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Evaluation of silver nanoparticle encapsulation in DPPC-based liposome by
different methods for enhanced cytotoxicity

Azeez O. Yusufa,b and Alan Caseya,b

aSchool of Physics, Dublin Institute of Technology, Dublin, Ireland; bNanolab Research Centre, FOCAS Research Institute, Dublin Institute of
Technology, Dublin, Ireland

ABSTRACT
Here we carried out a comparative study on two cost and time effective methods of encapsulating
silver nanoparticles (AgNP) in dipalmitoyl-phosphatidyl choline (DPPC)/cholesterol-based liposome
to enhance its cytotoxicity and reduce cytotoxic concentrations and evaluated the effect of this
on a blood cell line (THP1 monocytes) often involved in uptake of nanoparticles during human
exposure. DLS and Zeta potential analyses over a 6-months period showed the extruded Lipo-
AgNP (ExLipo-AgNP) exhibited more stable characteristics when compared with the probe-soni-
cated Lipo-AgNP (PB-Lipo-AgNP). SEM microscopy indicated agglomeration of the PB-Lipo-AgNP
which was not observed in Ex-Lipo-AgNP. Ex-Lipo-AgNP also exhibited higher temperature-
dependent stability with 35.3% reduction in size from 20 �C to 37 �C while PB-Lipo-AgNP was less
stable exhibiting 55% size reduction over same temperature range. Load release study over 24 h
showed a controlled load release from Ex-Lipo-AgNP while the PB-Lipo-AgNP exhibited burst
release at pH 4 and 6.5. Interestingly, it was found that Ex-Lipo-AgNP induced significantly higher
toxicity on THP1 cell line after 24 h exposure compared with control unexposed cells; uncoated
AgNP and PB-Lipo-AgNP exposed cells at the same concentration. Thus, for the first time, we
report that liposomal encapsulation of AgNP by extrusion produces a stable nanocapsule with
enhanced cytotoxicity, thus preventing overreliance on high AgNP concentration to achieve
desired toxicity.
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1. Introduction

Silver nanoparticles (AgNP) are a widely used nanoparticle
for its antibacterial activities and many of the already com-
mercialized products contain AgNP in high concentrations

as the active ingredient. For example, AgNP is widely used
as antibacterial coating on medical garments and surgical
equipment and even on food materials to prolong shelf life
by preventing food degradation consequent upon bacterial
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metabolism and growth[1,2]. In addition, AgNP are currently
being investigated by different studies as a chemotherapeutic
in cancer treatment[3–6]. Unfortunately, with the rise in the
biomedical applications of AgNP, development of adverse
conditions due to repeated human exposure to AgNP is
imminent either from direct contact with products contain-
ing AgNP or AgNP that has leached into the ecosystem.
AgNP has been reported to cause several adverse effects
such as skin irritation and discoloration, hepatotoxicity, kid-
ney damage, DNA damage and epithelia cell damage[7].

Adverse reactions of conventional drugs are not uncom-
mon and improvement on the delivery mechanisms has
been a major way to limit these setbacks. For AgNPs how-
ever, there has been little or no research into how to
improve upon the delivery mechanism to enhance their
antibacterial or anticancer activities. The applications of
liposomes in drug delivery systems (DDS) have been
studied for more than two decades and there have been
significant improvements in the formulations and methods
by which liposome are prepared. For instance, phospha-
tidyl choline (PC) based lipids are highly used in liposome
preparation likely due to the fact that PC makes up about
80% of the surfactants found on epithelial lining of human
airways and lungs. Interestingly, the majority of the PC in
the human airways is present in the form of dipalmitoyl-
phosphatidyl choline (DPPC), and this makes up about
60% of the natural surfactants found in the human airways
and lungs[8]. Consequently, DPPC is highly unlikely to
elicit immune response when incorporated in a liposomal
formulation compared to the other derivatives.

Liposomes are designed to mimic the lipid bilayer of the
cell membrane and while the natural bilayer of the cell
membrane is made up different phospholipids, they also
contain cholesterol molecules that help restrict the move-
ment of the fluid phospholipid molecules. In the same
manner, it has been shown that cholesterol, when incorpo-
rated in liposomal formulations at the right concentration
can produce such rigidity to protect the liposomal con-
tent[9]. In this study, AgNP synthesized by chemical reduc-
tion of silver nitrate (AgNO3) using sodium borohydride
(NaBH4) was encapsulated in a DPPC/cholesterol liposome
to both stabilize and improve the uptake of the AgNP in
vitro for enhanced cytotoxicity. Two simple encapsulation
methods were trialed AgNP, followed by nanoparticle
characterization and evaluation of cytotoxicity on a THP1
cell line, a monocytic cell line which acts as first line of
Defense against nanoparticle during exposure[10].

2. Materials and methods

2.1. Chemicals and reagents

Silver nitrate (AgNO3), sodium borohydride (NaBH4), DPPC,
cholesterol, Phorbol 12-myristate 13-acetate (PMA) and propi-
dium iodide (PI) were purchased from Sigma Aldrich, Dublin,
Ireland while chloroform, Calcein-AM dye and Alamar blue
(AB) were from ThermoFischer Scientific, Dublin, Ireland.

2.2. AgNP synthesis

To synthesize AgNP, 6mL of 1mM of AgNO3 solution
was added dropwise into an Erlenmeyer flask containing
magnetic stirrer a 350 rpm and ice cold 30mL of 2mM of
NaBH4. The stirring was continued until last drop when
the stirrer was removed for the solution to turn golden
yellow. The obtained AgNP was characterized by UV/Vis
in a Spectramax M2 microplate reader while atomic
absorption spectrophotometry (AAS) was employed to
monitor silver (Ag) concentration using a SpectrAA200
Varian Spectrophotometer (Mulgrave, VC, Australia). The
samples were analyzed with a silver hollow cathode lamp
at an operating current of 7.5mA. Hydrodynamic size of
AgNP and liposomal AgNP (Lipo-AgNP) was carried out
with Malvern Zetasizer Nano ZS (Malvern Panalytical,
Malvern, UK). Nanoparticles were loaded into a prerinsed
folded capillary cell up to the marked portion. For zeta
potential, an applied voltage of 15 and 50 V was used for
Lipo-AgNP and free AgNP respectively.

2.3. Liposome synthesis, AgNP encapsulation and
characterization

Liposome was prepared by probe sonication and extrusion
methods. DPPC and cholesterol were weighed in a mass ratio
such that eventual rehydration of the lipid film obtained will
give a 7:3 molar ratio solution respectively. The lipids were dis-
solved in a fixed amount of chloroform and mixed until the
mixture becomes clear. The resulting solution was placed in a
vacuum oven set at 52 �C for the chloroform to evaporate.

2.3.1. Probe sonication method
The lipid cake formed was then rehydrated in AgNP solution
at 60 �C. AgNP solution were added to the lipid at 1:300
(w/w) of AgNP:DPPC after which the solution was vortexed
briefly for 2min to form multi-lamellar vesicles (MLV). The
mixture was probe sonicated at 21% amplitude, 20 s run and
20 s pause for 4 cycles to form Small Uni-lamellar Vesicles
(SUV). The resultant mixture was then centrifuged at 800 �g
for 10min at 4 �C to remove any MLVs. The suspension was
subjected to DLS and zeta potential analysis for size and
stability measurements respectively.

2.3.2. Extrusion method
The lipid film was rehydrated in AgNP solution at 60 �C to
make the final concentration at 1:300 (w/w) of AgNP:DPPC.
The solution was placed in the shaker at 60 �C on 140 rpm
for another 20min after which it was vortexed briefly
for 2min to form multi-lamellar vesicles (MLV). This was
then extruded through a 100nm “Nanosizer” polycarbonate
extruder purchased from T&T Scientific (Knoxville, USA).
The suspension was subjected to DLS and zeta potential ana-
lysis for size and stability measurements respectively.
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2.4. Temperature-dependent size measurements,
stability tests and pH-dependent drug release study

To check the effect of incubation conditions on the nano-
capsules, both probe-sonicated (PB-Lipo-AgNP) and Ex-
Lipo-AgNP were subjected to temperature dependent size
stability tests. This was done by preparing a solution Lipo-
AgNP in 10% fetal bovine serum (FBS) supplemented
RPMI-1640 and subjecting them to DLS size measurements
over a temperature range of 20 �C–38 �C with 1 �C incre-
ments of temperature.

For nanoparticle stability determination, variations in
nanoparticles mean size and zeta potential of both Ex-Lipo-
AgNP and PB-Lipo-AgNP were measured at a specific inter-
val over a period of 6 months at both 4 �C (storage tempera-
ture) and 24 �C (room temperature). 5mL of PB-Lipo-AgNP
and Ex-Lipo-AgNP were incubated at 4 �C and 24 �C and
1mL sample was taken at each time point for analyses at
specific time interval.

For pH dependent AgNP release from the nanocapsules,
1mL of the encapsulated AgNP was added into a FLOAT-
A-LYZER G2 CE dialysis tube with a 1000KDa MW cut off
(Spectrum Labs, Breda, Netherlands). The dialysis tube was
placed in 6mL of either an acetate buffer (pH 6.5) or a
phosphate buffer saline (PBS) at pH 7.45. The ratio between
the inside and outside volumes were maintained as thus to
facilitate easy movement of the AgNP as recommended by
Shen and Burgess[11]. The tube was then placed on a shaker
running a 300 rpm at 37 �C. To measure the amount of
AgNP released, 200mL of Lipo-AgNP sample was taken
from the dialysis tube at specific time interval for 24 h and
the absorbance was measured in the SpectraMax M2 micro-
plate reader at 405 nm. After absorbance measurement, the
measured sample was replaced with a fresh buffer to avoid
change in volume and sink condition.

2.5. Scanning electron micrograph (SEM) and scanning
transmission electron micrograph (STEM) analysis

SEM micrographs were obtained for both AgNP and Lipo-
AgNPs. Briefly, both PB-Lipo-AgNP and Ex-Lipo-AgNP
were microscopically analyzed using Hitachi SU-6600 field
emission SEM (Hitachi, Maidenhead, UK) with accelerating
voltage of 25 kV and 8mm working distance. At 24 h before
analysis was carried out, 5 mL of sample was drop-cast to air
dry onto a 5� 5mm pure silicon wafer substrate (Ted Pella
Inc., Redding, California, USA) for SEM or carbon formvar
copper grid (Agar Scientific Ltd., Stanstead, UK) for STEM,
before micrographs were obtained.

2.6. Estimating encapsulation efficiency of the liposome

To estimate the encapsulation efficiency, both probe-soni-
cated and extruded Lipo-AgNP were centrifuged at 20,000
� g for 1 h and the supernatant was harvested. The super-
natant was then analyzed by atomic absorption spectropho-
tometry to estimate the concentration of silver in the

solution. The encapsulation efficiency (E) of the liposome
was then calculated using the formula below

E ¼ Total AgNP added to liposome�AgNP in supernatant
Total AgNP added to liposome

� 100

2.7. Cell culture and alamar blue cell viability

THP1 (ATCCVR : TIB-202TM) used for this study were cul-
tured in RPMI-1640 media supplemented with 2mM L-glu-
tamine and 10% FBS. The cells were incubated at 37 �C,
95% humidity and 5% CO2. For nanoparticle exposure, cells
were seeded in a 24-well plate (VWR, Dublin, Ireland) at a
density of 3� 105 cells/mL in media containing 100 ng/mL
PMA for a 24 h to induce adherence to the plate. After this,
the culture media containing PMA was removed from the
now adhered monocytic THP1 cells and replaced with fresh
RPMI media containing different concentrations of uncoated
AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP. A positive kill
control of cells exposed to dimethyl sulfoxide (DMSO) solu-
tion (10% v/v) in RPMI media incorporated onto the plate.
A minimum of three independent experiments were con-
ducted and for each independent experiment, four replicate
wells were employed per concentration per plate.

To evaluate cell viability post-exposure a pre-warmed
10% AB solution in serum free media was prepared. The
exposure media were removed, and the cells were rinsed
with prewarmed sterile 1 � phosphate buffer saline (PBS)
after which 1.5mL of AB solution was added onto the cells
and incubated at 37 �C for 2 h. The resulting florescence of
the converted AB dye was measured at 540 nm excitation
and 595 nm emission and excitation wavelengths in a
SpectraMaxVR M2 Multi-Mode Microplate Reader.

2.8. Flow cytometry

THP1 cells were seeded and cultured in T25 flasks at
2� 105 cells/mL and were subsequently treated with 2 mg/
mL of free uncoated AgNP, PB-Lipo-AgNP or Ex-Lipo-
AgNP for 24 h. As a positive kill control, THP1 cells
exposed to 10% DMSO was also incorporated. After nano-
particle exposure, the cells were harvested into 15mL tubes
and were centrifuged at 300� g for 5min at 21 �C. The
supernatant was discarded while the pellets were resus-
pended and rinsed twice in 2mL prewarmed 1�PBS and
centrifuged. The cells were then resuspended in 1mL bind-
ing buffer containing 0.1% NaN3 and 1% bovine serum
albumin (BSA) solution in 1�PBS. The cells were double
stained with 5 mL of 1 mM calcein-AM stain and 10mL of
10 mg/mL PI and incubated in the dark at RT for 30min
and analyzed with a BD Accuri C6 flow cytometer.

2.9. Confocal microscopy

THP1 cells were seeded onto a confocal dish (VWR, Dublin
Ireland) at density of 3� 105 cells/mL. The cells were also
stimulated with 100ng/mL of PMA for 24h and subsequently
treated with RPMI media containing 2mg/mL of either PB-
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Lipo-AgNP and Ex-Lipo-AgNP for 24h. Dish containing cells
exposed to 0.5 nM doxorubicin were incorporated as positive
kill control. After exposure, the media were discarded, and the
cells were rinsed with pre-warmed sterile PBS. The cells were
stained with 50mL of 1mM calcein-AM and 50 mL of 10mg/
mL PI. The cells were then incubated in the dark at RT for
20min and rinsed with warm PBS afterwards. Prior to imag-
ing, 1mL of warm PBS was added onto the cells and imaging
was carried out with Zeiss LSM 510 Confocal Laser Scanning
Microscope using a Plan-Neofluor oil immersion lens at
40�magnification and 1.3 numerical aperture.

2.10. Statistical analysis

Statistical analysis was carried out using GraphPad Prism
version 7. Data was analyzed by Two-way analysis of vari-
ance (ANOVA) with Sidak or Turkey multiple comparisons
test to detect significance. Statistically significant differences
in tests were indicated for p value < 0.05.

3. Results

3.1. DLS characterization

Results of the DLS characterization of AgNP is summarized
in Table 1 for dispersions in water (ddH2O) and RPMI-1640
culture media. DLS analysis of AgNP shows an increase in
mean particle size (MPS) of AgNP when dispersed in
ddH2O to RPMI-1640 media from 21.14 nm to 79.15 nm
with polydispersity index (PDI) 0.230–0.566 respectively.
The zeta analysis for AgNP in ddH2O was �26.5mV which
dropped to �7.90mV in RPMI-1640 media. There was also
change in AgNP color from golden yellow in ddH2O to
dark gray when dispersed in RPMI-1640 media which is
likely due to agglomeration of the nanoparticle.

3.2. SEM/STEM and spectra analysis of AgNP

SEM analysis of the AgNP showed a spherical nanoparticle
with average size of 14.3± 1.9 nm (Figure 1A). The UV-Vis
spectra of the different AgNP concentration ranging from
0.625 to 10 mg/mL are depicted in Figure 1B, showing a char-
acteristic peak absorption (kmax) corresponding to the sur-
face plasmon resonance (SPR) of 20 nm AgNP at around

400 nm, which was the approximate size obtained by DLS.
The peak flattening corresponds to decrease in concentration
of AgNP, explained by the reduction in the amount of AgNP
particles that absorbs UV light at the wavelengths indicated.

3.3. Liposome characterization

PB-Lipo-AgNP size increased from 143.7 when in ddH2O to
268.7 nm after dispersion in RPMI-1640 media (Table 1). A
second peak of larger sized particles was observed in both
ddH2O (1.3%) and RPMI media (19.6%) likely due to
agglomeration. The PDI of PB-Lipo-AgNP also increased

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

Table 1. Size and Zeta potential of uncoated AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP in ddH2O and RPMI-1640.

ddH2O media

Peak 1 (%) Peak 2 (%) Peak 1 (%) Peak 2 (%)

Uncoated AgNP
DLS Intensity PSD (nm) 21.14 ± 9.48 – 79.15 ± 66.67 –
Zeta (mV) �26.50 – �7.90 –
PDI 0.230 – 0.566 –

PB-Lipo-AgNP
DLS Intensity PSD (nm) 143.7 ± 64.18 (98.7) 5005 ± 605.6 (1.3) 268.7 ± 186.9 (80.4) 2555 ± 1325 (19.6)
Zeta (mV) �25.9 �0.96
PDI 0.305 0.437

Ex-Lipo-AgNP
DLS Intensity PSD (nm) 140.1 ± 47.49 (100) N/A 138.9 ± 54.93 (86) 3928 ± 1081 (14)
Zeta (mV) �31.9 �0.61
PDI 0.105 0.421

Figure 1. SEM/STEM and UV-Vis Spectra analysis of AgNP (A) SEM and of AgNP
with STEM image inset (B) UV spectra analysis of 0.625–10mg/mL of AgNP
measured at 22.6 �C.
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from 0.305 to 0.437 after resuspension in RPMI-1640 media
but there was a reduction in zeta potential from �25.9mV
in ddH2O to �0.96 after dispersion in RPMI-1640 media.

For Ex-Lipo-AgNP, there was a small decrease in size
from 140.1 nm in ddH2O to 138.9 nm (half that of PB-Lipo-
AgNP) when dispersed in RPMI-1640 media. Unlike the
PB-Lipo-AgNP, extrusion produced Lipo-AgNP that was
100% uniform in size in ddH2O, however, a second peak
was found at 3.9 mm for 14% of the particles in RPMI media
(Table 1). In contrast, Ex-Lipo-AgNP had a PDI of 0.105 in
ddH2O but this increased to 0.421 in RPMI-1640 media.
There was also a reduction in zeta potential of Ex-Lipo-
AgNP from �31.9mV in ddH2O, higher than that of PB-
Lipo-AgNP to �0.61mV in RPMI-1640.

An overlay of DLS size values of the uncoated AgNP in
ddH2O was carried out with the size values of the PB-Lipo-
AgNP obtained with the same AgNP solution both in
ddH2O and in RPMI media (Figure 2C). Overlap in AgNP
size value with that of the PB-Lipo-AgNP dispersed in
ddH2O was observed, indicating some of AgNP had not
been encapsulated within the PB-Lipo-AgNP. In addition, a
shift in the major peak of the PB-Lipo-AgNP was observed
for a 120 nm increase in size from dispersion in ddH2O to
RPMI, accounting for 20% of the total nanoparticle.
Ex-Lipo-AgNP exhibited no overlap with AgNP in both dis-
persion media, indicating both nanoparticles have distinct
populations (Figure 2D). In addition, there was only a single
peak observed for Ex-Lipo-AgNP dispersed in ddH2O indi-
cative of uniform nanoparticle although there was a slight
shift in the major peak to the left as the size reduced by
1.2 nm while a second peak was also visible, accounting for

14% of the total nanoparticle likely due to agglomeration
in RPMI.

3.4. UV-Vis spectra analysis of encapsulated AgNP and
encapsulation efficiency

Different concentrations of PB-Lipo-AgNP and extruded
AgNP, were analyzed by UV-Vis spectra to investigate
whether the AgNP has been successfully encapsulated
(Figures 3A and 3B). PB-Lipo-AgNP showed a similar spec-
tra characteristic with AgNP especially at 10mg/mL but there
was a red shift in the AgNP peak at around 410 nm, observ-
able for both 5 mg/mL and 10 mg/mL. There was consider-
able peak flattening at concentration � 5 mg/mL (Figure 3A).
It was observed that PB-Lipo-AgNP was cloudy with lipids
and retained the golden yellow color of AgNP showing pres-
ence of free AgNP (Figure 2A inset). On the contrary for
Ex-Lipo-AgNP, the peak absorbance was barely observed
even at 10 mg/mL and there was also a red shift in the peak
at around 410 nm (Figure 3B). Ex-Lipo-AgNP solution was
clear and did not retain the golden yellow color of AgNP
(Figure 2B inset), likely because of the refraction due to the
lipid layer of the liposome. PB-Lipo-AgNP also had higher
absorbance compared to Ex-Lipo-AgNP (at 10 mg/mL) which
has similar baseline with uncoated AgNP (Figure 3C), indi-
cating no agglomeration of Ex-Lipo-AgNP. The EE was
determined to be 67.8% and 86.5% for the PB-Lipo-AgNP
and Ex-Lipo-AgNP respectively, which may explain the sim-
ilarities between the UV-Vis spectra of free AgNP and PB-
Lipo-AgNP since less AgNP was encapsulated.
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Figure 2. SEM/STEM of PB-Lipo-AgNP and Ex-Lipo-AgNP: (A) SEM with STEM (inset) of PB-Lipo-AgNP, and overlay of AgNP size value with PB-Lipo-AgNP (B) SEM
with STEM (inset) Ex-Lipo-AgNP and overlay of AgNP size value with Ex-Lipo-AgNP.
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3.5. SEM/STEM analyses of Lipo-AgNP

PB-Lipo-AgNP and Ex-Lipo-AgNP were analyzed micro-
scopically by SEM and STEM (Figures 2A and 2B). As
shown, PB-Lipo-AgNP formed agglomerates unlike Ex-Lipo-
AgNP. SEM analysis of Ex-Lipo-AgNP showed non-
agglomerating spherical liposomes with a well-defined struc-
ture. STEM of the PB-Lipo-AgNP (Figure 2A inset) showed
AgNP found coated on the liposome with very few nanopar-
ticles encapsulated within. The AgNP in Ex-Lipo-AgNP
shown in the STEM (Figure 2B inset) were all encapsulated
within the liposome (gray sphere). This alludes to the EE
and spectra characteristics of both PB-Lipo-AgNP and Ex-
Lipo-AgNP. Size estimation from SEM indicated Ex-Lipo-
AgNP was 162.73 ± 29.23 nm while the PB-Lipo-AgNP was
204.22 ± 45.39 nm representing the average of 20 particles
counted and similar to the value obtained by DLS.

3.6. Temperature-dependent size change, stability
analyses and load release profile of Lipo-AgNP

The practicability of the Lipo-AgNP to retain their contents in
in vitro experiments was tested under incubation conditions.
Sizes of both PB-Lipo-AgNP and Ex-Lipo-AgNP with respect
to temperature changes was monitored using DLS in RPMI-
1640 media containing 10% FBS over 6 h at 20min interval

for a degree rise in temperature. The initial size of PB-Lipo-
AgNP doubled that of Ex-Lipo-AgNP confirming the values
in Table 1. PB-Lipo-AgNP size reduced from 334nm at 20 �C
to 150.2 nm, a 55% reduction in size at 37 �C. For Ex-Lipo-
AgNP, a reduction from 174.7 nm at 20 �C to 113.1 nm at
37 �C, a 35.3% reduction in size was observed (Figure 4B).
This reduction in size could be as result of loss of liposomal
content due to increase in temperature.

Stability analyses of the liposomes over a 6-month period
is shown in Table 2. After 6 months of incubation, the MPS
and zeta potential of PB-Lipo-AgNP increased by 10.3 nm and
5.1mV respectively at 4 �C. Compared to 4 �C, PB-Lipo-AgNP
at 24 �C exhibited a higher reduction in MPS and zeta poten-
tial of 19nm and 4.3mV for the 6 months in addition to the
sedimentation of the lipids that was observed. On the con-
trary, Ex-Lipo-AgNP showed slight increase in size as well as
zeta potential over the 6-month period. At 4 �C, an overall
3.2 nm and 2.0mV MPS and zeta potential was observed,
which was comparable to that observed at 24 �C (5.9 nm and
2.5mV MPS and zeta potential respectively), and lower to
that of PB-Lipo-AgNP for the same time points.

The load release profile of both Lipo-AgNPs was carried
out to evaluate AgNP release from the nanocapsule using
dialysis. Due to the large volume of fluid outside the dialy-
sis tube and the effect this will have on the absorbance of
minute quantity of released nanoparticles from the dialysis
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Figure 3. UV-Vis Spectra of PB-Lipo-AgNP and Ex-Lipo-AgNP: UV-Vis spectral analysis of(A) PB-Lipo-AgNP and (B) Ex-Lipo-AgNP at different concentrations between
0.625 mg/mL and 10 mg/mL (C) combined UV-Vis spectra of 10 mg/mL AgNP, Ex-Lipo-AgNP and PB-Lipo-AgNP.
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tube, the absorbance of the sample inside of the dialysis
tube was measure instead, as drop in absorbance will corre-
sponds to the amount of AgNP released into the buffer. As
shown in Figure 5A, PB-Lipo-AgNP appeared to have initial
burst release of AgNP as more than 25% of the encapsu-
lated AgNP was released within the first 2 h at pH 6.5.
Afterwards, a release of 29% to 30% at 4 and 6 h respect-
ively was observed. Unlike PB-Lipo-AgNP, the extruded
AgNP showed a steady release from 2 h up till 6 h, releasing
only 15% of the encapsulated AgNP at 6 h, a significantly
lower release to that of PB-Lipo-AgNP. Both nanocapsules
exhibited similar release at 24 h with PB-Lipo-AgNP releas-
ing 80% of encapsulated AgNP while Ex-Lipo-AgNP
released 74%. At physiological pH of 7.45, PB-Lipo-AgNP
exhibited lower release rate of AgNP from 2 h to 6 h releas-
ing 0.8% to 12.5% respectively. In the same time point,

Ex-Lipo-AgNP only released 0.7% to 3.5% respectively, a
significantly lower release than that of PB-Lipo-AgNP. At
24 h, Ex-Lipo-AgNP released 70%, a significantly lower
release compared with PB-Lipo-AgNP exhibiting 79%
AgNP release (Figure 5B).

3.7. Cell viability

To evaluate if the stability of Ex-Lipo-AgNP translates to
enhanced cytotoxicity, THP1 cells were first stimulated with
100ng/mL PMA to induce adherence of the cell line prior to
exposure to facilitate easy removal of uninternalized lipo-
some and prevent cell loss during wash steps. After 24 h of
exposure to the nanoparticles, viability of the PMA-stimu-
lated THP1 cells was evaluated by their ability to convert
the non-fluorescent resazurin in AB dye into a fluorescent
resorufin. As shown in Figure 6A, Ex-Lipo-AgNP induced
significant reduction in cell viability at concentration � 1.25
mg/mL while uncoated AgNP and PB-Lipo-AgNP induced
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Figure 4. Stability kinetics of probe-sonicated and Ex-Lipo-AgNP: Temperature
dependent changes in the sizes of (A) PB-Lipo-AgNP and (B) Ex-Lipo-AgNP dis-
persed in RPMI-1640 culture medium were analyzed by DLS. Values are
mean ± SD from average of three independent measurements.

Table 2. Stability of PB-Lipo-AgNP and Ex-Lipo-AgNP over a 6-month period.

Temp Initial size (nm) Initial Zeta (mV)

Month 1 Month 3 Month 6

Size (nm) Zeta (mV) Size (nm) Zeta (mV) Size (nm) Zeta (mV)

PB-Lipo-AgNP
4 �C 143.7 ± 64.18 �25.9 149.44 ± 9.7 �25.5 151 ± 13.3 �24.3 154 ± 20.3 �20.8
24 �C 153.27 ± 9.61 �24.1 156.26 ± 8.9 �23.1 161.34 ± 14.5 �19.6

Ex-Lipo-AgNP
4 �C 140.1 ± 47.49 �31.9 142.23 ± 3.4 �30.5 144.4 ± 2.5 �30.0 143.33 ± 1.3 �29.9
24 �C 141.33 ± 1.72 �30.9 145 ± 1.98 �30.7 146 ± 2.4 �29.4

Figure 5. pH dependent drug release profile of PB-Lipo-AgNP and Ex-Lipo-
AgNP: Encapsulated AgNP in (A) acetate buffer at pH 6.5 or (B) PBS at pH 7.45
and at specific time interval, 200 mL of the sample was taken out for absorb-
ance measurement. Data is presented as mean ± SD of 3 independent experi-
ments �p< 0.05, ��p< 0.01, ����p< 0.0001.
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significant reduction in the THP1 cell viability at 5 mg/mL.
It was observed that Ex-Lipo-AgNP at concentrations of 1.25
and 2.5 mg/mL were significantly more cytotoxic on THP1
cell than the PB-Lipo-AgNP at the same concentration.

A flow cytometry cell viability study was carried out to
confirm AB finding since flow cytometry is a more accurate
analyses of viability on a cell by cell basis. THP1 monocytes
exposed to AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP were
stained with calcein-AM and PI. Calcein-AM is a non-fluor-
escent stain hydrolyzed by esterase activity of viable cell into
a fluorescent calcein derivative that is maintained within cell
with intact cell membrane[12], while PI only permeates com-
promised membrane of dead cells. As expected, Ex-Lipo-
AgNP induced significantly more cell death compared to
free AgNP and PB-Lipo-AgNP (p< 0.001). A significantly
higher proportion of early apoptotic cells positive for both
calcein and PI (9.7%) and late apoptotic cells that are only
positive for PI (26.4%) was observed in Ex-Lipo-AgNP
exposed cells compared to unexposed control cells, free
AgNP and PB-Lipo-AgNP exposed groups (Figure 6B). In
addition to this, PB-Lipo-AgNP exposure resulted in higher
proportion of cells identified as cellular debris (22.6%) com-
pared to Ex-Lipo-AgNP (1.1%) which was similar to that in
untreated controls and free AgNP exposed cells (0.2%)
(p< 0.001). This cell population are likely due to PB-Lipo-
AgNP identified as cellular debris due to the larger and
ununiform sizes.

To further confirm the effect of the Lipo-AgNPs on cell
viability, confocal microscopy was used to analyze calcein-
AM and PI stained PMA-stimulated THP1 cells exposed to
nanocapsules containing equivalent amount of 2 mg/mL
AgNP for 24 h. THP1 cells that were exposed to either of
PB-Lipo-AgNP or Ex-Lipo-AgNP appeared to have spotted
calcein fluorescence (Figures 7A and 7B). This was unlike
the control-untreated THP1 cells which appeared to have
uniform calcein stain throughout the cytoplasm. In addition,
only Ex-Lipo-AgNP induced significantly higher cytotoxicity
on THP1 cells compared with control-untreated or PB-
Lipo-AgNP exposed cells (p< 0.01) (Figures 7A and 7B).
Similarly, only Ex-Lipo-AgNP resulted in significantly higher
PI fluorescence when compared to both PB-Lipo-AgNP
exposed and control-untreated cells (p< 0.001). Thus, verify-
ing the result of the AB and flow cytometry assays.

4. Discussion

AgNP can be synthesized from AgNO3 by different methods
such as using reducing agents like citrate or NaBH4 with fur-
ther stabilization of the nanoparticle with compounds such as
polyvinyl alcohol (PVA)[13–15]. A citrate-based reduction is
most commonly used in the synthesis of AgNP because of its
reducing and stabilizing functionality. However, reduction of
AgNO3 with citrate results in formation of AgNP in complex
with the citrate ions which prevents the release of elemental
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Figure 6. Cell viability of PMA-stimulated THP1 cells post-exposure to AgNP nanocapsules: (A) AB assay determining viability of PMA-stimulated THP1 cells exposed
to 0.3–5 mg/mL AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP for 24 h (B) unstimulated THP1 monocytes cell viability by flow cytometry after exposure to 2 mg/mL of
AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP. Calcein was assessed on FL-1 channel while PI was assessed in the FL-3 channel. Data is presented as mean ± SD of the
three independent experiments and similar values were obtained. ���p< 0.001 and ����p< 0.0001.
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silver[16], limiting its effects. We report here, the encapsulation
of AgNP in a DPPC based liposome through different meth-
ods to enhance its associated cytotoxicity. The AgNP synthesis
employed here was designed to yield elemental AgNP through
reduction of AgNO3 by NaBH4 as in the equation below;

AgNO3 aqð Þ þNaBH4 aqð Þ ! Ag0 sð Þ þ 1=2B2H6 gð Þ

þ1=2 H2 gð Þ þNaNO3 aqð Þ

One of the aims of this study was to encapsulate AgNP
in a DPPC liposome, as DPPC is a natural biosurfactant in
human airways. Thus, it is hoped that such a system will
result in a very low capability of inducing adverse immune
responses. SEM images of PB-Lipo-AgNP indicated a high
agglomeration while that of Ex-Lipo-AgNP indicated a uni-
form spherical nanoparticle. In addition, DLS analyses indi-
cated higher average size for PB-Lipo-AgNP compared
to Ex-Lipo-AgNP both in ddH2O and RPMI media. It is
believed that PB-Lipo-AgNP increased size could have sig-
nificant impact on cellular response. It is known that larger
nanoparticles have reduced bioavailability as they are quickly
eradicated by the reticulo-endothelial system[17], making
PB-Lipo-AgNP less practical for in vitro applications as a
drug delivery system. PB-Lipo-AgNP exhibited a lower zeta

potential �25.9mV while that of Ex-Lipo-AgNP was
�31.9mV. Nanoparticles with zeta potential value between
�30 and þ30mV are considered less stable owing to the
increased agglomeration potential due to reduced repulsion
between the particles[18], indicating the Ex-Lipo-AgNP is
more stable. In addition to this, the PDI of PB-Lipo-AgNP
was found to be higher than that of Ex-Lipo-AgNP in
ddH2O, indicating that Ex-Lipo-AgNP are of more uniform
size compared to PB-Lipo-AgNP.

The UV-Vis spectra analysis of free AgNP conformed
with reported SPR characteristic of a 20 nm AgNP which is
at 400 nm [19], in a way confirming the DLS size of 21 nm.
UV-Vis spectra analysis of both PB-Lipo-AgNP and Ex-
Lipo-AgNP also allude the success of the encapsulation pro-
cess. PB-Lipo-AgNP and AgNP had a similar spectra profile
with same kmax although PB-Lipo-AgNP spectra exhibited
a broadened peak with a raised baseline and a red shift
in the kmax, which are indicative of agglomeration/size
increase. The kmax also indicates free AgNP that are not
successfully encapsulated absorbing UV emission to produce
the observed spectrum. In support of this, an overlap in the
DLS size value of AgNP with the ddH2O dispersed PB-Lipo-
AgNP observed indicates that the PB-Lipo-AgNP particles in
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Figure 7. (A) Confocal microscopy assessment of PMA-stimulated THP1 cell viability after exposure to 2 mg/mL of AgNP, PB-Lipo-AgNP and Ex-Lipo-AgNP. Calcein
fluorescence is shown in green and PI fluorescence in red (B) fluorescence intensities quantified by ImageJ software from 50 different cells. Data is presented as an
abstract value and as mean ± SD of 3 independent experiments. �p� 0.05 and ��p< 0.01.
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the overlap region is more likely to be uncoated AgNP.
Contrastingly, Ex-Lipo-AgNP spectra depicted a flat peak
with same baseline as free AgNP which hints at non-
agglomeration of the nanoparticle. The spectra observed at
10 mg/mL was similar to that of 1.25 mg/mL of free AgNP
indicating less free AgNP that are able to absorb at the UV-
Vis wavelength. This observation is also supported by non-
overlap of the AgNP and Ex-Lipo-AgNP DLS size values.

Interaction between nanoparticles and culture media pro-
teins is not uncommon based on their surface reactivity.
This interaction was monitored through the size and zeta
potential of the liposomes in RPMI-1640 medium. There
was increase in the size of PB-Lipo-AgNP and drastic reduc-
tion in its zeta potential. The dramatic increase in PB-Lipo-
AgNP size in RPMI-1640 could be due to the AgNP on the
surface interacting with the proteins in the culture medium
as also observed for free AgNP. This is in agreement with
the findings of Sabuncu et al.[20] who also reported an
increase in gold nanoparticle size and decrease in the zeta
potential when dispersed in fetal calf serum (FCS) supple-
mented DMEM culture. This is supported by the DLS over-
lay of PB-Lipo-AgNP in ddH2O and RPMI which indicates
increase in size of the nanoparticle from dispersion in
ddH2O to RPMI medium. On the contrary, there was a con-
siderable drop in the zeta potential of Ex-Lipo-AgNP, with
only a small increase in the percentage of nanoparticles with
increased size (14%). This could mean that Ex-Lipo-AgNP
do not readily react with proteins in the culture medium,
resulting in no net increase in the size after dispersion in
FBS containing RPMI-1640 medium. Interestingly, the
charges on the protein amino acids may have a masking
effect on Ex-Lipo-AgNP zeta potential. The spectra charac-
teristic of Ex-Lipo-AgNP was less similar to that of AgNP,
although with a red shift in kmax at 410 nm. Taken together
with the similar baseline as free AgNP and the low absorb-
ance at kmax which is about 50% less than that of free
AgNP and PB-Lipo-AgNP, the shift is likely due to the
increase in size contributed by the liposome. This also shows
that the AgNP is bound to the liposome assuming a larger
size than prior to encapsulation such that less AgNP par-
ticles are available to interact with proteins in the RPMI
media and absorb UV emission. In a study investigating the
use of AgNP as biosensor, a red shift in the spectra of a
19 nm AgNP was reported to be consequent upon the bind-
ing of the nanoparticle to protein ligands present on the
biosensor platform [21], explaining why there was no consid-
erable change in the Lipo-AgNP size in the media.

In temperature dependent study, it was noted that the
PB-Lipo-AgNP size decreased by more than half at 37 �C
whereas Ex-Lipo-AgNP only decreased in size by about a
quarter of the original size. The reason for reduction in their
sizes with increased temperature is not known, but this
could be as a result of the increased fluidity of the lipid
bilayer at temperature close to the transition temperature.
Increased fluidity could result in the movement of the lipo-
somal water content out of the liposome into the more con-
centrated culture medium by osmosis. A previous report
indicated liposome often lose their aqueous content when

dispersed in medium of high osmolarity[22], such that water
moves from region of lower concentration to region of
higher concentration through the lipid bilayer. As such, Ex-
Lipo-AgNP appeared to be more stable with respect to its
ability to retain its content at 37 �C. The stability study over
a 6-months period also indicated Ex-Lipo-AgNP to be more
stable with minimal overall increase in size and zeta poten-
tial at both 4 �C and 24 �C compared to PB-Lipo-AgNP
which was also found to sediment unlike the Ex-Lipo-AgNP
that remained clear.

Encapsulation of AgNP in liposome here was carried
out with the intent of improving its cytotoxicity as a che-
motherapeutic agent. Hence, it became pertinent to carry
out drug release studies. Considering the possible route of
administration and target site for the encapsulated AgNP,
pH of 7.45 which is the physiologic pH and most culture
media (relevant for in vitro studies) and pH 6.5 which is
known to be the pH of the tumor microenvironment and
inflamed tissue[23–25], were considered. One of the major
problems associated with drug delivery systems is the ini-
tial burst release which is associated with an initial hyper-
toxicity and suboptimal concentration of the drug at the
time it reaches the target. A good drug delivery system is
expected to protect the drug against the harsh physio-
logical environment of immune cells, minimize the burst
release and maintain a steady release of the drug for opti-
mal concentration to achieve maximum efficacy over a
period. Findings in this study, showed that PB-Lipo-AgNP
possesses initial burst release at pH 6.5 and 7.45. Ex-Lipo-
AgNP exhibited and maintained a steady release of AgNP
at pH 6.5 with significantly lower release compared to PB-
Lipo-AgNP. At 24 h, the two systems have released similar
concentration of AgNP. At physiologic pH of 7.45, PB-
Lipo-AgNP had already released 12.5% of the encapsulated
AgNP compared to 3.5% of Ex-Lipo-AgNP. Initial burst
release has been demonstrated for Agþ coated with titan-
ium dioxide used as an antibacterial for Staphylococcus
aureus[26]. Although it was found that this rapid release
produced an effective antibacterial effect, this effect can be
quite adverse in an in vivo model.

Initial burst release has been proposed to occur conse-
quent upon rapid dissolution of weakly or poorly encapsu-
lated drugs that might be attached to the surface of the
delivery systems[27–30]. This supports our deduction from
UV/Vis spectra features of PB-Lipo-AgNP to weakly encap-
sulate AgNP with some free AgNP attached to the surface
of the liposome as also depicted in the STEM image.
Contrastingly, our finding indicated that Ex-Lipo-AgNP can
maintain steady AgNP release at both pH 6.5 and 7.45. The
advantage is that the absence of initial burst release of
Ex-Lipo-AgNP prevents initial hypertoxicity. On the other
hand, while Ex-Lipo-AgNP had significantly less drug
release at 24 h compared with PB-Lipo-AgNP at pH 7.45,
stability of Ex-Lipo-AgNP may facilitate better drug delivery
with better net cytotoxicity. In support of the finding for
Ex-Lipo-AgNP however, Ruttala and Ko [31], showed that a
liposomal anti-tumor agent with steady load release exhib-
ited enhanced cytotoxicity.
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The uncertainty that encapsulation of AgNP translates to
enhanced and improved cytotoxicity led to the investigation
of the cytotoxicity of PB-Lipo-AgNP and Ex-Lipo-AgNP on
THP1, a leukemic cell line in the monocytic lineage. The
choice of the cell line for this study is three-folds. Firstly,
THP1 is a leukemic (cancer) cell line, allowing investigation
of the cytotoxic effect of AgNP encapsulation on a cancer
cell line. Secondly, monocytes and similar immune cells act
as first line of Defense in response to foreign objects includ-
ing nanoparticles upon human exposure[32–34], making the
cell line a perfect model to also study the effect of the nano-
particle on the innate immune system. In addition to this,
due to the role of monocytes in diseases such as atheroscler-
osis and cancer[35], this cell line is a potential therapeutic
target in treatment of this diseases.

Upon exposure of THP1 monocytes to the different nano-
particles, it was discovered that Ex-Lipo-AgNP induced signifi-
cantly higher cytotoxicity at lower concentrations compared
with PB-Lipo-AgNP and free uncoated AgNP exposed cells. In
addition, flow cytometry and confocal microscopy analyses
both confirmed Ex-Lipo-AgNP to be more cytotoxic compared
to PB-Lipo-AgNP and free uncoated AgNP. There was a sig-
nificantly higher live cells and less dead cells in the control-
untreated, free uncoated AgNP, and PB-Lipo-AgNP exposed
cells groups compared to Ex-Lipo-AgNP exposed cells.
Another observation was the speckled fluorescence observed in
both PB-Lipo-AgNP and Ex-Lipo-AgNP exposed cells but not
the control-untreated cells. This is likely due to the loss of
membrane integrity upon exposure to the nanoparticles result-
ing in leakage of calcein from the cytoplasm. Foged et al.[36]

have previously showed that disruption of the cell membrane
can result in leakage of calcein.

The enhanced cytotoxicity of Ex-Lipo-AgNP in compari-
son to AgNP or PB-Lipo-AgNP may be attributed to its
superior characteristics and enhanced delivery. This may
have been facilitated by the hydrophobic interaction
between the lipid bilayer of the cell membrane and that of
the liposome encapsulating the AgNP. On the other hand,
the slightly enhanced cytotoxicity of the PB-Lipo-AgNP
may be because of less encapsulated AgNP and lower endo-
cytosis due to larger size in culture media. This reason may
also explain why Ex-Lipo-AgNP enhanced delivery into the
cells since its size may have remained unchanged even
when reconstituted in culture media. Lastly, flow cytometry
detected more cellular debris in PB-Lipo-AgNP exposed
THP1 cells than in other exposure groups. These debris
were due to the PB-Lipo-AgNP which were larger in size
and similar to left over of apoptosed cells. Unfortunately,
this identified debris are counted as events in the cytometer,
imposing a confounding effect on the number of viable cells
that will be analyzed. Interestingly, Ex-Lipo-AgNP does not
exhibit such anomaly, further alluding to the stability and
superior characteristic liposome obtained through the extru-
sion as compared with that obtained from probe sonication.
Taken together, encapsulation of AgNP in DPPC based
liposome may help limit the concentration of AgNP used
in the various biomedical applications to achieve better

cytotoxicity resulting in less human exposure and mitiga-
tion of any development of adverse effects.

5. Conclusion

Stable AgNP were successfully synthesized at a suitable con-
centration without the need for stabilizer. Synthesized AgNP
were successfully encapsulated in liposome for the first time
by both probe sonication and extrusion methods. However,
the extrusion method produced a more stable liposome both
when dispersed in ddH2O and in culture medium. The
spectra analysis confirms probe sonication produced a less
successful encapsulation based on the similarity between PB-
Lipo-AgNP and AgNP spectra characteristics. Ex-Lipo-
AgNP on the other hand had a different spectra analysis
which is believed to be as a result of the shielding effect of
the liposome bilayer. In addition, Ex-Lipo-AgNP exhibited a
more controlled AgNP release compared with the PB-Lipo-
AgNP which showed an initial burst release. Cell viability
studies indicated that Ex-Lipo-AgNP exhibited higher cyto-
toxic effect in comparison to PB-Lipo-AgNP and uncoated
AgNP at similar concentrations. This may have been due to
the stable characteristic of Ex-Lipo-AgNP facilitating an
effective delivery of the nanoparticle into the cell. As such,
extrusion method offers a more reliable way for encapsulat-
ing AgNP in liposome with repetitive characteristics and
enhanced cytotoxicity. This provides with potential of
achieving cytotoxicity at lower concentrations compared to
those currently in application limiting possible exposures.
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