

Technological University Dublin ARROW@TU Dublin

Articles

School of Mathematics and Statistics

2010-01-01

Schrödinger Operators with $\pmb{\delta}'$ Interactions and the Krein–Stieltjes String

Aleksey Kostenko Dublin Institute of Technology, aleksey.kostenko@dit.ie

M. M. Malamud Institute of Applied Mathematics and Mechanics NASU, Ukraine

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart

Part of the Mathematics Commons

Recommended Citation

Kostenko, A., & Malamud, M. (2010). Schrödinger Operators with δ'Interactions and the Krein–Stieltjes String. *Doklady Mathematics*, vol. 81, no. 3, pg. 342-347. doi:10.1134/S1064562410030026

This Article is brought to you for free and open access by the School of Mathematics and Statistics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

MATHEMATICS =

Schrödinger Operators with δ'-Interactions and the Krein–Stieltjes String¹

A. S. Kostenko^{a, b} and M. M. Malamud^b

Presented by Academician V.P. Maslov October 21, 2009

Received November 9, 2009

Abstract—We investigate one dimensional symmetric Schrödinger operator $H_{X,\beta}$ with δ' -interactions of strength $\beta = \{\beta_n\}_{n=1}^{\infty} \subset \mathbb{R}$ on a discrete set $X = \{x_n\}_{n=1}^{\infty} \subset [0, b), b \leq +\infty (x_n \uparrow b)$. We consider $H_{X,\beta}$ as an extension of the minimal operator $H_{\min} := -d^2/dx^2 \int W_0^{2,2}(\mathbb{R}\setminus X)$ and study its spectral properties in the framework of the extension theory by using the technique of boundary triplets and the corresponding Weyl functions. The construction of a boundary triplet for H_{\min}^* is given in the case $d_* := \inf_{n \in \mathbb{N}} |x_n - x_{n-1}| = 0$. We show that spectral properties like self-adjointness, lower semiboundedness, nonnegativity, and discreteness of the spectrum of the operator $H_{X,\beta}$ correlate with the corresponding properties of a certain Jacobi matrix. In the case $\beta_n > 0, n \in \mathbb{N}$, these matrices form a subclass of Jacobi matrices generated by the Krein–Stieltjes strings. The connection discovered enables us to obtain simple conditions for the operator $H_{X,\beta}$ to be self-adjoint, lower semibounded and discrete. These conditions depend significantly not only on β but also on X. Moreover, as distinct from the case $d_* > 0$, the spectral properties of Hamiltonians with δ - and δ' -interactions in the case $d_* = 0$ substantially differ.

DOI: 10.1134/S1064562410030026

Let $\mathcal{I} := [0, b), 0 < b \le +\infty$, and let $X = \{x_n\}_{n=0}^{\infty} \subset \mathcal{I}$ be a strictly increasing sequence such that $\lim_{n \to \infty} x_n = b$ and

 $x_0 := 0$. Let also $\beta := \{\beta_n\}_{n=1}^{\infty} \subset \mathbb{R}$.

Consider a symmetric operator $H^0_{X,\beta}$ in $L^2(\mathcal{I})$ defined by the differential expression $-\frac{d^2}{dx^2}$ on func-

tions $f \in W^{2,2}_{\text{comp}}(\mathcal{G} \setminus X)$ satisfying the following boundary conditions at the points $x_n \in X$:

$$f'(0) = 0, f'(x_n+) = f'(x_n-),$$

$$f(x_n+) - f(x_n-) = \beta_n f'(x_n), \quad n \in \mathbb{N}.$$
(1)

Let us denote its closure by $H_{X,\beta}$. The operator $H_{X,\beta}$ is interpreted as the Hamiltonian with δ' -interactions of strength β_n at the centers x_n [2] and, as a rule, is associated with the formal differential expression

$$l_{X,\beta} := -\frac{d^2}{dx^2} + \sum_{x_n \in X} \beta_n(\cdot, \delta'_n) \delta'_n, \quad x \in \mathcal{I},$$
(2)

where $\delta_n := \delta(x - x_n)$ and $\delta(\cdot)$ is the Dirac delta-function.

Spectral properties of the operator $H_{X,\beta}$ are widely studied in the case $d_* := \inf_{n \in \mathbb{N}} d_n > 0$, where $d_n := x_n - \sum_{n \in \mathbb{N}} d_n = 0$

 x_{n-1} . Thus, it is known that the operator $H_{X,\beta}$ is selfadjoint [2] and its spectrum is not discrete in this case. Further results (investigation of spectrum, resolvent comparability etc.) as well as a comprehensive list of references can be found in [2, 14].

The cases $d_* = 0$ and $d_* > 0$ are significantly different. Recently, it has been found ([5, Theorem 4.7]) that $H_{X,\beta}$ is self-adjoint for any β if $\mathcal{F} = \mathbb{R}_+$ and $d_* = 0$. To the best of our knowledge, other spectral properties of the operator $H_{X,\beta}$ in the case $d_* = 0$ have not been studied yet. Let us also mention the recent papers [3, 15] dealing with spectral properties of Hamiltonians with δ '-interactions on compact subsets of \mathbb{R} with Lebesgue measure zero.

The main aim of this note is the spectral analysis of the Hamiltonian $H_{X,\beta}$ in the case $d_* = 0$. We investigate the operator $H_{X,\beta}$ in the framework of extension theory of symmetric operators using the concept of boundary triplets and the corresponding Weyl functions (see [7, 9]). Let us note that this approach was first applied by Kochubei [12] in the study of operators

¹ The article was translated by the authors.

^a Dublin Institute of Technology, Ireland

^b Institute of Applied Mathematics and Mechanics NASU, Ukraine

e-mail: duzer80@gmail.com, mmm@telenet.dn.ua

with point interactions. He investigated Hamiltonians with δ -interactions in the case $d_* > 0$. Let us stress that the main difficulty of this approach is the construction of an adequate boundary triplet.

In this note, we present a corresponding construction in the case $d_* = 0$ and show that the spectral properties like self-adjointness, lower semiboundedness, and discreteness of the spectrum of the operator $H_{X,\beta}$ correlate with the corresponding spectral properties of the Jacobi matrix $B_{X,\beta}$ defined by (15) (see below). It turns out that this class of matrices is closely connected with the class of Krein-Stieltjes string operators. Namely, if $\beta_n > 0$, $n \in \mathbb{N}$, then this class of matrices is a subclass of Krein-Stieltjes operators (see Section 5). Discovered connection enables us to obtain simple criteria for the operator $H_{X,\beta}$ to be self-adjoint, lower semi-bounded, and discrete. These conditions depend substantially not only on β but also on X. Moreover, as distinct from the case $d_* > 0$, the spectral properties of Hamiltonians with δ - and δ '-interactions in the case $d_* = 0$ differ completely.

Detailed treatment of the results discussed in this note are given in [11].

1. BOUNDARY TRIPLETS FOR DIRECT SUMS AND WEYL FUNCTIONS

Let *A* be a closed symmetric operator with dense domain $\mathfrak{D}(A)$ in a Hilbert space \mathfrak{H} and equal deficiency indices $n_+(A) = n_-(A)$ $(n_{\pm}(A) := \dim(\mathfrak{M}_{\pm i}),$ $\mathfrak{M}_z := \ker(A^* - zI)).$

Definition 1 ([7]). A collection $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$, where \mathcal{H} is an auxiliary Hilbert space, Γ_0 and Γ_1 are linear mappings from $\mathfrak{D}(A^*)$ to \mathcal{H} , is called a boundary triplet for the operator A^* if the abstract Green identity holds

$$(A^*f,g) - (f,A^*g) = (\Gamma_1 f, \Gamma_0 g)_{\mathcal{H}} - (\Gamma_0 f, \Gamma_1 g)_{\mathcal{H}}$$
(3)
for all $f,g \in \mathfrak{D}(A^*)$,

and the mapping $\Gamma: f \to \{\Gamma_0 f, \Gamma_1 f\}$ from $\mathfrak{D}(A^*)$ to $\mathcal{H} \oplus \mathcal{H}$ is surjective.

A boundary triplet is not unique and, moreover, it enables one to parameterize the set Ext_A of all proper extensions \tilde{A} ($A \subset \tilde{A} \subset A^*$) of the operator A in terms of abstract boundary conditions. Let $A_j := A^* |\ker(\Gamma_j)$,

 $j \in \{0, 1\}$. It is known that $A_j = A_j^*, j \in \{0, 1\}$.

Proposition 1 ([7]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . Then the mapping

$$(\operatorname{Ext}_A \ni) A \to \Gamma \mathfrak{D}(A)$$

$$= \{\{\Gamma_0 f, \Gamma_1 f\}: f \in \mathfrak{D}(A)\} =: \Theta \in \mathscr{C}(\mathcal{H})$$
(4)

establishes a bijective correspondence between Ext_A and the set $\tilde{\mathscr{C}}(\mathscr{H})$ of closed linear relations in \mathscr{H} . Denote $A_{\Theta} := \tilde{A}$, where Θ is determined by Eq. (4). Then the following statements hold

DOKLADY MATHEMATICS Vol. 81 No. 3 2010

(i)
$$A_{\Theta} = A_{\Theta}^* \Leftrightarrow \Theta = \Theta^*$$
;

(ii) A_{Θ} is symmetric $\Leftrightarrow \Theta$ is symmetric. Moreover, $n_{\pm}(A_{\Theta}) = n_{\pm}(\Theta)$;

(iii) $\mathfrak{D}(A_{\Theta}) \cap \mathfrak{D}(A_0) = \mathfrak{D}(A) \Leftrightarrow \Theta \in \mathscr{C}(\mathscr{H})$. In this case Θ is called a boundary operator and relation (4) becomes

$$A_{\Theta} = A^* \upharpoonright \ker(\Gamma_1 - \Theta \Gamma_0).$$
 (5)

Definition 2 ([9]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . Operator valued function $M(\cdot): \rho(A_0) \rightarrow [\mathcal{H}]$ defined by

$$\Gamma_1 f_z = M(z) \Gamma_0 f_z, \quad f_z \in \ker(A^* - z),$$

$$z \in \rho(A_0), \tag{6}$$

is called the Weyl function corresponding to the boundary triplet Π .

Further, let S_n be a closed densely defined symmetric operator in \mathfrak{H}_n such that $n_+(S_n) = n_-(S_n) \le \infty$, $n \in \mathbb{N}$. In the Hilbert space $\mathfrak{H} := \bigoplus_{n=1}^{\infty} \mathfrak{H}_n$, consider the operator $A := \bigoplus_{n=1}^{\infty} S_n$. Let also $\Pi_n = \{\mathfrak{H}_n, \Gamma_0^{(n)}, \Gamma_1^{(n)}\}$ be a boundary triplet for the operator S_n^* . Define a direct sum $\Pi := \bigoplus_{n=1}^{\infty} \Pi_n$ of boundary triplets Π_n by setting

$$\mathcal{H} = \bigoplus_{n=1}^{\infty} \mathcal{H}_n, \quad \Gamma_j := \bigoplus_{j=1}^{\infty} \Gamma_j^{(n)},$$

$$\Gamma_j : \mathfrak{D}(A^*) \to \mathcal{H}, \quad j \in \{0, 1\}.$$
(7)

Green's formulae (3) for operators S_n^* , $n \in \mathbb{N}$, yield validity of Green's formula for the operator $A^* = \bigoplus_{n=1}^{\infty} S_n$ and also vectors $f = \bigoplus_{n=1}^{\infty} f_n, g = \bigoplus_{n=1}^{\infty} g_n \in \mathfrak{D}(\Gamma_0) \cap \mathfrak{D}(\Gamma_1) \subset \mathfrak{D}(A^*)$, where

$$\mathfrak{D}(\Gamma_j) := \left\{ \varphi = \bigoplus_{n=1}^{\infty} \varphi_n : \sum_{n \in \mathbb{N}} \left\| \Gamma_j^{(n)} \varphi_n \right\|_{\mathscr{H}_n}^2 < \infty \right\}.$$

It is shown in [12] that a boundary triplet Π for the operator $A^* = \bigoplus_{1}^{\infty} S_n^*$ can be chosen in the form (7) if there exist $\varepsilon > 0$ and a sequence $\{\rho_n\}_{n=1}^{\infty} \subset [\varepsilon, \varepsilon^{-1}]$ such that all pairs $\{\rho_n S_n, \rho_n S_{n0}\}, n \in \mathbb{N}$, are unitary equivalent to $\{S_1, S_{10}\}$. However, it is not difficult to give an example of the operator $A = \bigoplus_{1=1}^{\infty} S_n$ for which a triplet (7) is not a boundary triplet for A^* . The reason is the following. The mapping $\Gamma = \{\Gamma_0, \Gamma_1\}: \mathfrak{D}(A^*) \to \mathcal{H} \oplus \mathcal{H}$ may not fulfill the following necessary conditions:

$$\mathfrak{D}(\Gamma_0) \cap \mathfrak{D}(\Gamma_1) = \mathfrak{D}(A^*), \operatorname{ran}(\Gamma) = \mathcal{H} \oplus \mathcal{H}.$$

Next theorem provides criteria for the collection $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ of the form (7) to be a boundary triplet

for the operator
$$A^* = \bigoplus_{n=1}^{\infty} S_n^*$$
.
Theorem 1. Let $A = \bigoplus_{n=1}^{\infty} S_n$, $\Pi_n = \{\mathcal{H}_n, \Gamma_0^{(n)}, \Gamma_1^{(n)}\}$

be a boundary triplet for the operator S_n^* , $n \in \mathbb{N}$, and let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be defined by (7). Then:

(i) the triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary relation (in the sense of [8]) for the operator A^* ;

(ii) the collection $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for the operator A^* precisely when the mappings Γ_j are bounded, i.e.,

$$\sup_{n \in \mathbb{N}} \left\| \Gamma_0^{(n)} \right\| < \infty, \quad \sup_{n \in \mathbb{N}} \left\| \Gamma_1^{(n)} \right\| < \infty; \tag{8}$$

(iii) the collection $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for the operator A^* if and only if the following conditions are satisfied

$$\sup_{n} \|M_{n}(\mathbf{i})\| < \infty, \quad \sup_{n} \|(\operatorname{Im} M_{n}(\mathbf{i}))^{-1}\| < \infty.$$
(9)

Here $M_n(\cdot)$ is the Weyl function corresponding to the triplet Π_n .

(iv) If $a_0 = \overline{a}_0 \ (\in \mathbb{R})$ is the point of a regular type of the operator A, then the collection $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for the operator A^* precisely when

$$\sup_{n \in \mathbb{N}} \left\| M_n(a_0) \right\| < \infty, \quad \sup_{n \in \mathbb{N}} \left\| \left(M'_n(a_0) \right)^{-1} \right\| < \infty.$$
 (10)

Theorem 1 enables one to regularize an arbitrary collection of boundary triplets $\tilde{\Pi}_n = \{\mathcal{H}_n, \tilde{\Gamma}_0^{(n)}, \tilde{\Gamma}_1^{(n)}\}$ in such a way that the direct sum of the regularized triplets is a boundary triplet for the operator A^* . Namely, assume that $Q_n = Q_n^* \in [\mathcal{H}_n]$ and $R_n \in [\mathcal{H}_n]$ with $R_n^{-1} \in [\mathcal{H}_n]$. We set

$$\Gamma_0^{(n)} := R_n \tilde{\Gamma}_0^{(n)}, \quad \Gamma_1^{(n)} := (R_n^{-1})^* (\tilde{\Gamma}_1^{(n)} - Q_n \tilde{\Gamma}_0^{(n)}).$$
(11)

Corollary 1. Let $\tilde{\Pi}_n = \{\mathcal{H}_n, \tilde{\Gamma}_0^{(n)}, \tilde{\Gamma}_1^{(n)}\}$ be a boundary triplet for S_n^* , and let $\tilde{M}_n(\cdot)$ be the corresponding Weyl function, $n \in \mathbb{N}$. If

$$\sup_{n \in \mathbb{N}} \left\{ \left\| (R_n^{-1})^* (\tilde{M}_n(\mathbf{i}) - Q_n) R_n^{-1} \right\| < \infty, \\ \sup_{n \in \mathbb{N}} \left\| R_n (\operatorname{Im}(\tilde{M}_n(\mathbf{i})))^{-1} R_n^* \right\| \right\} < \infty,$$
(12)

then the direct sum $\Pi = \bigoplus_{n=1}^{\infty} \prod_{n=1}^{\infty} (\text{see } (7))$ of triplets $\Pi_n =$

 $\{\mathcal{H}_n, \Gamma_0^{(n)}, \Gamma_1^{(n)}\}$ defined by (11) is a boundary triplet for the operator $A^* = \bigoplus_{n=1}^{\infty} S_n^*$.

Remark 1. The existence of the regularization (11) was first established in [13, Theorem 5.3]. Namely, in

relations (11) it is taken $Q_n := \operatorname{Re} \tilde{M}_n(i)$ and $R_n :=$

 $\sqrt{\text{Im}M_n(i)}$, $n \in \mathbb{N}$ (cf. [13]). However, let us stress that the latter regularization is not suitable for our aims since it does not lead to a parametrization of the Hamiltonians $H_{X,\beta}$ by Jacobi matrices.

2. BOUNDARY TRIPLETS FOR SCHRODINGER OPERATORS

Consider the minimal (closed) symmetric operator

$$H := H_{\min} := -\frac{d^2}{dx^2}, \quad \mathfrak{D}(H_{\min}) = W_0^{2,2}(\mathcal{I} \setminus X). \quad (13)$$

It is clear that $n_{\pm}(H_{\min}) = \infty$ and the operator H_{\min}^* is defined by the same differential expression on the domain $\mathfrak{D}(H_{\min}^*) = W^{2,2}(\mathfrak{F} \setminus X)$. It is easy to see that $H_{\min} = \bigoplus_{n \in \mathbb{N}} H_n$, where $H_n := -\frac{d^2}{dx^2}$, $\mathfrak{D}(H_n) = W_0^{2,2}[x_{n-1}, x_n]$.

Define the mappings

$$\Gamma_{0}^{(n)}f := \begin{pmatrix} d_{n}^{1/2}f(x_{n-1}+) \\ -d_{n}^{1/2}f(x_{n-1}-) \end{pmatrix},$$

$$\Gamma_{1}^{(n)}f := \begin{pmatrix} \frac{d_{n}f'(x_{n-1}+) + (f(x_{n-1}+) - f(x_{n}-)))}{d_{n}^{3/2}} \\ \frac{d_{n}f'(x_{n-1}+) + (f(x_{n-1}+) - f(x_{n}-)))}{d_{n}^{3/2}} \end{pmatrix}.$$
(14)

A straightforward calculation shows that the triplet $\Pi_n = \{\mathbb{C}^2, \Gamma_0^{(n)}, \Gamma_1^{(n)}\}$ is a boundary triplet for the operator H_n^* . Moreover, we have the following

Theorem 2. Let
$$d^* := \sup_{n \in \mathbb{N}} d_n < \infty$$
 and let $\Gamma_0^{(n)}$, $\Gamma_1^{(n)}$

be defined by (14). Then the triplet $\Pi = \bigoplus_{n=1}^{\infty} \prod_{n=1} \prod_{n=1}^{\infty} \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ defined by (7) is a boundary triplet for the operator H^*_{\min} .

Proof. The condition $d^* < \infty$ yields that z = 0 is a point of a regular type for the operator H_{\min} . To complete the proof of Theorem 2 it suffices to check (10) at the point z = 0.

3. PARAMETRIZATION OF HAMILTONIANS WITH δ '-INTERACTIONS

For the remainder of this note, we can assume without loss of generality that $\beta_n \neq 0$ for all $n \in \mathbb{N}$. Further, consider the semi-infinite Jacobi matrix

DOKLADY MATHEMATICS Vol. 81 No. 3 2010

$$B_{X,\beta} := \begin{pmatrix} d_1^{-2} & d_1^{-2} & 0 & 0 & 0 & \dots \\ d_1^{-2} & \frac{d_1^{-1}}{\beta_1} + d_1^{-2} & \frac{d_1^{-1/2}d_2^{-1/2}}{\beta_1} & 0 & 0 & \dots \\ 0 & \frac{d_1^{-1/2}d_2^{-1/2}}{\beta_1} & \frac{d_2^{-1}}{\beta_1} + d_2^{-2} & d_2^{-2} & 0 & \dots \\ 0 & 0 & d_2^{-2} & \frac{d_2^{-1}}{\beta_2} + d_2^{-2} & \frac{d_2^{-1/2}d_3^{-1/2}}{\beta_2} & \dots \\ 0 & 0 & 0 & \frac{d_2^{-1/2}d_3^{-1/2}}{\beta_2} & \frac{d_3^{-1}}{\beta_2} + d_3^{-2} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}.$$
(15)

In $l^2(\mathbb{N})$, the minimal symmetric operator is naturally associated with the matrix $B_{X,\beta}$ (see [4]). We denote it also by $B_{X,\beta}$.

The following Lemma shows that the boundary operator Θ parameterizing $H_{X,\beta}$ via (5) is a Jacobi matrix of the form (15).

Lemma 1. Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for H^*_{\min} defined in Theorem 2. Then $H_{X,\beta} = H_{B_{X,\beta}}$, that is

$$H_{X,\beta} = H_{\min}^* \mathfrak{D}(H_{X,\beta}),$$

$$\mathfrak{D}(H_{X,\beta}) = \{ f \in W^{2,2}(\mathbb{R} \setminus X) \colon \Gamma_1 f = B_{X,\beta} \Gamma_0 \}.$$

Theorem 2, Lemma 1 and some results from [7, 9] enable us to establish the following connection between spectral properties of the Hamiltonian $H_{X,\beta}$ and the Jacobi matrix (boundary operator) $B_{X,\beta}$.

Theorem 3. *Assume that* $d^* < \infty$ *. Then:*

(i) the following relation holds $n_{\pm}(H_{X,\beta}) = n_{\pm}(B_{X,\beta})$;

(ii) the operator $H_{X,\beta}$ is lower semibounded precisely when the operator $B_{X,\beta}$ is lower semibounded;

(iii) if $n_{\pm}(H_{X,\beta}) = 0$, i.e., $H_{X,\beta} = H_{X,\beta}^*$, then the spectrum of the operator $H_{X,\beta}$ is discrete precisely when $\lim_{n \to \infty} d_n = 0$ and the spectrum of the operator $B_{X,\beta}$ is discrete.

4. A CONNECTION WITH THE KREIN– STIELTJES STRING

It is clear that the parameterizing matrix of the form (15) admits the following factorization

$$B_{X,\beta} = R_X^{-1}(I+U)D_{X,\beta}^{-1}(I+U^*)R_X^{-1}, \qquad (16)$$

where *U* is the unilateral shift operator in $l^2(\mathbb{N})$ and

$$D_{X,\beta} := \bigoplus_{n=1}^{\infty} \begin{pmatrix} d_n & 0 \\ 0 & \beta_n \end{pmatrix}, \quad R_X := \bigoplus_{n=1}^{\infty} \begin{pmatrix} \sqrt{d_n} & 0 \\ 0 & \sqrt{d_n} \end{pmatrix}.$$
(17)

DOKLADY MATHEMATICS Vol. 81 No. 3 2010

We put $l_{2n-1} := d_n$, $l_{2n} := \beta_n$, $m_{2n-1} = m_{2n} := d_n$, $n \in \mathbb{N}$. In the case $\beta_n > 0$, $n \in \mathbb{N}$, the difference equation associated with the matrix $B_{X,\beta}$ describes the motion of an inhomogeneous string (Krein–Stieltjes string) with mass distribution $\mathcal{M}(y) = \sum_{y_n < y} m_n$, where $y_n - y_{n-1} := l_n$

and $y_0 := 0$. This class of matrices is studied sufficiently well. In particular, criterion of self-adjointness (Hamburger's Theorem [1, Theorem 0.5]) and criterion of discreteness of spectrum (the Kac-Krein Theorem [10]) are known and are formulated in terms of sequences $l = \{l_n\}_{n=1}^{\infty}$ and $m = \{m_n\}_{n=1}^{\infty}$. We hardly exploit these criteria as well as Theorem 3 in the following sections.

5. SELF-ADJOINTNESS

Combining Theorem 3 (i) with the representation (16), (17), we obtain

Theorem 4. Deficiency indices of the operator $H_{X,\beta}$ are equal and are not greater than one, $n_+(H_{X,\beta}) = n_-(H_{X,\beta}) \le 1$. Furthermore, $H_{X,\beta}$ is self-adjoint if and only if at least one of the following conditions hold:

(1)
$$\sum_{n=1}^{\infty} d_n = \infty$$
, *i.e.* $\mathscr{I} = \mathbb{R}_+$;
(2) $\sum_{n=1}^{\infty} \left[d_{n+1} \left| \sum_{i=1}^{n} (\beta_i + d_i) \right|^2 \right] = \infty$.

Remark 3. In the case of positive strengths β_n , Theorem 4 follows from Hamburger's Theorem [1]. In the case of arbitrary strengths, we use the formulae for $P_n(0)$ and $Q_n(0)$ [1, p. 291] and the self-adjointness criterion [4, Lemma VII.1.5].

Theorem 4 immediately yields the following result of Buschmann–Stolz–Weidmann [5, Theorem 4.7].

Corollary 2 ([5]). If $\mathcal{I} = \mathbb{R}_+$, then the operator $H_{X,\beta}$ is self-adjoint.

6. LOWER SEMIBOUNDED HAMILTONIANS

Using Theorem 3(ii) and the form of the matrix $B_{X,B}$, we arrive at the following result.

Proposition 2. For the operator $H_{X,\beta}$ to be lower semibounded it is necessary that

$$\beta_n^{-1} \ge -C_1 d_n - \min\{d_n^{-1}, d_{n+1}^{-1}\}, \quad n \in \mathbb{N}$$
 (18)

and sufficient that

$$\beta_n^{-1} \ge -C_2 \min\{d_n, d_{n+1}\}, \quad n \in \mathbb{N}.$$
 (19)

Here C_1 are C_2 are positive constants independent of $n \in \mathbb{N}$.

Corollary 3. If $0 < d_* \le d^* < \infty$, then the operator

$$H_{X,\beta}$$
 is lower semi-bounded precisely when $\inf_{n \in \mathbb{N}} \beta_n^{-1} > -\infty$.

7. DISCRETENESS OF SPECTRUM

We set $\beta_n^- := \beta_n$ if $\beta_n < 0$ and $\beta_n^- := -\infty$ if $\beta_n > 0$. Applying the discreteness criterion [10] to the matrix $B_{X,\beta}$ and combining this with Theorem 3 (iii), we arrive at the following necessary conditions for discreteness of the spectrum of the operator $H_{X,\beta}$.

Proposition 3. Let $\mathcal{I} = \mathbb{R}_+$ and $d_n \to 0$. The spectrum of the operator $H_{X,\beta}$ is not discrete if at least one of the following conditions hold:

(i)
$$\lim_{n \to \infty} x_n \sum_{j=n} d_j^3 > 0;$$

(ii) $\beta_n \ge -Cd_n^3, n \in \mathbb{N}, C > 0;$
(iii) $\beta_n^- \le -C(d_n^{-1} + d_{n+1}^{-1}), n \in \mathbb{N}, C > 0;$

Corollary 4. If either $\beta_n > 0$ for all $n \in \mathbb{N}$ or $\{d_n\}_{n=1}^{\infty} \notin \beta(\mathbb{N})$, then the spectrum of the operator $H_{X,\beta}$ is not discrete.

0.

Proposition 3 shows that the spectrum of the operator $H_{X,\beta}$ is discrete in the very exceptional cases. For instance, the spectrum is not discrete if either $\beta \subset \mathbb{R}_+$ or if there exists a subsequence $\{\beta_{n_k}\} \subset \mathbb{R}_-$, which tends to $-\infty$ sufficiently fast. Furthermore, d_n must tend to zero sufficiently fast for the spectrum to be discrete. Sufficient conditions for discreteness of the spectrum of the Hamiltonian $H_{X,\beta}$ are given in the following

Theorem 5. Assume that $\beta_n + d_n \ge 0$ for all $n \in \mathbb{N}$.

(i) If $b < +\infty$, and X and β are such that the operator $H_{X,\beta}$ is self-adjoint, then the spectrum of $H_{X,\beta}$ is discrete if and only if

$$\lim_{n \to \infty} (b - x_n) \sum_{j=1}^{\infty} (\beta_j + d_j) = 0.$$
 (20)

(ii) $\mathcal{I} = \mathbb{R}_+$, then the spectrum of $H_{X,\beta}$ is discrete precisely when

$$\lim_{n \to \infty} x_n \sum_{j=n}^{\infty} d_j^3 = 0, \quad \lim_{n \to \infty} x_n \sum_{j=n}^{\infty} (\beta_j + d_j) = 0.$$
(21)

Remark 4. Let us note that we use another parametrization of the Hamiltonian $H_{X,\beta}$ for proving Propositions 3 (i), (ii) and Theorem 5 (for the details, see [11, Sect. 6].

8. ON THE NEGATIVE SPECTRUM OF THE OPERATOR $H_{X,\beta}$

Let *T* be a self-adjoint operator in \mathfrak{H} and let $E_T(\cdot)$ be its spectral function. Dimension of the negative subspace $E_T(-\infty, 0)\mathfrak{H}$ of the operator *T* is denoted by $\kappa_-(T)$, $\kappa_-(T) := \dim(E_T(-\infty, 0)\mathfrak{H})$.

Proposition 4. Let $d^* < \infty$ and let $\kappa_{-}(\beta)$ be the number of negative elements in the sequence $\beta = \{\beta_n\}_{n=1}^{\infty}$. If

$$H_{X,\beta} = H^*_{X,\beta}$$
, then

$$\kappa_{-}(H_{X,\beta}) = \kappa_{-}(\beta). \tag{22}$$

In particular, $H_{X,\beta} > 0$ if $\beta_n > 0, n \in \mathbb{N}$.

Proof. Let $M(\cdot)$ be the Weyl function of the operator H_{\min} , which corresponds to the boundary triplet Π defined in Theorem 2. Using the form of the Weyl function, we get the following equality M(0): = $s - \lim_{x \to -0} M(x) = 0$. By [9, Theorem 4], $\kappa_{-}(H_{X,\beta}) = \kappa_{-}(B_{X,\beta} - M(0)) = \kappa_{-}(B_{X,\beta})$. On the other hand, by (16), (17), $\kappa_{-}(B_{X,\beta}) = \kappa_{-}(D_{X,\beta}) = \kappa_{-}(\beta)$.

Remark 5. Using rather different approaches, Proposition 4 was obtained in [15] under assumptions that $\kappa_{-}(\beta) = |X| < \infty$, and also in [6] assuming that $|X| = \infty$ and $d_* > 0$.

9. HAMILTONIANS WITH δ-INTERACTIONS

Let $\alpha = \{\alpha_n\}_{n=1}^{\infty} \subset \mathbb{R}$. Consider the differential expression

$$l_{X,\alpha} = -\frac{d^2}{dx^2} + \sum_{n=1}^{\infty} \alpha_n \delta(x - x_n), \quad x \in \mathcal{I}.$$
 (23)

In $L^2(\mathcal{I})$, one associates with (23) a closed symmetric operator $H^0_{X,\alpha}$, defined by the differential expression

$$-\frac{d^2}{dx^2}$$
 on functions $f \in W_{\text{comp}}^{2,2}(\mathcal{I} \setminus X)$ satisfying the fol-

lowing boundary conditions at the points $x_n \in X$:

$$f'(0) = 0, \quad f(x_n+) = f(x_n-),$$

$$f'(x_n+) - f'(x_n-) = \alpha_n f(x_n), \quad n \in \mathbb{N}.$$
(24)

Let $H_{X,\alpha}$ be its closure. The operator $H_{X,\alpha}$ is known as the Hamiltonian with δ -interactions of strengths α_n at the centers x_n [2].

The analogs of Lemma 1 and Theorem 3 hold true for the operator $H_{X,\alpha}$ (see [11, Sect. 5]) and the role of the matrix (15) is played by the Jacobi matrix

DOKLADY MATHEMATICS Vol. 81 No. 3 2010

$$B_{X,\alpha} = \begin{pmatrix} \frac{1}{r_1^2} \left(\alpha_1 + \frac{1}{d_1} + \frac{1}{d_2} \right) & -\frac{1}{r_1 r_2 d_2} & 0 & \dots \\ -\frac{1}{r_1 r_2 d_2} & \frac{1}{r_2^2} \left(\alpha_2 + \frac{1}{d_2} + \frac{1}{d_3} \right) & -\frac{1}{r_2 r_3 d_3} & \dots \\ 0 & -\frac{1}{r_2 r_3 d_3} & \frac{1}{r_3^2} \left(\alpha_3 + \frac{1}{d_3} + \frac{1}{d_4} \right) & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix},$$
(25)

where $r_n := \sqrt{d_n + d_{n+1}}$ and $d_n = x_n - x_{n-1}$, $n \in \mathbb{N}$. It is easy to see that

$$B_{X,\alpha} = R_X^{-1}((I-U)D_X^{-1}(I-U^*) + A_\alpha)R_X^{-1}, \quad (26)$$

where $A_{\alpha} = \text{diag}(\alpha_n)$, $D_X = \text{diag}(d_n)$, and $R_X = \text{diag}(r_n)$. By (16) and (26), the structure of matrices (15) and (25) are completely different in the case $d_* = 0$. Therefore, the spectral properties of Hamiltonians with δ' and δ -interactions on X are essentially different in this case (see [11]).

ACKNOWLEDGMENTS

The first author acknowledges the support from the ESI Junior Research Fellowship Programme and IRCSET Post-Doctoral Fellowship Program.

REFERENCES

- N. I. Akhiezer, *The Classical Moment Problem and Some Related Questions in Analysis* (Fizmatgiz, Moscow, 1961; Oliver and Boyd Ltd, Edinburgh, London, 1965).
- S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, *Solvable Models in Quantum Mechanics*, Sec. Edition (AMS Chelsea Publ., 2005).
- 3. S. Albeverio and L. Nizhnik, Math. Nachr. 279, 467 (2006).
- 4. Ju. M. Berezanskii, *Expansions in Eigenfunctions of Self-Adjoint Operators* (Naukova Dumka, Kiev, 1965;

Translations of Mathematical Monographs, AMS, 1968, Vol. 17).

- 5. D. Buschmann, G. Stolz, and J. Weidmann, J. Reine Angew. Math. **467**, 169 (1995).
- N. Goloschapova and L. Oridoroga, Integr. Equations Oper. Theory 67 (1), 1–14 (2010); DOI 10.1007/s00020-010-1759-x.
- V. I. Gorbachuk and M. L. Gorbachuk, *Boundary Value Problems for Operator-Differential Equations* (Naukova Dumka, Kiev, 1984; Mathematics and Its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991, Vol. 48).
- V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo, Trans. Am. Math. Soc. 358 (12), 5351 (2006).
- 9. V. A. Derkach and M. M. Malamud, J. Fund. Anal. 95, 1 (1991).
- I. S. Kac and M. G. Krein, Izv. VUZov, Ser. Matem. 2 (3), 136 (1958).
- 11. A. S. Kostenko and M. Malamud, J. Differ. Equations (2010), DOI: 10.1016/j.jde.2010.02.011.
- A. N. Kochubei, Ukr. Matem. Zhurn. 41 (10), 1391 (1989) [Ukr. Math. J. 41, 1391 (1989)].
- 13. M. M. Malamud and H. Neidhardt, arXiv:0907.0650v1.
- 14. V. A. Mikhajlets, Dokl. Akad. Nauk **348** (6), 727 (1996).
- 15. L. P. Nizhnik, Funktsion. Analiz i Ego Prilozh. **37** (1), 85 (2003) [Funct. Anal. Appl. **37** (1), 72 (2003)].