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Let � :=[0, b), 0 < b ≤ +∞, and let X =  ⊂ �

be a strictly increasing sequence such that  = b and

x0 := 0. Let also β :=  ⊂ �.

Consider a symmetric operator  in L2(�)

defined by the differential expression –  on func�

tions f ∈ (�\X) satisfying the following bound�
ary conditions at the points xn ∈ X:

(1)

Let us denote its closure by HX, β. The operator HX, β is
interpreted as the Hamiltonian with δ'�interactions of
strength βn at the centers xn [2] and, as a rule, is asso�
ciated with the formal differential expression

xn{ }n 0=
∞

xn
n ∞→
lim

βn{ }n 1=
∞

HX β,

0

d2

dx2
������

Wcomp
2 2,

f ' 0( ) 0, f ' xn+( ) f ' xn–( ),= =

f xn+( ) f xn–( )– βnf' xn( ), n �.∈=

(2)

where δn := δ(x – xn) and δ(·) is the Dirac delta�function.
Spectral properties of the operator HX, β are widely

studied in the case d∗ :=  > 0, where dn := xn –

xn – 1. Thus, it is known that the operator HX, β is self�
adjoint [2] and its spectrum is not discrete in this case.
Further results (investigation of spectrum, resolvent
comparability etc.) as well as a comprehensive list of
references can be found in [2, 14].

The cases d∗ = 0 and d∗ > 0 are significantly differ�
ent. Recently, it has been found ([5, Theorem 4.7])
that HX, β is self�adjoint for any β if � = �+ and d∗ = 0.
To the best of our knowledge, other spectral properties
of the operator HX, β in the case d∗ = 0 have not been
studied yet. Let us also mention the recent papers [3,
15] dealing with spectral properties of Hamiltonians
with δ'�interactions on compact subsets of � with
Lebesgue measure zero.

The main aim of this note is the spectral analysis of
the Hamiltonian HX, β in the case d∗ = 0. We investi�
gate the operator HX, β in the framework of extension
theory of symmetric operators using the concept of
boundary triplets and the corresponding Weyl func�
tions (see [7, 9]). Let us note that this approach was
first applied by Kochubei [12] in the study of operators

lX β,  := d2

dx2
������– βn · δn',( )δn' , x

xn X∈

∑ �,∈+

dn
n �∈
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with point interactions. He investigated Hamiltonians
with δ�interactions in the case d∗ > 0. Let us stress that
the main difficulty of this approach is the construction
of an adequate boundary triplet.

In this note, we present a corresponding construc�
tion in the case d∗ = 0 and show that the spectral prop�
erties like self�adjointness, lower semiboundedness,
and discreteness of the spectrum of the operator HX, β

correlate with the corresponding spectral properties of
the Jacobi matrix BX, β defined by (15) (see below). It
turns out that this class of matrices is closely con�
nected with the class of Krein�Stieltjes string opera�
tors. Namely, if βn > 0, n ∈ �, then this class of matri�
ces is a subclass of Krein–Stieltjes operators (see Sec�
tion 5). Discovered connection enables us to obtain
simple criteria for the operator HX, β to be self�adjoint,
lower semi�bounded, and discrete. These conditions
depend substantially not only on β but also on X.
Moreover, as distinct from the case d∗ > 0, the spectral
properties of Hamiltonians with δ� and δ'�interactions
in the case d∗ = 0 differ completely.

Detailed treatment of the results discussed in this
note are given in [11].

1. BOUNDARY TRIPLETS FOR DIRECT SUMS 
AND WEYL FUNCTIONS

Let A be a closed symmetric operator with dense
domain �(A) in a Hilbert space � and equal defi�
ciency indices n+(A) = n–(A) (n±(A) := dim(�±i),
�z := ker(A* – zI)).

Definition 1 ([7]). A collection Π = {�, Γ0, Γ1},
where � is an auxiliary Hilbert space, Γ0 and Γ1 are
linear mappings from �(A*) to �, is called a bound�
ary triplet for the operator A* if the abstract Green
identity holds 

(3)

and the mapping Γ: f → {Γ0 f, Γ1 f } from �(A*) to
� ⊕ � is surjective. 

A boundary triplet is not unique and, moreover, it
enables one to parameterize the set ExtA of all proper

extensions  (A ⊂  ⊂ A*) of the operator A in terms
of abstract boundary conditions. Let Aj := A*|ker(Γj),

j ∈ {0, 1}. It is known that Aj = , j ∈ {0, 1}.

Proposition 1 ([7]). Let Π = {�, Γ0, Γ1} be a bound�
ary triplet for A*. Then the mapping

(4)

establishes a bijective correspondence between ExtA and

the set (�) of closed linear relations in �. Denote

AΘ := , where Θ is determined by Eq. (4). Then the fol�
lowing statements hold

A*f g,( ) f A*g,( )– Γ1 f Γ0g,( )� Γ0 f Γ1g,( )�–=

  for all f g, � A*( ),∈

Ã Ã

Aj
*

ExtA�( )Ã Γ� Ã( )→

=  Γ0 f Γ1 f,{ }: f � Ã( )∈{ } =: Θ �̃ �( )∈

�̃

Ã

(i) AΘ =  ⇔ Θ = Θ*;

(ii) AΘ is symmetric ⇔ Θ is symmetric. Moreover,
n±(AΘ) = n±(Θ);

(iii) �(AΘ) ∩ �(A0) = �(A) ⇔ Θ . In this
case Θ is called a boundary operator and relation (4)
becomes

(5)

Definition 2 ([9]). Let Π = {�, Γ0, Γ1} be a bound�
ary triplet for A*. Operator valued function M(·): ρ(A0) →
[�] defined by

(6)

is called the Weyl function corresponding to the
boundary triplet Π.

Further, let Sn be a closed densely defined symmet�
ric operator in �n such that n+(Sn) = n–(Sn) ≤ ∞, n ∈

�. In the Hilbert space � := , consider the

operator A := . Let also Πn = {�n, , } be

a boundary triplet for the operator . Define a direct

sum Π :=  of boundary triplets Πn by setting

(7)

Green’s formulae (3) for operators , n ∈ �, yield
validity of Green’s formula for the operator A* =

 and also vectors f = , g =  ∈ �(Γ0) ∩

�(Γ1) ⊂ �(A*), where

It is shown in [12] that a boundary triplet Π for the

operator A* =  can be chosen in the form (7) if

there exist ε > 0 and a sequence  ⊂ [ε, ε–1]

such that all pairs {ρnSn, ρnSn0}, n ∈ �, are unitary
equivalent to {S1, S10}. However, it is not difficult to

give an example of the operator A =  for which a

triplet (7) is not a boundary triplet for A*. The reason
is the following. The mapping Γ = {Γ0, Γ1}: �(A*) →
� ⊕ � may not fulfill the following necessary condi�
tions:

AΘ
*

� �( )∈

AΘ A* ker Γ1 ΘΓ0–( ).= ↑

Γ1 fz M z( )Γ0 fz, fz ker A* z–( ),∈=

z ρ A0( ),∈

�n
n 1=
⊕
∞

Sn
n 1=
⊕
∞

Γ0
n( ) Γ1

n( )

Sn*

Πn
n 1=
⊕
∞

� �n, Γj := Γj
n( )

,
j 1=
⊕

n 1=
⊕=

Γj: � A*( ) �, j 0 1,{ }.∈→

∞ ∞ 

Sn*

Sn
n 1=
⊕
∞

fn
n 1=
⊕
∞

gn
n 1=
⊕
∞

� Γj( ) := ϕ ϕn: Γj
n( )ϕn �n

2

n �∈

∑
n 1=
⊕= ∞<

⎩ ⎭
⎨ ⎬
⎧ ⎫

.

∞

Sn*
1

⊕
∞

ρn{ }n 1=
∞

Sn1
⊕
∞

� Γ0( ) � Γ1( )∩ � A*( ), ran Γ( ) � �.⊕= =
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Next theorem provides criteria for the collection
Π = {�, Γ0, Γ1} of the form (7) to be a boundary triplet

for the operator A* = .

Theorem 1. Let A = , Πn = {�n, , }

be a boundary triplet for the operator , n ∈ �, and let
Π = {�, Γ0, Γ1} be defined by (7). Then:

(i) the triplet Π = {�, Γ0, Γ1} is a boundary relation
(in the sense of [8]) for the operator A*;

(ii) the collection Π = {�, Γ0, Γ1} is a boundary trip�
let for the operator A* precisely when the mappings Γj are
bounded, i.e.,

(8)

(iii) the collection Π = {�, Γ0, Γ1} is a boundary trip�
let for the operator A* if and only if the following condi�
tions are satisfied

(9)

Here Mn(·) is the Weyl function corresponding to the
triplet Πn. 

(iv) If a0 = (∈�) is the point of a regular type of the
operator A, then the collection Π = {�, Γ0, Γ1} is a
boundary triplet for the operator A* precisely when

(10)

Theorem 1 enables one to regularize an arbitrary

collection of boundary triplets  = {�n, , } in
such a way that the direct sum of the regularized trip�
lets is a boundary triplet for the operator A*. Namely,
assume that Qn =  ∈ [�n] and Rn ∈ [�n] with

∈ [�n]. We set

(11)

Corollary 1. Let  = {�n, , } be a bound�

ary triplet for , and let (·) be the corresponding
Weyl function, n ∈ �. If

(12)

then the direct sum Π =  (see (7)) of triplets Πn =

{�n, , } defined by (11) is a boundary triplet for

the operator A* = .

Remark 1. The existence of the regularization (11)
was first established in [13, Theorem 5.3]. Namely, in

Sn*
n 1=
⊕
∞

Sn
n 1=
⊕
∞

Γ0
n( ) Γ1

n( )

Sn*

Γ0
n( )

n �∈

sup ∞, Γ1
n( )

n �∈

sup ∞;<<

Mn i( )
n

sup ∞, ImMn i( )( ) 1–

n
sup ∞.<<

a0

Mn a0( )
n �∈

sup ∞, Mn' a0( )( )
1–

n �∈

sup ∞.<<

Π̃n Γ̃0
n( )

Γ̃1
n( )

Qn*

Rn
1–

Γ0
n( )

 := RnΓ̃0
n( )

, Γ1
n( )

 := Rn
1–( )* Γ̃1

n( )
QnΓ̃0

n( )
–( ).

Π̃n Γ̃0
n( )

Γ̃1
n( )

Sn* M̃n

Rn
1–( )* M̃n i( ) Qn–( )Rn

1– ∞< ,{
n �∈

sup

sup
n �∈

Rn Im M̃n i( )( )( )
1–
Rn* } ∞,<

Πn
n 1=
⊕
∞

Γ0
n( ) Γ1

n( )

Sn*
n 1=
⊕
∞

relations (11) it is taken Qn := Re (i) and Rn :=

, n ∈ � (cf. [13]). However, let us stress that
the latter regularization is not suitable for our aims since
it does not lead to a parametrization of the Hamiltonians
HX, β by Jacobi matrices.

2. BOUNDARY TRIPLETS 
FOR SCHRODINGER OPERATORS

Consider the minimal (closed) symmetric operator

(13)

It is clear that n±(Hmin) = ∞ and the operator  is
defined by the same differential expression on the domain
�( ) = W2, 2(�\X). It is easy to see that Hmin =

, where Hn := – , �(Hn) = [xn – 1, xn].

Define the mappings

(14)

A straightforward calculation shows that the triplet

Πn = {�2, , } is a boundary triplet for the oper�

ator . Moreover, we have the following

Theorem 2. Let d* :=  < ∞ and let , 

be defined by (14). Then the triplet Π =  =

{�, Γ0, Γ1} defined by (7) is a boundary triplet for the

operator .

Proof. The condition d* < ∞ yields that z = 0 is a
point of a regular type for the operator Hmin. To com�
plete the proof of Theorem 2 it suffices to check (10)
at the point z = 0.

3. PARAMETRIZATION OF HAMILTONIANS 
WITH δ'�INTERACTIONS

For the remainder of this note, we can assume
without loss of generality that βn ≠ 0 for all n ∈ �. Fur�
ther, consider the semi�infinite Jacobi matrix

M̃n

ImM̃n i( )

H := Hmin := d2

dx2
������, � Hmin( )– W0

2 2,
�\X( ).=

Hmin*

Hmin*

Hn
n �∈

⊕ d2

dx2
������ W0

2 2,

Γ0
n( )f := 

dn
1/2f xn 1– +( )

dn
1/2f xn–( )–⎝ ⎠

⎜ ⎟
⎛ ⎞

,

Γ1
n( )f := 

dnf ' xn 1– +( ) f xn 1– +( ) f xn–( )–( )+

dn
3/2

���������������������������������������������������������������������

dnf ' xn–( ) f xn 1– +( ) f xn–( )–( )+

dn
3/2

����������������������������������������������������������������
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

Γ0
n( ) Γ1

n( )

Hn*

dn
n �∈

sup Γ0
n( ) Γ1

n( )

Πn
n 1=
⊕
∞

Hmin*



DOKLADY MATHEMATICS  Vol. 81  No. 3  2010

SCHRÖDINGER OPERATORS WITH δ'�INTERACTIONS 345

(15)

In l2(�), the minimal symmetric operator is naturally
associated with the matrix BX, β (see [4]). We denote it
also by BX, β.

The following Lemma shows that the boundary
operator Θ parameterizing HX, β via (5) is a Jacobi
matrix of the form (15).

Lemma 1. Let Π = {�, Γ0, Γ1} be a boundary triplet

for  defined in Theorem 2. Then HX, β = , that is

Theorem 2, Lemma 1 and some results from [7, 9]
enable us to establish the following connection
between spectral properties of the Hamiltonian HX, β

and the Jacobi matrix (boundary operator) BX, β.
Theorem 3. Assume that d* < ∞. Then:
(i) the following relation holds n±(HX, β) = n±(BX, β);
(ii) the operator HX, β is lower semibounded precisely

when the operator BX, β is lower semibounded;

(iii) if n±(HX, β) = 0, i.e., HX, β = , then the spec�
trum of the operator HX, β is discrete precisely when

 = 0 and the spectrum of the operator BX, β is dis�

crete.

4. A CONNECTION WITH THE KREIN–
STIELTJES STRING

It is clear that the parameterizing matrix of the
form (15) admits the following factorization

(16)

where U is the unilateral shift operator in l2(�) and

(17)

We put l2n – 1 := dn, l2n := βn, m2n – 1 = m2n := dn, n ∈ �.
In the case βn > 0, n ∈ �, the difference equation asso�
ciated with the matrix BX, β describes the motion of an
inhomogeneous string (Krein–Stieltjes string) with
mass distribution �(y) = , where yn – yn – 1 := ln

and y0 := 0. This class of matrices is studied sufficiently
well. In particular, criterion of self�adjointness (Ham�
burger’s Theorem [1, Theorem 0.5]) and criterion of
discreteness of spectrum (the Kac�Krein Theorem [10])
are known and are formulated in terms of sequences

l =  and m = . We hardly exploit
these criteria as well as Theorem 3 in the following sec�
tions.

5. SELF�ADJOINTNESS

Combining Theorem 3 (i) with the representa�
tion (16), (17), we obtain

Theorem 4. Deficiency indices of the operator HX, β

are equal and are not greater than one, n+(HX, β) =
n–(HX, β) ≤ 1. Furthermore, HX, β is self�adjoint if and
only if at least one of the following conditions hold:

(1)  = ∞, i.e. � = �+;

(2)  = ∞.

Remark 3. In the case of positive strengths βn, The�
orem 4 follows from Hamburger’s Theorem [1]. In the
case of arbitrary strengths, we use the formulae for
Pn(0) and Qn(0) [1, p. 291] and the self�adjointness cri�
terion [4, Lemma VII.1.5].

Theorem 4 immediately yields the following result
of Buschmann–Stolz–Weidmann [5, Theorem 4.7].

Corollary 2 ([5]). If � = �+, then the operator HX, β

is self�adjoint.

BX β,  := 

d1
2– d1

2– 0 0 0 …

d1
2– d1

1–

β1

����� d1
2–+

d1
1/2– d2

1/2–

β1

����������������� 0 0 …

0
d1

1/2– d2
1/2–

β1

�����������������
d2

1–

β1

����� d2
2–+ d2

2– 0 …

0 0 d2
2– d2

1–

β2

����� d2
2–+

d2
1/2– d3

1/2–

β2

����������������� …

0 0 0
d2

1/2– d3
1/2–

β2

�����������������
d3

1–

β2

����� d3
2–+ …

… … … … … …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

Hmin* HBX β,

HX β, Hmin* ⎡� HX β,( ),=

� HX β,( ) f W2 2,
�\X( ): Γ1 f∈ BX β, Γ0={ }.=

HX β,
*

dn
n ∞→
lim

BX β, RX
1– I U+( )DX β,

1– I U*+( )RX
1–
,=

DX β,  := dn 0

0 βn⎝ ⎠
⎜ ⎟
⎛ ⎞

, RX := dn 0

0 dn⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

.
n 1=
⊕

n 1=
⊕

∞∞

mn

yn y<

∑

ln{ }n 1=
∞ mn{ }n 1=

∞

dn

n 1=

∞

∑

dn 1+ βi di+( )
i 1=

n

∑
2

n 1=

∞

∑



346

DOKLADY MATHEMATICS  Vol. 81  No. 3  2010

KOSTENKO, MALAMUD

6. LOWER SEMIBOUNDED 
HAMILTONIANS

Using Theorem 3(ii) and the form of the matrix
BX, β, we arrive at the following result.

Proposition 2. For the operator HX, β to be lower
semibounded it is necessary that

(18)

and sufficient that

(19)

Here C1 are C2 are positive constants independent of
n ∈ �.

Corollary 3. If 0 < d∗ ≤ d* < ∞, then the operator

HX, β is lower semi�bounded precisely when  > –∞.

7. DISCRETENESS OF SPECTRUM

We set  := βn if βn < 0 and  := –∞ if βn > 0.
Applying the discreteness criterion [10] to the matrix
BX, β and combining this with Theorem 3 (iii), we
arrive at the following necessary conditions for dis�
creteness of the spectrum of the operator HX, β.

Proposition 3. Let � = �+ and dn → 0. The spectrum
of the operator HX, β is not discrete if at least one of the
following conditions hold:

(i)  > 0;

(ii) βn ≥ –C , n ∈ �, C > 0;

(iii)  ≤ –C(  + ), n ∈ �, C > 0.

Corollary 4. If either βn > 0 for all n ∈ � or  ∉
l3(�), then the spectrum of the operator HX, β is not discrete.

Proposition 3 shows that the spectrum of the oper�
ator HX, β is discrete in the very exceptional cases. For
instance, the spectrum is not discrete if either β ⊂ �+

or if there exists a subsequence { } ⊂ �–, which tends

to –∞ sufficiently fast. Furthermore, dn must tend to zero
sufficiently fast for the spectrum to be discrete. Sufficient
conditions for discreteness of the spectrum of the Hamil�
tonian HX, β are given in the following

Theorem 5. Assume that βn + dn ≥ 0 for all n ∈ �.
(i) If b < +∞, and X and β are such that the operator

HX, β is self�adjoint, then the spectrum of HX, β is discrete
if and only if

(20)

(ii) � = �+, then the spectrum of HX, β is discrete pre�
cisely when

(21)

βn
1– C1dn– min dn

1– dn 1+
1–,{ }, n– �∈≥

βn
1– C2min dn dn 1+,{ }, n– �.∈≥

βn
1–

n �∈

inf

βn
– βn

–

xn dj
3

j n=

∞

∑n ∞→
lim

dn
3

βn
– dn

1– dn 1+
1–

dn{ }n 1=
∞

βnk

b xn–( )
n ∞→
lim βj dj+( )

j 1=

∑ 0.=

xn dj
3

j n=

∞

∑n ∞→
lim 0, xn βj dj+( )

j n=

∞

∑n ∞→
lim 0.= =

Remark 4. Let us note that we use another param�
etrization of the Hamiltonian HX, β for proving Proposi�
tions 3 (i), (ii) and Theorem 5 (for the details, see [11,
Sect. 6].

8. ON THE NEGATIVE SPECTRUM 
OF THE OPERATOR HX, β

Let T be a self�adjoint operator in � and let ET(·) be
its spectral function. Dimension of the negative sub�
space ET(–∞, 0)� of the operator T is denoted by κ–(T),
κ–(T) := dim(ET(–∞, 0)�).

Proposition 4. Let d* < ∞ and let κ–(β) be the num�

ber of negative elements in the sequence β = . If

HX, β = , then

(22)

In particular, HX, β > 0 if βn > 0, n ∈ �.
Proof. Let M(·) be the Weyl function of the opera�

tor Hmin, which corresponds to the boundary triplet Π
defined in Theorem 2. Using the form of the
Weyl function, we get the following equality M(0): =
s� (x) = 0. By  [9, Theorem 4], κ–(HX, β) =

κ–(BX, β – M(0)) = κ–(BX, β). On the other hand, by
(16), (17), κ–(BX, β) = κ–(DX, β) = κ–(β).

Remark 5. Using rather different approaches,
Proposition 4 was obtained in [15] under assumptions
that κ–(β) = |X| < ∞, and also in [6] assuming that |X| = ∞
and d∗ > 0.

9. HAMILTONIANS 
WITH δ�INTERACTIONS

Let α =  ⊂ �. Consider the differential
expression

(23)

In L2(�), one associates with (23) a closed symmetric

operator , defined by the differential expression

–  on functions f ∈ (�\X) satisfying the fol�

lowing boundary conditions at the points xn ∈ X:

(24)

Let HX, α be its closure. The operator HX, α is known as
the Hamiltonian with δ�interactions of strengths αn at
the centers xn [2].

The analogs of Lemma 1 and Theorem 3 hold
true for the operator HX, α (see [11, Sect. 5]) and the
role of the matrix (15) is played by the Jacobi matrix

βn{ }n 1=
∞

HX β,
*

κ– HX β,( ) κ– β( ).=

M
x 0–→
lim

αn{ }n 1=
∞

lX α,
d2

dx2
������– αnδ x xn–( ), x

n 1=

∞

∑+ �.∈=

HX α,

0

d2

dx2
������ Wcomp

2 2,

f ' 0( ) 0, f xn+( ) f xn–( ),= =

f ' xn+( ) f ' xn–( )– αnf xn( ), n �.∈=
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(25)

where rn :=  and dn = xn – xn – 1, n ∈ �. It
is easy to see that

(26)

where Aα = diag(αn), DX = diag(dn), and RX = diag(rn).
By (16) and (26), the structure of matrices (15) and
(25) are completely different in the case d∗ = 0. There�
fore, the spectral properties of Hamiltonians with δ'
and δ�interactions on X are essentially different in this
case (see [11]).
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r1
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��� α1
1
d1

���� 1
d2

����+ +⎝ ⎠
⎛ ⎞ 1

r1r2d2

�����������– 0 …

1
r1r2d2

�����������– 1

r2
2

��� α2
1
d2

���� 1
d3

����+ +⎝ ⎠
⎛ ⎞ 1

r2r3d3

�����������– …

0 1
r2r3d3

�����������– 1

r3
2

��� α3
1
d3

���� 1
d4

����+ +⎝ ⎠
⎛ ⎞ …
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

dn dn 1++

BX α, RX
1– I – U( )DX

1– I – U*( ) Aα+( )RX
1–
,=
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