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ABSTRACT 

The mathematical concept of function is challenging for students in first-year 

undergraduate mathematics courses, especially when the concept is applied in the 

context of STEM courses. This difficulty is often due to a lack of conceptual 

understanding of functions. From a normative perspective, conceptual understanding 

of functions involves 1) dealing with the different representations of a function, 

namely table, graph, analytical term and verbal description, while 2) considering 

three different aspects of functions, namely correspondence, covariation and object. 

Previous research suggests that the covariation aspect is essential for achieving a 

sophisticated conceptual understanding of functions. In order to promote the 

conceptual understanding of functions, a digital self-learning environment was 

developed and implemented in the first-year basic mathematics course at the School 

of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland 

(FHNW). To facilitate the transfer of mathematical knowledge to applied STEM 

courses, the mathematical learning environment focuses on chemical reactions, 

where the concentration of the reactants is analysed. Initial findings from the 

qualitative content analysis show 1) how students use the different aspects of 

mathematical functions in the context of chemical reactions and 2) how the 

covariation and object aspects support students in linking the chemical context to 

mathematical representations.  

1 INTRODUCTION 

1.1 Mathematical Functions in Life Sciences 

The application of mathematical functions is important in many STEM applications, 

as they are frequently used to describe real-world phenomena (Rogovchenko and 

Rogovchenko 2022). Therefore, a conceptual understanding of functions is a 

prerequisite for students entering STEM studies at university (Eberle et al. 2015; 

Neumann, Pigge, and Heinze 2017) even though many have problems dealing with 

them (Bain and Towns 2016; Ivanjek et al. 2016). One source of difficulty may be 

that functions, as an abstract concept, are only accessible through external 

representations (Duval 2006). The most common representations of functions are 

graphs, tables, algebraic equations and verbal descriptions. The latter can be 

considered as a situational description when a real-world context is given, e.g. every 

20 minutes the number of cells doubles. To develop a sophisticated understanding of 

functions, one should be able to switch flexibly between these representations and 

know which is more appropriate for a given task. Research suggests that switching 

between representations is more difficult when a situational description is included 

(Bossé, Adu-Gyamfi, and Cheetham 2011), so it is expected that students will 

struggle to interpret graphs and the situational meaning of given parameters in 

algebraic equations. 

Chemical kinetics, a subfield of physical chemistry, “is one of the areas that utilizes 

mathematics as its primary representation to communicate observations, analyses, 

and interpretations” (Bain and Towns 2016). It analyses the mechanisms of chemical 



reactions, focusing on reaction rates and the factors that influence those rates. This 

can be done by measuring the change in reactant concentration over time. The most 

basic chemical reactions are of zero and first order and can be described accordingly 

using linear or exponential functions (Elstner 2017). Several qualitative studies have 

reported the difficulties students have in interpreting graphs in chemical kinetics and 

in transferring knowledge from mathematics to chemistry and vice versa. Students 

tend to have a static view of the graph and associate it with specific phenomena, i.e. 

a Michaelis-Menten curve. This can be problematic when similar graphs occur in 

different applications and when a dynamic view of functions requires two or more 

varying quantities to be considered. In general, the graph covers a lot of information 

simultaneously in the context of chemical reactions. In fact, students tend to feel 

anxious when dealing with a graph, resulting in lower performance when asked 

equivalent questions using a graph instead of a table or algebraic equation 

(Rodriguez et al. 2019). In order for students to feel more confident in dealing with 

the mathematical representations and mapping contextual meaning onto these 

representations, they need to have a sophisticated conceptual understanding of 

functions. This paper explores how students engage with mathematical functions in a 

life sciences context, and how aspects of functional thinking might help to map 

contextual meaning onto mathematical representations.  

1.2 Developing functional thinking 

Functional thinking is “a way of thinking that is typical for dealing with functions” 

(Vollrath 1989). Three key aspects of functions are said to be typical: 

correspondence, covariation and the function as an object. The correspondence 

aspect emphasises that a function describes a relationship between two quantities, 

where each element of one quantity, e.g. the independent variable such as time, is 

mapped to an element of the other quantity, e.g., the dependent variable such as 

distance. Covariation focuses on how a change in the value of the independent 

variable affects changes in the value of the dependent variable. Viewing the function 

as a whole requires viewing the given functional relation as a new object that has its 

own properties and can be manipulated by operations. The correspondence aspect, 

which is mainly present in the definitions of functions, is the easiest for students to 

grasp. However, covariation is more important for understanding functional relations, 

and many difficulties students have can be explained by an inability to perceive the 

changing nature of functions (Malle 2000). Covariational reasoning is developmental 

and distinct levels of covariation can be achieved (Thompson and Carlson 2017). If 

someone can reason on a certain level, they are expected to be able to reason on all 

levels below that. Consequently, teaching the concept of function with a special 

focus on covariation should aim at the highest level which includes the ability to 

envision covariation smoothly and continuously. 

Lichti investigated to what extent hands-on experiments or equivalent simulations 

with GeoGebra applets promote functional thinking (Lichti 2019). After the 

intervention, both groups showed significant learning gains in functional thinking with 

the simulation group making greater progress. Based on the students' written 



answers, the simulations promote reasoning based on covariation, while the hands-

on group focused on the mapping of single values, i.e. correspondence. This is 

comprehensible due to the dynamic features of the GeoGebra applets, allowing for 

quick and easy manipulations of the independent variable to obtain values of the 

dependent variable instantaneously, thus enabling students to grasp the two 

covarying quantities more easily. Additionally, connections between different 

representations can be realised through subsidiary lines or colouring. The graph was 

found to be more efficient than a table for learning qualitative and quantitative 

functional thinking (Rolfes, Roth, and Schnotz 2022). 

2 METHODOLOGY 

2.1 Participants 

The current study took place in the first semester of an undergraduate mathematics 

course at the School of Life Sciences of the University of Applied Sciences and Arts 

Northwestern Switzerland (FHNW). The course is compulsory for all undergraduates 

and therefore students from seven different fields of study take part. The learning 

environment was implemented during the first two weeks of the functions topic and 

consisted of consecutive exercises with corresponding GeoGebra applets. The 

material was provided through the MOODLE learning management system (LMS). 

After finishing an exercise, the students were asked to upload a file with their written 

answers. The analysed data refers to the second exercise of the learning 

environment. In total n= 89 students submitted their written answers of the second 

exercise. 

2.2 Design of the learning environment 

In developing the learning environment, the objectives were to identify a life sciences 

context 1) that is based on the concept of function and has the potential to promote 

conceptual knowledge and 2) that uses the representation of a graph with naturally 

arising varying quantities. These criteria were met by chemical kinetics, which has 

the potential to be beneficial for teaching the concept of functions (Rodriguez et al. 

2019). As not all students choose a study direction that involves chemical kinetics, 

the learning environment should not require any prior knowledge of chemistry, but 

should leave some room for possible argumentation using prior chemistry 

knowledge. 

With the development of GeoGebra applets, a chemical reaction was simulated and 

linked to a graph. The applets are therefore divided into two main parts, see Figure 

1. The right part shows the developing graphs over time. The left part shows three 

bars representing the concentrations of the two reactants. The furthest left bar 

illustrates the cumulative concentration of both reactants, emphasising that 1) total 

concentration is constant over time and 2) the reaction could take place in a single 

vessel. The two adjacent bars show the concentration of each reactant separately. 

The height of the bars is related to the developing graphs. The dashed lines starting 

at the height of the bars and ending at the corresponding point in a two-dimensional 

coordinate system support the transfer from the simulated situation to the 



mathematical graph. To run the reaction, students can drag the time slider, which will 

simultaneously decrease concentration A and increase concentration B while the 

elapsed time is visualized by a thick black line on the horizontal axis. Below the 

coordinate system, check boxes allow the graph of each reactant to be shown or 

hidden. 

 

Fig. 1. Structure of the GeoGebra Applet 

Activating the trace checkbox leaves all measured points, i.e. the potential curve, 

visible. With this applet students can easily carry out the chemical reaction and 

experience the connection to an evolving graph without doing any procedural tasks. 

The tasks in the exercises can therefore focus on describing and explaining the 

dynamic process of the chemical reaction in multiple representations and the 

translation between these representations. For example, in the second exercise the 

graph is introduced, and the first subtasks ask the students to explain how the 

elements of the bar chart (slider and height of the bars) are related to the moving 

point in the coordinate system, see Figure 2. Subsequent tasks require a comparison 

of the change in concentration during given time periods and an explanation why the 

change in concentration is continuously decreasing.  

2.3 Data Analysis 

To analyse the students’ written answers, a content structuring qualitative analysis 

procedure was used (Kuckartz and Rädiker 2022). After the initial data overview, 

deductive main categories from literature were identified to code the material. The 

main categories consist of the three aspects of functional thinking, i.e. 

correspondence, covariation and object, as well as the different representations of 

functions used in the applet, i.e. graph, algebraic equation, bar chart and situational 

description. After the initial coding process, each main category is divided into 

smaller subcategories which show how students used the three aspects of functional 



thinking in the context of a chemical reaction. In addition, we can show how they 

were linked to different representations and how they might be helpful in the 

transition between representations. In particular, switching between a mathematical 

representation and the situational description is analysed. The analysed task 

consists of ten subtasks which have been coded separately. Multiple codes can be 

assigned per subtask or sentence, illustrated in Figure 2. Since the aspects of 

functional thinking can occur in combination with different representations the coded 

segments can overlap or intersect. 

 

Fig. 2. Coding a student answer in MAXQDA 

3 RESULTS 

3.1 Subcategories of the aspects of functional thinking 

The subcategories of the correspondence aspect are listed in Table 1. Due to 

difficulties in coding the students’ responses without misinterpreting their thoughts, 

another category (mapping (vague)) has been added for answers that probably refer 

to the code “mapping”. The last subcategory already indicates a dynamic view of the 

relationship between time and concentration and can be considered as a pre-

category of covariation. As it explicitly focuses on the mapping of multiple time 

values to a concentration value, it still belongs to the correspondence aspect. 

Table 1. Subcategories of the correspondence aspect 

Subcategory Description Examples Frequency 

Mapping A student writes that time is mapped 

to the concentration.  

The red point shows the 

concentration of A at a 

certain point in time. 

36 

Mapping 

(vague) 

A relationship between time and 

concentration is described. However, 

it is not clearly characterised as a 

mapping of the two quantities. 

The height of the column 

indicates the concentration 

of A in the context of the 

minutes. 

17 

Starting 

concentration 

The initial concentration of A (2 mol/l) 

or B (0 mol/l) at time t = 0 min is men-

tioned. Both quantities must be given. 

During this reaction, at time 

t=0, 𝑐𝐴 of A is at 2 mol/l and 

𝑐𝐵 at 2 mol/l. 

12 

Mapping 

(dynamic) 

Time is seen as a variable quantity. 

Nevertheless, the process of mapping 

time onto concentration is described. 

As you drag slider t, bar A 

indicates the corresponding 

concentration. 

4 

 

Comparing frequencies of the correspondence aspect subcategories with those of 

the covariation aspect, summarised in Table 2, it becomes clear that students more 

often describe features of the applets that show the dynamically changing quantities. 

Given the levels of covariational reasoning, only the level of gross coordination of 

values could be clearly identified. One could argue that the distance or secant line 



between adjacent points indicates argumentation at a higher level, i.e. chunky 

continuous covariation, but it is not clear whether students imagine going through all 

these values between adjacent points or not. So, another label was chosen. 

Table 2. Subcategories of the covariation aspect 

Subcategory Description Example Frequency 

Quantitative Students calculate the 

absolute change in 

concentration or describe the 

procedure. 

Look at the position of the 

previous point on the graph. 

Read the y-value. Do the same 

for the next point, then 

calculate the difference. 

31 

Gross coordination 

of values (see 

(Thompson and 

Carlson 2017)) 

Students write that 

concentration increases or 

decreases as time increases. 

The concentration decreases 

as the time increases. 

132 

Distance of points The change in time and 

concentration is registered 

by the distance between 

adjacent points. 

The points in the coordinate 

system in period 1 have a 

greater difference than those 

in period 2. 

32 

Slope The change in time and 

concentration is described by 

the slope at a single point or 

of a secant between adjacent 

points. 

If one were to connect the two 

points for the two periods, the 

slope would be greater for the 

first period → greater change 

53 

 

Overall, the frequencies of all subcategories of the object aspect, summarized in 

Table 3, are higher than those of the correspondence aspect but lower than those of 

the covariation aspect. Some subcategories of the object aspect implicitly describe 

the change in time and concentration, i.e. flattening, declining change or 

monotonicity. They were assigned to the object aspect because they describe 

properties of an exponential function that are only accessible if considering the whole 

function. 

Table 3. Subcategories of the object aspect 

Subcategory Description Example Frequency 

Flattening The flattening graph is described.  The red curve flattens with time. 70 

Function type A function type, i. e. linear, 

exponential, or Michael-Menten 

curve is given to describe or 

delimit the functional relationship. 

An exponential decrease can be 

detected across the measuring 

points. 

71 

Declining 

change  

The change in concentration is 

detected as decreasing with time.  

The more time passes, the less 

the concentration decreases. 

28 

Monotonicity The graph or concen-tration of A 

or B is considered to be 

decreasing or increasing over the 

entire time period. 

The coordinates show the 

progress of 𝑐𝐴, which decreases 

more and more and 𝑐𝐵, which 

increases more and more. 

58 

 



Obviously, if a person captures the declining decrease in concentration over time 

they must somehow imagine two covarying quantities, i.e. covariation. The category 

function type was coded most often, which is understandable as students should 

already know about polynomial and exponential functions. It remains open, whether 

they recognise the shape of the graph or other properties to identify a particular 

function type. 

3.2 Representations and translation processes between mathematical 
representations and situation descriptions 

In this exercise “graph” was coded 𝑛𝐹𝐺 = 529 times and “bar chart” was coded 𝑛𝐵𝐶 =

80 times. One person tried to derive an algebraic equation and no one made a table. 

Since these representations are not provided in the applet, this was to be expected. 

Graph and bar chart were coded, when the term itself or parts of each representation 

were explicitly mentioned. The bar chart and the graph were mentioned together in 

56 cases, most of which consist of the description that the height of the bar 

describing the concentration of A is equal to the height of the red dot in the 

coordination system. This does not necessarily address one of the aspects of 

functional thinking. On the other hand, when only the bar chart is mentioned, most 

answers address a subcategory of the covariation aspect. This suggests that 

students who recognise the dynamic relationship between time and concentration in 

the bar chart, and see that the height of the bar is equal to the height of the point, are 

likely to see the graph as describing two changing quantities. We also identified 

translations between the mathematical representations (bar chart, graph) and the 

situation. As the applet covers some terms that can be used to describe the chemical 

reaction, we could not code every response that contained the words concentration 

or time. Therefore, only those responses were coded that clearly attempted to map 

contextual meaning onto the mathematical representations. Currently, 73 responses 

show a translation between the situation and either the graph or the bar chart. A 

subcategory of covariation is addressed in most of them. An example is: “The height 

of the bar indicates the corresponding concentration. If the concentration decreases, 

the red point decreases accordingly”. In the first sentence, the person imagines that 

the bar represents the concentration of A, i.e. a translation from the bar chart to the 

situation has occurred. The next sentence describes the change in concentration 

and explains the movement of the point, i.e. a translation was made starting from the 

situation to explain the movement of the point. Another example illustrates the 

translation from the graph to a situation description: “The red point in the coordinate 

system moves to the bottom right when the slider is moved to the right, which means 

that the concentration decreases over time”. Here the person describes the 

movement of the point covariationally (subcategory: gross coordination of values) 

followed by a situation description of the change in concentration A. 

4 SUMMARY 

Although some students seemed to have difficulties explaining the functional 

relationship between time and concentration in written form, the bar chart simulation 



firstly helped students to understand the dynamic relationship between time and 

concentration because they described the situation dynamically when referring only 

to the bar chart. Secondly, the height translation between the bar and the point in the 

coordinate system indicates that they relate the bar chart or the situational context to 

the graph and see the graph as a representation that describes a dynamic situation. 

Students tended to focus more on the covariation or object aspect than on the 

correspondence aspect, in line with literature (Vollrath 1989; Lichti 2019). 

Covariational reasoning (Thompson and Carlson 2017) was only present at the level 

of gross coordination of values, which could be due to the nature of the exercises, 

and it is possible that students were capable of higher level reasoning. Two reasons 

may explain the students’ focus on the object aspect: 1) the representation of a 

graph is suitable for recognising the whole function and 2) students use prior 

knowledge from school to help them recognise function types as well as typical 

properties of functions. In the next course, accompanying video material may be 

recorded to give more insight into the use of the applets and allow a better distinction 

between the aspects of functional thinking. 

Overall, the study suggests that dynamic applets have high potential for visualising 

covariation features of functions, but additional exercises could encourage more 

elaborate covariational reasoning, i.e., higher levels of covariational reasoning. In 

addition, preliminary results suggest that covariational reasoning supports translation 

processes involving a situation description. To support a covariational view in 

teaching the concept of function, computer-based simulations offer great potential 

because the underlying relationships are presented dynamically. Instructors then 

need to focus on the process that leads to an entire graph, rather than just on the 

result. Analysing the change in incremental intervals by looking at adjacent points or 

by anticipating values between points is important for thinking about different types 

of function that might be appropriate to describe the relationship of the underlying 

quantities. 
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