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Abstract—The use of reliable computational tools is 
fundamental to investigate different aspects of microwave breast 
cancer imaging. From the development of high-definition and 
realistic numerical breast models, different coupling mechanisms 
and the reaction of different tissues to microwave signals can be 
characterized. In this paper, field penetration inside four 
numerical breast phantoms with varying adipose content is 
evaluated in the frequency range 0.5 - 10 GHz across sagittal 
cuts. 

Index Terms—Voxel models, Coupling, Breast cancer, 
Microwave imaging. 

I.  INTRODUCTION 
As conventional X-ray mammography was shown to be 

limited due to poor benign/malignant tissue contrast [1], recent 
interest in active microwave based diagnostic approaches has 
proliferated. If higher spatial resolution is achievable by using 
X-ray ionizing radiation, radio frequency technology offers a 
suitable dielectric contrast between normal and diseased breast 
tissues which can be in the order of 2:1. RF breast cancer 
imaging technology can therefore have consequent high social 
and cost impact. These important potential outcomes have 
triggered the investigation of many microwave imaging 
techniques, aimed at detecting, localizing and identifying 
tumors in breast tissues [2, 3]. 

Microwave imaging research has also significantly 
developed towards sophisticated numerical and experimental 
breast models for the evaluations of antennas, radar 
configurations and algorithms. This aspect is particularly 
important for a research area which explores non-invasive 
cancer diagnostics where clinical trials represent the ultimate 
experimental assessment for a novel imaging system. In [4], 
[5] ex vivo breast tissues were electrically characterized across 
a large part of the microwave spectrum and described in terms 
of accurate Cole-Cole dispersion model. Alongside the 
electrical characterization of tissues, dedicated in-house 
software has been developed by several research groups and 
many of them have reached a very accurate electrical model of 
both benign and malignant tissues. At the same time, the strong 
interest in biomedical imaging applications in the range of 
radio frequencies has triggered the integration of specific tools 
into commercial code platforms. Reliable and complex 
numerical simulations enable a deep understanding of non-

apparent coupling and field propagation mechanisms. This 
assumes a particular importance for breast cancer detection as 
its performance strictly relates to the power delivered inside 
deep tissue layers. Breast tissues react to RF signals in 
different ways but three major phenomena can be generally 
observed:  

• Skin largely screens RF energy; 
• Adipose parts couple better; 
• Tissues with high water-content (i.e. glandular) 

strongly scatter. 
These mechanisms occur in very heterogeneous scenarios 

that change from patient to patient. However, according to 
their radiographic density, defined by the American College of 
Radiology [6], four categories were defined as follows: almost 
entirely fat (<25% glandular tissue), scattered fibroglandular 
tissue (25-50% glandular), heterogeneously dense breast (51-
75% glandular), and very dense breast (>75% glandular).  

While showing simulation capabilities of CST Microwave 
Studio for breast cancer detection, this numerical evaluation 
explores the penetration of RF signals through breast tissues in 
realistic heterogeneous scenarios. Results provide valuable 
information regarding expected power levels inside different 
categories of breast with varying fibroglandular / adipose ratios 
and for different frequencies. 

II. NUMERICAL INVESTIGATION 
In this paper, four 3-D numerical breast phantoms are 

selected within the Wisconsin’s repository [7] to represent the 
four categories above described. The chosen models are 
labeled as “Mostly Fatty ID071904”, “Scattered 
Fibroglandular ID012204”, “Heterogeneous Dense ID080304” 
and “Very Dense ID012304”, respectively. The phantoms are 
derived from T1-weighted magnetic resonance images (MRIs) 
of patients in a prone position. Each phantom comprises a 3-D 
grid of cubic voxels of 1 mm × 1 mm × 1 mm and is imported 
into CST Microwave Studio [8]. The structural heterogeneity 
of the breast incorporates the Cole-Cole dispersive dielectric 
models of ten different tissues reported by Lazebnik in [4], [5] 
and the CST 4-Cole-Cole dispersion models (Table I). The 
breast voxel models are immersed in coupling medium with εr 
= 10. For simplicity and generality, no dispersion is assumed 
for the coupling medium. Ideal probes are inserted inside the 



 
Mostly Fatty 

ID071904 
(a) 

Figure 1: Voxel breast models and reference cuts. 

Single-pole and 4-pole Cole

 ε∞ 

Fatty-1 2.293 

Fatty-2 2.908 

Fatty-3 3.140 

Transitional 4.031 

Fibroconnective/glandular-1 9.941 

Fibroconnective/glandular-2 7.821 

Fibroconnective/glandular-3 6.151 

 ε∞ Δε1 τ1 [ps] α1 

Muscle 4 50 7.234 0.100 

Skin 4 39 7.958 0.100 

numerical breast models to calculate the Figure 2: Geometry of the coplanar monopole. 

 

  
Scattered Fibroglandular 

ID012204 
(b) 

Heterogeneous Dense 
ID080304 

(c) 

 

Table I 
-Cole parameters for the dielectric properties associated with voxel b

Δε τ [ps] 

0.141 16.40 0

1.200 16.88 0

1.708 14.65 0

3.654 14.12 0

26.60 10.90 0

41.48 10.66 0

48.26 10.26 0

 

Δε2 τ2 [ns] α2 Δε3 τ3 [ps] α3 

7000 353.678 0.1 1.20E+6 318.310 0.1 2

280 79.577 0 3.0E+4 1.592 0.160 3

field intensity at 

different depth levels in the f
GHz. In the aim of crossing dif
ideal probes are placed along
corresponding to the nipple a
breast tissues (Fig. 1).  

This evaluation is initiall
irradiated by an ideal plane wa
field penetration and disregard 
and breast. Then, the field i
coplanar monopole is considere
to the breast (i.e. λm/2 at 5 GH
the coupling medium). The
monopole is shown in Fig. 2. 
1.58-mm thick Taconic CER1
the radiating element was beve
match over a larger frequency r 

 
Very Dense 
ID012304 

(d) 

breast models 
α σs [S/m] 

0.251 0.002 

0.069 0.020 

0.061 0.036 

0.055 0.083 

0.003 0.462 

0.047 0.713 

0.049 0.809 

Δε4 τ4 [ps] α4 
σs 

[S/m] 

2.5E+7 2.274 0 0.2 

3.0E+4 1.592 0.2 0 

frequency range from 0.5 to 10 
fferent layer distributions, one of 

g the axes in the sagittal planes 
area so to include all types of 

ly carried out with the breast 
ave in order to focus just on the 
coupling effects between source 
intensity is calculated when a 
ed as a source in close proximity 

Hz which is equal to 9.48 mm in 
e geometry of the co-planar 
The dielectric substrate used is 
0 material. The bottom edge of 

eled to extend a good impedance 
range. 



Table II 
Peak-value variation between Probe 1 and 3 

 
Ideal plane wave 

Breast Field variation [%] 
ID071904 27 
ID012204 36 
ID080304 40 
ID012304 54 

Coplanar monopole 
Breast Field variation [%] 

ID071904 58 
ID012204 62 
ID080304 80 
ID012304 84 

Three probes were considered to monitor the field 
penetration in the time domain, with Probe 1, 2 and 3 placed at 
0.5, 1.5 and 2.5 cm from the skin layer, respectively. 

 

III. RESULTS AND DISCUSSION 
Figures 3 show the signals captured at Probe 1, 2 and 3 for 

the four breast typologies investigated with an ideal plane 
wave used as source. All traces were normalized and displayed 
on the same time interval 0 – 7 ns. The stimulation is 
performed with a Gaussian pulse defined in the frequency 
range 0 – 10 GHz. It can be observed that, as expected, the 
signal undergoes stronger attenuation in breast models with 
larger fibroconnective/glandular tissue distribution. Another 
expected result is the increasing time-delay between probes in 
denser breast models. This aspect verifies the longer time 
needed by the signal to travel across highest-water-content 
materials. When an ideal plane is adopted as radiator, coupling 
issues between source and breast do not occur and the shape of 
the Gaussian pulse does not appear dramatically distorted. 
However, ringing effects can be noticed especially for highly 
heterogeneous and dense models. 

The effects of coupling occurring between realistic 
antennas and breast can be appreciated in Fig. 4 where the 
coplanar monopole in Fig. 2 was adopted as source. The 

effects observed with the ideal source such as increasing 
attenuation and time-delay towards deeper probes in denser 
breasts are still present. But they add up with pulse-distortion 
degradation due to the antenna and the complex reactive fields 
that appear between the antenna and the breast. Such distortion 
is very hard to characterize a priori as it strongly depends on 
the distance between, the antenna and the breast, the shape and 
the tissue distribution of the breast. 

Breast ID071904 Breast ID012204 

 

Breast ID080304 Breast ID012304 
Figure 3: Time signals at Probes 1, 2 and 3 with ideal plane wave radiation (Probe 1 – black trace, Probe 2 – red trace, Probe 3 – blue trace). 

 



 
Although arbitrary choices such as the breast models 

selected, the location of the probes and the coplanar monopole 
geometry relative were made in this article, relative 
comparisons are informative. The field intensity variation 
between Probe 1 and 3 (0.5 and 1.5 cm from the skin layer, 
respectively) for different breast models are under 
investigation was calculated and summarized in Table II. 
Relative variations show a challenging attenuation of the field 
when it travels 1.5 cm inside the breast. 

This numerical investigation shows the suitability of CST 
Microwave Studio for the analysis of electromagnetic 
phenomena in presence of highly accurate MRI-based voxel 
models. Moreover, the difference between plane wave and 
monopole on the signal degradation justifies the employment 
of ideal sources only for preliminary evaluation of breast 
imaging algorithms. On the other hand, the strong dependence 
of the signal distortion on coupling effects motivates the 
interest on algorithms which operate with limited a priori 
antenna response information [9]. 
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Breast ID080304 Breast ID012304 
Figure 4: Time signals at Probes 1, 2 and 3 with coplanar monopole (Probe 1 – black trace, Probe 2 – red trace, Probe 3 – blue trace). 
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