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Lemma 8.1. Assume ϑ < Ztot < Zc, and let ρ ∈ L1(R3) ∩ L4/3(R3)
such that

∫
R3 ρ dx < ϑ. Define the quasi-relativistic Schrödinger oper-

ator

T = α−1T̃0 + α−1Ven + ρ ∗ 1

|x|
.

Then, for any κ ≥ 1 and any 0 ≤ ϑ < Ztot, there exists εκ,ϑ > 0 such
that

Coun (−εn,ϑ;T ) ≥ κ.

Proof. By a minor modification of [21, p 291], which carries over the
result (3.5) from the one-nucleus to the many-nuclei case, we deduce
that the essential spectrum of T̃0 + Ven equals the semiaxis [0,∞).
Next, a standard perturbation argument and an application of Weyl’s
essential spectrum theorem proves that σess(T ) = [0,∞). Let tµ denote
the quadratic form defined by

α−1t̃0[φ, φ] +

∫
R3

(
α−1Ven + ρ ∗ 1

|x|

)
|φ(x)|2 dx. (8.1)

For any κ ≥ 1 and any 0 ≤ ϑ ≤ Ztot we construct a κ-dimensional
subspace Hκ,ϑ in H1/2(R3) such that

t[φ, φ] < −εκ,ϑ < 0 (8.2)

for all L2-normalized φ ∈ Hκ,ϑ. We note that

α−1t̃0[φ, φ] ≤ C

∫
R3

|∇φ|2 dx.

As a consequence, by selecting a κ-dimensional subspace of normalized,
radially symmetric functions in C∞0 (R3), we can construct a subspace
Hκ,ϑ of functions satisfying (8.2) by repeating the arguments in [31,
Lemma II.1] (see also [13, Lemma 6.1]). Then the assertion follows by
an application of Glazman’s Lemma (see, e.g., [36, Lemma A.3]). �

Within the nonrelativistic context a similar result was first given by
Lions [31, Lemma II.1].

9. Convergence of Palais-Smale type sequences

In this section we give the main auxiliary result that will be used in
the proof of Theorem 10.1 and Theorem 11.1.

Proposition 9.1. Assume that l ∈ R, N − 1 < Ztot < Zc, and K ≥
N . If a sequence (a(j),φ(j)) satisfies Assumption 6.2, then there exists

K̃ ∈ [N,K] such that, up to extracting subsequences and up to unitary

transformations U (j) ∈ OK(R), the following holds:
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1. D(j) = diag (d
(j)
1 , . . . , d

(j)
K ) for all j ∈ N.

2. For each n = 1, . . . , K̃, d
(j)
n → dn > 0 and φ

(j)
n → φn strongly in

H1/2(R3).

3. For each n = K̃ + 1, . . . , K, d
(j)
n → 0 and

√
d

(j)
n φ

(j)
n → 0 strongly in

H1/2(R3).

4. If J̃ = J ∩ JK̃,N , ã = (aJ)J∈J
K̃,N

and φ̃ = (φ1, . . . , φK̃), then (ã, φ̃)

is a critical point of EK̃,N on CJ̃ ,K̃,N and it is a solution to the equations

in (6.3), wherein Λ > 0.

5. If J = JK,N , then either K̃ = K − 1 or K̃ = K.

6. If Ψ′ is the wave function corresponding to (a′,Φ′), then Ψ(j) → Ψ

strongly in H
1/2
a (R3N).

Proof.
It follows from the hypotheses that, without loss of generality, we may

suppose that Dj = diag (d
(j)
1 , . . . , d

(j)
K ), d

(j)
n ∈ [0, 1], and {d(j)

n }Kn=1 are
monotonically decreasing as n grows. In particular, as j → ∞ one

has d
(j)
n → dn for some dn and hence there exists some aJ such that

a
(j)
J → aJ for every J ∈ J . If K = N , then d

(j)
n = 1 for every

n = 1, . . . , N and j ∈ N. An application of (3.1) and the first order
information in Assumption 6.2 give us that

K∑
n=1

d(j)
n t0[φ(j)

n , φ(j)
n ] ≤ const

[
1− Ztot

Zc

]−1

. (9.1)

We deduce that either dn = 0 or {φ(j)
n } is bounded in H1/2(R3). We

define K̃ ≥ N to be the smallest integer satisfying that dK̃+1 = 0 and

dK̃ 6= 0. Next we prove that, for any m = K̃+1, . . . , K, (delete maybe)

d
(j)
m → 0 and

√
d

(j)
m φ

(j)
m → 0 strongly in H1/2(R3). Since {d(j)

m ‖φ(j)
m ‖}j

is bounded, we infer that, after possibly passing to a subsequence,√
d

(j)
m φ

(j)
m → 0 weakly in H1/2(R3). We may suppose that d

(j)
m → 0 (as

j →∞). The sequence {φ(j)
m }j is bounded in L2(R3) and, therefore, we

may assume (after possibly extracting a subsequence) that

√
d

(j)
m φ

(j)
m →

0 in L2(R3). Although the functional E is not quadratic with respect
to the orbitals it is, however, quadratic in aJ . Explicitly, for some

sequences E (j)
1 , E (j)

2 , E (j)
3 , we have that

EK,N(a(j),φ(j)) =

(∑
n∈J

t̃0[φ(j)
n , φ(j)

n ]

)
(a

(j)
J |m)2+E (j)

1 (a
(j)
J |m)2+E (j)

2 a
(j)
J |m+E (j)

3 ,
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where J |m indicates that J contains m. Using the above-mentioned

convergence properties it is easy to see that the terms E (j)
1 (a

(j)
J )2 and

E (j)
2 a

(j)
J tend to zero as j → ∞. Using the first order information in

Assumption 6.2 yields

daJ|mEK,N(a(j),φ(j)) = 2
∑
n∈J

t̃0[φ(j)
n , φ(j)

n ]a
(j)
J |m

+2E (j)
1 a

(j)
J |m + E (j)

2 + λ
(j)
J |ma

(j)
J |m −→ 0,

where λ
(j)
J |m is a sequence of Lagrange multipliers. We multiply by a

(j)
J |m

and, as j →∞, get that

t0[φ(j)
n , φ(j)

n ](a
(j)
J |m)2 −→ 0.

Now, by definition

d(j)
m =

∑
J |m

(a
(j)
J )2,

and we deduce that √
d

(j)
m φ(j)

m −→ 0 strongly

in H1/2(R3).

For all J ∈ JK̃,N and φ̃
(j)

= (φ
(j)
1 , . . . , φ

(j)

K̃
)T, we set J̃ = J ∩ JK̃,N

and define

ã
(j)
J =

a
(j)
J√∑

I⊂{1,...,K̃}(a
(j)
I )2

.

Then the new sequence {(ã(j), φ̃
(j)

)} fulfills the hypotheses (i)-(iii) on

CJ̃ ,K̃,N . We will denote this sequence by {(a(j),φ(j))} in the sequel. In
a standard way the first-order information in Assumption 6.2 implies
that ((

T̃0 + Ven

)
D(j) + 2Eφ(j)

)
φ(j) + Λ(j)φ(j) → 0 (9.2)

in L2(R3)K̃ . We proceed to extract a few subsequences. We be-

gin by diagonalizing Λ(j), with diag (λ
(j)
1 , . . . , λ

(j)

K̃
), via an appropriate

choice of orthogonal matrices U (j). Henceforth we study the sequence

{U (j)(a(j),φ(j))}; we denote it by {(ã(j), φ̃
(j)

)} in the sequel. For this
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purpose we introduce

ρ(j)
n =

Ñ

d̃
(j)
nn

∑
k3,...,kN

(∑
k

b̃n,k,k3,...,kN φ̃
(j)
k

)2

a(j)
n [ψ, ψ] =

∑
k3,...,kN

∫
R3

∫
R3

1

|x− x′|

(
ψ(x)

∑
k

b̃n,k,k3,...,kN φ̃
(j)
k (x)

)

×

(
ψ(x′)

∑
k

b̃n,k,k3,...,kN φ̃
(j)
k (x′)

)
dxdx′.

By using the second-order information on the sequence, see Assump-
tion 6.2(iii), and the form f· in Lemma 7.1, we get that

d̃(j)
nnfρ(j)n [ψ, ψ] + (λ(j)

n + d̃(j)
nnδ

(j)
n )‖ψ‖2

L2(R3) − Ña(j)
n ≥ 0, (9.3)

for every n = 1, . . . , K̃ and every ψ belonging to a closed subspace H(j)

of H1/2(R3) with finite codimension at most K̃ +m. The numbers δ
(j)
n

in (9.3) tend to zero in the standard Euclidean metric for each fixed n.

Since a
(j)
n is nonnegative, we infer that

f
ρ
(j)
n

[ψ, ψ] +

(
λ

(j)
n

d̃
(j)
nn

+ δ(j)
n

)
‖ψ‖2

L2(R3) ≥ 0

for all ψ ∈ H(j)(after perhaps going to a subsequence). By invoking
Lemma 2.1 we deduce that the quasi-relativistic Schrödinger operator

T (j)
n = T̃0 + Ven + ρ(j)

n ∗
1

|x− x′|

has at most K̃ + m eigenvalues strictly less than −(λ
(j)
n /d̃

(j)
nn) − δ

(j)
n .

Moreover, since∫
R3

ρ(j)
n dx =

Ñ

d̃
(j)
nn

∑
i,k,k3,k4,...,kN

(
b̃i,k,k3,...,kN

)2

= N − 1 < Ztot

Lemma 8.1 ensures that there exists a δ > 0 (independent of j) such

that T
(j)
n has at least K̃ + m eigenvalues strictly below −δ. As a

consequence, we infer that

λ
(j)
n

d̃
(j)
nn

+ δ(j)
n ≥ δ, ∀j.
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Since δ
(j)
n → 0 as j → ∞ and D̃(j) = U (j)D

(j)UT
(j) ≥ dIK̃ , we deduce

that, for j large enough,

λ(j)
n ≥

d̃
(j)
nnδ

2
≥ dδ

2
=: λ > 0, ∀n.

Consequently, Λ(j) ≥ λIK̃ . In view of (9.2) we infer that {Λ(j)} is
bounded. In particular, up to extracting a subsequence, we deduce

that Λ(j) → Λ > 0. From above, d
(j)
n ≥ d > 0 and this implies that

{φ(j)
n }j∈N are bounded in (H1/2(R3))K and, as a consequence, we may

suppose that φ
(j)
n converges weakly in H1/2(R3) (and a.e. in R3) to

some φn. We proceed to showing that φ
(j)
n → φn strongly in H1/2(R3).

By going to the limit in (9.2), we get that((
T̃0 + Ven

)
D + 2Eφ

)
· φ+ Λ · φ = 0,

which, by invoking the same argument as in the proof of Lemma 5.1,
yields

lim inf
j→∞

〈Λ(j)φ(j),φ(j)〉

= − lim inf
j→∞

〈(
(T̃0 + Ven)D(j) + 2Eφ(j)

)
φ(j),φ(j)

〉
≤ −

〈(
(T̃0 + Ven)D + 2Eφ

)
φ,φ

〉
= 〈Λφ,φ〉.

Hence φ(j) → φ in (L2(R3))K̃ , and in (H1/2(R3))K̃ as well. The conver-

gence of {Ψ(j) follows immediately. Finally we show that if J = JK,N
then either K̃ = K or K̃ = K − 1. The result follows if we establish
the inequality EK+2

N < EK
N . To prove this inequality we can adopt the

reasoning in [18]. Therein it is demonstrated that it is not possible for
Ψ to satisfy the equations (11.1)-(11.2) of rank K if none of the trial
functions Ψε in the proof of Lemma 6.3, whose rank does not exceed
K+2, has lower energy than Ψ. Bearing in mind that a (“(K−N)-fold
excited”) ground state is a minimizer of E(Ψ) among all normalized
antisymmetric wavefunctions which satisfy rank(Ψ) ≤ K, we deduce
that, if there exists such a ground state, then EK+2

N < EK
N as requested.

The aforementioned demonstration includes an argument based upon
the assumption that solutions (i.e., orbitals) to the system of PDEs

dk

(
T̃0 + Ven

)
φk +

∑
lmn

c̃klmnwlmφk =
K∑
l=1

λklφl, (9.4)

−∆wlm = 4πφl(x)φm(x), (9.5)
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(here w(x) =
∫
R3 |x − x′|−1w(x′) dx′) are real-analytic functions on

the region R3 \ {R1, . . . , RL}. This result has been established in [8]
4. Hence we conclude that if J = JK,N then K̃ equals either K or
K − 1. �

The non-relativistic MC analogue of Proposition 9.1 was established
by Lewin [29], and the quasi-relativistic HF version was shown by En-
stedt and Melgaard [14]; in the latter case every “relaxed” Palais-Smale
sequence is relatively compact in CN .

10. Existence of a ground state

We address the minimization problem formulated in Definition 4.2.

Theorem 10.1. Let K and N be positive integers such that K ≥ N
and N − 1 < Ztot < Zc, where Ztot =

∑L
l=1 Zl is the total nuclear

charge and Zc = 2α−1π−1. If J ⊂ CJ ,K,N satisfies Definition 6.1, then
there exists a minimizer (a,ϕ) of the quasi-relativistic MC functional
EK,N(·) on CK,N , i.e., a minimizer to

EJ ,K,N = inf
CJ ,K,N

EK,N .

Before proving Theorem 10.1, let us give a few explanations. To
ensure that a Palais-Smale sequence converges, we need to somehow
“improve” it. Since EK,N is a C2-functional, we may try to obtain an
almost critical sequence with some information on the second deriva-
tive. This enables us to built an almost critical sequence which satisfies
(9.3). Due to lack of compactness, we cannot find critical points of EK,N
and therefore we perturb the functional while, simultaneous, ensuring
that the new functional has critical points of the kind, we expect for
the original one. The way we shall obtain such sequences consists in
applying a “perturbed variational principle” by Borwein and Preiss [5].

Proof of Theorem 10.1. First of all we note that (3.1) and the nonneg-
ativity of 〈E··, ·〉 imply that EK,N is bounded from below (uniformly)
on CK,N and we may therefore conclude existence of a minimizing se-

quence {(ã(j), Φ̃
(j)

)}∞j=1 to (4.6). To prove the existence of a minimizer,
the idea is to apply Proposition 9.1 and, therefore, we need to verify

4The proof of this for the Hartree-Fock model is found in the first version of [8].
Later, in the second version of [8] (appearing after the publication of [2]) it was
noted that the proof also works for the MC model. We acknowledge T. Ø Sørensen
for informing us of this.
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the hypotheses therein. For this purpose we are going to use a min-
imization principle by Borwein and Preiss [5, Theorem 2.6] in order
to obtain a new minimizing sequence. The variational space CK,N is a
complete metric space endowed with the metric

d ((a,φ), (a′,φ′))
2

= |a− a′|2 + ‖φ− φ′‖2
(H1/2(R3))K

To apply the principle we introduce Q as the set of functions that can
be written in the following way

q(a,φ) =
1

2

∑
k

αkd ((a,φ), (bk,ψk))
2 , (a,φ) ∈ CK,N

for some convergent sequence {(bk,ψk)}k, and real, nonnegative num-
bers αk satisfying

∑
k αk = 1. Then an application of the principle

provides us with a new minimization sequence {(a(j),Φ(j))}∞j=1, such
that

lim
j→∞
‖Φ(j) − Φ̃

(j)
‖H1/2(R3)K = 0 and lim

j→∞
|a(j)
J − ã

(j)
J | = 0

and, most importantly, the variational principle asserts that (a(j),Φ(j))
minimizes

EK,N(·) +
1

j
qj(·)

with qj ∈ Q. From this we conclude that hypothesis (ii) in Assump-
tion 6.2 is satisfied. Moreover, we can (after some straightforward
computations) conclude that (9.3) holds for all ψ belonging to a closed

subspace H1/2(R3) with finite codimension at most K̃. This shows
that Assumption 6.2(iii) holds true. Hence the existence of a minimum
follows from Proposition 9.1. �

11. Infinitude of nonminimal solutions

We establish existence of infinitely many critical (or saddle) points
(a,φ) for EK,N on CK,N by giving a new application of the Lions-Fang-
Ghoussoub approach.

Theorem 11.1. Let K and N be positive integers such that K ≥ N
and N − 1 < Ztot < Zc, where Ztot =

∑L
l=1 Zl is the total nuclear

charge and Zc = 2α−1π−1. If K ≥ N and J ⊂ CJ ,K,N satisfies Def-
inition 6.1, then there exists an infinite sequence {(a(j),ϕ(j))}j≥1 of
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distinct critical points of the MC functional EK,N on CJ ,K,N . The func-

tions ϕ
(j)
1 , . . . , ϕ

(j)
K satisfy the quasi-relativistic MC equations((

T̃0 + Ven

)
D(j) + 2Eϕ(j)

)
ϕ(j) + Λ(j) ·ϕ(j) = 0, (11.1)

Tϕ(j) · a = ζ · a(j) (11.2)

for some Λ(j) ≥ 0. Moreover, as j → ∞, the corresponding sequence
of wave functions {Ψ(j)}j≥1 satisfies

E(Ψ(j)) < 0, E(Ψ(j))→ 0, Λ(j) → 0√
D(j)T̃

1/2
0 IKϕ

(j) −→ 0 strongly in (L2(R3))K .

To prove that there exists a critical point at infinitely many distinct
levels, we first apply an abstract result on critical points by Fang and
Ghoussoub [15]. Consider the C2-functional EK,N on the complete,
analytic Hilbert-Riemann manifold CK,N ; see Theorem 4.1. (In prior
applications of the Lions-Fang-Ghoussoub approach the necessary geo-
metric properties of the variational space, imposed in [15, Theorem
1.7], were not mentioned [31, 15, 29].)

We note that Z2 = {−1, 1} equipped with multiplication as binary
operation and the discrete topology can be considered as a compact
(0-dimensional) Lie group, with group action on Sk−1 of Rd given by

(±, x) 7→ ±x (11.3)

and, on CK,N we introduce the group action

(−)·φ(a,φ) = (a,−φ), (11.4)

Then EK,N is (Z2)φ-invariant 5 on CK,N , i.e., EK,N(a,φ) = EK,N(a,−φ).

5The significance of this choice of action is as follows [29]: Let Θk be the fam-
ily of all odd continuous maps from Sk−1 into the sphere of the N -particle space

H
1/2
a (R3N ) and let ΠK,N be the natural projection from CK,N into H

1/2
a (R3N ), i.e.,

ΠK,N : (a,φ) 7→ Ψ =
∑
J

aJφJ .

Then the eigenvalues of TN,Z,α can be expressed by

νk = min
g∈Θk

max
Ψ∈g(Sk−1)

E(Ψ)

The choice (11.4) ensures that g = ΠK,N ◦h belongs to Θk for all (Z2)φ-equivariant

functions h : Sk−1 → CK,N (in other words, ΠK,N ◦ h is odd).
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Next we make preparations for the min-max principle: For each
k ∈ N, we consider the following homotopic class of order k

Hφk = {M : M = h(Sk−1) for some odd h ∈ C(Z2)φ
(Sk−1; CK,N) },

(11.5)
where Sk−1 is the unit sphere in the Euclidean space Rk. For the full
MC method we define

lKk = inf
M∈Hφk

max
(a,φ)∈M

EK,N(a,φ), (11.6)

and, analogously, for the partial MC method we can define lJ ,Kk by
replacing CN,K by CJ ,K,N in (11.5)-(11.6). The choice of the min-max
in (11.6) is similar to the one in [31, 19, 35, 29].

Proof of Theorem 11.1. Since the min-max level (11.6) is defined via
(Z2)φ-homotopic classes of dimension k for each k, an application of
the abstract results by Fang and Ghoussoub [15, Theorem 1.7] enables

us to extract a sequence {(a(j),φ(j))} (one sequence for each k) sat-
isfying Assumption 6.2 with k = m. In view of Proposition 9.1, this
sequence converges (up to extracting subsequences) to some critical

point (a(k),ϕ(k)) of EK̃,N on CJ ,K̃,N with K̃ ≤ K. By adding any

(ϕ
(k)

K̃+1
, . . . , ϕ

(k)
K ) we obtain solutions of (11.1)-(11.2) with Λ ≥ 0. We

proceed to the study of {lJ ,Kk }. Both K ≥ N and J are fixed and,
therefore, we suppress these superscripts in the sequel.

We claim that −∞ < lk ≤ lk+1 < 0 for each k ∈ N and that lk → 0
(as k → ∞). The monotonicity of {lk}∞k=1 is a direct consequence of

how we have defined Hφk and since EK,N is uniformly bounded below on
CK,N , we immediately get that lk > −∞. If we introduce jk = k ·K,
then an application of Lemma 8.1 ensures that, for each k ≥ 1, there
exists a jk-dimensional subspace Hk of H1/2(R3) such that for all φ ∈
Hk with ‖φ‖L2(R3) = 1 (we denote the unit sphere in this subspace by

S̃k−1), one has

t̃0[φ, φ] + ve[φ, φ] +

∫
R3

∫
R3

ρ(x)|φ(x′)|2

|x− x′|
dxdx′ ≤ −εk,

for some εk > 0. We can always build an L2-orthonormal basis {φn}jkn=1

of Hk consisting of radially symmetric C∞0 (R3)-functions satisfying

suppφm ∩ suppφn = ∅, m 6= n. (11.7)
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Without loss of generality, we assume that {1, . . . , N} ∈ J . We may
re-write the quasi-relativistic (QR) Hartree-Fock functional EQR as

EQR(φ1, . . . , φN) =
N∑
n=1

(̃
t0[φn, φn] + ven[φn, φn] + vµn∗(1/|x|)[φn, φn]

)
−1

2

N∑
m 6=n=1

∫
R3

(
(φmφn) ∗ 1

|x|

)
φmφn

with

µm =
N∑

n=1,n 6=m

|φn|2 and

∫
R3

µm = N − 1.

The nonnegativity of all terms∫
R3

(
(φmφn) ∗ 1

|x|

)
φmφn, m 6= n

implies that, for any continuous (Z2)φ-function h : Sk−1 → CJ ,K,N
defined by

(b1, . . . , bk) 7→




1
0
...
0

 ,


b1φ1 + · · ·+ bkφk

...

...
b1φk(K−1) + · · ·+ bkφkK




we have that, using (11.7),

EK,N (h(b1, . . . , bk)) =

= EN
(
(b1φ1 + · · ·+ bkφk) ∧ · · · ∧ (b1φk(N−1)+1 + · · ·+ bkφKk)

)
= EN

 k∑
n1=1

· · ·
kN∑

nN=(N−1)k+1

bn1 · · · bnN−(N−1)k(φn1 ∧ · · · ∧ φnN )


=

k∑
n1=1

· · ·
kN∑

nN=(N−1)k+1

(bn1 · · · bnN−(N−1)k)
2EN (φn1 ∧ · · · ∧ φnN )

=
k∑

n1=1

· · ·
kN∑

nN=(N−1)k+1

(bn1 · · · bnN−(N−1)k)
2EQR(φn1 , . . . , φnN )

≤
k∑

n1=1

· · ·
k∑

nN=1

(bn1 . . . bnN )2 (−Nεk) = −Nεk < 0
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for all (b1, . . . , bk) ∈ Sk−1. This proves lk ≤ maxh(Sk−1) EK,N(h) < 0.

To prove that limk→∞ lk = 0, we use the separability of (H1/2(R3))K

by considering a nested sequence of finite-dimensional subspacesWk of
(H1/2(R3))K such that dim (Wk) = k and ∪kWk is dense in (H1/2(R3))K .
Define Vk as the orthogonal complement ofWk−1. From above, we know

that lk < 0 for every k ≥ 1 and, therefore, we can find Mφk ∈ Hφk such
that

lk ≤ max
M
φ
k

EK,N <
lk
2

(11.8)

Suppressing the supscripts for simplicity, we may assume that Mk∩Vk =
∅, let πk be the orthogonal projection from H1/2(R3) onto Wk. Then
(note that Vk+1 = Ker (πk) ⊂ Vk)

πk−1(Mk) ⊂ Wk−1 \ {0} ∼= Rk−1 \ {0}.

Since Mφk = h(Sk−1), for some h ∈ C(Z2)φ
(Sk−1; CK,N) we have the

existence of a continuous and odd map from Sk−1 to Rk−1 \ {0}. By
following Rabinowitz [35] and using the Borsuk-Ulam theorem we will
now get the existence of two antipodal points on Sk−1 which maps (due
to symmetry) to 0 and hence we have reached a contradiction. For
each k fix some ϕ(k) ∈ Mk ∩ Vk and extract a H1/2(R3)K-weakly con-
vergent subsequence {ϕ(k)}k. Hence we have {a(k),ϕ(k)} such that a(k)

is bounded and ϕ(k) ⇀ 0 weakly in H1/2(R3)K . Then an application
of Lemma 5.1 yields

lim inf
k→∞

EK,N(a(k),ϕ(k)) = 0. (11.9)

The latter, together with (11.8) implies that limk→∞ lk = 0.
Let us now prove the properties of the sequence {a(k),ϕ(k)}k≥1 of

distinct solutions. We have already seen that we may assume that
−∞ < lk < lk+1 < 0 so we may find a sequence such that

−∞ < lk−1 < lk = EK,N(a(k)ϕ(k)) < lk+1 < 0. (11.10)

We conclude that

EK,N(a(k),ϕ(k))→ 0.

For every k ≥ 1 there exists (a(k),ϕ(k)) and a nonnegative matrix Λ(k)

such that EK,N(a(k),ϕ(k)) = lk and (a(k),ϕ(k)) is a solution to the MC
equations (11.1)-(11.2). We infer that, as k →∞,

〈Eϕ(k)ϕ(k),ϕ(k)〉+ Tr [Λ(k)] = −EK,N(a(k),ϕ(k)) = −lk −→ 0

and, consequently, as k →∞,

〈Eϕ(k)ϕ(k),ϕ(k)〉 → 0 and Λ(k) → 0 (11.11)
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In view of (9.1), we see that the sequence {
√
D(k)ϕ(k)} is bounded in

H1/2(R3)K . Hence we may suppose that a
(k)
J ϕ

(k)
n converges weakly to

some ϕJ,n in H1/2(R3)K , strongly to ϕJ,n in L2
loc(R3) and a.e. for all

n = 1, . . . , K and all J satisfying n ∈ J . From (11.11) we deduce that
ϕJ,n = 0 and, therefore, in the sense of forms,〈(

T̃0 + Ven

)
D(k)ϕ(k),ϕ(k)

〉
−→ 0. (11.12)

The left-hand side of (11.12) has the decreasing property (5.2) and,

therefore, we conclude that
√
D(k)T̃

1/2
0 IKϕ

(k) → 0 strongly in L2(R3)K .
�

12. Comparison with full quantum mechanical quantities

We compare the eigenvalues of the full quantum mechanical Hamil-
tonian TN,Z,α, i.e.,

νk = min
dimV=k

max
Ψ∈V,
‖Ψ‖=1

E(Ψ) (12.1)

with certain critical points of EK,N on CK,N . For this purpose we intro-
duce the following group action of Z2 on CK,N , in addition to the one
already mentioned in (11.4),

(−) ·a (a,Φ) = (−a,Φ)

We say that a function f : Sk−1 → CK,N is (Z2)a-equivariant provided

h(x) = (a,Φ) implies that h(−x) = (−a,Φ).

It is apparent that EK,N is (Z2)a-equivariant on CK,N , i,e,

EK,N(a,Ψ) = EK,N(−a,Φ).

For 1 ≤ k ≤
(
K
N

)
, we define

νKk = inf
h∈C(Z2)c (Sk−1,CK,N )

max
(a,Φ)∈h(Sk−1)

EK,N(a,Φ) (12.2)

The following quasi-relativistic result is similar to the non-relativistic
result by Lewin [29, Theorem 2 (ii)]. Its proof is also similar and,
therefore, we omit it.

Theorem 12.1. Let K and N be positive integers such that K ≥ N and
N−1 < Ztot < Zc, where Ztot =

∑L
l=1 Zl is the total nuclear charge and

Zc = 2α−1π−1. Suppose 1 ≤ k ≤
(
K
N

)
. Then there exists (a(k),ϕ(k))

belonging to CK,N such that EK,N(a(k),ϕ(k)) = νKk . Furthermore, νKk
fulfills

νk ≤ νKk ≤ λKk
and, in particular, limK→∞ ν

K
k = νk.

HTTP://WWW.MMELGAARD.DK


SOLUTIONS TO THE QUASI-RELATIVISTIC... 31

Acknowledgement. The authors acknowledge M. Lewin [30] for pointing
out errors in the original version of [2]. This revised version of [2]
entirely avoids the use of density operator formalism.

References

[1] Sh. Agmon, Lectures on elliptic boundary value problems. Nostrand Mathemat-
ical Studies, No. 2 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London,
1965.

[2] C. Argaez, M. Melgaard, Solutions to quasi-relativistic multi-configurative
Hartree-Fock equations in quantum chemistry, Nonlinear Analysis: theory,
methods, and applications 75 (2012), 384–404.

[3] T. Bartsch, Z.-Q.-Wang, M. Willem, The Dirichlet problem for superlinear
elliptic equations, Stationary Partial Differential Equations Vol 2, 1-55, Handb.
Diff. Eqn., Elsevier/North-Holland, Amsterdam, 2005.

[4] J.-M. Barbaroux, W. Farkas, B. Helffer, H. Siedentop, On the Hartree-Fock
equations of the electron-positron field, Comm. Math. Phys 255 (2005), no. 1,
131-159.

[5] J. Borwein, D. Preiss, A smooth variational principle with applications to
subdifferentiability and to differentiability of convex functions. Trans. A.M.S.
303 (1987), 517-527.

[6] E. Chiumiento, M. Melgaard, Stiefel and Grassmann manifolds in Quantum
Chemistry (2011), submitted elsewhere.

[7] S. Cingolani, M. Lazzo, Multiple semiclassical standing waves for a class of
nonlinear Schrödinger equations, Topol. Methods Nonlin. Anal. 10 (1997), no.
1, 1–13.

[8] Dall’Acqua, S. Fournais, T. Ø. Sørensen, E. Stockmeyer, Real analyticity away
from the nucleus of pseudorelativistic Hartree-Fock orbitals, Analysis & PDE,
to appear (2011).

[9] A. Dall’Acqua, T. Ø. Sørensen, E. Stockmeyer, Hartree-Fock theory for pseu-
dorelativistic atoms. Ann. Henri Poincaré 9 (2008), no. 4, 711–742.
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