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Abstract 

Contamination of cold-smoked salmon with Listeria monocytogenes, a bacterium causing 

listeriosis, presents a risk to consumer health. The overall aim of this thesis was to investigate 

the prevalence and source of L. monocytogenes in different stages of vacuum packed cold-

smoked salmon production chain/retail market and to develop a risk assessment model to 

quantitatively assess the risk of human listeriosis upon consumption of vacuum packed cold-

smoked salmon. The study necessitated the identification of novel isolation techniques for  

the isolation and quantification of L. monocytogenes in vacuum packed cold-smoked salmon. 

The techniques currently used in isolation of L. monocytogenes from ready-to-eat food 

(EN/ISO 11290-01 and -02) were evaluated and were found to be 64 % effective in isolating 

L. monocytogenes. Use of 16S rRNA gene sequence analysis and molecular fingerprinting 

method multi-locus variable number tandem repeat analysis (MLVA) in combination with 

EN/ISO 11290-01 and -02 was found to be more effective (98 %) in quantification of L. 

monocytogenes in vacuum packed cold-smoked salmon. 

The prevalence of L. monocytogenes in five brands of vacuum packed cold-smoked salmon 

(n = 120) marketed in different retail outlets in the Republic of Ireland was 21.60%.The 

prevalence of L. monocytogenes surveyed in a vacuum packed cold-smoked salmon factory 

(n = 444) was 24.54 %. The final product (vacuum packed cold-smoked salmon) was 

contaminated with three major types of L. monocytogenes; one type originating from the raw 

material and the others colonising the production line. To validate these routes of 

contamination, 60 raw salmon were tagged and sampled after each stage of processing, the 

results showed that the final product was contaminated with 3 strain types of L. 

monocytogenes isolated from raw, curing and filleting stages of cold-smoking respectively. 

The prevalence and tagging results indicate the current ubiquitous nature of L. 

monocytogenes in vacuum packed cold-smoked salmon 

A product specific model was developed and validated under dynamic temperature conditions 

to predict the growth of L. monocytogenes in cold-smoked salmon taking into account the 

retail and consumer phases of the food pathways. The values of bias factor and accuracy 

factorof the modelwere close to unity, indicating good agreement between observations and 

predictions of the model. 

Finally a quantitative Monte Carlo risk assessment model was developed to assess likely 

human exposure and the probability of human illness by L. monocytogenes on cold-smoked 
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salmon in Ireland. A surveillance study conducted at the retail level served as the starting 

point for the model with a mean prevalence of L. monocytogenes in vacuum packed cold-

smoked salmon of 21.60 % and a mean count on contaminated vacuum packed cold-smoked 

salmon of 2.60 log10 CFU/g (95 % confidence interval 0.00 – 4.53 log10 CFU/g). The model 

predicted the annual log probability of illness by consuming contaminated vacuum packed 

cold-smoked salmon in a low risk and high risk population, with mean values -5.76 and -

1.63, respectively (assuming weekly consumption). The model sensitivity analysis highlights 

the importance of reducing the initial contamination levels of L. monocytogenes on raw fish 

and the maintenance of proper storage conditions. Various ‗what-if‘ scenarios were studied to 

assess the likely impact on the log probability of illness per serving. Careful control of 

consumer storage temperature and time were identified as the best strategies to decrease the 

probability of illness. 

In conclusion, the results from this study indicated that sub-typing of the different strains 

using MLVA implicated a possible carryover of L. monocytogenes from the raw fish and in-

house strain to the final product. Therefore, suitable processing parameters and pre- 

processing handling practices should be treated as important control measures to minimise 

the exposure to this pathogen. The product specific dynamic model developed in this study 

provides the sea food industry with a useful tool for effective management and optimization 

of product safety and may contribute to more realistic estimations of safety risks related to 

vacuum packed cold-smoked salmon. The results from the quantitative risk assessment 

developed in this thesis may help risk managers to make informed decisions with regard to 

possible control measures for L. monocytogenes in cold smoked salmon and therefore 

improve food safety. 
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Outline of the thesis 
Chapter Title Summary 

1 Introduction and review of literature - Survival characteristics of Listeria monocytogenes 
- Prevalence of L. monocytogenes in sea-food products in the 

EU and other countries 
- Aspects of microbial quantitative risk assessment 

- Aspects of microbial growth modelling 

2 General materials and methods - Methods used in this study to detect, isolate and 
characterise L. monocytogenes from vacuum packed cold-
smoked salmon 

- Inoculation of smoked salmon with L. monocytogenes 
- Statistical methods used in the evaluation of models applied 

in this study 

3 Development of rapid and reliable method 

for detection of L. monocytogenes 

- Various selective plating methods tested for the isolation of 
L. monocytogenes. 

- Evaluation of the plating methods using 16S rRNA method 
developed in this study. 

4. Prevalence of L. monocytogenes in vacuum 

packed cold-smoked salmon marketed in 

retail outlets in Dublin 

- Prevalence of L. monocytogenes in cold-smoked salmon 
marketed in retail outlets in Dublin for a period of one year 

5. Contamination pathways of L. 

monocytogenes in an Irish cold-smoked 

salmon processing factory 

- Factory was divided into four zones and samples from each 
zone were analysed for the presence of L. monocytogenes 

- The L. monocytogenes isolates were characterised using 
MLVA to study the similarities of the isolates from various 
zones 

- Contamination pathways of L. monocytogenes in vacuum 
cold-smoked salmon was established 

6. Tracking L. monocytogenes during different 

processing stages of vacuum packed cold-

smoked salmon in a cold-smoked salmon 

processing factory 

- 60 raw salmon were tagged and sampled after every critical 
step in the processing of vacuum packed cold-smoked 
salmon, to confirm the contamination pathways established 
in the previous Chapter (5) 

7. Growth modelling of 

L. monocytogenes in vacuum packed cold-

smoked salmon at 4, 8, 12 and 16 °C. 

- Determination of kinetic parameters of both L. 
monocytogenes (isolates of L. monocytogenes obtained 
from cold-smoked salmon Chapter 4) and native microflora 
at 4 °C and at abuse temperatures 8, 12 and 16 °C. 

- Illustration of the nature of growth relationship between 
native flora and L. monocytogenes  

8. Dynamic modelling of L. monocytogenes in 

vacuum packed cold-smoked salmon 

- Development of a product specific growth model for 

vacuum packed cold-smoked salmon contaminated with L. 
monocytogenes covering retail and consumer storage 
temperature range. 

9. Risk assessment of L. monocytogenes in 

vacuum packed cold-smoked salmon 

- Development of a quantitative risk assessment model of 
human listeriosis linked to the consumption of vacuum 
packed cold-smoked salmon. 

10 General conclusions and recommendations 

for future work 

- Conclusions, implications, limitations and 
recommendations for future work. 
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Chapter 1 Introduction and Review of Literature 
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1.1 Listeria monocytogenes as a food borne pathogen 
 

Listeria monocytogenes, is an opportunistic psychrophilic bacterium which is widespread in 

the environment. L. monocytogenes was first reported in 1924 by Murray (Murray, et al., 

1924). It was isolated as a causative agent of monocytosis in rabbits and guinea pigs. It is a 

Gram positive bacterium and is part of the genus Listeria which has six identified species: L. 

monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. seeligeri and L. grayi (Gandhi and 

Chikindas, 2007). 

L. monocytogenes is an intracellular pathogen that causes a group of disease that are 

collectively termed as listeriosis. Since 1981, listeriosis is known to be an important bacterial 

food-borne disease (Mataragas, 2010). In recent years it has emerged as a significant cause of 

human infection in industrialised countries (Zunabovic, 2011). This is attributed to the 

emergence of a vulnerable immunocompromised population and the concomitant development 

of large-scale agro-industrial plants and refrigerated food (Lecuit, 2007).  

 

1.2 Growth and survival characteristics 
 

1.1.2 Growth characteristics 
 

The growth of L. monocytogenes in food is dependent on the intrinsic characteristics of the 

substrate (such as, pH and water activity - aw), the extrinsic characteristics (including, storage 

temperature and relative humidity) and processing techniques used in the production of food 
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(such as cooking and non-thermal processing; Hwang and Sheen, 2009). Some of the growth 

and survival limits for L. monocytogenes are shown in Table1.1. 

Table 1-1Growth and survival limits for L. monocytogenes (FSAI, 2007) 
 

Parameter Range Optimal
d 

Can survive 

(But no growth)
e 

Temperature (°C)         -1.5 to 45 30 to 37 -18 

pH
a 

4.2 to 9.5 7 3.3 to 4.2 

Water Activity(aw) 0.90 to >0.99 0.97 <0.90 

Salt (%) <0.5 to 12 N/A >20 

 

a
Hydrochloric acid as acidulant (inhibition is dependent on type of acid present) 

b
Sodium chloride as the humectant 

c
Percent sodium chloride, water phase 

d
When growth rate is highest 

e
Survival period will vary depending on nature of food and other factors 

f
A temperature of 70

o
C/2min is required for a 10

6
reduction in numbers of L. monocytogenes cells 

N/A Not Applicable 

 

The primary factors that influence the growth of L. monocytogenes in food are temperature, pH 

and water activity (Zhao et al., 2004). Additionally, it has also been demonstrated that 

previously stressed cells (e.g. exposure to sub-lethal heating before process heating) can be 

more resistant to additional stresses (Yoshida et al., 2001). Although, L. monocytogenes has an 

optimum growth temperature of between 30 – 37 °C at neutral or slightly alkaline pH (i.e. pH ≥ 

7) it can also grow at refrigerated temperatures < 5 °C (Table 1.1).  

 

1.2.2 Survival characteristics 

 

L. monocytogenes can survive in adverse environmental condition such as low temperatures and 

extreme pH by forming biofilms on surfaces. 
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A. Survival at low temperatures: 

L. monocytogenes has the ability to grow over a wide range of temperatures (2–45 °C; Rocourt 

and Cossart, 1997). Survival at these temperatures takes place with changes in L. 

monocytogenes membrane composition. One of the main changes is an increase in the 

proportion of carbon chain C15: 0 at the expense of C17: 0. Moreover, growth at low temperature 

results in an increase in unsaturated fatty acids (Beales, 2004) which would help in the survival 

of L. monocytogenes under low temperatures.  

L. monocytogenes produces cold shock proteins (Csps) in response to cold acclimation which 

balances the growth at low temperature (Bayles et al., 1996). They accumulate compatible 

solutes such as glycine, betaine and carnitine during refrigeration temperature. These solutes 

stimulate growth of cells subjected to cold stress. Under adverse environmental condition, 

transcription of genes is made possible by the association of alternative sigma factories with 

the core RNA polymerase (Becker et al., 2000) 

It possesses three small, highly homologous protein members of the cold shock protein (Csp) 

family CspA, CspB, and CspD. Cold stress induced by low temperature may inadvertently 

cross-protect cells against NaCl stress due to induction of cspA, cspD, and cspB gene 

expression. The hierarchies of their functional importance differ, depending on the 

environmental stress conditions: CspA>CspD>CspB in response to cold stress versus 

CspD>CspA/CspB in response to NaCl salt osmotic stress. The fact that Csps are promoting L. 

monocytogenes adaptation against both cold and NaCl stress has significant implications in 

view of practical food microbial control measures. The combined or sequential exposure of L. 
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monocytogenes cells to these two stresses in food environments might inadvertently induce 

cross-protection responses (Schmid et al., 2009).  

B. Survival under acid stress 

L. monocytogenes encounters a low pH environment in acidic foods, during gastric passage and 

in the phagosome of the macrophage (Cotter and Hill, 2003). The pathogen responds to and 

survives in these low-pH environments by utilising a number of stress adaptation mechanisms. 

Exposure of L. monocytogenes to mild acidic pH of 5.5 (1 M lactic acid) induces the acid 

tolerance response (ATR), wherein the cells are resistant to severe acidic conditions (O'Driscoll 

et al., 1996). L. monoytogenes develops acid tolerance upon exposure to sublethal acid 

conditions, a response that has been designated the ATR (acid tolerance response). The 

effectiveness of this response appears to be critically dependent upon two principal factors: (i) 

the pH of the adaptive exposure and (ii) the duration of the adaptive period (Davis et al., 2006).  

The bacterium further utilises the glutamate decarboxylase (GAD) system to survive acid 

stress. The glutamate decarboxylase (GAD) acid resistance mechanism has been found to play 

a major role in the acid resistance of a relatively small number of bacteria. When the cell is 

exposed to low pH, the GAD system converts a molecule of extracellular glutamate to 

extracellular γ-aminobutyrate (GABA), while consuming an intracellular proton. The net effect 

is to reduce the proton concentration within the cell, thus alleviating acidification of the 

cytoplasm. In addition, γ-aminobutyrate is less acidic than glutamate, which contributes to an 

alkanization of the environment. A glutamate decarboxylase system protects Listeria 

monocytogenes in gastric fluid (Cotter, 2001). 
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C. Survival under osmotic stress 

The use of salt to lower the water activity is one of the methods of food preservation used by 

the food industry; however, the ability of Listeria to adapt and survive in high concentrations 

of salt makes it difficult to control the pathogen in foods (Hill et al., 2002). One of the 

mechanisms used by Listeria to tolerate salt stress is a change in its gene expression leading to 

an increased or decreased synthesis of various proteins (Duche et al., 2002). Two general stress 

proteins (DnaK and Ctc) were identified among the salt shock proteins (SSP), (induced in L. 

monocytogenes. DnaK functions as a heat shock protein, stabilizing cellular proteins. Among 

the elevenstress acclimation proteins (Saps) identified, GbuA, which functions as an osmo-

protectant transporter for glycine betaine was induced in response to salt stress. 

D. Survival in biofilms 

L. monocytogenes can grow as surface attached communities of cells embedded in an extra-

cellular polysaccharide matrix known as a biofilm (White et al., 2002). Biofilm growth is 

important because in this form the bacteria are more resistant to physical and chemical agents 

intended to kill the bacteria and are able to survive for extended periods with minimal nutrient 

supply (Somers and Wong, 2004). Surface biofilm, particularly in locations which are difficult 

to identify and clean, can act as a persistent source of food contamination through the release 

of L. monocytogenes from the biofilm (Chae and Schraft, 2000 and Borucki et al., 2003). 
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E. Resistance to antimicrobial agents 

Antimicrobial resistance in the food-borne pathogen Listeria is emerging in recent years (Sik et 

al., 2006). Bacteria can acquire resistance by getting a copy of a gene encoding an altered 

protein or an enzyme like beta lactamase from other bacteria, even from those of a different 

species (Ayaz et al., 2010). There are a number of ways to get a resistance gene:  

 During transformation - in this process, akin to bacterial sex, microbes can join together 

and transfer DNA to each other.  

 On a small, circular, extrachromosomal piece of DNA, called a plasmid - one plasmid 

can encode resistance to many different antibiotics.  

 Through a transposon - transposons are "jumping genes," small pieces of DNA that can 

hop from DNA molecule to DNA molecule. Once in a chromosome or plasmid, they 

can be integrated stably.  

 By scavenging DNA remnants from degraded dead bacteria. 

Studies have shown that several species of Listeria isolated from humans or from food 

production or processing facilities are resistant to one or more antibiotics (Ayaz et al., 2010 

and Morvan et al., 2010). Morvan et al., (2010) looked at 1001 isolates of Listeria from retail 

foods to determine their levels of resistance to eight antibiotics. About 10.9 % of the isolates 

were resistant to one or more antibiotics. Resistance to penicillin or tetracycline was the most 

common and there was no resistance to the antibiotics commonly used for treatment of 

listeriosis. However, this does not eliminate the possibility that resistance to antibiotics used 

for listeriosis treatment such as ampicillin and gentamycin cannot be acquired, since penicillin 

and ampicillin belong to the same family of beta-lactam antibiotics (Walsh et al., 2001). In 

addition to antibiotic resistance, the emergence and spread of resistance among food borne 
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organisms to sanitizers and disinfectants used by the food industry are also becoming a concern 

(Sik et al., 2006). 

1.3 Virulence 

The disease causing ability of L. monocytogenes is linked to the virulence or virulence-like genes 

on itschromosome. These virulence genes codefor surface and secreted proteins as well as other 

regulators which help the bacterium to adapt to diverse environments and express virulence 

traits. L. monocytogenes genome is approximately 3.0 Mb (Michel, 1992; Genbank/EMBL 

accession number AL591824) and information on its sequence can be found at The Institute for 

Genomic Research Table 1-2.  

 

Table 1-2: Genomic characteristics of L. monocytogenes (Michel, 1992). 

 
Size of the chromosome (kb) 2,944,528 

G+C content (%) 39 

G+C content of protein-coding genes (%) 38 

Total number of protein-coding genes 2853 

 

Other species such as L. innocua lack genes which are essential for virulence. For example, 

virulence genes that code for a surface protein and aid are invasion into host cells is present are 

L. monocytogenes but is absent in L. innocua (Kreft et al., 1999). 

1.4 Listeriosis 
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The term listeriosis is referred to a group of diseases caused by L. monocytogenes in both human 

and animals (McLauchlin, et al., 2004). The illness is caused when the pathogenic strain of L. 

monocytogenes induces the virulence genes after lodging themselves in human cells. Human 

listeriosis is a potentially fatal food-borne infection which can cause abortion in pregnancy 

related cases (Smerdon et al., 2001). 

1.4.1 Nature of the disease 
 

Two types of disease are associated with L. monocytogenes, non-invasive and invasive 

listeriosis (Smerdon et al., 2001). Non-invasivelisteriosis (referred to as febrile listerial 

gastroenteritis) is the milder form of the disease. Symptoms include diarrhoea, fever, headache 

and myalgia (muscle pain; Goulet, 2001). Symptoms occur after a short incubation period. 

Outbreaks of this disease have generally involved the ingestion of high doses of L. 

monocytogenes by otherwise healthy individuals. Only limited information is available 

regarding the public health impact of this disease. 

Invasive listeriosis affects ‗high-risk people‘ (including pregnant women, cancer patients, 

AIDS patients, the elderly and the very young; Vazques-Borland et al., 2001). This disease is 

characterised not only by the severity of the symptoms but also by a high mortality rate (Table 

1-3). 
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Table 1-3: Symptoms of invasive listeriosis in human (FSAI 2007) 

Symptoms Incubation Period Mortality Rate 

 Mild fever (with or without slight 

gastroenteritis or flu like 

symptoms) 

1-90 days 20-30 % 

 Myalgia   

 Meningitis   

 Septocaemia   

 Spontaneous abortion   

 

Thirteen serotypes have been identified for L. monocytogenes. All of these may be associated 

with human listeriosis; however, most human infections are associated with the serotypes 1/2a, 

1/2b or 4b (Corcoran et al., 2006). Steps involved in the human listeriosis is represented in 

Figure (1.1) 

 

Figure 1-1: Successive steps of human listeriosis affecting the different organs in the human 

body (Leuit et al., 2007) 
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1.4.2 Transmission route of listeriosis in food 

 

The consumption of contaminated food is the main route of transmission of listeriosis 

accounting for 80-90 % of cases (WHO, 2004). Foods that are most often associated with 

human listeriosis include those which: 

 Support the growth of L. monocytogenes. 

 Have a long shelf life under refrigeration  

 Are consumed without further listericidal treatments  

1.4.3 Food-born outbreaks of listeriosis. 

 

The first documented outbreaks of listeriosis in Europe and in the USA were due to milk 

products (Linnan et al., 1988). From 1991 to 2002 a total of 18 outbreaks of invasive 

listeriosis, three cases of gastroenteritis listeriosis and one case of invasive and gastroenteritis 

listeriosis have been reported in nine different countries in Europe, with a total of 526 outbreak 

related cases (FSAI, 2007).  

There have been number of outbreaks between 1991 and 2003 in Europe which have been 

tabulated in Table 1.4.Listeriosis outbreak according to food type and country are tabulated in 

Table 1.5. 
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Table 1-4Listeriosis outbreak in Europe 1991-2002 (FSAI, 2007) 

 

Outbreak Type Number of 

Outbreaks 

Associated Foods 

Invasive 6 Processed Meat Product 

 5 Cheese 

 3 Processed Fish Product 

 3 Undetermined 

 1 Butter 

Gastroenteritis 1 Rice Salad 

 1 Corn Salad 

 1 Undetermined 

Invasive and 

Gastroenteritis 

1 Frozen cream Cake 
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Table 1-5Reported listeriosis outbreaks in Europe according to food type and country 

(Lunden et al., 2004) 
 

Year Country Product  Type Number of Cases 

(deaths) 

1949-

1957 

Germany Raw milk about 100 

1983-

1987 

Switzerland Soft cheese 122 (33) 

1986 Austria Raw 

milk/vegetables 

28 (5) 

1989-

1990 

Denmark Blue-mold 

cheese/hard 

cheese 

26 (6) 

1995 France Soft cheese 37 

1997 France Soft cheese 14 

1998-

1999 

Finland Butter 25 

2001 Sweden Soft cheese 33 

 

 

In 2005, there where twenty five reported cases of listeriosis in humans in the EU (Table 

1.6).Overall, 1,439 cases were reported in the EU and 99.4 % of these were laboratory 

confirmed. Cases from France, Germany and the United Kingdom accounted for 65 % of all 

the confirmed cases. The overall incidence was estimated to 0.3 confirmed cases per 100,000 

population similar to the incidence recorded in 2004 (0.3 per 100,000 population). The highest 

listeriosis cases were recorded in Denmark (0.9), Belgium (0.8) and Finland (0.7).  
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Table 1-6: Reported listeriosis cases in humans, 2001-2005 and incidence for confirmed cases 

(EFSA, 2006) 

 

Country 2005 2004 2003 2002 2001 

 Total 

cases 

Confirmed 

cases 

Total cases 

Austeria 9 9 19 8 16 9 

Belgium 62 62 70 76 44 57 

Cyprus 0 0 - - - - 

Czech Republic 15 15 16 - - - 

Denmark 46 46 41 29 28 38 

Estonia 2 2 2 - - - 

Finland 36 36 35 41 20 28 

France 221 221 236 220 218 187 

Germany 510 510 296 256 240 217 

Greece - - 3 0 5 3 

Hungary 10 10 16 - - - 

Ireland 12 11 11 6 6 7 

Italy 51 51 25 0 - 31 

Latvia 3 3 5 8 16 11 

Lithuania 2 2 1 2 - - 

Luxembourg 0 0 - - - - 

Malta 0 0 - - - - 

The Netherlands 96 96 55 52 32 16 

Poland 22 22 10 5 31 9 

Portugal - - 38 - - - 

Slovakia 5 5 8 6 7 6 

Slovenia 0 0 1 6 - - 
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Country 2005 2004 2003 2002 2001 

 Total 

cases 

Confirmed 

cases 

Total cases 

Spain 68 68 100 52 49 57 

Sweden 35 35 44 48 39 67 

UK 223 223 232 255 158 167 

EU-Total 1,427 1,426 1,264 1,070 909 910 

 

According to Health Protection Surveillance Centre (HPSC), Ireland has seen an increase in 

listeriosis notification in 2010 (Figure 1.2). The increase is primarily among the pregnancy-

related and neonatal cases (collectively called as pregnancy-associated cases) and represents a 

very significant increase in the proportion of cases that are pregnancy-associated over recent 

years. The increase in listeriosis was seen the ethnic minority-pregnancy related cases. This 

cause was related to the food which was imported from their home land (FSAI 2006). 

 

 

Figure 1-2 No. of reported cases of L. monocytogenes in the Republic of Ireland from 2000 to 

2010 (HPSC 2010)  
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According to the European Food Safety Authority (EFSA, 2006), 54 % of the reported listeriosis cases 

in the EU occurred in individuals above 65 year. This proportion was similar to that observed in 2004 

(51 %). In 2006, listeriosis in children less than four years accounted for 7 % of the cases. In 2005, 74 

listeriosis cases were associated with pregnancy. These cases were reported in Germany (34 cases), 

France (37 cases) and Denmark (3 cases). The distribution of human listeriosis cases in the EU by age 

group for the year 2005 is illustrated in Figure (1.3).  

L. monocytogenes serotypes for 244 cases reported in 2005 by the member states of the EU revealed that 

48.7 % belonged to the 1/2a serotype and 30.3 % to the 4b serotype. Cases belonging to the serotypes 

1/2, 1/2b, 4 and others accounted for 4.5 %, 13.5 %, 1.2 % and 1.6 %, respectively.  

 

Figure 1-3: Distribution of human listeriosis case by age(EFSA, 2006). 

 

There has been an steady increase in the pregnancy related lisetriosis in the UK in 2009, 19 pregnancies 

related death were reported in the UK in comparison to the 11 cases reported in 2008 (HSE, 2009). In 

the EU (2009-2010) outbreak involving 34 cases of invasive listeriosis: 25 outbreak cases originated 
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from seven of nine Austrian provinces. Eight of the 34 cases in this outbreak had a fatal outcome (Fretz 

et al., 2010).  

 

1.5 Ready to Eat Foods associated with listeriosis 
 

Raw and minimally processed foods are typically sold to the consumer in a ready-to-use or 

ready-to-eat (RTE) form. These products generally do not contain preservatives or 

antimicrobial agents and rarely undergo any heat processing prior to consumption (Seymour, 

2001). The increase in consumer demand for RTE food and the changes in commercial food 

production (such as minimal processing) are the major reasons for the increase in food borne 

illness in recent times (Christison et al., 2008). Occurrence of L. monocytogenes in these 

foods has led to public health incidents, product recalls and large financial losses across the 

world (WHO, 2004). According to EFSA (2007), 100 CFU/g of L. monocytogenes in RTE 

food represents a very low risk of listeriosis for all population groups. In 2005, the 

community legislation of the member European Union laid down threshold for the presence 

of 2 log CFU/g of L. monocytogenes on a 25 g sample of RTE food products (directive 

92/46/EEC). The number of ready-to-eat food samples tested throughout the EU in 2005 for 

L. monocytogenes by the food category and number of positive findings are presented in 

Figure (1.4). 
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Figure 1-4: Number of food samples tested for L. monocytogenes by food category and number 

of positive findings (EFSA, 2006). 

 

1.5.1 L. monocytogenes in seafood 
 

L. monocytogenes is ubiquitous in nature and therefore aquatic creatures are also potential 

sources of the bacterium. There are several studies that have reported the presence of L. 

monocytogenes in seafood (Azevedo et al., 2005, Miettinen and Wirtanen, 2006, Salihu et 

al.,2008 and Garrido et al., 2010). L. monocytogenes has shorter generation times in seafood (pH 

6.1– 7.6) than in meat and meat products (pH 5.1–6.2). This is partly due to the effect of pH on 

the growth of L. monocytogenes, which has higher growth rates at near neutral pH (Garrido, et 

al., 2009). The contamination rate of seafood products with L. monocytogenes can vary from 

zero to 75 % (Embark, 1994; Jinneman et al., 1999 and Miettinen and Wirtanen 2005). Initial 

levels of L. monocytogenes in seafood can be influenced by various factors such as origin (wild 

or farmed), season, fishing technique, processing factory, handling and storage conditions 

(Garrido, et al., 2009). As L. monocytogenes is ubiquitous is its presence, they can contaminate 
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the seafood at any of the above mentioned stages and progress to the final preparation as they 

can withstand varying temperatures, pH and salt conditions. 

One of the key factors that influences the presence of L. monocytogenes is the final seafood 

product is its preparation and the way it is consumed. For  example Vacuum packed cold-smoked 

salmon are ready-to-eat sea food products that are cold-smoked below 20 ˚C for several hours 

and are normally purchased vacuum packed, with a shelf-life at refrigeration temperatures of a 

couple of weeks, and are consumed without any heat treatment. The salt content, pH and water 

activity values of vacuum packed cold-smoked salmon are normally within a range permitting 

the growth of L. monocytogenes (Rorvik et al., 2000).The prevalence of L. monocytogenes in 

freshly produced vacuum packed cold-smoked fish is relatively high and is typically between 10 to 

40 % (Azevedo et al., 2005, Miettinen and Wirtanen 2006, Chitlapilly Dass et al., 2010a and 

Chitlapilly Dass et al., 2010b). The presence of the pathogenic microorganism L. monocytogenes 

in minimally processed refrigerated food products (vacuum packed cold-smoked salmon) and the 

ability of this microorganism to grow under storage conditions has made this product  in the 

‗high-risk‘ category (Garrido et al., 2009). 

Vacuum packed cold-smoked salmon has a wide ranging consumption patterns in Europe and thus is 

of considerable economic importance for the seafood market, representing a 468 million Euro 

industry (Cardinal et al., 2004). This is due to the health benefits associated with the consumption of 

this product. Salmon is rich in proteins and omega-3 which protects against heart disease by 

lowering blood triglycerides and preventing blood clotting (Stolyhwo, 2006 and Domingo, 

2007). The product is also high in vitamin E and possess high antioxidant properties (Sallam, 

2007). The product is also low in carbohydrates and thus used as a staple diet by the health 

conscious population. Ireland is one of the leading producers of vacuum packed cold-smoked 
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salmon and is also leading exporters of this product worldwide. The population that consumes 

fish and fish products in Ireland is about 66 % (IUNA, 2005), thus making it one of the product 

that is largely consumed.  

Although, the health benefits associated with the consumption of the vacuum packed cold-

smoked salmon exists, the potential of contamination of the food-born pathogen L. 

monocytogenesalso prevails. Increased international trade of vacuum packed cold-smoked 

salmon coupled with an increase in susceptible populations, (especially the elderly (> 60 years) 

and immunocompromised individuals suffering underlying diseases), has made L. 

monocytogenes in vacuum packed cold-smoked salmona cause for concern (Lindquist and 

Westöö, 2000). 

1.5.2 Vacuum packed cold-Smoked salmon product characteristics 

 

Cold-smoked salmon is lightly preserved seafood, traditionally smoking was applied as a 

preservation method, but in recent years smoking is more important in terms of sensory value 

(Rorvik, 2000). Smoking of salmon may imply cold-smoking at below 20 ºC or hot-smoking at 

high temperatures (>60ºC). The production of vacuum packed cold-smoked salmon includes 

filleting, salting, drying, smoking, trimming and packaging (Figure 1-5). These processes 

involve a lot of handing by workers as well as the use of technically complex equipment 

(Jemmi and Keusch 1992). The fillets may be dry salted or brined in a bath or by injection. The 

salt content varies with the consumers‘ preference.This results in a product with 3–8 % water 

phase salt (WPS) corresponding to water activities of 0.950 -0.983 and a pH of 5.9 – 6.3. 

Contents of smoke components are equivalent to 6700 – 15,400 ppm of phenols and levels of 

water phase lactate (WPL) of 6700–15,400 ppm have been reported. Smoking may be 
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performed in a smoke oven or by using liquid smoke. The intensity of smoking also varies with 

customers‘ taste. Nitrite is not typically used but levels < 40 ppm have been found. At 5 ºC 

shelf life can be as short as 2 weeks or as long as 12 weeks. The difference shelf -life depend 

on the levels of nitrite used.Spoilage is primarily due to microbial activity and at 10 ºC the 

spoilage microflora has been dominated by lactic acid bacteria sometimes together with 

Photobacterium phosphoreum or Enterobacteriaceae. Lacticacid bacteria can reach their 

maximum population density rapidly and remain at this level up to 50 % of the products shelf 

life (Hansen et al., 1998 and Jørgensen et al., 2000). Storage temperature and water activity 

markedly influence the shelf life of cold smoked salmon and a synergistic effect of NaCl and 

smoke components on shelf life has been reported (Leroi et al., 2000). Processing of cold 

smoked salmon includes no recognized critical control point for L. monocytogenes although 

cold smoking seems to reduce numbers of the bacteria, it is unlikely the product can be 

produced completely free of this pathogen (Gram, 2001). This bacterium can grow in naturally 

contaminated cold smoked salmon and this is of major importance for the human health risk 

(Jørgensen and Huss 1998 and Gram, 2001).  
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Figure 1-5: Schematic representation of different processing stages during the production of 

vacuum packed cold-smoked salmon.  
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1.5.3 Occurrence of L. monocytogenes in vacuum packed cold-smoked salmon and other 

seafood products 
 

The contamination of seafood products with L. monocytogenes has been widely studied. 

Variation in rates of prevalence of L. monocytogenes can be found between different product 

types as well as by producers (Table 1.7). The prevalence of these organismsin freshly produced 

cold-smoked salmon range between 10- 75 % is relatively high and is typically between 10 to 40 

% (Miettinen and Wirtanen 2006, Azevedo et al., 2005, Fonnesbech-Vogel et al., 2001, Rorvik 

et al., 2000, Autio et al., 1999). This high prevalence could be due to the low smoking 

temperature involved during the cold-salmon processing; as these conditions would be ideal for 

the proliferation of L. monocytogenes if the raw salmon harboured the pathogen or acquired the 

pathogen from the processing environment. 

The contamination of hot-smoked fish products, including those reported only to be smoked 

ranged from 0 to 33 % (Gombas et al., 2003). The largest amount of L. monocytogenes cells 

found in hot-smoked fish product was 1.3x10
5
 CFU/g (Loncarevic etal., 1996). Seafood salad L. 

monocytogenes contamination occurred at a rate between 4.7 to 27 % and the highest number of 

cells found was 100-1000 CFU/g (Gombas et al., 2003). The contamination of cold-salted fish 

varied between 21 to 50 % (Gombas et al., 2003) and the largest number of L. monocytogenes 

cells found was 3.4x10
3
 CFU/g (Loncarevic et al., 1996). In Japan, contamination occurred in 10 

% (7/67) of the studied Roe fish samples (Handa et al., 2005). The overall L. monocytogenes 

contamination rate of seafood products was 7.8 % according to Table 1.7 
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Table 1-7:L. monocytogenes contamination in fish processing factories and comments on the contamination pattern 

(Miettinen et al., 2005). 

 

Product type, 

(Year of study) 

Sample types No. of 

sampl

es 

% positive for 

L. 

monocytogenes 

Comments on L. monocytogenes 

contamination 

Vacuum packed 

Cold-smoked salmon,  

(1994) 

Raw fish 

Fish during processing 

Final Product 

Environment 

9 

36 

16 

113 

44 

19 

6 

32 

No regular cleaning and disinfection 

Vacuum packed 

Cold-smoked salmon, 

(1995) 

Raw fish 

Fish during processing 

Final Product 

Environment 

Fish processing are 

46 

85 

23 

37 

89 

65 

33 

30 

59 

71 

Primary source of L. monocytogenes 

external surface of fish 

Vacuum packed 

Cold-smoked salmon, 

(1997) 

Drains 

Fish during processing 

 63 

33 

Risk factors: rotation during duties, finding of L. monocytogenes 

in drain 

Vacuum packed 

Cold-smoked fish,  

Raw fish 

Fish during processing 

60 

75 

2 

29 

Two major contamination sites of final product, brining and slicing. 

Eradication programme successful. 
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Product type, 

(Year of study) 

Sample types No. of 

sampl

es 

% positive for 

L. 

monocytogenes 

Comments on L. monocytogenes 

contamination 

Vacuum packed 

Cold-smoked salmon 

(1999) 

Final product 

Environment 

Brine 

Personnel 

Air 

Environment, brine, 

products 

22 

122 

65 

6 

19 

94 

100 

13 

30 

67 

32 

0 

Vacuum packed 

Cold-smoked salmon, 

(2001) 

Raw fish 

Fish during processing 

Final product 

Contact surface 

Environment 

18 

4 

128 

50 

96 

0 

0 

47 

40 

17 

One L. monocytogenes clone persisted over four years. 

Slicing area associated with final product contamination 

Vacuum packed 

Cold-smoked salmon,  

(2003) 

Drains 

Other environment site 

Food contact sites 

Raw fish 

128 

96 

32 

187 

63 

32 

3 

3 

4 

Raw fish and processing environment had different 

L. monocytogenes population 
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Product type, 

(Year of study) 

Sample types No. of 

sampl

es 

% positive for 

L. 

monocytogenes 

Comments on L. monocytogenes 

contamination 

Shrimp, salmon, cod,  

(2004) 

Environment 

Environment 

Floors and drains 

Floors and drains 

Personnel 

Brine 

Raw material 

Fish during processing 

Final product 

309 

214 

91 

75 

48 

23 

74 

102 

104 

10 

20 

19 

27 

6 

9 

14 

4 

18 

Cleaning procedures insufficient 

Vacuum packed 

Cold-smoked salmon,  

(2005) 

Raw material 

Brine 

Final and unfinished products 

Environment 

Environment 

Floors and drains 

Floors and drains 

Personnel 

86 

14 

125 

134 

99 

68 

69 

48 

16 

21 

4 

3 

11 

18 

25 

6 

Raw material and environment 

 contamination source 
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Vacuum packed cold-smoked salmon has been linked to outbreaks of listeriosis (Brett et al., 

1998 and Miettinen et al., 1999), and has been categorized as a high risk food, as an 

estimated 6.2 cases of listeriosis occur per billion servings (FDA, 2003). L. monocytogenes 

can multiply in a wide temperature range and in high levels of NaCl and taken as individual 

processing steps, salting or smoking temperature are not believed to reduce numbers of L. 

monocytogenes (Cole et al., 1990). Due to the low smoking temperature, L. monocytogenes 

could proliferate during the smoking process.  

The amounts of L. monocytogenes found in different seafood products that have been 

suspected of causing listeriosis cases vary. In Quebec, Canada, a listeriosis outbreak was 

connected to vacuum packed cold-smoked salmon in 2009 (Harwig et al., 2010). In Finland, 

a listeriosis outbreak was connected with the consumption of cold-smoked rainbow trout. The 

cold-smoked rainbow trout from the same lot and the same retail store was found to contain 

1.9 × 10
5 

CFU/g of L. monocytogenes (Miettinen et al., 2006). In a case with smoked 

mussels, L. monocytogenes amounts of 1.6 × 10
7
 CFU/g and 3.2 × 106 CFU/g occurred in the 

mussels from the patients‘ refrigerators (Mitchell 1991). High numbers of L. monocytogenes 

(2.1 × 10
9
 CFU/g) were also found in imitation crab meat that caused a listeriosis outbreak 

(Farber et al., 2000).  

According to European Food Safety Agency (EFSA, 2006), fish and fishery products were 

the food categories with the highest proportion of L. monocytogenes positive samples as 

well as the highest proportions of samples with more than 100 CFU/g as shown in Table 

1.7. The highest proportions of positive samples were reported by The Netherlands, 

Belgium, Austria and Sweden, all with a prevalence ranging from 10.8 % - 25.9 %. 

Furthermore, The Netherlands, Germany, Italy, Austria and Spain reported products 

containing the bacteria more than 100 CFU/g with rates between 0.9 - 3.5 % as shown in 

Table 1.8. 
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Table 1-8: L. monocytogenes detected in fishery productsSource: EFSA, 2005 

 
Product 

Country 

Ready-to-eat fishery 

product (25 g) 

No. of 

Samples 

% 

L. monocytogenes 

>  100 CFU/G of 

L. monocytogenes 

Fish 

 

Austria 

Belgium 

Germany 

Germany 

Ireland 

Ireland 

Ireland 

Italy 

The Netherlands 

Norway 

 

 

Smoked 

Cold-smoked (processor) 

Unspecified 

Smoked 

Unspecified (retail) 

Smoked (processor) 

Smoked (retail) 

Smoked 

Smoked 

Unspecified ( processor) 

 

 

 

389 

145 

2,481 

773 

36 

61 

26 

263 

563 

129 

 

 

9 

15.9 

9.4 

9.7 

0 

1.6 

0 

9.5 

25.9 

2.3 

 

 

0 

- 

22 

8 

- 

- 

- 

3 

20 

- 

Other fishery product 

 

Austria 

Austria 

Denmark 

Estonia 

Spain 

Ireland 

Ireland 

Italy 

Slovakia 

Sweden 

 

 

Unspecified 

Raw fish product 

Unspecified 

Ready-to-eat (processor) 

Unspecified 

Unspecified (retail) 

Unspecified (processor) 

Unspecified 

Unspecified 

Unspecified 

 

 

 

69 

33 

208 

30 

412 

303 

54 

548 

116 

37 

 

 

13 

9.1 

1.9 

6.7 

1.7 

0 

5.6 

1.5 

1.7 

10.8 

 

 

2 

1 

0 

- 

5 

- 

- 

0 

- 

- 
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1.5.4 Sources and routes of L. monocytogenes contamination in the seafood industry 
 

The processing environment was found to be the major source of contamination for seafood 

products (Rørvik et al., 1995, Autio et al., 1999, Johansson et al., 1999, Dauphin et al., 2001, 

Fonnesbech Vogel et al., 2001, Norton et al., 2001, Lappi et al., 2004, Thimothe et al., 2004 

and Gudmundsdóttir et al., 2005). In case of lightly preserved seafood, slicing and brining 

was established as the major source of contamination (Autio et al., 1999, Johansson et al., 

1999 and Fonnesbech Vogel et al., 2001). In addition, potential sources of final product 

contamination were cross-contamination, job rotation, employee hygiene and food handling 

practices (Rørvik et al., 1997 and Thimothe et al., 2004). The raw materials have not always 

been reported as an important final product contaminant source (Johansson et al., 1999, 

Dauphin et al., 2001). The raw materials, however, have clearly been found to be a source of 

L. monocytogenes contamination of the final products in certain factories (Eklund et al., 

1995, Fonnesbech Vogel et al., 2001 and Gudmundsdóttir et al., 2005). Another observation 

was that all the factories had their own L. monocytogenes contamination patterns and 

different degrees of contamination at the process environment and on final products (, Lappi 

et al., 2004) despite the use of similar raw materials (Thimothe et al., 2004). This was 

particularly influenced by the factory design, structure and conditions as well as operational 

and sanitation procedures (Hoffman et al., 2003, Thimothe et al., 2004). Table 1.9 

summarises the prevalence of Listeria in various types of seafood. In most of the fish 

processing factories, one or a few L. monocytogenes clones were found to persist for several 

months or years in the processing environment despite the normal washing regime 

(Johansson et al., 1999, Fonnesbech Vogel et al., 2001, Gudmundsdóttir et al., 2005, and 

Miettinen and Wirtanen, 2006). In addition to persistent L. monocytogenes clones, sporadic L. 

monocytogenes clones were also found in the factories (Johansson et al., 1999, Fonnesbech 

Vogel et al., 2001, Lappi et al., 2004).  
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Table 1-9: Prevalence of Listeria spp. and L. monocytogenes in live seafood, fresh seafood in 

retail markets and in fresh raw seafood material from processingfactories 

(Miettinen et al., 2006) 

 

Seafood type 

(Country) year 

Sampling 

location 

Specification No. of 

samples 

% of positive 

L. monocytogenes 

Salmon (Norway) 

1998 

Live, farmed Skin and belly cavity swabbed 10 0 

Salmon (Norway) 

2003 

Processing 

factory 

25 g Collar, tail and belly 81 21 

Salmon (Norway) 

2001 

2 processing 

factory 

25 g or skin scraping 215 7 

Salmon (Norway) 

2001 

Processing 

factory 

Skin swabbed 7 86 

Salmon (Norway) 

2005 

Producer 25 g salmon 46 4 

Salmon (Norway) 

1995 

Processing 

factory 

25 g salmon 50 4 

Salmon  (UK) 2001 Commercial 

outlet 

25 g flesh and skin 5 0 

Salmon (UK) 2001 Processing 

factory 

Skin swab 61 0 

Salmon  (USA) 2001 2 processing 

factory 

25 g Collar, tail and belly 19 88 

Salmon  (USA) 2003 Freezer 

warehouse 

Slime layer 50 30 

Salmon  (USA) 1995 Freezer 

warehouse 
Skin 48 21 

Salmon  (USA) 1995 Freezer 

warehouse 
Flesh under skin 26 0 

Salmon  (USA)1995 Freezer 

warehouse 
Belly-cavity lining 22 0 

Salmon  (USA)1995 Freezer  Head, warehouse 140 4 

Salmon  (USA)1995 Freezer 

warehouse 
Tail 27 10 

Salmon  (USA)1995 Freezer Flesh 45 26 
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Seafood type 

(Country) year 

Sampling 

location 

Specification No. of 

samples 

% of positive 

L. monocytogenes 

warehouse 

Salmon (Chile) 2003 Commercial 

outlet 

Skin and surface swab 45 22 

Salmon (Portugal) 

1998 

Producer Flesh and Skin 74 11 

Different fish species 

(Japan) 1998 

Municipal fish 

market 

10 g fish 25 12 

Different fish species 

(Portugal) 2004 

Producers, 

retail stores 

25g fish 17 18 

Oyesters, mussels, 

cockles (France) 1998 

Live, collected 

on shore 

25 g oysters, mussels, cockles 120 9 

Shrimps (USA) 1991 Live, 

Collected 

25 g shrimp 74 11 

Shrimp (All over the 

world) 1994 

Imported to 

USA, fresh 

and frozen 

25 g shrimp 205 4 

Crawfish (USA) 2002 2 processing 

factories 

25 g crawfish 78 4 

Crawfish (USA) 2004 2 processing 

factories 

25 g crawfish 179 8 

Different Shelfish 

(India) 1996 

Fish market, 

processing 

factories 

25 g shelfish 36 12 

Shelfish (Middle East) 

2006 

Live 25 g shelfish 15 33 

 

 

 

 

 

1.6 Isolation and identification of L. monocytogenes in cold-smoked salmon. 
 



33 

 

Historically, it has been challenging to isolate Listeria from food or other samples and this 

explains why it remained unnoticed as a major food pathogen until recently. In early studies it 

was noted that Listeria is able to grow at low temperatures and this feature has been used to 

isolate these bacteria from clinical samples by incubation for prolonged periods at 4ºC on 

agar plates until the formation of visible colonies. This method of isolation takes up to several 

weeks and usually does not allow for the isolation of injured Listeria cells, which will not 

survive and grow under stress.  

Tests considered for approval by regulatory agencies must be able to detect one Listeria 

organism per 25 g of food. Generally, this sensitivity can only be achieved by using 

enrichment methods in which the organism is allowed to grow to a detectable level of 10
2
 

CFUml
-1

. Listeria cells are slow growing and can be rapidly out-grown by competitors, and 

hence bacteriostatic agents, such as acriflavin and nalidixic acid that specifically act to 

suppress competing microflora, have been introduced into enrichment media or selective agar 

(Welshimer, 1981). These two agents are incorporated into all standard methods used to 

isolate Listeria from food and environmental samples. In the food industry, such standard 

culture procedures are used as reference methods for regulatory purposes and for validation 

of new technologies. These methods are sensitive, but often time, consuming and may take 

5–6 days before the result is available.  

In Ireland, the culture reference method used by the FSAI is the EN/ISO 11290-01 and -02 

FSAI, 2007. This method requires enrichment of a 25 g food sample in a selective broth, 

designed to slow the growth of competing organisms, prior to plating onto selective agar and 

biochemical identification of typical colonies.  

The ISO 11290 method has a two stage enrichment process: the food sample is first enriched 

in half Fraser broth for 24 h, and then an aliquot is transferred to full strength Fraser broth for 
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further enrichment. Fraser broth also contains the selective agents‘ acriflavin and naladixic 

acid as well as esculin, which allows detection of β-glucosidase activity by Listeria, causing a 

blackening of the medium. Both the primary and secondary enriched broth are plated on 

Oxford and Palcam agars.  

Following the isolation method, the confirmation of presumptive L. monocytogenes colonies 

on the selective media according to the ISO 11290 is performed with Gram-staining, catalase 

reaction, motility at 25 °C, β-haemolysis test, fermentation of rhamnose and xylose and 

CAMP-test. These current isolation and identification methods for detection of Listeria in 

foods are laborious and time consuming; the three to six day period needed to determine 

whether a particular food sample is free of L. monocytogenes is unacceptable to large sectors 

of the food industry that deal with highly perishable products (Capita et al., 2001).  

Oxford and Palcam, the most widely used media does not differentiate between Listeria spp. 

Non-pathogenic species of Listeria cannot be excluded when selecting suspected colonies for 

confirmation (Gasanov and Hansbro, 2005). Furthermore, it is well known that, during 

enrichment in a selective broth, L. monocytogenes can be overgrown by faster growing L. 

innocua and, as a consequence, may be missed when picking only five colonies from the 

isolation for confirmation (standard for ISO 11290 method).  

According to Capita et al., (2001), the differential system of the Palcam and Oxford media 

showed significant number of Bacillus spp and Enterococcus spp growth on both the media, 

resulting in false positive results. The Enterococcus spp and Bacillus spp also utilise esculin 

and may have a similar appearance (Gasanov and Hansbro, 2005). Despite these challenges, 

classical cultivation techniques still remain the official methods used although many rapid 

molecular methods exist. Molecular screening using Polymerase Chain Reaction (PCR) is 

one of the most promising techniques for rapid detection of microorganisms in food. This 
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technique provides increased sensitivity for detection and therefore enhances the likelihood 

of detecting bacterial pathogens (Gasanovand Hansbro, 2005). PCR and DNA hybridisation 

method have become a feasible alternative to cultural and serological techniques. The major 

advantage that molecular techniques offer over conventional methods is that these are based 

on differences within the genome and do not rely on the expression of certain antigenic 

factors or enzymes to facilitate identification. They are extremely accurate, reliable and can 

be performed within a short time frame (Gasanov and Hansbro, 2005). An overview of the 

isolation and identification techniques is given inFigure 1.6. 
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Key: RT-PCR: Reverse transcriptase, MEE: Multilocus enzyme electrophorosis, MLVA: Multi Locus Variable 

number tandem repeat analysis, MLST: Multi Locus Sequence typing and PFGE: Pluse field gel electrophorosis 

 

Figure 1-6: Overview of the isolation and identification techniques of L. monocytogenes 

 

1.6.1. Molecular typing method 

 

Molecular detection techniques are based on DNA hybridization, PCR, restriction enzyme 

analysis or direct sequencing of specific genes or loci (Gasanov, 2005). Direct sequencing of 

specific genes or loci is the most accurate way of comparing genetic differences or 

similarities. Due to the reliability of these techniques, methods that give arelatively accurate 

reflection of genetic variation as well as a high sample throughput in a rapid timeframe were 
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developed. These methods are aimed at establishing the degree of allelic variation of 

particular genes, which then forms the basis of measuring genetic relatedness of Listeria 

strains. Allelic variations can be measured as variations in the length of DNA fragments that 

can be generated, either by restriction digests or PCR, or as a change in conformation due to 

sequence differences conformational polymorphism (O‘Connor et al., 2000). Conformational 

polymorphism is generally considered to be most suitable for the detection of mutations in 

short stretches of DNA (O‘Connor et al., 2000). 

In order to interpret data with greater accuracy, electrophoretic techniques were developed to 

allow better resolution of DNA fragments, such as pulse-field gel electrophoresis (PFGE), 

which is primarily used in conjunction with restriction enzyme (endonuclease) digests of 

DNA (Rudy et al., 2003). 

Denaturing gradient gel electrophoresis (DGGE) or capillary electrophoresis (CE) are 

electrophoretic techniques that are used in conjunction with single strand conformational 

polymorphism (SSCP) analysis to detect single nucleotide variations. Some are well-

established techniques such as ribotyping, macrorestriction digests, PFGE, PCR-restriction 

fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD), are 

used routinely.Other techniques such as SSCP, multilocus sequence typing (MLST) and 

multilocus variable number tandem repeat analysis (MLVA) are currently becoming 

established as typing techniques for L. monocytogenes and show great promise. However, 

they are not used routinely and not many field data exist for these methods (Gasanov et al., 

2005). 

A. Sequencing 16S rRNA analysis 

As direct sequencing of the entire bacterial genome is expensive and time consuming, partial 

sequencing of specific regions in the whole genomic region is carried out regularly as a part 
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of microorganism identification. The 16S rRNA gene is the most extensively sequenced 

ribosomal RNA gene. 16S rRNA genes contain stretches of highly conserved regions but also 

regions that are variable. Primers designed to target conserved DNA sequences can be used to 

analyze a wide variety of different organisms using PCR amplification with subsequent 

sequencing of the PCR product whilst highly diverse regions can be used to sub-type strains 

(Wang et al., 1993). The use of 16S rRNA as a distinct signature for a bacterial species has 

become the method of choice for identifying and differentiating microorganisms when no 

other easily specifiednucleic acid sequence uniquely defines the desired target (Gasanov et 

al., 2004). Differences between the species were observed, in 16S rRNA gene sequence 

analysis even between the closely related L. monocytogenes and L. innocua. Two sequence 

differences found within the V9 region were used to develop species-specific nucleic acid 

probes for L. monocytogenes, and their efficacy has been demonstrated in a hybridization 

assay. The ability to determine the relationship between different bacterial isolates from the 

same species is extremely important in tracking the source of a food-borne infection and 

identifying problematic reservoirs (Czajka et al., 1993).  

The other alternative to 16S rRNA gene sequence analysis would be to analysis RNA 

polymerase B subunit gene rpo B and Recombinase A ( rec A ). These are considered as 

highly conserved alternatives to 16s rRNA (Holmes, 2004). 

 

B. Subtyping using Multiple-Locus Variable number of tandem repeat Analysis 

(MLVA) 

Multiple-Locus Variable number of tandem repeat Analysis (MLVA) was developed as a 

new generation protocol to subtype food-borne pathogens including Salmonella (Lindstedt et 

al., 2003), Staphylococcus aureus and Escherichia coli O157 (Lindstedt et al., 2003). MLVA 
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is a PCR-based method that can be used to discriminate amongst different strains of a 

bacterium and can therefore infer genetic relationships amongst the various subtypes. This 

approach is based on the detection of the number of tandem repeats (TRs) at a specific locus 

in the genome of a microorganism. The complete TR is amplified and sized using a 

conventional agarose gel. These can vary as a consequence of DNA polymerase enzyme 

slippage, during replication and these differences can be detected using PCR primers 

designed to adhere to the flanking regions (Keim et al., 2000).  

How TRs are selected:  

 Serotypes 4b (F2365) & 1/2a (EDG-e) used in the design of the MLVA technique. 

 Both serotypes - among the most prevalent in food-borne listeriosis cases   

 cover 2 main genomic regions of L. monocytogenes 

 (i.e. serotype 1/2a is genomic division I and serotype 4b genomic division II). 

Process of how primers are designed based on the TRs 

1.  Sequences were downloaded from the GenBank website (www.ncbi.nlm.nih.gov/).   

2.  Submitted into Tandem Repeats Finder Programme  (http://tandem.bu.edu/),  

- identifies,  

- locates, 

- displays TRs in DNA sequences (Benson, 1999). 

3.  Suitable repeats- selected based on their location, period size & copy number. 

 

 

1.7 Risk Analysis 
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Increased international trade and expansion of the population of the most susceptible to this 

food-borne disease, especially the elderly (> 60 years) and immunocompromised individuals 

suffering underlying diseases, has marked L. monocytogenes as an important food-born 

pathogen (Garrido et al., 2009). Therefore, it is necessary to provide sufficient information to 

consumers regarding risk of consumption of cold-smoked salmon contaminated with L. 

monocytogenes. Risk assessment is the scientific process of determining the relationship 

between exposure to a given pathogen under a defined set of conditions and the likelihood of 

an adverse health effect or disease (Pouillot et al., 2007).  

Quantitative Microbiological Risk Assessment (QMRA) can help in to obtain the necessary 

information regarding the severity of a health disturbance because it is based on knowledge 

concerning exposure to the pathogen and an individual‘s response (Mataragas, et al., 2010). 

In addition to assessment of probable severity of harm caused by a specific hazard, other 

economical factors must be considered; such as product recall cost, loss of costumers and 

potential costs of compensation. For this reason, governments and industries have begun to 

focus their attention on safe food practises to minimise risk to public health (Cassin et al., 

2008). With the increasing trend of listeriosis in Ireland (FSAI, 2008) and listeriosis being 

high among the other zoonotic diseases, especially among the vulnerable population, it is 

important to develop a risk assessment profile for this pathogen. In addition, the expansion of 

population susceptible to this food-borne disease, especially the elderly and 

immunocompromised suffering underlying diseases, has led to the control of L. 

monocytogenes being one of the goals set by governments and food industries throughout the 

world (Painter and Slutsker, 2007).  

Microbiological risk assessments consist of four essential steps; hazard identification, hazard 

characterisation, exposure assessment and risk characterisation (Cornu and Beaufort, 2005). 

The hazard identification is the process of identification of the biological, chemical and 
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physical agents capable of causing adverse health effects and which may be present in a 

particular food or group of foods. The hazard characterization is the qualitative and/or 

quantitative evaluation of the adverse health effect associated with the hazard, the 

relationship between exposure levels (dose) and frequency of illness. The exposure 

assessment is the qualitative and/or quantitative evaluation of the likely intake of the hazard, 

as well as exposure to other sources (if relevant). Finally, the risk characterisation is the 

qualitative and/or quantitative estimation, including attendant uncertainties, of the probability 

of occurrence and severity of the known or potential adverse health effects based on hazard 

identification, hazard characterisation and exposure assessment (Rocourt et al., 2001). 

1.7.1 Hazard Identification 

The high prevalence of L. monocytogenes in vacuum packed cold-smoked salmon, together 

with the high mortality rate from listeriosis, suggests that L. monocytogenes represents an 

important hazard to human health (Autio et al., 1999, Rorvik et al., 2000, Azevedo et al., 

2005, Miettinen and Wirtanen 2006, Pouillot et al., 2007, Lenhart et al., 2008 and Garrido et 

al., 2010). 

1.7.2 Hazard Characterisation 

Serotyping distinguishes 13 different serotypes of L. monocytogenes, but cases of human 

listeriosis are caused mainly by only three serotypes (4b, 1/2a and 1/2b). Most human 

epidemics and a great percentage of the sporadic cases have been caused by serotype 4b for a 

reason not yet understood. In contrast, serotype 1/2a strains seem to be more often recovered 

from food (Lindqvist et al., 2008). For example, 64 % of the clinical isolates occurring in the 

Ireland are serotype 4b, whereas only 4 – 6 % of the isolates found in the environment are of 

this serotype (Murphy et al., 2007). No studies have been able to explain why a serotype 4b 

accounts for most cases of human listeriosis and at the same time it is seldom found in foods. 

Thus, as extensive investigations have failed to find systematic differences in virulence 
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between food isolates that have not been implicated in listeriosis, and clinical isolates, all L. 

monocytogenes strains should be considered pathogenic (Murphy et al., 2007). However, 

analyses accompanying epidemiological investigations have indicated that foods implicated 

in both sporadic cases of listeriosis and outbreaks, typically had elevated levels of the 

pathogen. Furthermore, foods which have been implicated in human outbreaks of listeriosis, 

have always have been foods which are known to support growth of the pathogen. In 

addition, most people regularly ingest foods containing low numbers of L. monocytogenes 

without becoming ill and there are little suggestions that an accumulative effect is significant. 

From animal experiments it is know that Listeria infections are dose dependent and that the 

infectious dose is rather high, above 10
5
 in different models for intragastrial inoculation 

(Schlech et al., 1993). However, it is not known exactly how to extrapolate these data to 

humans. New approaches using dose-response models based on probability distributions have 

been introduced (Farber et al., 1996 and Buchanan et al., 1997). These dose-response models 

could be incorporated in the risk analysis and the exposure to L. monocytogenes could be 

estimated. 

1.7.3 Exposure Assessment 

In the last few years, several surveys have provided knowledge of both the qualitative and 

quantitative presence of L. monocytogenes in vacuum packed cold-smoked- salmon 

(Buchanan, 1997, Lindqvist and Westoo, 2000, Cornu and Beaufort 2005, Pouillot et al., 

2007, Lenhart et al., 2008 and Garrido et al., 2010).  

The exposure assessment describes the pathways through which a pathogen population is 

introduced, distributed and altered in the production, distribution and consumption of food 

(WHO, 2006). The result desired from the exposure assessment is the prevalence, 

concentration and, if possible, virulence of the pathogen in foods at the point that they are 

consumed and the level of consumption of the food by the population of interest. The key 
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desired output of the exposure assessment is prevalence, concentration and, if possible, 

physiological state of L. monocytogenes in foods at the point of consumption (Cornu et al., 

2006). In the case of L monocytogenes, although the final numbers ingested by consumers are 

usually not known, an estimate can be derived based on models of the effect of physical 

processes and conditions that the food undergoes through the ‗farm-to-fork‘ chain. Such 

estimates are based on predictive microbiology models. The models are parameterized by 

data from studies carried out on products shelf life and their ingredients at different stages in 

the production-to-consumption chain.  These models can be used by the food industry and the 

government to minimize and estimate food poisoning (Cornu et al., 2006). 

1.7.4 Risk Characterisation 

Characterizing the risk associated with L. monocytogenes in foods involves aconsideration of 

all the information gathered in the hazard identification, hazardcharacterization and exposure 

assessment steps. It can be helpful in determining thecause of the risk and in providing 

managers with background information to carry out risk management. This information can 

be combined to assess various outputs, i.e., the annual incidence of listeriosis, the impact of 

time and temperature abuse on probability of illness and the effectiveness of various exposure 

reduction strategies (Lindqvist and Westoo, 2000). Although the quantitativerisk assessment 

approach is preferred over the qualitative approach, it is notyet clear whether the former 

approach is possible and/or appropriate for characterizingthe risks associated with food-borne 

bacterial pathogens (Garrido et al., 2010). 

An important measure of the level of risk to listeriosis through exposure from aspecified food 

source is the annual incidence rate, i.e. actual annual number ofhuman listeriosis cases. The 

incidence of listeriosis depends on the proportion of thepopulation exposed to L. 

monocytogenes (prevalence), the level of exposure of eachindividual at risk, and their 

individual tolerances (Cornu and Beaufort, 2005).The incidence of listeriosis can be 
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interpreted as the product of the annualincidence of exposure and the average probability of 

illness. The incidence of exposure is a combination of the prevalence of virulent L. 

monocytogenesstrains in the total annual servings ofthe specified food and thenumber of 

servings per capita (Pouillot et al., 2007). 

1.8 Microbial-growth modelling 
 

Risk assessments typically rely on microbial growth models to characterise growth of the 

microorganism under environmental factors controlling the response of microorganism in 

food. Microbial models are mathematical expressions that describe the number of 

microorganisms in a given food product or system, as a function of relevant intrinsic or 

extrinsic variables (temperature, pH, aW and salt content; Marks, 2008). They quantify 

populations of organisms, or probabilities of the presence of organisms. 

Microbial models can be classified as primary, secondary or tertiary (Cornu et al., 2006). A 

few combined models have been constructed to describe changes in a microbial population 

subjected to conditions that vary from the growth to inactivation ranges (Ross et al., 2005). 

The use of mathematical modelling techniques for safety and risk prediction in the food 

supply is strongly supported by the incidence of food-borne outbreaks worldwide (Marks, 

2008) 

1.8.1 Primary models 
 

Primary models describe the evolution (i.e. growth, inactivation or survival) of 

microorganisms as a function of time (Baranyi et al., 1993). The most frequently used 

primary growth models are the modified Gompertz and Baranyi (Baranyi et al., 1993) 

equations, the first being a sigmoidal relationship and the second being based in part on the 

concept that the rate of bacterial growth is controlled by the rate of a ―bottleneck‖ 
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biochemical reaction. The Gompertz equation has been extensively used by researchers to fit 

a wide variety of growth curves for different microorganism. The Gompertz function has also 

been applied to growth curves based on turbidity data, mixed cultures of Pseudomonas spp. 

and Listeria spp.; Lactobaciilluis curvatus; spoilage of vegetables, beer, and meat; and 

germination and growth of Clostridium botulinum. There are, however, some limitations 

associated with the use of the Gompertz function. The Gompertz rate (μmax) is always the 

maximum rate and occurs at the arbitrary point of inflection, thus the generation time can be 

underestimated by as much as 13 %. In addition, since the slope of the function cannot be 

zero, the lower asymptote must be lower than the inoculum level, giving a negative (lag 

phase) for some data sets.  

The Baranyi model has been used extensively to model microbial growth. The model has 

been facilitated by the availability of two programs: DMFit, an Excel add-in and MicroFit, a 

stand-alone fitting program by the Institute of Food Research (IFR) in the U.K. One of the 

advantages of the Baranyi model is that it is readily available as a series of differential 

equations that allow modelling in a dynamic environment, generally resulting from non-

isothermal temperature profiles (Marks 2008).  

Xanthiakos and co-workes (2006) found that the Gompertz model seems to be influenced 

more by the quality of the data set than is the Baranyi model. They also concluded that the 

Baranyi model provided the best fit for the majority of their data and gave reasonably precise 

estimates of the lag time. Another study also found that the Gompertz equation can 

overestimate the model parameters, which could bias the comparison with a different model 

(Zwietering et al., 1994). 

1.8.2 Secondary modelling 
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There is significant information about the impact of individual variables (particularly 

temperature) on the growth and inactivation of bacteria. For example, several reviews have 

summarised significant heat resistance for various pathogens, as influenced by food material, 

temperature and pH (Dalgaard, 1998). Numerous studies have evaluated the effect of 

environmental factors such as temperature, oxygen and level of mixed microbial population 

in the food. However, the most important factor for controlling microbial growth in the 

production and distribution chain of chilled foods is temperature (Garrido et al., 2010). 

Although microbial growth occurs from about -8 to +90ºC, the growth rate of most microbes 

of significance to food poisoning decreases above 35 – 40ºC. Within the practical distribution 

range for refrigerated products (0–35ºC), temperature affects the duration of the lag phase, 

the rate of growth, and the final cell numbers. Food-poisoning bacteria can multiply within a 

temperature range from about 0 – 50ºC; however, refrigerated storage will favour gram-

negative bacteria and psychrotrophic pathogens, whereas higher storage temperature may 

favour mesophilic food-born spoilage microorganisms (Cornu et al., 2006). It is presumed 

that the temperature will also affect the multiplication rate below the detection limit. Two 

models, Arrhenius and Ratkowsky‘s equation (square root model), have been widely used to 

investigate the temperature dependence of the growth of L. monocytogenes.   

A.Arrhenius model 

Based on thermodynamic considerations, the Arrhenius model has had success in describing 

the temperature dependence of many chemical reactions related to shelf life of food. Since 

the replication of the gene during cell division is a chemical process, it seems logical that the 

growth rate would follow the Arrhenius law for a certain temperature range.  

Arrhenius model is: 

μmax = A× exp (-Ea / RT) ------------- Equation 1-1 
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Where T is the temperature (K), Ea is the activation energy (KJ/mol). A is a pre-exponential 

factor (log CFU/g
-
days

-1
) and R is the gas constant 8.31 (KJ; Kmol)

-1)
. The activation energy 

Ea is considered as the sensitivity of the microorganism to temperature change. The 

Arrhenius model could also be used to model the temperature dependence in both of the lag 

phases, the lower one of which would be the most critical phase for prediction of safe shelf 

life under variable temperature conditions, where the initial microbial load is below 

detectability as would be expected for pathogens. To make the Arrhenius plot, the inverse of 

the lag time is used; however, the fit is usually not as good as for the growth rate data from 

the exponential phase (Dalgaard, 1998). 

B. Ratkowsky’s equation 

Ratkowsky and co-workers (1982), proposed an empirical equation for the temperature 

dependence of microbial growth up to the optimum temperature as: 

max  = b (T – Tmin)……….. Equation 1-2 

Where b is a constant, T (°C) is the storage temperature and Tminis the theoretical minimum 

temperature for growth of the organism.Tminwas estimated by extrapolation of the regression 

line to µmax = 0. McMeekin and co- workers (1988), suggested that the non-applicability of 

the Arrhenius model for modelling the temperature-dependence of microbial growth is a 

result of the change in Ea value with temperature. They related the activation energy to the 

Ratkowsky equation by: Ea = 2RT
2
/ (T - Tmin). Thus, the change of Ea for a given organism is 

greater for a low value of Tmin (5<T<30 ˚C). However, this correction may not be fully 

correct since the pre-exponential factor (k0) in the Arrhenius equation may also be changing 

with temperature. It should be noted that Fu and co-workers (1991), demonstrated with 

Pseudomonas fragi growth in a simulated milk system, that if enough data points are 

collected over time (i.e. 15 or more), and at least five temperatures are used, there is a good 
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fit for both the Arrhenius model and the Ratkowsky equation. This study demonstrates the 

benefit of using many data points to fit simple equations, rather than using over manipulated 

empirical equations. 

1.8.3 Tertiary modeling 

Tertiary model is defined as the integration of primary and secondary models with a user-

friendly interface (Whiting, 1995). Tertiary modelling tools which are freely available and are 

widely used are ComBase (www.combase.cc), available from the Food Standards Agency 

and the Institute of Food Research and Seafood spoilage and pathogen modelling (SSSP-

DTU Aqua National Institute of Aquatic Resources Denmark), the Pathogen Modeling 

Program (PMP, v.7.0) developed by the USDA—Agricultural Research Service (USDA 

2003). 

ComBase Predictor is an on-line tool for predicting the response of pathogens and spoilage 

microorganisms to key environmental factors (temperature, pH and salt concentration, etc) 

characterising the food environment. The majority of its models predict the growth/survival 

of food-borne pathogens as a function of temperature, pH and salt concentration, but in some 

cases the effect of an additional fourth environmental factor, such as the concentration of 

carbon dioxide or organic acids is modelled, too. ComBase Predictor can simultaneously 

produce predictions for up to four microorganisms. It is also capable of predicting the 

bacterial response to dynamic temperature environments (Baranyi and Roberts, 1994).  

The Seafood Spoilage and Safety Predictor (SSSP) software predicts shelf-life and growth of 

bacteria in different fresh and lightly preserved seafoods e.g. the effect of product 

temperature profiles recorded over time by data loggers. The SSSP software is developed 

specifically to predict shelf-life and safety of seafood. SSSP can predict growth of L. 

http://www.combase.cc/
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monocytogenes in vacuum packed cold-smoked salmon for both constant and changing 

storage temperatures (Mejlholm and Dalgaard, 2009). 

The PMP is a package of models that can be used to predict the growth and inactivation of 

foodborne bacteria, primarily pathogens, under various environmental conditions. These 

predictions are specific to certain bacterial strains and specific environments (e.g., culture 

media, food, etc.) that were used to generate the models. The accuracy of these predictions 

cannot be guaranteed for other bacterial strains and/or environments, without proper 

validation studies. Since the early 1990s, the PMP has been distributed in various forms, 

ranging from spreadsheets to stand-alone software, and most recently online. We recommend 

that you bookmark this webpage and revisit it on a periodic basis since we are continuously 

adding new models and other enhancements (Koutsomanis, 2010). 
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Aims of the study 
 

L. monocytogenes differs from most known food-borne pathogens in that it is ubiquitous, 

resistant to diverse environmental conditions including low pH and high NaCl concentrations, 

and is microaerophilic and psychrophilic. Given the high rate of mortality associated with L. 

monocytogenes and with an increase in the reported cases of listerisos in Ireland, there is a 

need to investigate the occurrence of this bacterium. The lack of knowledge in the route of 

contamination in which the bacterium enters a seafood processing plant, its tenacity to survive 

the industrial environment, its ability to grow at very low temperatures and to survive in cold-

smoked salmon for prolonged periods under adverse conditions have made this bacterium a 

very important topic for research. Considering the above points, there is a need to developa risk 

assessment based study specific for Ireland, as there has been no previous study to estimate the 

risk associated with the consumption of vacuum packed cold-smoked salmon for consumers in 

different risk population in Ireland (immunocompromised and immunocompetent population).  

Therefore the overall aim of the present thesis was to investigate the prevalence and source of 

L. monocytogenes in different stages of vacuum packed cold-smoked salmon production chain 

/retail market and to develop a risk assessment model. This will enable a closer analysis of the 

source and contamination pathways of Listeria in Irish vacuum packed cold smoked salmon 

and facilitate the identification of possible control measures. 

In order to achieve the specific aim above the following objectives were identified: 

 Assessment of isolation methods for L. monocytogenes in vacuum packed cold-

smoked salmon 

 To determine the prevalence of L. monocytogenes in a vacuum packed cold-smoked 

salmon marketed in the retail outlets in Dublin, Ireland. 
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 To investigate the source and ecology of L. monocytogenes in vacuum packed cold-

smoked salmon processing factory. 

 To study the possible L. monocytogenes contamination pathways by tagging raw 

salmon along the cold-smoking processing stages in a cold-smoked salmon 

processing factory. 

 To develop a product-specific growth model of L. monocytogenes (inoculated studies) 

in vacuum packed cold-smoked salmon and validation under dynamic temperature 

conditions.  

 To establish a quantitative microbial risk assessment of L. monocytogenes in vacuum 

packed cold-smoked salmon in Dublin, Ireland. 
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Chapter 2 General Materials and Methods 
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2.1 Sampling 
 

A. Prevalence of L. monocytogenes in retail vacuum packed cold-smoked salmon  

Vacuum packed pre-sliced cold-smoked salmon (250 g) were purchased from 5 retail 

establishments in Dublin (2007-2008). The five brands used in this study were coded as 

brand A through to E. The samples were returned to the laboratory under refrigerated 

conditions within 30 min of purchase and the samples were processed immediately upon 

arrival in the lab. Two samples from each brand were tested every month for a period of one 

year giving a total of 24 samples of each brand. The samples represented a shelf life period of 

18-20 days and were sampled in a range from 7 days up to 1 day prior to the expiry date. For 

all the samples, refrigeration temperatures were maintained at 4 (+ 1) °C. 

The brand A, was produced in an Eastern European country, brands B, D, and E were 

produced by a common Dublin processor and brand C was produced in the UK. The Dublin 

and UK processors procured raw fillets from the same slaughter house in the UK.  

 

B. Determination of contamination pathways of L. monocytogenes in vacuum 

packed cold-smoked salmon  

A total of 12 surveys (a monthly survey) were conducted in a smoked salmon production 

plant located in Dublin. In order to investigate the persistence of contamination during 

different seasons the plant was surveyed from winter (Sep 2008 to April 2009) to summer 

(May 2009 to Aug 2009). 

The processing plant was divided into four zones (Figure 2.1) based on the contact and 

proximity to the product (FASI, 2008). A total of 444 samples from four zones were sampled 
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during the 12 month period. Thirty seven samples were examined each month and the 

samples were collected from the same place to maintain consistency throughout the survey. 

The survey sampling was carried out in three different ways depending on the nature of the 

sample. Samples from the equipment were swabbed (conveyor belt, slicer, smoking tray, 

deboning pin, tables, vacuum packer, cold and frozen unit, filleting board and skinner), 

production environment (floor, drain, walls and switch), personal (gloves, aprons, boots, head 

protection and sanitizers) and the surrounding environment (waste collection point, service 

area, rubbish collection area, waste disposal site and traffic area). Each site was swabbed 3 

times using sterile cotton swab moistened with 0.1 % peptone water and the swabs were 

pooled as one sample. The swabs were exposed for 60 seconds to the swabbing environment, 

the swabs where exposed to the same area during the 12 month survey. The samples were 

transported under refrigerated conditions to the laboratory for further processing. 

Samples of salmon were taken after each critical processing step (raw salmon, cured salmon, 

cold-smoked salmon and finally vacuum packed cold-smoked salmon). In all cases 50 g of 

the samples were taken and sealed in a sterile Petri-plate and transported under refrigeration 

condition to the laboratory for further processing. 

Liquid samples (drain, fish wash, brine and ice) aliquots of 25 ml were taken in sterile bottles 

and transported under refrigeration conditions to the laboratory for further processing. 

All the samples were collected after 1 to 1 ½ h of production run of the processing plant. 
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Figure 2-1: Schematic representation of the cold-smoked salmon processing factory floor 

plan representing the four zones. 

 

C. Confirmation of the contamination pathway of L. monocytogenes by tracking the 

cold-smoked-salmon through its various processing stages  

A total of 12 surveys were undertaken from Dec 2008 – Nov 2009 in a cold-smoked salmon 

processing factory located in Dublin. A total of 60 raw salmon were tracked through the 

production line. Raw fish analysed were tagged with a wire string and passed through the 

various intermittent stages of processing. Samples containing 25 gm of fish mass were 
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collected from each critical processing step (raw, filleted, cured, cold-smoked, sliced and 

final vacuum packed cold-smoked salmon).  

Each month during the study period, 5 raw salmon were tracked through the different stages 

of smoked-salmon processing (Figure 2.2). The samples were collected after 1 ½ h of 

production run of the factory and were transported within 30 min to the lab for further 

processing. The samples were collected in a sterile Petri-plate and were transported under 

refrigerated conditions to the lab for further analysis.  
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Figure 2-2: Schematic representation of different processing stages during the production of 

vacuum packed cold-smoked salmon. The stages represented in oval sketch were taken for 

sampling. 
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2.2 Detection and enumeration of L. monocytogenes 
 

Detection of L. monocytogenes was carried out as recommended in the ISO 11290 -01 and 

02. According to the procedure; 25 g of each sample was homogenised with 225 ml of 

buffered Listeria enrichment broth base (Oxoid, Hampshire, England) in a stomacher Lab-

Blender 400 (Seward Medical, London, UK) for 2 min. The homogenate was incubated at 30 

°C for 1 h to resuscitate stressed microorganisms. For the enumeration of L. monocytogenes, 

a volume of 0.1 ml from each homogenate was directly spread on Palcam agar (Oxoid, 

Hampshire, England) plates in triplicat and incubated at 37 °C for 24 - 48 h. From each plate, 

5 colonies presumed to be Listeria spp. were streaked onto tryptic soy agar plates (Scharlau – 

Chemie on Palcam) and incubated at 30 °C for 24 h (Appendix 1: Colony morphology of L. 

monocytogenes). Colonies which showed typical appearance (Appendix 1) of L. 

monocytogenes on tryptic soy agar (TSA) were taken further for Gram‘s staining, catalase 

and oxidase test (Appendix 2). Isolates which were rod shaped and Gram positive and 

showed positive for catalase and negative for oxidase were tested for haemolytic activity and 

CAMP tests on sheep blood agar for L. monocytogenes confirmation. 

2.3 Native flora estimation 

 
The cold-smoked samples were analysed for the estimation of the background flora. 

Enumeration was carried out by transferring 25 gm of smoked salmon aseptically into a 

stomacher bag and blending with 225 ml of ¼strength Ringer‘s solution in a stomacher (Lab 

blend 400, Seward Medical, London, UK) for 60 s at medium speed. One ml of the 

homogenate was taken and decimal dilution was prepared with ¼ Ringer‘s solution and 0.1 

ml of the diluted sample was spread on duplicates plate count agar (Scharlau – Chemie, 

Barcelona, Spain) for background flora estimation (total bacterial population on cold-smoked 
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salmon, this study dint look into any specific bacterial community in the native flora 

estimation) at 24 °C for 48 h. Data from the plate count were log transformed.  

2.4. DNA extraction 
 

The bacterial isolates for presumptive Listeria spp. were inoculated into 10 ml tryptic-soya-

broth (Scharlau– Chemie, Barcelona) and incubated at 37 °C for 24 h. The overnight cultures 

were centrifuged at 13,000 g for 2 min and the pellets were recovered. The pellets were used 

to obtain the genomic DNA using Promega Wizard Genomic DNA purification kit (Promega, 

Madison, WI) according to the manufacturers‘ recommendations. 

 

A. 16S rRNA gene sequence analysis 
 

L. monocytogenes isolates, representatives of the positive samples, were subjected to 16S 

rRNA gene sequence analysis. The DNA was extracted as in section 2.4. The 16S rRNA gene 

was amplified using 27 f and 1525 r primers (Lane, 1991). The final primer concentration in 

the reaction mixture was 0.4 µM. The oligo nucleotide sequences of the primers and PCR 

conditions are tabulated in Table 2.1 and Table 2.2. 

The identification strategy included detection of L. monocytogenes specific signature 

sequence (sequencing carried out at Geneius lab, Newcastle University, UK), which was 

obtained by alignment of all 16S rRNA gene sequences (obtained from National Centre for 

Biotechnology-NCBI) of the genus Listeria using CLUSTAL W (alignment setting for 

CLUSTAL W:  gap opening penalty of 10 and gap extension penalty of 0.2) and selection of 

L. monocytogenes specific sequence. The oligonucleotide sequence obtained 

(AGTACAAAGGGTCGCGAAGCCGCGAGGTGGAGCTAATCCCATAACT) was 

checked in silico byBasic Local Alignment Search Tool (BLAST) against the sequences on 
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Ribosomal Datatabase Project (RDP) and (NCBI) databases. The sequencing reactions were 

carried out at the 3‘ end as a single directional read spanning about 500 bps. The sequences 

which showed the presence of the signature nucleotide were identified as L. monocytogenes. 

The rest of the strains were assigned to taxa based on BLAST hits of the partial sequence. 

 

Table 2-1: Oligo nucleotide sequence of primers for L. monocytogenes 

 
 

 

 

 

 

 

 

Table 2-2:PCR conditions for the amplification of L. monocytogenesisolates 
 

PCR (condition) Temperature (ºC) Time(min) 

Initial denaturation 95 10 

Denaturation  95 1  

35 cycles Annealing 55 1 

Extension 72 1 

Final Extension 72 10 

 

B. MLVA typing 
 

L. monocytogenes isolates representative of the positive samples were analysed for MLVA. 

The DNA was extracted as in section 2.4.  Amplification of the DNA was carried out by six 

primers set as in Table 2.3 (Murphy et al., 2007). Primer sets were synthesized commercially 

by MWG-Biotech AG (Ebersberg, Germany). The final primer concentration in the reaction 

mixture was 0.4 µM. GoTaq Hotstart polymerase master mix (Promega, Madison, WI) was 

Primer Sequence 

27f AGAGTTTGATCMTGGCTCAG 

1525r AAGGAGGTGWTCCARCC 
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used for all the reactions. All amplifications were performed using thermal cycler (G-Strom 

GS-1, Gene technology Ltd, UK). The PCR conditions are mentioned in Table 2.4.  

Amplified products (5 µl, approximately 100 ng) were resolved by electrophoresis through 

horizontal 2 % (w/v) agarose gels at 80 V for approximately 2 h, in (1x) TBE buffer 

containing 0.5 µg/ml ethidium bromide and the results visualised and photographed in a Gel 

Documentation system (UVP laboratory products, UK). Equal concentrations of molecular 

weight marker (100bp DNA Ladder, Sigma, Germany) were included in all gels to facilitate 

the sizing of the amplified DNA fragment Index.  
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Table 2-3: MLVA Primer sets (Murphy et al., 2007) 
 

Primer Sequence 5′ to 3′ Size 

[mer] 

Tm 

°C 

% 

GC 

Amplicon 

(bp) 

TR Sequence TR 

s

i

z

e 

Copy 

no. 

Diversity 

Index 

(%) 

LM-TR 1 -GGC GGA AAA TGG GAA GC- 17        

 -TGC GAT GGT TTG GAC TGT TG- 20 52.5 36 652 [695] -TAAAACCTA- 9 4.8 77.8 

LM-TR 2 -CCT AGA ACA AAT CCG CCA CCA T- 22        

 -TCG CCA TTG TAA ACA TCC CCT ATT- 24 52.7 32.9 569 [613] -TATTTTTATTTAAAAATG- 18 2.4 50.5 

LM-TR 3 -GCG TGT ATT AGA TGC GGT TGA G- 22        

 -GCA TTC CAC TAT CCC CTG TTT T- 22 53.1 38.5 423 [548] -CCGGTAGAT- 9 13.9 86.5 

LM-TR 4 -TCC GAA AAA GAC GAA GAA GTA GCA- 24        

 -TGG AAC GAC GGA CGA AAT AAT AAT- 24 52.5 34.2 450 [478] -GAAGAACCAAAA- 12 2.3 68.2 

LM-TR 5 -GTT TAT GCG AAT GGC GAG AT- 20        

 -CTG GCT TCA TAG GAT TTA CTG GAT- 24 52.2 41.4 203 [390] -GTAGATCCG- 9 20.9 86.6 

LM-TR 6 -AAA AGC AGC GCC ACT AAC G- 19        

 -TAA AAA TCC CAA TAA CAC TCC TGA- 24 51.9 39.7 232 [268] -CCAGACCCAACA- 12 3 81.5 
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Table 2-4: PCR conditions for the amplification of L. monocytogenes isolates 

 

PCR (condition) Temperature (ºC) Time(min) 

Initial denaturation 95 10 

Denaturation  95 1  

25 cycles Annealing Lm1 to Lm5 55 1 

Annealing Lm 6* 52 1 

Extension 72 1 

Final Extension 72 10 

* Primer Lm 6, the PCR conditions were similar to Lm 1 to LM 5 but the annealing 

temperature was 52 °C. This was carried out as separate PCR reaction 

2.5 MLVA data analysis 
 

The sizes of the amplicons and number of tandem repeats were calculated using Quantity One 

Software (Version 3.2, Biorad, Hercules, CA). The allele strings were imported into a 

BIONUMERICS software package (version 4.5; Applied Maths, Sint-Martems-Latem, 

Belgium). A cluster analysis used the categorical coefficient and the neighbour joining 

algorithm. The use of categorical parameters implies that character states were considered 

unordered. The same weight was given to a large or small number of differences in the 

number of repeats at each locus. The genetic diversity at each TR was calculated in 

BIONUMERICS software package using Simpson‘s index. 

 

2.6 Inoculation of vacuum packed cold-smoked salmon 
 

Fifty grams quantities of vacuum packed cold-smoked salmon were obtained from a smoked 

salmon processor in Dublin. A strain cocktail of L. monocytogenes was prepared by 

combining each of the 3 strains of L. monocytogenes isolated from smoked salmon 
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(Chitlapilly Dass, 2010a). These mixtures of bacteria were cultured overnight in sterile tubes 

containing 10 ml tryptic soy broth at 30 °C. After the incubation, the culture tubes were 

centrifuged at 3000 x g at 4 °C for 30 min. The pellets were washed with sterile ¼ Rin       

er‘s solution (Oxoid Ltd, UK) and centrifuged for 30 min at 3000 x g at 4 °C and the 

resulting pellets were resuspended in ¼ Ringer‘s solution to a final volume of 5 ml. The cell 

level in the resulting composition was 6 log CFU/ml, as assessed by McFarland‘s standard 1 

(BioMérieux, Marcy-l'Etoile, France). 

To obtain a 1 log CFU/ml, 200 µl of the appropriate diluted culture were added to 50 gm of 

cold-smoked salmon sample. To achieve uniform distribution, the inoculum was spread on 

the surface of the smoked salmon samples using sterile spatula and finally the cold-smoked 

salmon sample was re-vacuumed packed (Multivac, MSC, Ireland). A total of 18 samples 

along with 18 duplicates were inoculated.The process of inoculation and re-vacuum packing 

of the smoked salmon samples took 10 min per sample. 

 

2.7 Microbial analysis for inoculated studies 
 

The cold-smoked samples were analysed everyday for 18 days (shelf-life as provided by the 

manufacturer). Enumeration was done by transferring 25 gm of smoked salmon aseptically 

into a stomacher bag and blending with 225 ml of ¼ Ringer‘s solution in a stomacher (Lab 

blend 400, Seward Medical, London, UK) for 60 s at medium speed. One ml of the 

homogenate was taken and decimal dilutions were prepared with ¼ Ringer‘s solution. 

Aliquots of 0.1 ml sample of three appropriate dilutions were spread plated in duplicate on 

Palcam (Scharlau – Chemie, Barcelona, Spain) for Listeria and incubated for 48 h at 30 °C 

and on plate count agar (Scharlau – Chemie, Barcelona, Spain) for native flora estimation at 

24 °C for 48 h. Data from the plate counts were log transformed.  
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2.8. Physicochemical estimation 

 
The pH of cold-smoked salmon was measured using an Orion pH meter (Beverly, Mass., 

U.S.A.). The water activity (aw) of cold-smoked salmon was measured using an AquaLab 

Model CX2 water activity meter (Decagon Devices, Pullman,Wash., U.S.A.). The pH and 

awwas measured for each day of the cold-smoked salmon sampling for the inoculated study. 

The samples were recorded as replicates of five per sample and the mean was noted as final 

value. 

2.9. Microbial modelling 

 

A. Primary modelling 
 

Microbial counts obtained from the microbiological analysis for shelf life were fitted using 

DMfit Excel Add-In software (www.ifr.bbsrc.ac.uk) which is based on the model of Baranyi 

et al., (1993) and resulted in the generation of growth parameters; maximum growth rate 

(μmax), lag phase (λ) and maximum population density (MPD). 

 

B. Secondary modelling 

Square root model was used to estimate the maximum specific growth rate at isothermal 

conditions as a function of temperature (Ratkowsky et al., 1983) 

Equation 2-1 
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Where, b is a constant, T (°C) the temperature and Tmin is the theoretical minimum 

temperature for growth of the organism, estimated by extrapolation of the regression line to 

µmax = 0. 

 

C. Tertiary modelling (predictive software) 
 

The growth parameters –– maximum growth rate (μmax), lag phase (λ) and maximum 

population density (MPD) from the inoculated studies were compared with predictive 

softwares including Growth Predictor Combase (www.combase.cc) and the Seafood Spoilage 

and Safety predictor (SSSP) v. 3.1. Both programs can provide predictions for microbial 

growth under fluctuating temperature conditions. In SSSP growth predictor, temperature 

fluctuations recorded from data loggers can be uploaded and the predictions are made on 

experiments based on sliced vacuum packed cold-smoked salmon in contrast to Combase 

where the predictions are made on synthetic media. Comparison of the prediction was based 

on the bias factor (Bf), the accuracy factor (Af) and the goodness of fit (GoF) given in 

equation 2.2, 2.3 and 2.4 respectively. 

 

Equation 2-2 

 

 

Equation 2-3 

 

 

http://www.combase.cc/
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Equation 2-4 

2.10 Risk assessment model 
 

Quantitative microbial risk assessment of L. monocytogenes contamination in cold-smoked 

salmon was performed by running the @Risk add-on package (Palisade Software, Newfield, 

NY, USA) on the various input parameters as summarised in Table 2.5 and the Monte Carlo 

simulation were performed using Latin hypercube random sampling. The simulation was 

performed for 10,000 iterations. 
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Table 2.5 Quantitative microbial risk assessment of L. monocytogenes in vacuum packed 

cold-smoked salmon model inputs  

 

Description Units Variable Formula/model/values 

Prevalence Percentage Prev Beta(26+1,120-26+1) 

Initial contamination 

level 

log CFU/g  Cumulative (x:s) Table 2 

Time from retail fridge 

to consumer fridge 

Hours T1 Uniform(30,180)/24 

Temperature consumer 

transport 

ºC Tp1 Uniform(4,8) 

Temperature consumer 

storage 

ºC Tp2 FSAI, 2001 Table 3 

Maximum storage time 

in consumer fridge 

Days Tmax 30 

Minimum storage time 

in consumer fridge 

Days Tmin 21 

Consumer storage time Days T2 Uniform(Tmin:Tmax) 

 

 (mCurv) 

 

 m 

 

1 

 

nCurv 

 

 v 

 

10 

Bacterial adaptation  ho µmax × λ 

 

Growth constant  qo 1/exp(h0)-1 

 

Concentration of L. 

monocytogenes after 

consumer travel from 

retail to consumer 

storage 

logCFU/g y(T1) Baranyi and Roberts model 1994 

Equation (1) 

Concentration of L. 

monocytogenes after 

consumer storage 

logCFU/g Y(T2) Baranyi and Roberts model 1994. 

Same as Equation (1), with 

change in parametersY01, Ymax1, 

t1and µmax1 replaced by new 

parameter Y02, Ymax2, t2and µmax2 

Serving size g S Normal(35,26,Truncate(0,)) 
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Chapter 3 Development of rapid and reliable method for detection of 

Listeria monocytogenes in vacuum packed cold-smoked salmon and to 

assess the efficiency of the isolation methods EN/ISO 11290-01 and -02. 
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3.1 Summary 

 
As a part of a quantitative risk assessment of Listeria monocytogenes in cold-smoked salmon, 

this study was undertaken to identify a rapid and reliable protocol for the detection and 

quantification of L. monocytogenes in vacuum packed cold-smoked salmon.  

The objectives of this study were to evaluate the prevalence of L. monocytogenes in vacuum 

packed cold smoked salmon in Ireland and to assess the efficiency of the isolation methods 

EN/ISO 11290-01 and -02. Sixty vacuum packed cold-smoked salmon were examined for the 

presence of L. monocytogenes; the detections were based on the EN/ISO 11290-01 and -02 

protocols. 13 out of 60 samples were positive for L. monocytogenes. From 112 colonies 

presenting typical L. monocytogenes characteristics on Palcam and Oxford agar, only 64 % 

(Palcam) and 55.7 % (Oxford) were confirmed as L. monocytogenes. The confirmations were 

based on the 16S rRNA gene sequence analysis. Selection of Palcam and Oxford agar over 

ALOA agar for identification was based on the recovery rates of standard laboratory strains 

of L. monocytogenes. This study emphasises the need to design and develop good selective 

isolation protocols for L. monocytogenes to facilitate rapid screening of food samples in 

relation to food safety. 

Some parts of the results from this chapter were accepted for publication in the Journal of 

Food control and also presented as poster at the 21st International ICFMH Symposium-

FoodMicrobiology 2008 (Page: 212 - 213) 

Keywords: L. monocytogenes, Oxford, Palcam, 16S rRNA gene sequence analysis. 
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3.2 Introduction 

A number of selective media have been developed for the detection of L. monocytogeneson 

food and used over the years with varying degrees of success (Roche et al., 2009). The 

standard microbiological methods (EN/ISO 11290-01 and -02) routinely used for the 

isolation of L. monocytogenes in foodstuffs or other materials, usually require two enrichment 

steps in liquid media and further isolation on solid selective media. For the identification of 

the colonies on the selective media, the typical practice requires that five of the suspected 

colonies from the selective media are confirmed through phenotypical characteristics (e.g. 

Gram stain, haemolysis and carbohydrate fermentation). The time required for the detection 

and identification of L. monocytogenes in each food sample can take up-to 7-8 days (Barocci 

et al., 2008).  

Specific compounds added to the media for selective isolation of L. monocytogenes do not 

necessarily suppress the growth of other microbes or help in the differentiation within the 

Listeria spp. (Captia et al., 2007).Growth rates during enrichment vary among Listeriaspecies 

due to interactions with food matrices, production of inhibitors by the organism (monocins, 

bacteriophages), or the competing background flora (Besse et al., 2005).Poor detection of 

low-virulence strains of L. monocytogenes have been reported in selective media such as; 

Palcam, ALOA, Rapid‘ L. mono and Oxford agar (Roche et al., 2009 and Gracieux et al., 

2003). Despite these challenges, classical cultivation techniques still remain the gold standard 

for detection of Listeria in food. 

In this study, 16S rRNA gene sequence analysis has been used in confirming the isolates 

obtained from the selective media as L. monocytogenes. 16S rRNA genes contain stretches of 

highly conserved regions and regions that are variable. Primers designed to target conserved 

DNA sequences can be used to analyze a wide variety of different organisms using PCR 

amplification with subsequent sequencing of the PCR product; whilst highly diverse regions 
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can be used to sub-type strains (Wang et al., 1993). The use of 16S rRNA as a distinct 

signature for a bacterial species has become the method of choice for identifying and 

differentiating microorganisms when no other easily specified nucleic acid sequence uniquely 

defines the desired target (Gasanov et al., 2004). The genus Listeria comprises of five 

species: L. monocytogenes, L. ivanovii, L. innocua, L. welshimeri, and L. seeligeri, off which 

L. monocytogenes and L. innocua are closely related and are difficult to differentiae by 

cultural methods. 16S rRNA gene sequence analysis can differentiate between the closely 

related L. monocytogenesand L. innocua. Two sequence differences found within the V9 

region were used to develop species specific nucleic acid probes for L. monocytogenes, and 

their efficacy has been demonstrated in a hybridization assay. The ability to determine the 

relationship between different bacterial isolates from the same species is extremely important 

in tracking the source of a food-borne infection and identifying problematic reservoirs 

(Czajka et al., 1993). 

The aim of this study was to develop a rapid method for the identification of L. 

monocytogenes in vacuum packed cold-smoked salmon, and to confirm the isolates from the 

selective media (Palcam and Oxford) as L. monocytogenes using 16S rRNA gene sequence 

analysis thereby testing the efficiency of EN/ISO 11290-01 and -02 . 

 

3.3 Materials and methods 

 

3.3.1 Selection of selective media 
 

Eight standard Listeria strains (Table 3.1); 3 virulent strains, 2 non virulent strain and 3 low 

virulence strains of L. monocytogenespreserved in 80 % glycerol stock solution were used. 

The strains belonged to serotypes 1/2a, 1/2c, 1/2b and 4b. The strains were cultivated at 37 
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°C for 18 h in 10 ml Nutrient broth (Difco Laboratories, Detroit, MI, USA), and 10ml 

cultures of each strain were transferred aseptically to a 50ml centrifuge tube and were 

vortexed for 10s to ensure a homogenous cocktail. The cocktail of L. monocytogenes was 

prepared by combining the individual cells after centrifugation at 3000 x g for 30 min at 4 °C.  

The resulting pellet was washed twice with sterile saline (0.85%), and suspended in saline to 

a final concentration of approximately 10
9
CFU/ml of the stock cocktail inoculums. 0.1ml of 

cocktail was inoculated on ALOA, Palcam and Oxford media and incubated for 48 hrs and 

observed for typical colonies.  

 

Table 3-1: L. monocytogenes used for selection of isolation media 

 

L. monocytogenes Strain type  Source 

Virulence ATCC12567  bacterial culture collection lab  

Newcastle university,UK 

 

 ATCC27126  

 NTCC2187  

Low-Virulence NTCC2765  

 NTCC6754  

 NTCC7658  

Non-Virulence ATCC3654  

 ATCC6896  

 

3.3.2 Sampling 
 

A total of 60 samples of vacuum packed cold-smoked salmon were collected from a retail 

outlet in Dublin. Approximately 10 samples were tested per month for a period of 6 months; 

the samples represented a shelf-life period of 18-20 days and were sampled in a range from 7 
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days before to 1 day over the expiry date. The samples were transported back to the 

laboratory within 30 min of purchase for further analysis. For all the samples, refrigeration 

temperatures (0 to 4 °C) were suggested by the producers, the samples were stored in a 

cooling incubator and the temperature was maintained at +4 °C.  

 

3.3.3 Detection and Enumeration of L. monocytogenes 

 

Refer to section 2.1 (Chapter 2, Materials and Methods). 

3.3.4 16S rRNA gene sequence analysis 

Refer to section 2.2(Chapter 2, Materials and Methods) 

3.4 Results and discussions 

 

3.4.1 Selection of the isolation media 
 

The performance of each of the examined plating media with regard to the isolation of L. 

monocytogenes from different L. monocytogenes strains is shown in Table 3.2. It can be 

observed that Palcam (97.2 %) and Oxford (95 %) showed similar results for L. 

monocytogenesisolation. ALOA media showed only 93 % of isolation rates of the eight 

strains of L. monocytogenes with varying degrees of virulence. 

Low virulence strains of L. monocytogenes were late growers on Palcam and Oxford, typical 

L. monocytogenes colonies appeared only after 3 to 4 days of incubation and in case of 

ALOA after 4 days. On the bases of these observations, Palcam and Oxford media were used 

in the study to determine the prevalence of L. monocytogenes in vacuum packed cold-smoked 

salmon. 
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3.4.2 Occurrence of L. monocytogenes in vacuum packed cold-smoked salmon 

 

Out of the 60 packs tested, 13 packs were positive for L. monocytogenes, indicating 21.6 % 

prevalence. The levels of L. monocytogenes in the positive samples were found to be < 10 

CFU/g in 98 % of the cases which is in compliance with the food safety criteria provided for 

RTE foods able to support the growth of L. monocytogenes (Commission Regulation EC N 

1441/2007). The prevalence in RTE food samples containing > 100 cfu/g was in agreement 

with those reported in the Scientific Committee on Veterinary Measure relating to public 

health for Europe (SCVPH, 1999) and in Ireland the prevalence for L. monocytogenes was 

26.1 % (Chitlapilly Dass et al., 2010).  

3.4.3 Collection of the presumptive Listeria spp. 

 

One hundred and twelve isolates which showed typical L. monocytogenes colony type were 

isolated from both Palcam and Oxford agar. About 60 % of the total isolates showed 100 % 

identity to L. monocytogenes. The non- L. monocytogenesisolates that were identified by 

means of partial sequencing were as follows: 23 % Enterococcus faecalis, 6 % Listeria 

seeligeri, 4 % Enterococcus faecium, 4 % Bacillus spp. and 3 % Serratia spp 

 

Table 3-2: L. monocytogenes and non-Listeria isolates on Palcam and Oxford. 

 

Selective agar Total no. of isolates L. monocytogenes Non-Listeria isolates 

Palcam 42 27 15 

Oxford 70 39 31 
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3.4.4 16S rRNA gene sequence analysis 

 

Of the members of the genus Listeria, L. monocytogenes is a major food pathogen and hence 

it is necessary to accurately discriminate it from related taxa. All Listeria spp. fall into closely 

related lineages (Andrighelto et al., 2009). A signature sequence specific to L. monocytogenes 

in the 16S rRNA gene (Figure. 3.1) was developed to discriminate between other species of 

Listeria as well as from other genera. This was achieved by collection of all complete 16S 

rRNA gene sequences of Listeria spp. available on RDP II database. The sequences were 

aligned using Clustal W with a gap opening penalty of 10 and gap extension penalty 0.2. A L. 

monocytogenes unique 49bp region of the 16S rRNA gene (Figure 3.1) was identified. In this 

signature sequence positions 1, 34 and 48 (highlighted) are diagnostic for L. monocytogenes 

amongst Listeria species and the whole sequence is diagnostic for L. monocytogenes when 

checked in-silico. This has been confirmed by aligning all the L. monocytogenes sequence in 

NCBI and RDP databases and performing BLAST. Figure 3.2 is a graphical representation of 

the samples that were sequenced for the identification of L. monocytogenes. The rest of the 

strains that were non L. monocytogenes which grew on both Palcam and Oxford were 

assigned to taxa based on BLAST hits of the partial sequence. As expected, L. innocua is 

closely related to L. monocytogenes, the gradient of differences is only 2 of 1,281 bp in the 

16S rRNA that absolutely differ between the two species. Although difficult to quantify, 

given the small number of differences, the 16S rRNA sequences successfully differentiated 

the two species. 

AGTACAAAGGGTCGCGAAGCCGCGAGGTGGAGCTAATCCCATAAAACTA 

Figure 3--0-1: Signature sequences of L. monocytogenes 
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Figure 3-0-2: Isolates confirmed by 16S rRNA gene sequence analysis 

 

According to Oh et al., (2008) 16S rRNA is deemed to be reliable since it is based on the 

conserved region amplification. Another advantage of 16S rRNA is its sensitivity, which is 

critical factor for any screening method. 

Direct sequencing of DNA is the most accurate method of evaluating genetic relationships of 

organisms, however it is expensive and time consuming. Since the introduction of PCR the 

amplification of even minute amounts of target DNA is possible and hence sequencing has 

become a more applicable tool. The 16S RNA gene is the most extensively sequenced RNA 

gene (Lane et al., 1991). The ability to accurately discriminate L. monocytogenes from L. 

innocua and other Listeria spp. is of importance to identify reservoirs of L. monocytogenes. 

3.4.5. Comparative performance of the isolation media 

 

From the 112 isolates, 70 isolates were from Oxford and 42 of the isolates were from Palcam. 

Out of the 70 isolates of the Oxford agar, 55.7 % showed 100 % identity to L. monocytogenes 
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by 16S rRNA gene sequence analysis. On the other hand 42 isolates of the Palcam agar 

analysed by 16S rRNA gene sequence analysis showed 64 % positive for L. monocytogenes 

with 100 % similarity. 

Figure (3.3 and 3.4) shows the distribution of taxa other than L. monocytogenes in both 

Palcam and Oxford. Enterococcus faecalis and L. seeligeri showed false positive results on 

Palcam media and E. faecalis, L. seeligeri, E. faecium, Serratia spp. and Bacillus spp. 

showed false positive results on Oxford media. 

 

 

 

Figure 3-0-3: Non-L. monocytogenes isolates on Oxford agar 
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Figure 3-0-4: Non-L. monocytogenes isolates on Palcam agar 

 

According to Capita et al., (2001), the differential system of the Palcam and Oxford media 

showed a significant number of Bacillus spp. and Enterococcus spp. growth on both types of 

media, resulting in false positive results. This is consistent with the results found in this 

study. The potential origins of this problem lie in the fact that Enterococcus spp. and Bacillus 

spp. utilise esculin (which is the selective component in Oxford agar), may have a similar 

appearance (Gasanov et al., 2005). Embarek et al. (1997) reported growth of Gram-positive, 

motile, rod-shaped bacteria with black Listeria – like colonies on Oxford agar. This is in line 

with results obtained in this work, as Oxford agar showed about 43 % interference with 

background food flora of smoked salmon. According to Velho (2005), in 10 out of the 33 

(cold-smoked salmon isolates) L. monocytogenes presumptive positive colonies were 

confirmed positive for L. seeligeri. These results were also in line with the present study 

which showed 6 % of L. seeligeri growth on Oxford and Palcam agar (Fig 3.4).  
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Non- L. monocytogenes colonies which showed similar colonies to that of L. monocytogenes 

could have been missed during the initial identification procedure (Gram straing, catalase, 

oxidase and CAMP test). This is because 5 representative colonies from the Listeria positive 

plates are sub-cultured on a TSA plate for identification, these are in accordance with the ISO 

11290 -01 and -02 method employed in identification. These results reflect a gap in the 

representative sampling methods for identification of L. monocytogenes, given that most of 

the selective media support the growth of other microorganisms which adapt to the specific 

ingredients added in the selective media (Velho et al., 2005). 

The true prevalence of L. monocytogenescould therefore be different than that found using 

cultural methods. These media may not support recovery of the organism if significant levels 

of other microorganisms are present (Curiale et al., 1997). According to Waldroup (1996), 

the presence of any Listeria spp. or other microorganisms which mimics L. monocytogenes 

on selective medium would lead to the conclusion that L. monocytogenescould be present. As 

previously reported by Johansson et al., (1999), these results demonstrate the need for more 

specific media for the detection of L. monocytogenes in foods and suggests that molecular 

techniques might be a viable alternative. Designing of specific media could be based on 

several specific traits of the bacteria, for example carbon ulitilisation, specific genetic trait in 

addition to antibiotic specificity (to eliminate other bacteria and select specific bacteria). 

In modern food microbiology, a general shift to genetic methods is inevitable. Therefore 

research activities are focused on comparative studies of various alternative methods with 

known strategies for the detection, identification and characterisation of Listeria spp. 

revealing sufficient and highly resolved information contents. Determining bacterial 

phenotypes by characterizing colony morphology or biochemical alignment is not satisfactory 

for the clarification of the diversity between closely related strains. Current bacterial typing 

methods are based on DNA banding patterns, DNA sequencing and DNA hybridization. 
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However, no single method has universal application capacities. Based on the way of looking 

at a problem or situation, the choice of the genotypic method is highly dependent on the 

evolution of the marker.An important criterion for choosing suitable methods is the data 

exchange capacity and quality of data for storage and inter-laboratory comparison. The 

increase of listeriosis cases in the European Union may not only be seen as the cause for 

needing and developing rapid and reliable methods for the food industry and official control 

bodies. This increase may also have several other reasons such as changes of surveillance 

systems, improved rates of reporting, changes of consumption behaviour and growing life 

expectancy  

3.5 Conclusions 
 

The decision to find ―the most suitable‖ method for the detection and tracing of L. 

monocytogenes in food processing is difficult as the information should not only relate to the 

presence of the pathogen, but also to use information about transmission routes and types of 

strains correlating to raw products, mid-products, end-products and product environment. 

Once the information is obtained by a proven method, it should be further integrated into 

effective prevention systems and HACCP programs, thus to be able to better evaluate risk 

profiles (e.g., production steps or areas). 

16S rRNA gene sequencing could identify the stressed and non-cultivable Listerial strains. 

Phenotypic typing methods may be replaced by molecular tests, which reflect genetic 

relationships between isolates and which are more accurate. Currently, these new methods are 

mainly used in research but their considerable potential for routine testing in the future cannot 

be overlooked. 

The method of detection of L. monocytogenes from food by 16S rRNA gene sequence 

analysis is rapid and accurate when compared to cultural methods, but it is cost intensive 
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when compared to the ISO 11290-01 and -02 methods for detection. A drawback of this 

method is the requirement of specialised equipment, such as an automated DNA sequencer, 

to carry out the analysis. 

Significant shortcomings in the application of selective media for screening L. 

monocytogenesin food products have been highlighted in this study. Competitive bacteria, 

which should have been inhibited by enrichment, grew on Palcam and Oxford. With bacterial 

adaptation to different environments causing similarities in phenotype, as well as resistance 

to ingredients in enrichment and selective media, the transition from conventional methods of 

detection to genetic methods should be carried out (Gouws et al., 2005).  The application of 

cultural and serological methods in routine surveillance is of limited value because of their 

poor discriminatory power. Methods of higher discriminatory power, including the molecular 

methods such as PCR and DNA hybridisation tests, have been developed to differentiate 

between strains and identify sub-types of L. monocytogenes serotypes.  This study further 

emphasises the design and development of good selective isolation protocols for L. 

monocytogenesto facilitate rapid screening of food products. 16S rRNA gene sequence 

analysis proved to be more reliable and time saving method in this study. 
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Chapter 4 Prevalence of Listeria monocytogenes in retail vacuum packed 

cold-smoked salmon marketed in the Republic of Ireland 
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4.1 Summary 
 

Prevalence of Listeria monocytogenes in vacuum packed cold-smoked salmon marketed in 

the retail outlets in Republic of Ireland was established in this study. The findings from this 

study forms a part of quantitative risk assessment. The novel method of identification using 

16SrRNA discussed in the previous chapter and Multi Locus Variable Number Tandem 

Repeat Analysis (MLVA) were used to identify and subtype L. monocytogenes. 

The prevalence of L. monocytogenes in five brands (A, B, C, D and E) of vacuum packed 

pre-sliced cold-smoked salmon (n = 120) marketed in different retail outlets in the Republic 

of Ireland was investigated. The prevalence of L. monocytogenesin the cold-smoked salmon 

was 21.6 %. The L. monocytogenes strains isolated from the prevalence studies were typed by 

using MLVA; this method confirmed the type division amongst the L. monocytogenes 

isolates. A minimum spanning tree (MST) showed that isolates from brand A clustered 

together. Few isolates from brand B, C, D and E showed genetic relatedness while others 

were spread throughout the cladogram. The genetic distinction among subtypes may be 

processor specific whilst the similarities among the subtypes support the hypothesis of well 

adapted clones of L. monocytogenes in the fish industry. The results highlight the need for 

food safety control at both pre-processing and processing stages as there is no bactericidal 

process involved to eliminate any pathogen during the processing of cold-smoked salmon. 

Some of the results from this chapter have been accepted and published in Journal of Food 

Safety (Page: 212).  

 

Keywords: L. monocytogenes; Prevalence; Smoked salmon; 16S rRNA gene sequencing; 

MLVA 
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4.2 Introduction 
 

L. monocytogenescontamination has been associated with unpasteurised milk, soft cheese, ice 

cream, raw vegetables, fermented raw-meat sausages, raw and cooked poultry, raw meats (all 

types), cold cuts, and raw and smoked fish (Hamon et al., 2006, Czuprynski, 2005). The 

prevalence of these organismsin freshly produced cold-smoked fish is relatively high and is 

typically between 10 to 40 % (Miettinen and Wirtanen 2006, Azevedo et al., 2005, 

Fonnesbech-Vogel et al., 2001, Rorvik et al., 2000, Autio et al., 1999). This high prevalence 

could be due to the low smoking temperature involved during the cold-salmon processing; as 

these conditions would be ideal for the proliferation of L. monocytogenesif the raw salmon 

harboured the pathogen or acquired the pathogen from the processing environment. Under 

favourable conditions of storage time and temperature, L. monocytogenesmay exceed the 

legal limit of 100 cfu/g (FSAI, 2008).  

L. monocytogenes contamination in cold-smoked salmon depends on several factors such as 

raw materials, working habits and the presence of surface persistent L. monocytogenes. 

MLVA is a PCR-based method that subtypes organisms by determining the number of a 

variable number of tandem repeat (VNTR) found in multiple regions in the bacterial genome 

(Lindstedt et al., 2008). This method allows for very sensitive subtype discrimination beyond 

that achieved by Pulse Field Gel Electrophorisis (PFGE) which is the golden standard in 

molecular identification (Foley et al., 2009; Miya et al., 2008 and Murphy et al., 2007). 

MLVA has been applied to food-borne disease surveillance and outbreak detection (Torpdahl 

et al., 2006) and is gaining acceptance as a robust and rapid method for genotyping bacterial 

isolates (Lindstedt et al., 2008 and Sperry et al., 2008). The characterisation of L. 

monocytognes using such molecular subtyping methods is very useful tool for 
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epidemiological studies and for research on the distribution and transmission of the pathogen 

along the food chain (Garrido et al., 2009). 

Despite the great amount of data available on L. monocytogenes at the retail level there are 

only a few studies which determine the occurrence by brand, thus limiting the possibility of 

identifying potential common contamination sources. It is necessary to increase the available 

data on the presence and levels of the pathogen within factory-packaged foods at the point of 

sale as the technological and hygienic measures of each manufacture could have different 

impacts on the prevalence of the pathogen (Garrido et al., 2009). 

The aims of the present study were to (a) investigate the prevalence of L. monocytogenes in 

five brands of vacuum packed cold-smoked salmon in the Republic of Ireland; (b) confirm 

the presumptive L. monocytogenesisolates from the prevalence study by 16S rRNA gene 

sequence analysis; (c) sub-typing of the confirmed L. monocytogenes isolates by MLVA 

which will categorise the subtypes and provide possible indicators of pathogen origin.  

 

4.3 Materials and methods 

4.3.1 Sampling 

Vacuum packed pre-sliced cold-smoked salmon (250 g) were purchased from 5 retail 

establishments in Dublin (2007-2008). The five brands used in this study were coded as 

brand A through to E. Two samples from each brand were tested every month for a period of 

one year giving a total of 24 samples of each brand. The samples were returned to the 

laboratory under refrigerated conditions within 30 min of purchase and the samples were 

processed immediately upon arrival in the lab. The samples represented a shelf life period of 

18-20 days and were sampled in a range from 7 days up to 1 day prior to the expiry date. For 

all the samples, refrigeration temperatures were maintained at+ 4 °C. 
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The brands B, D, and E were produced by a common Dublin processor, while brand C was 

produced in the UK and brand A produced in an Eastern European country. The Dublin and 

UK processors procured raw fillets of salmon under refrigeration conditions, with the raw 

material coming from the same slaughter house in the UK.  

4.3.2 Detection and Enumeration of L. monocytogenes 
 

Refer section 2.1 (Chapter 2: Materials and Method) 

 

4.3.3 16S rRNA gene sequence analysis 

 

L. monocytogenes isolates (n = 61), representative of the positive samples, were subjected to 

16S rRNA gene sequence analysis. Refer section 2.2 (Chapter 2: Materials and Method). 

4. 3.4 MLVA typing 

 

Refer section 2.3 (Chapter 2: Materials and Method). 

4.3.5 Data Analysis 

 

A dendrogram was constructed by the unweightedpair group method using average linkages 

(UPGMA), available in the PHYLIP package, to represent the genetic relationships of the 

MLVA profiles. The minimum spanning tree (MST) was constructed using the Bionumerics 

software (version 4.5; Applied Maths, Sint-Martems-Latem, Belgium). 

4.4 Results and Discussion 

4.4.1 Prevalence 

A total of one hundred and twenty cold-smoked salmon from five bands (A, B, C, D and E) 

were tested for the presence of L. monocytogenes, 26 samples (21.6 %) tested positive. Brand 

A and brand D showed the highest percentage of positive samples (Table 4.1). 
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Table 4-1: L. monocytogenes in cold-smoked salmon: Occurrence by brands and 

contamination levels. 

 

Brand 

(n = 24 in 

each 

brand) 

No. of 

positive 

samples 

No of positive samples by colony count 

(CFU/g) 

<10           >10-100             >100-1000 

A  8  2 5 1 

B  5  1 4 - 

C  4  - 3 1 

D  6  - 6 - 

E  3  1 2 - 

Total 

(n=120) 

26 (21.6 %) 4 (3.3 %) 20 (16.6%) 2 (1.6%) 

 

In this study an estimation of prevalence and molecular characterisation of L. 

monocytogenesin vacuum packed cold-smoked salmon marketed in the Republic of Ireland 

was provided. There is a lack of research in this area with only one previous study conducted 

in Ireland in retail outlets in 2001 where a prevalence of 13 % in smoked salmon was found 

(FSAI 2001). With an increase in listeriosis incidence across Europe and with the high 

consumption of cold smoked salmon there is a need for vigilance in monitoring of the 

pathogen (FSAI, 2008).  

Five brands of vacuum packed cold-smoked salmon were tested for the presence of L. 

monocytogenes. The prevalence estimated in this study (21.6 %) is higher when compared to 

the study conducted on cold-smoked salmon in Ireland in 2001 (FSAI 2001) and these results 

are in agreement with increasing trends seen elsewhere in Europe (Gudbjornsdottir et al., 

2004, Mclaughlin et al., 1993). Several investigators have reported even higher levels (78 %) 
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in smoked fish (Azevedo et al., 2005, Eklund et al 1995, Hudson et al., 1992) and 77 % in 

cold smoked salmon in New Zealand (Fletcher et al., 1994). As the processing of cold-

smoked salmon does not involve any bactericidal step to eliminate L. monocytogenes, the 

contamination at the raw fish level (or the raw fish acquiring the pathogen along the 

production line) will have a significant positive relationship with the presence of this 

organism in the finished product.  

 

4.4.2 16S rRNA gene sequence analysis 

 

Collections of 61 isolates (Table 4.2) from the L. monocytogenes positive Palcam plates were 

set for 16S rRNA gene sequence analysis. A signature sequence specific to L. monocytogenes 

in the 16S rRNA gene was identified to discriminate between other species ofListeria. L. 

monocytogenes was identified at the 49 bp region of the 16S rRNA gene. The bases at 

positions 1, 34 and 48 were diagnostic for L. monocytogenes amongst Listeria species 

(Figure. 4.1).  

 

AGTACAAAGGGTCGCGAAGCCGCGAGGTGGAGCTAATCCCATAAAACTA 

 

Figure 4-1:Signature sequence of L. monocytogenes diagnostic for L. monocytogenes 

 

The sequencing reactions (sequencing carried out at Geneius laboratories ltd., Newcastle 

University, UK) were carried out at the 3‘ end using 1525R primer as a single directional 

read spanning about 500 bps. The sequences which showed the presence of the signature 

nucleotide were identified as L. monocytogenes. 
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Table 4-2: Number of L. monocytogenes isolates originated from each brand 
 

Brand No. of isolates 

A 15 

B 19 

C 13 

D 8 

E 5 

 

In this study L. monocytogenes has been discriminated from the non L. monocytogenes by 

16S rRNA gene sequence analysis isolated from Palcam. Of the members of the genus 

Listeria,L. monocytogenesis a major food pathogen and hence it is necessary to accurately 

discriminate it from related taxa as all Listeria spp. fall into closely related lineages 

(Andrighelto et al., 2009). L. monocytogenes was identified by the bases at positions 1, 34 

and 48 of the 16S rRNA signature sequence. 16S rRNA gene sequencing could identify the 

stressed and non-cultivable Listerial strains. The oligonucleotide sequence used as a signature 

sequence showed promising results in silico as well as with the isolates checked in our study, 

this could be used as a molecular marker to rapidly identify L. monocytogenes strains. 

According to Oh et al., (2008), 16S rRNA is deemed to be reliable since it is based on the 

conserved region amplification. Another advantage of 16S rRNA is its sensitivity, which is 

critical factor for any screening method. 

4.4.3 MLVA typing 
 

MLVA was used to subtype 61 L. monocytogenes isolates which were characterised by 16S 

rRNA gene sequence analysis. The TR containing amplicons were produced for all isolates at 
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all loci. Diversity indices were calculated for the TR locus in each case using Simpson‘s 

index and these values ranged from 68 to 87 % as shown in Table 4.3. The number of alleles 

identified in the isolates in this collection, ranged from 1 to 26.  

Table 4-3: Simpson Index for MLVA of L. monocytogenes 

 

Primer Simpson’s Index (%) Amplicon (bp) 

LM-TR 1 77.8 695 

LM-TR2 50.5 569 

LM-TR3 86.5 548 

LM-TR4 86.5 478 

LM-TR5 68.2 390 

LM-TR6 81.5 268 

 

The MLV technique discriminated between the 61 isolates from the 5 brands tested. From the 

MLVA profiles a Minimum Spanning Tree (MST) was constructed which was rooted to the 

samples with the highest number of related samples to it (Figure. 4.2). All the other samples 

were derived from this node thereby highlighting the genetic relationships that existed 

amongst these isolates. The gel representing the MLVA types is presented as Appendix 3. 

Isolates from brand A originated from one node there by demonstrating genetic similarities 

amongst all the isolates based on its origin. Isolates from brands B, C, D and E created a 

number of sub-clusters, thereby demonstrating a genetic distinction between these isolates. 

There were 12 distinct MLVA profiles for (B, C, D and E). The sub-cluster were not distinct 

for any one brand, but were mixture of all four brands (B, C, D and E), showing some degree 

of relatedness amongst some isolates in the four brands. 
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Figure 4-2 :MST constructed using highest number of single locus variants (SLVs) as the 

priority rule with no creation of hypothetical types. 

 

Among the molecular subtyping method MLVA was used because of its excellent 

discriminatory power and reproducibility (Murphy et al., 2007). Separate clustering of brand 

A could be due to the geographical location of the production area as it was imported into 

Ireland from an Eastern European country, thus demonstrating a genetic distinction between 

other subtypes (brand B, C, D and E) based on their origin. These results are in line with the 

survey conducted by Wulff et al., (2006) which concluded that one group of genetically 

similar L. monocytogenes strains frequently dominates and persists in several fish, slaughter 

and smokehouses present in the same geographical location. These results support the 

hypotheses of the presence of a well adapted clone in the fish processing industry. 

The isolates from B, C, D and E formed several sub-clusters with no distinct cluster for any 

one brand. The similarities amongst the isolates in the sub-cluster could be linked to the 
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slaughter house from where the processors acquired the raw salmon fillets, as the slaughter 

house was common for the two processors of brand B, C, D and E.  Data presented in this 

thesis, supports previous works on contamination patterns of L. monocytogenes in cold-

smoked salmon (Corcoran et al., 2007 and Murphy et al., 2007 and Wulff et al., 2006), which 

leads to the hypothesis that the contamination could be from a few strains which may have 

been introduced with the raw material, and found a niche in the processing factory, from 

where they are constantly shed during the processing, thus contaminating the products. If the 

raw fillets carried L. monocytogenes into the processing factory, the L. monocytogenes could 

have undergone modification to adapt to the new environment and cold-smoking conditions 

specific to each processor. As cold-smoking is done below 20 °C and there is no other 

bactericidal step involved in eliminating the pathogen, there is a possibility that L. 

monocytogenes could have survived though the processing stage. In some samples multiple 

strains of L. monocytogenes were isolated, this supports the hypothesis that the product does 

not constitute a particular microenvironment in which only one strain survive.  

Contamination of food products and the environment by L. monocytogenes is a serious threat 

to those involved in food processing, catering and retailing (FSAI, 2005). It is difficult to 

produce cold-smoked salmon totally Listeria-free. It is therefore essential to implement a 

food safety programme at the pre processing and processing environment along with new 

disinfection strategies to control the persistent L. monocytogenes strains which would have 

adapted to the current cleaning strategies. These combined food safety strategies, at different 

levels (raw fish, pre-processing environment and processing factory) will help in controlling 

the human exposure of this harmful pathogen.  

The ability to carry out epidemiological investigations to determine the primary source of 

bacterial contamination is important so that preventive measures can be implemented to 

reduce L. monocytogenes prevalence and protect human health. It is demonstrated in this 
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study that MLVA is easy to perform and relatively fast, inexpensive and can be conveniently 

incorporated into any molecular laboratory without the need to acquire additional expensive 

equipment. Molecular methods such as PFGE take up to a week to complete, whereas MLVA 

results can be available within a day (Murphy et al., 2007). 

 

4.5 Conclusions 
 

The results obtained from this study demonstrate a relatively high prevalence of L. 

monocytogenes in vacuum packed cold-smoked salmon in the Republic of Ireland (21.6 %) 

when compared to the previous study in Ireland (13%) conducted in 2001. The presence of 

this pathogen on cold-smoked salmon represents a serious public health concern, due to the 

increased consumption of this ready-to-eat food product. The subtyping of the different 

strains using MLVA seems to implicate a possible carryover of L. monocytogenes from the 

slaughter house to the processing plant. Therefore, suitable processing parameters and pre 

processing handling practice should be treated as important control measures to minimise the 

exposure to this pathogen. The present work confirmed the diversity of L. monocytogenes 

isolates based on its origin.It is suggested that MLVA is a suitable strategy for subtyping L. 

monocytogeneswhich could form part of a routine surveillance programme.  
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Chapter 5 Contamination pathway of L. monocytogenes in a processing 

plant for cold-smoked salmon in the Republic of Ireland (Part 1) 
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5.1 Summary 
 

Having established the prevalence of L. monocytogenes in cold-smoked salmon, establishing 

the contamination route of L. monocytogenes is vital. In this chapter a smoked-salmon 

producing factory was monitored for the presence of L. monocytogenes and a possible route 

of contamination was established. Two independent studies were carried out to determine the 

contamination route. This chapter looks at the contamination pathway by examining the 

smoked-salmon factory in whole, the following Chapter 6 examines the processing of the 

cold-smoked salmon by tagging 60 individual fish (raw-salmon) and sampling after every 

important stage of processing to confirm the contamination pathway established in this 

chapter. 

A cold-smoked salmon factory was surveyed for a period of one year (2008-2009) for the 

presence of L. monocytogenes in the processing line, processing environment, personnel, raw 

materials and product (cold-smoked salmon). The purpose of the study was to determine 

whether genetically similar strains colonise different environmental niches in the processing 

factory and thereby determining the possible contamination source or pathways. The 

processing factory was divided into four zones (1, 2, 3 and 4) based on the proximity to the 

cold-smoked salmon processing area.The overall prevalence of L. monocytogenes was 24.54 

% (n = 444). The L. monocytogenes contamination pattern was identified by characterising 

124 L. monocytogenes isolates (obtained from this survey) byMultiple Locus Variable 

number tandem repeats Analysis (MLVA). The isolates were divided into 8 MLVA types 

(Lm a, Lm b, Lm c, Lm, d, Lm e, Lm f, Lm g and Lm i). The final product (cold-smoked 

salmon) was contaminated with two major types of L. monocytogenes; one type originating 

from the raw material (Lm a) and the other type colonising the production line (Lm c) in zone 

1. This suggests that, in addition to the fish processing line, L. monocytogenes contaminated 
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raw material can progress through the production chain and result in contamination of the 

final product. Each zone had one dominating strain type, thus leading to the hypothesis that 

specific L. monocytogenes strains may be better adapted to specific environmental niches in 

the processing factory. The results clearly indicated that the problematic sites were the raw 

material, cutting board, drains, floor, conveyer belt and slicer/skinner equipment. Although, 

these areas would be rigorously cleaned before the start of the production, there seems to be 

the existence of resistant L. monocytogenes strain types. In order to minimise the problem 

observed in this study, new cleaning and disinfection protocols should be considered. 

Some results from this study has been accepted for publication in Food Research 

International (Page :212) 

Key Words: Listeria monocytogenes, MLVA, cold smoked-salmon 

 

5.2 Introduction 
 

The contamination rate of seafood products with L. monocytogenes can vary from zero to 30 

% (Embark, 1994; Jinneman et al., 1999 andMiettinen and Wirtanen 2005).Vacuum packed 

cold-smoked salmon is a seafood product with wide ranging consumption patterns in Europe 

and thus is of considerable economic importance for the seafood market (Cardinal et al., 

2004). The prevalence of L. monocytogenesin freshly produced cold-smoked fish is relatively 

high and is typically between 10 to 40 % (Miettinen and Wirtanen 2006, Azevedo et al., 

2005, Vogel et al., 2001, Rorvik et al., 2000, Autio et al.,1999). The high prevalence could 

be due to the low smoking temperature (20 ºC) applied during the cold-salmon processing; as 

this condition would be ideal for the proliferation of L. monocytogenesif the raw salmon 

harboured the pathogen or acquired the pathogen from the processing environment.  



98 

 

Contamination of seafood with L. monocytogenes depends on many factors such as the 

cleaning and processing procedures, microbiological status of the raw fish and the existence 

of the surface persistent L. monocytogenes in the processing plant (Rorvik et al., 1997, Autio 

et al., 1999). Several authors have reported the colonisation of some subtypes of L. 

monocytogenes in fish processing plants, equipment, utensils and brine causing persistent 

contamination for months or even years (Rorvik et al., 1995, Ahrens and Vogel, 2006 and 

Lopez, 2008). Numerous studies show that in-house L. monocytogenes flora contaminates 

seafood during processing (Autio et al., 1999; Fonnesbech Vogel et al., 2001 and Miettinen 

and Wirtanen 2006). However, there are indications that L. monocytogenes present in the raw 

material can proliferate and contaminate the final products, especially those that are not heat-

treated before consumption (cold-smoked salmon; Eklund et al., 1995; Fonnesbech Vogel et 

al., 2001 and Miettinen and Wirtanen, 2006). Although the bacterium has been isolated from 

several different environments, it is insufficient to understand the overall ecology of the 

transmission dynamics of L. monocytogenes.  

The ability to precisely track the strains or subtypes of L. monocytogenes present in the fish 

processing plant is critical in reducing the contamination of the raw and cold-smoked salmon. 

This study has focused on the ecology of L. monocytogenes in a cold-smoked salmon 

processing plant in Ireland by following the changes in its occurrence throughout the year. 

The aim of this study is to better understand the transmission of L. monocytogenes in the final 

product (cold-smoked salmon), by utilising the discriminative molecular typing method 

MLVA. Accordingly, MLVA typing was employed to fingerprint L. monocytogenes isolates 

to elucidate the diversity of the strains and to determine the existence of any persistent clones 

in the processing plant and thereby identify the sources of contamination routes within the 

processing plant 
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5.3 Materials and Methods 

5.3.1 Sampling 

A total of 12 surveys (a monthly survey) were conducted in a smoked salmon production 

plant located in Ireland. In order to investigate the persistence of contamination during 

different seasons the plant was surveyed from winter (Sep 2008 to April 2009) to summer 

(May 2009 to Aug 2009). 

The processing plant was divided into four zones (Figure 5.1) based on the contact and 

proximity to the product (FASI, 2008). A total of 444 samples from four zones were sampled 

during the 12 month period. Thirty seven samples were examined each month and the 

samples were withdrawn from the same place to maintain consistency throughout the survey. 

The survey samples were collected in three different ways depending on the nature of the 

sample. Samples from the equipment were swabbed (Conveyor belt, slicer, smoking tray, 

deboning pin, tables, vacuum packer, cold and frozen unit, filleting board and skinner), 

production environment (floor, drain, walls and switch), personal (gloves, aprons, boots, head 

protection and sanitizers) and the surrounding environment (waste collection point, service 

area, rubbish collection area, waste disposal site and traffic area). Each site was swabbed 3 

times using sterile cotton swab moistened with 0.1 % peptone water and the swabs were 

pooled as one sample. The swabs were exposed for 60 seconds to the swabbing environment. 

The samples were transported under refrigerated conditions to the laboratory for further 

processing. 

Samples of salmon were taken after each critical processing step (raw salmon, cured salmon, 

cold-smoked salmon and finally vacuum packed cold-smoked salmon). In all cases 50 g of 

the samples were taken and sealed in a sterile petri-plate and transported under refrigeration 

condition to the laboratory for further processing. 
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Liquid samples (drain, fish wash, brine and ice) were aliquots of 25 ml taken in sterile bottles 

and transported under refrigeration conditions to the laboratory for further processing. 

All the samples were taken after 1 to 1 ½ h of complete running of the processing plant. 
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Figure 5-1: Schematic representation of the factory floor plan representing the four zones. 
 

 

5.3.2 Detection 
 

The detection of L. monocytogenes was carried out as described in the ISO 11290 -01 and 02. 

Upon arrival of the samples to the laboratory under refrigerated conditions, buffered Listeria 

enrichment broth (Scharlau-Chemie, Barcelona, Spain) was added to the swab samples as a 
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pre- enrichment step. The salmon samples (raw, cured, smoked and final product) were cut 

into 25 g each and were homogenised in medium speed for 1 min in a stomacher (Stomacher 

400, Seward medical, England) in 225 ml buffered Listeria enrichment broth. Likewise, 25 

ml of liquid samples were diluted with 225 ml of buffered Listeria enrichment broth. After 

the pre-enrichment step all the samples were incubated at 30 °C - 1 h in order to resuscitate 

stressed microorganism. The swabs were soaked in 20 ml of Listeria enrichment broth 

(Scharlau-Chemie, Barcelona, Spain) and incubated for 30 ºC for 1 h.  

For the enumeration of L. monocytogenes, a volume of 0.1 ml from each homogenate was 

directly streaked onto each of 3 Palcam Agar plates (Oxoid, Hampshire, England) and was 

incubated at 37 °C for 24 - 48 h. From each plate, 5 colonies presumed to be Listeria spp. 

were streaked onto TSYEA plates (Scharlau – Chemie, Barcelona, Spain) and incubated for 

24 h at 30 °C. Colonies were selected for typical appearance on TSYEA and submitted for 

Gram staining, catalase and oxidase test. Haemolytic activity and CAMP tests on sheep blood 

agar were performed for the L. monocytogenes confirmation. 

5.3.3 MLVA typing 

 

L. monocytogenes isolates (n = 124), representative of the positive samples were analysed for 

MLVA. Figure 5.2 represents the MLVA pattern in the 2 % agarose gel. 

Refer section 2.3 (Chapter 2: Materials and Methods) 
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Figure 5-2: Eight MLVA pattern (Lma, Lmb, Lmc, Lmd, Lme, Lmf, Lmg and Lmi) on 2% 

Agarose gel, Lane 1- 100bp DNA ladder, Lane 2 to 7- TR 1 to TR6 aplicons 
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5.3.4 Data Analysis 
 

The amplicons were sized and the estimated number of tandem repeats calculated using 

Quantity One software (Biorad, Hercules, CA). The allele strings were imported into a 

Bionumerics software package (version 4.5; Applied Maths, Sint-Martems-Latem, Belgium) 

and cluster analysis used the categorical coefficient and the Neighbour Joining algorithm. A 

dendrogram was constructed by the unweightedpair group method using average linkages 

(UPGMA), available in the PHYLIP package, to represent the genetic relationships of the 

MLVA profiles. 

The use of categorical parameter implies that character states are considered unordered. The 

same weight is given to a large or small number of differences in the number of repeats at 

each locus. The genetic diversity at each TR was calculated using Bionumerics software 

package using Simpson‘s index.The TR was calculated from the below equation 

Estimated number of tandem repeats = Band-Flanking region/ repeat unit. 

 

5.4 Results and Discussion 
 

5.4.1 Prevalence of L. monocytogenes 
 

A total of 444 samples were tested during the period from Sep 2008 to Aug 2009. Of these, 

24.54 % tested positive for L. monocytogenes. During the 12 month routine survey (Sep 2008 

to Aug 2009), 37 samples were taken each month, the overall L. monocytogenespositive 

samples varied each month with the highest being in June 2009 with 45.9 % positive samples 

followed by July with 16 positive samples and Aug 2009 with 43.24 % positive samples 

(Figure 5.3). This could be related to seasonal variations with the highest temperature 
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recorded during June 2009 to Aug 2009 (Figure 5.3), thus potentially facilitating propagation 

of the pathogen. The lowest number of positive samples (2 to 3) was observed between Jan 

2009 to Mar 2009 (Figure 5.3), which could be related to the low temperature recorded 

during that time period. 
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Figure 5-3: Total L. monocytogenes positive samples with the mean temperature and mean 

rainfall data recorded for the Dublin city ( temperature data obtained form Irish metrological 

department) 

 

Zone 1 

Of the 216 samples tested in zone 1 (comprises of the raw materials or equipment) 36 

samples were positive for L. monocytogenes (16.6 %). The overall contamination level varied 

each month, the highest level of L. monocytogenes positive samples were in the final product, 
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followed by the raw fish, cured fish, smoked fish and slicer/skinner. The knife, conveyor belt, 

deboning filleting board, food handlers, smoking tray, curing fish wash and raw fish wash 

were sporadically contaminated with L. monocytogenes with just 1 or 2 samples positive 

throughout the one year survey. The ice obtained during the defrosting process of the fish and 

the salts obtained during the curing process were negative for the presence of L. 

monocytogenes during the 12 month period. 

Zone 2 

This is the non-product contact surface in close proximity to the product. Out of the 132 

samples tested in this zone 22 samples were positive for L. monocytogenes (26.6 %). The 

highest number of positives was found in the high risk drain with 4 samples tested positive. 

The rest of the positive samples were found in the drain, filleting drain, curing drain, goods 

reception floor, processing floor and cold and frozen units were sporadically contaminated 

with L. monocytogenes. Tables, doors and switches were negative for the presence of L. 

monocytogenes.  

Zone 3 

This zone comprises of the non-product contact surface which are further away from the 

sample. Out of the 36 samples tested in this zone, 16 samples were positive for L. 

monocytogenes (44 %). The waste collection point and low risk drain had the highest number 

of positive samples, while the personal safety item showed only one positive sample. 

Zone 4 

Out of the 60 samples tested at this zone (non-product contact, significant distance from the 

product), 35 samples (58.3 %) were positive for L. monocytogenes. The rubbish collection 
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area and waste disposal site had the highest number of positive samples. Access way, traffic 

area and service area were sporadically contaminated with L. monocytogenes. 

In this study the ecology of L. monocytogenes in a cold-smoked salmon processing factory in 

the Republic of Ireland was investigated by following the changes in its occurrence in 

different types of L. monocytogenes strains for a period of one year. With an increase in 

listeriosis incidence across Europe and with the high consumption of cold smoked salmon, 

there is a need for vigilance in monitoring this pathogen (FSAI, 2008).  

The prevalence estimated in this study was 24.54 %, and these results are in agreement with 

increasing trends seen elsewhere in Europe (Gudbjornsdottir et al., 2004, Mclaughlin et al., 

1993). The increase in the prevalence found in this study when compared to the 2001 study 

conducted in Ireland (FSAI, 2001) could be due to the wide distribution of L. monocytogenes 

in the environment (Miettinen and Wirtanen, 2006, Farber and Peterkin, 1991) as this can 

cause contamination in raw fish and also during processing, pre- processing and handling 

(Miettinen and Wirtanen, 2006, Johansson et al., 1999).  

 The plant was surveyed throughout the year to investigate if there were any change in the 

occurrence of L. monocytogenes. The Listeriacontamination pattern gave some indications on 

the influence of weatherconditions and seasonal variation. The isolation of L. monocytogenes 

was highest during the summer months (June 09 – Aug 09) when the overall air temperature 

in Dublin city averaged between (12 - 15 ºC), this may explain the variation in the frequency 

of L. monocytogenesin the smoked salmon factory (Figure 5.3). The least isolations were 

found during the peak winter months where the temperature averaged between 2 – 5 ºC 

(Figure 5.3). This may highlight some seasonal influence on the shedding of the bacteria. 

5.4.2 MLVA profiling of L. monocytogenes isolated from the four zones 
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A total of 124 isolates (Table 5.1) of L. monocytogenes were analysed for MLVA with 6 sets 

of primers and eight MLVA types were identified (Lm a, Lm b, Lm c, Lm d, Lm e, Lm f, Lm 

g and Lm i). Of the eight types, 4 MLVA types were dominant (Lm a, Lm c, Lm e and Lm d) 

and repeated isolation of the dominant strain each month was observed (Figure 5.4). The 

percentage isolation of L. monocytogenes strain types from each zone is illustrated in Figure 

5.4. 

The final product (cold-smoked salmon) was contaminated with two dominant strains, Lm a 

which originated in the raw fish and Lm c which predominantly dominated zone 1. Lm c was 

isolated from equipment which was in direct contact with the final product. Lm b was 

isolated sporadically from the final product. Two types of L. monocytogenes strains were 

isolated Lm c and Lm d from one food handler. The L. monocytogenes dominant subtype 

(Lm g) isolated from zone 3 or 4 did not contaminate final product. 
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Table 5-1: Represetation of the 124 L. monocytogenes isolates from zone 1 to zone 4 

Type Product/area Total no of isolates 

Lm a raw fish 5 

cured fish 3 

smoked fish 2 

cold-smoked salmon 3 

curing fish wash 1 

raw fish wash 1 

Lm c Cured fish 1 

Smoked fish 2 

Cold-smoked salmon 6 

Knife 2 

Conveyor belt 2 

Deboning pin 2 

Slice/skinner 4 

Filleting board 1 

Smoking tray 1 

Food handlers 1 

Processing floor 1 

Filleting floor 1 

Cold-frozen unit 1 

Personal safety item 1 

Lm b Smoked fish 1 

Cold-smoked salmon 2 

Slicer/skinner 2 

Lm d Food handlers 1 
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Lmd High risk drain 2 

Processing floor 2 

Filleting floor 1 

Lm e High risk drain 3 

Good inwards drain 5 

Filleting drain 2 

Curing drain 3 

Goods reception floor 1 

Processing floor 3 

Filleting floor 2 

Low-risk drain 2 

Lm f Cold and frozen unit 1 

Lm g Low risk drain 7 

Waste collection point 9 

Service area 1 

Rubbish collection area 11 

Waste disposal site 12 

Access way 2 

Traffic area 6 

Lm i Access way 1 

Traffic area 1 
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Figure 5-4: Percentage isolation of L. monocytogenes strains in each zone. 

 

In zone 2, Lm e was predominantly isolated from drains and the processing floor. Other 

strains Lm d, Lm c and Lm f were sporadically isolated from zone 2 (Figure 5.4). 

In zone 3 and zone 4, which were non-product contact surface zones and the surrounding 

environmental sites, one dominant strain type Lm g was isolated, which seems to have 

adapted to the environment outside the production line. Sporadically, Lm i was isolated from 

zone 4. 

The clustering was carried out on the MLVA pattern of 124 L. monocytogenes strains from 

four different zones using Neighbour joining (NJ) algorithm. The Neighbour Joining method 

is a method for re-constructing phylogenetic trees, computing the lengths of the branches of 
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this tree. In each stage, the two nearest nodes of the tree are chosen and defined as neighbours 

in the tree. This is done recursively until all of the nodes are paired together.The cladogram 

thus constructed showed 8 distinct clusters (Figure 5.5). Different clusters are denoted with 

different colours in the final cladogram to show the genetic distinction among the 8 strain 

types.The subtypes which were isolated from the final product (Lm a, Lm b and Lm c) 

formed clusters close to each other, while the environmental strain type Lm g and the strain 

type isolated from drain and processing floor Lm e were clustered close to each other. This 

genetic distinction proves the genetic similarity between the strains originating in the product 

and adaptation of the specific strain type to each zone. Location of different strain types 

isolated from the four zones is illustrated in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 

 

L m fL m f

L m eL m e

L m dL m d

L m bL m b

L m aL m a
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Figure 5-5: The Dendrogram (constructed by Neighbor-Joining method) show that the 

isolates can be classed as eight distinct MLVA types (Lm a, Lm b, Lm c, Lm d, Lm e, Lm f, 

Lm g and Lm I). Each clade in the dendogram represents particular genotypes, which within 

the context are specific MLVA strain types encountered in this study 
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The 124 L. monocytogenes isolates obtained from the four zones were genetically 

heterogeneous, and the isolates were differentiated into 8 MLVA types. The division of 

isolates into various types is consistent with the results from several studies of L. 

monocytogenes isolates in a factory (Miettinen and wirtanen, 2005 and Rorvik et al., 2000). 

Four type strains, Lm a, Lm c, Lm e and Lm g, represented 77 % of the total isolates from the 

processing plant and its environment. The other types Lm b, Lm d, Lm f and Lm i were 

sporadically isolated. 

 

Zone  1 Zone  2 Zone  3 Zone  4

Lm a

Lm b

Lm f

Lm i

Lm g

Lm e

Lm c

Lm d

 

 

Figure 5-6 : Schematic representation of the location of different isolated in the four zones. 

 

Food processing plants may be contaminated with L. monocytogenes from various sources 

including raw materials, equipment, processing environment and personnel. In this study, the 

final product cold-smoked salmon was contaminated with the same strain as that found in the 

raw material at the start of the process line (strain type Lm a) while further contamination 

appeared to occur further down the processing line (with Lm c and Lm b). The dendogram 

(Figure 5.5), shows that strain type isolated from the final product cluster together showing 
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genetic relatedness among Lm a, Lm b and Lm c.In certain cases the final product harboured 

two genetically related strain types (Lm a and Lm c) co-existing. Lm c could have been 

introduced into the processing line initially through raw material, this is evident from the 

genetic relatedness with the Lm a (isolated from raw material). These results thus support two 

hypothesis (i) the products do not constitute a particular microenvironment in which only one 

strain survive, (ii) some strains may have been introduced with the raw material, and found a 

niche in the processing factory, from where they are constantly shed during the processing 

thus contaminating products(Martinez et al., 2003).  

Despite rigorous cleaning procedure carried out by the processing factory surveyed before the 

start of the production, there seems to be a persistent strain (Lm c) existing on the equipment. 

This indicates the deficiencies in the cleaning and disinfection procedures and the need for 

new cleaning and disinfection strategies. Further research would be required to study the 

resistance to cleaning reagents. 

In this study, only one L. monocytogenes positive samples were detected from theprotective 

clothing and footwear samples originatingfrom the smoked salmon processing plants. Two 

strain types (Lm c and Lm d) were isolated from personnel and personnel safety items. The 

presence of Lm c on personnel gloves could be due to handling of equipment contaminated 

with Lm c strain type. This could have been carried over to the personal safety item. Lm d 

isolated from personnel were also found in drain samples sporadically. Overall, there were 

few incidences of L. monocytogenes being isolated from personnel or safety items, thus 

indicating good hygiene practiced before and after production by the food handlers.  

Zone 2, which comprises of drain and processing floor were contaminated with one dominate 

strain type Lm e. The strain type Lm e shared genetic similarity to type Lm g isolated from 

zone 3 and zone 4. The drain and processing floor are subjected to heavy chemical treatment 
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and despite these harsh treatments, Lm e has found a survival mechanism to overcome the 

harshness and has been repeatedly isolated from drains and processing floor. Despite being in 

close proximity to the processing line, there were no cross-contamination observed between 

the drain and floor sample with the final product, this could be due to the physical barrier 

across each zone and the change in the personal protection equipments by the food handlers 

while crossing each zone.  

Zone 3 and Zone 4 were dominated by Lm g, and had the highest isolation rate when 

compared to other predominant strains in other zones (Figure 5.4).Survival of Lm g 

throughout the seasonal changes could be due to the survival mechanism with changes in 

temperature (4 – 16 ºC) and these two zones (3 and 4) are least subjected to chemical 

treatment in comparison to other two zones (1 and 2). It is well known that L. monocytogenes 

can survive through a wide range of temperatures (Ericsson et al., 1997), this could be the 

reason for the repeated isolation of Lm g in most of the months surveyed. It can be 

summarised that there are clear difference in L. monocytogenes strains as some colonise fish 

and others environmental surfaces.Thus suggesting that L. monocytogenes strains might show 

site-specific endemism to particular niches in the production plant. These niches might impart 

strain-specific favouritism on viability and attachment properties of the bacteria. Further 

studies would be required to validate the hypothesis. 

It is evident from this study that raw fish carry L. monocytogenes through to processing, 

therefore it is proposed that non-thermal technology such as ozonisation, pulsed electric field, 

irradiation or electron beam, could be employed to eliminate any naturally contaminated L. 

monocytogenes at the raw fish stage. It is therefore essential to minimize the occurrence of L. 

monocytogenes in raw fish stage to reduce the possibility of contamination of process 

equipment and formation of in-house strains. Implementation of food safety programme at 

the processing environment along with new disinfection strategies to control persistent L. 
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monocytogenes strains. These combined food safety strategies, at different levels (raw fish 

and processing factory) will help in controlling the human exposure of this harmful pathogen. 

The ability to carry out epidemiological investigations to determine the primary source of 

bacterial contamination is important so that preventive measures can be implemented to 

reduce L. monocytogenes prevalence and protect human health. In this study MLVA allowed 

for rapid and sensitive subtype discrimination of L. monocytogenes, thus facilitating 

identification of possible contamination pathways. MLVA is easy to perform and relatively 

fast, inexpensive and can be conveniently incorporated into any molecular laboratory without 

the need to acquire additional expensive equipment. Other than MLVA, rapid molecular 

methods such as RT PCR should also be explored. Molecular methods such as PFGE take up 

to a week to complete, whereas MLVA results can be available within a day (Murphy et al., 

2007).  

5.4 Conclusions 
 

In conclusion this study demonstrates that certain L. monocytogenes MLVA types may carry 

specific traits (growth over a wide range of temperatures, including at refrigeration 

temperatures, in high concentrations of sodium chloride and low concentrations of oxygen) 

that enable them to persist in the food processing environment. Presence of this pathogen on 

cold-smoked salmon represents a serious public health concern, due to the increased 

consumption of this ready-to-eat food product. The subtyping of the different strains using 

MLVA seems to implicate a possible carryover of L. monocytogenes from the raw fish and 

in-house strain to the final product. Therefore, suitable processing parameters and pre 

processing handling practices should be treated as important control measures to minimise 

the exposure to this pathogen. The present work confirmed the diversity of L. 
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monocytogenesisolates based on its origin. MLVA is a suitable strategy for subtyping L. 

monocytogenes as part of a routine surveillance programme.  
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Chapter 6 Tracking of Listeria monocytogenes during different stages of 

cold-smoked salmon processing in an Irish factory (Part 2) 
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6.1 Summary 

 

This study was undertaken in order to confirm the contamination pathways established in the 

Chapter 5.The aim of this study was to characterise strains of L. monocytogenes isolated from 

different stages of the cold-smoked salmon processing and thereby establishing the 

contamination pathway of L. monocytogenes in the final vacuum packed cold-smoked 

salmon. In order to evaluate the incidence and distribution of L. monocytogenes, 60 raw 

whole salmon were tagged and sampled during different stages of cold-smoked salmon 

processing. The results highlighted that 28.33 % of the raw salmon were contaminated when 

compared to the 21.60 % of the final product. The L. monocytogenes strains (n = 60) isolated 

from the tracking studies were typed using Multi Locus Variable Number Tandem Repeat 

Analysis (MLVA); this method confirmed three types of MLVA profiles (Lm 1, Lm 2 and 

Lm 3). The strain type Lm 1 was isolated from raw salmon while Lm 2 was isolated after 

curing and Lm 3 was isolated after filleting and slicing the salmon. The hypothesis that raw 

fish was an important source of contamination of the processing plant could not be rejected. 

Contamination of the product occurred in specific processing steps (filleting, curing and 

slicing). This indicates that the persistence of in-house flora is not eliminated by regular 

cleaning of the slicing and filleting equipment. Presence of L. monocytogenes found after 

curing proves the halotolerance nature of the pathogen.  In some final vacuum packed 

samples multiple strains of L. monocytogenes were isolated, this supports the hypothesis that 

the product does not constitute a particular microenvironment in which only one strain 

survive. This study points to the need for more stringent cleaning and sanitizing procedures to 

reduce the contamination of cold-smoked salmon with L. monocytogenes.  

Some parts of this chapter have been accepted for publication inInternational Journal of 

Hygiene and Environmental Health(212).  
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6.2 Introduction 
 

In Europe, seafood is the largest or second largest food-type involved in recalls because of 

microbiological contamination (Cardinal et al., 2004). Hence the presence of L. 

monocytogenes in smoked-salmon, together with an understanding of the source and routes of 

contamination, is of major concern to those involved with food production, retailing and 

regulation. L. monocytogenes occurs naturally in raw fish materials (Fonnesbench Vogel et 

al., 2001). It has been frequently isolated from coastal waters probably due to its from-land-

to-water transmission (Colburn et al., 1990 and Gram, 2001). 

Contamination of cold-smoked salmon with L. monocytogenes depends on various factors 

such as the raw material, working habits, cleaning, processing procedures and existence of 

surface persistent L. monocytogenes strain types in processing facilities (Rorvik et al., 1997; 

Autio et al., 1999; Azevedo et al., 2005; Miettinen and Wirtanen 2006). L. monocytogenes 

contamination in raw material (salmon) is an important factor as it will affect the safety of the 

final product (cold-smoked salmon) as no heat treatment is applied during its processing or 

before consumption. The prevalence of L. monocytogenes in raw fish varies between 0 to 30 

% (Ben Embark et al., 1997; Jinneman et al., 1999; Hoffman et al., 2003,Miettinen and 

Wirtanen 2006, Chitlapilly Dass et al., 2010a and Chitlapilly Dass et al., 2010b). As L. 

monocytogenes is regularly isolated from cold-smoked salmon, a better understanding of its 

colonisation of the product is vital; in order to develop and improve Listeria control strategies 

to reduce the number of L. monocytogenes cells and consequently reduce consumer risk. 

L. monocytogenes isolation and subtyping are very critical steps in characterising the 

contamination patterns. Multi locus variable number tandem repeat analysis (MLVA) is a 

PCR-based method that subtypes organisms by determining the number of variable number 
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of tandem repeats (VNTR) found in multiple regions in the bacterial genome (Lindstedt et al., 

2008). This method allows for very sensitive subtype discrimination.  

The aim of this study was to characterise strains of L. monocytogenes isolated from different 

stages of cold-smoked salmon processingby tracking the raw salmon from start to the 

finished product and withdrawing samples from the tagged salmon after every intermediate 

step of processing (raw, filleting, curing, cold-smoking, slicing and final vacuum packed 

cold-smoked salmon) and analysing for the presence of L. monocytogenes. This was done to 

establish possible routes of contamination of L. monocytogenes in cold-smoked salmon. 

 

6.3 Materials and methods 
 

6.3.1 Survey and sampling 

 

A total of 12 surveys were undertaken from Dec 2008 – Nov 2009 in a cold-smoked salmon 

processing factory. A total of 60 raw salmon were tracked through the production line. Each 

month 5 raw salmon were tracked through the different stages of the smoked-salmon 

processing (raw, filleted, cured, smoked, sliced and final vacuum packed cold-smoked 

salmon) Figure 6.1.  

Each of the raw fish analysed were tagged with a wire string and passed through the various 

intermittent stages of processing, 25 gm of sample were withdrawn from each critical 

processing step (raw, filleted, cured, cold-smoked, sliced and final vacuum packed cold-

smoked salmon). The samples were collected in a sterile petri-plate and were transported 

under refrigerated conditions to the lab for further analysis. The samples were collected after 

1 ½ h of complete running of the factory and were transported within 30 min to the lab for 

further processing. 
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Figure 6-1: Schematic representation of different processing stages during the production of 

vacuum packed cold-smoked salmon. The stages represented in oval were taken for sampling. 
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6.3.2 Detection 
 

Refer section 2.1 (Chapter 2: Materials and Methods) 

6.3.4 MLVA typing 
 

L. monocytogenes isolates (n = 60) were analysed for MLVA typing. Figure 6.2 represents 

the different banding pattern on 2% agarose gel. 

Refer section 2.3(Chapter 2 Materials and Methods) 

 

 

 

 

 

Figure 6-2: Three MLVA pattern (Lm 1, Lm 2 and Lm 3) on 2% Agarose gel, Lane 1- 100bp 

DNA ladder, Lane 2 to 7- TR 1 to TR6 aplicons. 
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6.3.5 Data Analysis 

 

The amplicons were sized and the estimated number of tandem repeats calculated using 

Quantity One software (Biorad, Hercules, CA). The allele strings were imported into a 

Bionumerics software package (version 4.5; Applied Maths, Sint-Martems-Latem, Belgium). 

The genetic diversity at each TR was calculated using Bionumerics software package using 

Simpson‘s index.The distance between the isolates obtained from Bionumerics was exported 

into PHYLIP and the radial tree was constructed using Pearson and Ward correlation. 

Percentages of similarity are shown below the radial tree. 

 

6.4 Results and Discussion 
 

6.4.1 Incidence of L. monocytogenes in tested samples 
 

A total of 60 raw salmon samples were traced through the different processing stages of cold-

smoking for the presence of L. monocytogenes from Dec 2008 to Nov 2009. Of the 60 salmon 

samples tested, L. monocytogenes were isolated in varying degrees from the raw salmon 

(28.33 %), and the final vacuum packed cold smoked salmon (21.60 %; Figure 6.3). The 

contamination rates differed each month, with the highest recorded in March (100 %) with 

the all the samples tested positive and in October 80 % of the samples tested positive. 

Samples from December – February, April – August and November showed either a lower 

frequency of L. monocytogenes isolation or no contamination in the final product (Table 6.1). 
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Figure 6-3:Percentage contamination of L. monocytogenes in raw fish, cured fish, cold-

smoked fish, sliced cold-smoked fish and vacuum packed cold-smoked fish. 

 

The recovery of L. monocytogenes from cold-smoked salmon highlights the continuing 

problematic nature of contamination of this food type. L. monocytogenes strains found in our 

studies were isolated from fish bred in coastal waters. This is in agreement with earlier 

studies by Huss et al. (1995) who suggested a higher incidence of L. monocytogenes in water 

bodies receiving heavy runoff from agricultural and urban areas. Previous studies also 

suggest that there are high incidences of L. monocytogenespresence in the raw fish (Embark 

et al., 1994, Dauphing et al., 2001, Nortan et al., 2001, Timothe et al 2004, Gudmundsdottir 

et al., 2005, Miettinen and Wirtanen, 2005 and Chitlapilly Dass 2010b).  

The prevalence of L. monocytogenes in cold-smoked salmon has been reported to range from 

as low as0% (Guyer and Jemmi, 1990; Dillon and Patel, 1993) to much higher levels 30 % 

(Farber, 1991). Several studies conducted in various European countries on the prevalence of 

L. monocytogenes in cold-smoked salmon have stressed the importance of the problem of 

Listeria contamination which could lead to potential fatal listeriosis illness (Minttinen 

Wirtanen, 2006, Garrido et al., 2009 and Chitlapilly et al., 2010a). A survey conducted by 
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Gudmundsdottir et al., (2005) in various smoked houses in Iceland found that 45% of the 

plant was contaminated with L. monocytogenes, mostly due to raw materials and processing 

environment. In their study it was found that well-maintained facilities had a lower incidence 

of L. monocytogenes. 
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Table 6-1: Frequency of L. monocytogenes isolation 
 

Sample Dec’08 Jan’09 Feb’09 Mar’09 Apr’09 May’09 Jun’09 Jul’09 Aug’09 Sep’09 Oct’09 Nov’09 

Raw salmon  Lm 1  Lm 1   Lm 1 Lm 1   Lm 1  

Filleted smoked salmon         Lm3    

Cured salmon    Lm 1 

Lm 2 

 Lm 2     Lm 1  

cold-smoked salmon    Lm 1 

Lm 2 

      Lm 1  

Sliced smoked salmon    Lm 1 

Lm 2 

   Lm 3 Lm 3  Lm 1 

 

 

Vacuum packed cold-

smoked salmon 

   Lm 1 

Lm 2 

   Lm 3 Lm 3  Lm 1 
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6.4.2 MLVA subtyping 
 

The application of epidemiological typing systems for L. monocytogenes is essential for 

understanding the source of contamination. Recent developmentsin molecular techniques 

have proven useful to the food industry to trace the source of contamination and assess 

whether the cleaning procedures are adequate (Murphy et al., 2007, Miya et al., 2008, Foley 

and Nayak et al., 2009 and Chitlapilly Dass et al., 2010b). MLVA has been used successfully 

to discriminate among the various L. monocytogenes strain type (Murphy et al., 2007, 

Lindstedt et al., 2008, Sperry et al., 2008 and Smith, 2010, Chitlapilly et al., 2010a and 

Chitlapilly et al 2010b) 

 

A total of 60 L. monocytogenes isolates representing 3 isolates from each positive sample 

(Palcam selective media) were subtyped using 6 MLVA primer set. MLVA subtyping 

resulted in 3 different MLVA profiles (Figure4). All the isolates derived from the raw fish 

formed one MLVA type Lm 1. Strain type Lm 2 was isolated from cured salmon, smoked 

salmon and sliced cold-smoked salmon and the final vacuum packed cold-smoked salmon. 

Lm 3 was isolated from filleted cold-smoked salmon, sliced and final vacuum packed cold-

smoked salmon. All the five samples analysed in March were contaminated with multiple 

strains of L. monocytogenes Lm 1 and Lm 2. The radial tree constructed with the 60 L. 

monocytogenes isolates showed 3 distinct clusters. Each cluster denoted one strain type thus 

showing the distinction among the isolates. The percentage of similarity among the three 

strain type isolated reflected the genetic relatedness among the three isolates (Figure6.4).  
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Figure 6-4: The radial tree was constructed with PHYLIP using Pearson and Ward 

correlation. The distance is shown below the radial tree. Each clade represents one MLVA 

type, Lm 1 Lm 2 and Lm 3. 
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Despite the presence of a higher percentage of L. monocytogenes in raw fish (28.33 %), there 

was only 21.60 % of L. monocytogenes isolated from the final product. The results obtained 

indicate that L. monocytogenes entering the plant via raw fish is not completely eliminated by 

the antibacterial step (curing with salt and cold-smoking at 20 °C). As L. monocytogenes can 

survive a wide rage of temperatures (1- 45 °C), high salt concentration (< 10 %) and pH 4.5 -

9.6, it will not be totally eliminated by salt curing and smoking at 20 °C. Initial contamination 

of the raw fish with L. monocytogenes (Lm1) and an inability of the antibacterial steps 

involved during processing plays a vital role for the persistent existence of Lm 1 in the final 

product. These results are in line with the work conducted by Medrala et al., 2003 and 

Miettinen, 2006, where strains isolated from the raw fish were present in the final product 

and also the strains from the raw fish resulted in cross-contamination in the processing 

environment where similar strains were isolated from the floor and processing equipment.  

In addition, to the Lm 1 strain isolated from raw fish there were two additional strains 

attained by the salmon during the intermediate processing stages (Lm 2 and Lm 3) which 

were not isolated from raw fish. Strain type Lm 2 was isolated from the salmon after curing 

and Lm 3 was isolated after filleting andslicing. Strain type Lm 2 and Lm 3 could have been 

an in-house flora which could have established themselves in the processing equipment and 

environment and were not eliminated by the cleaning protocols practiced by the processing 

factory. It has been confirmed that L. monocytogenes can establish itself and persist for long 

times, particularly in the processing plant environment (Unnerstad et al.,1996, Vogel et al., 

2001, Gudmundsdottir et al., 2005 and Miettinen et al., 2005). In the study conducted by 

Gudmundsdottir and co-workers (2005), they indicate that the filleting, slicing and brining 

processes in cold-smoked salmon processing may provide reservoirs for some L. 

monocytogenes. According to Vogel and co-workers (2001) the most critical steps of the 

production line were salting and slicing, mainly because of difficulties with cleaning the 
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equipment thoroughly. These findings are in line with the present study, as the strains Lm 2 

was isolated after curing and Lm 3 isolated afterfilleting and slicing, indicating that potential 

problem sitescould be the curing vessel, slicing/ filleting board and knife, as these equipment 

would have undergone cleaning and sanitizing procedures before the start of the processing. 

In some of the final product, in addition to Lm 1, there has been re-infection of the product 

with ‗in-house‘ strains acquired along the intermediate processing stages (Lm 3), which was 

isolated from the filleting and slicing stages). Multiple strains of L. monocytogenes co-existed 

on the final vacuum packed cold-smoked salmon, these results are in line with the work done 

by Medrala et al.,(2003), Miettinen et al., (2005), Gudmundsdottir et al., (2005) and Garrido 

et al., (2009).These results thus support two hypothesis (i) the products do not constitute a 

particular microenvironment in which only one strain survive, (ii) some strains may have 

been introduced with the raw material, and found a niche in the processing factory, from 

where they are constantly shed during the processing thus contaminating products (Martinez 

et al., 2003).  

To reduce the number of L. monocytogenes cells, the source of contamination must be 

identified. Fish tracking experimentsare essential to trace the route of contamination from 

raw to processed cold-smoked salmon. In the current study, MLVA typing of the isolates 

indicated that contamination with L. monocytogeneswas mostly due to the raw fish 

contamination and direct contact with contaminated processing equipment, and it was also 

possible to identify specific areas (filleting, curing and slicing) at which contamination of the 

final product occurred. 
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6.5 Conclusions 
 

The contamination pathways of L. monocytogenes are numerous, and raw fish could be a 

significant source of contamination for the processing environment and equipment. 

Preventing the introduction and spread of L. monocytogenes is important to avoid the risk of 

contamination in the final product. Because L. monocytogeneswillcontinue to be introduced 

into the processing plant environment, controlmust be directed towards preventing the 

establishment and growthof this organism in these environments. The control optionsmust 

rely primarily on a proper cleaning and sanitation programs.However, production of products 

consistently free ofthe organism may be impossible due to the ubiquitous nature of the L. 

monocytogenes. The ability to carry out epidemiological investigations to determine the 

primary source of bacterial contamination is important so that preventive measures can be 

implemented to reduce L. monocytogenes prevalence and protect human health. In this study 

MLVA allowed for rapid and sensitive subtype discrimination of L. monocytogenes, thus 

facilitating identification of possible contamination pathways. 
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Chapter 7 : Dynamic modelling of L. monocytogenes growth in vacuum 

packed cold-smoked salmon under typical retail and consumer storage 

conditions. 
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7.1 Summary 
 

A product specific model was developed and validated under dynamic temperature conditions 

to predict the growth of L. monocytogenes in cold-smoked salmon taking into account the 

retail and consumer phase of the food pathways. The variability in time and temperature 

during retail storage, consumer transport and consumer storage were included in the model. 

Vacuum packed cold-smoked salmon was inoculated with a 10CFU/g cocktail of 3 strains of 

L. monocytogenes and stored at 4, 8, 12 and 16 °C for 18 days. The growth kinetic parameters 

at each temperature were obtained by fitting the observed data to the primary model of 

Baranyi and Roberts. The maximum specific growth rate was further modelled as a function 

of temperature by the square root model. The model was validated under two scenarios of 

dynamic temperature conditions incorporating the fluctuations occurring during the various 

stages of the food pathways (retail and consumer phase) in the range from 4 to 16°C. Growth 

predictions for dynamic temperature scenarios were based on the square root model and the 

differential equations of the Baranyi and Roberts model, which were numerically integrated 

with respect to time. The model performance was based on the measures of bias factor (Bf), 

accuracy factor (Af) and goodness of fit (GoF). Results showed that the model could 

adequately predict the growth of L. monocytogenes under the different temperature scenarios 

assayed. The values of Bfand Afof the modelwere close to unity, indicating good agreement 

between observations and predictions. The model was also compared to two growth 

predictors; Combase and Seafood Spoilage and Safety Predictor (SSSP) and the predictions 

obtained gave anoverestimation of L. monocytogenes growth. This study illustrates the 

potential of dynamic modelling of L. monocytogenes growth for vacuum packed cold-smoked 

salmon from retailer to consumer as a means of evaluating the product safety at different 

stages of the food pathways.  
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Part of this chapter have been submitted for publication Journal of Food Microbiology and 

also presented at ICFHM conference (Page: 212). 

 

7.2 Introduction 
 

Predictive or quantitative microbiology employs quantitative terms (mathematical models) to 

express the effect of environmental conditions on microbial growth kinetics (Dalgaard and 

Jorgensen, 1998). Although it is generally accepted that this approach can be useful in 

predicting food quality and safety, high accuracy of the constructed models is a prerequisite 

for their application by the food industry. So far, the majority of published mathematical 

models dealing with either the growth or survival of pathogens, were developed using 

experiments conducted in liquid media or simulated foods under constant temperatures 

(Cheroutre-Vialette and Lebert, 2000).  

Food distribution channels are often prone to temperature fluctuation during transit from 

production environment to consumer storage. Therefore, it is important to study the changes 

in microbial population that occur as a result of fluctuating temperatures. This knowledge 

would assist in predicting the actual impact of microbial contamination at the time of 

consumption (Dalgaard and Jørgensen 1998, Xanthiakos et al., 2006, Panagou and Nychas 

2008, Koutsoumanis et al., 2010; Mejlholm et al., 2010). It is important to be able to 

understand and predict the response of microorganism, more specifically L. monocytogenes, 

along its food pathways in actual food matrices. The term ‗food-pathways‘ refers to the 

journey encountered by the food from its processing factory, distribution channel, retail 

storage, consumer travel (from retail storage to consumer storage) and finally consumer 

refrigeration storage.  
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To ensure proper sensory quality and food safety, developing a model under typical retail and 

consumer temperature practice using real food product would be ideal (Vermeulen et al., 

2011). This would provide an opportunity to develop product-specific models with more 

accurate food safety prediction. Thussuch models would assist in formulating safer food 

products and wouldavert much empirical microbial testing of food under constant 

environmental conditions.Hence in this study, the actual food matrix along with its 

background flora, time and temperature fluctuations encountered at the retail storage, 

consumer travel (from retail storage to consumer storage) and consumer refrigeration storage 

has been incorporated to provide more realistic predictions. 

The aim of this thesis was to illustrate how food pathways may be modelled under dynamic 

conditions and to study the impact of post-processing storage conditions on the growth of L. 

monocytogenes in vacuum packed cold-smoked salmon. Thus, the objectives of the study 

were to (i) develop a product-specific model for the effect of temperature on the growth of L. 

monocytogenes in vacuum packed cold-smoked salmon, (ii) validate the model under 2 

scenarios of fluctuating temperatures encountered under typical retail and consumer practice, 

(iii) compare the developed model with two growth predictors, Combase and Seafood 

Spoilage and Safety Predictor (SSSP).  

 

7.3. Materials and Methods 
 

7.3.1. Stock culture preparation 
 

Three strains of L. monocytogenes, LMSS 05, LMSS 11 and LMSS 23 (these strains were 

from the collection of the strains isolated from cold-smoked salmon by Chitlapilly et al., 

2010) were used. Stock cultures were maintained in vials of 20 % glycerol at – 80 °C until 
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further use. The cultures were revived by adding 1 ml of 20 % glycerol stock to 9 ml of 

tryptic soy broth (TSB: Scharlau – Chemie, Barcelona, Spain) and incubated at 30 °C for 24 

h. Before the start of the experiment, a loopful of each strain was transferred into 9 ml of TSB 

and subcultured twice at 30 °C for 24h. 

7.3.2. Inoculation of smoked salmon and sampling 
 

Fifty gramsquantities of vacuum packed cold-smoked salmon were obtained from the cold-

smoked salmon processor in Dublin and inoculated with 3 strains cocktail. The cocktail was 

prepared by combining each of the 3 cultures (grown overnight in 10 ml TSB at 30 °C) in 

sterile tubes and centrifuged at 3000 x g at 4 °C for 30 min. The pellets were washed with 

sterile Ringer‘s solution (Oxoid LTD, UK) and centrifuged for 30 min at 3000 x g at 4 °C and 

the resulting pellets were resuspended in the Ringer‘s solution to a final volume of 5 ml. The 

cell level in the resulting composition was 6 log CFU/ml, as assessed by McFarland‘s 

standard (BioMérieux,Marcy-l'Etoile, France). 

The 50 g pack of vacuum packed cold-smoked salmon was opened inside the laminar air-

flow chamber using a sterile scissors and 200 µl of the appropriate diluted culture was added 

to the cold-smoked salmon sample to obtain 1 log10 CFU/ml. In order to obtain uniform 

distribution, the inoculum was spread on the surface of the smoked salmon using sterile 

spatula. The cold-smoked salmon sample was re-vacuum packed (Multivac, MSC, Ireland). 

The process of opening the vacuum pack, inoculation with cocktail strains of L. 

monocytogenes and re-vacuum packing took 15 min per sample and was done under sterile 

environment. Two hundred and sixteen packs were inoculated (54 packs for each 

temperature) and stored at 4, 8, 12 and 16°C in an incubatorat the respective temperatures 

(Friocell, MSC, Ireland). The experiment was replicated twice (n = 2). 
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7.3.3. Microbial Analysis 
 

The samples were analysed everyday for 18 days (recommended shelf-life as provided by the 

manufacturer). Enumeration was done by transferring 25 g of smoked salmon aseptically into 

a stomacher bag and blending with 225 ml of 1/4 strength Ringer‘s solution in a stomacher 

(Lab blend 400, Seward Medical, London, UK) for 60 s at medium speed. One ml of the 

homogenate was taken and decimal dilution was prepared with Ringer‘s solution. 0.1 ml 

sample of three appropriate dilutions were spread in duplicates on Palcam (Scharlau – 

Chemie,Barcelona, Spain) for Listeria and incubated at 30 °C for 48 h and on plate count 

agar (Scharlau – Chemie,Barcelona, Spain) for total viable count at 24 °C for 48 h. Data from 

the plate count were log transformed.  

7.3.4. Description of the applied mathematical model 
 

L. monocytogenes growth data (log CFU/g) in vacuum packed cold-smoked salmon was 

fitted to the DMFit Excel add-in (Baranyi and Roberts, 1994). The Square root model was 

applied to model the maximum specific growth rate (µmax) obtained at isothermal conditions 

as a function of the storage temperature studied (Ratkowsky et al., 1983) 

max  = b (T – Tmin)………..Equation 7-1 

Where b is a constant, T (°C) is the storage temperature and Tminis the theoretical minimum 

temperature for growth of the organism, Tminwas estimated by extrapolation of the regression 

line to µmax = 0. 

The development of the ‗salmon-model‘ was based on combining the prediction of L. 

monocytogenes growth under dynamic storage temperature (time – temperature) profiles of 

smoked salmon, T (t) and the square root model (Equation 7-1) for the estimation of the 
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‗momentary‘ µmaxand also with the differential equation of Baranyi and Roberts model 

Equation 7- 2 and 7-3 whicwere integrated with respect to time 
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Where t is time, y is the concentration of the microbial population at time t, ymaxis the 

maximum population density and the parameter q denotes the concentration of a substance 

critical for microbial growth. Hence the model developed in this research work is referred to 

as the ‗salmon-model‘. 

7.3.5 Validation under dynamic condition 

 

The model developed (salmon-model) under isothermal conditions was validated against 

observed growth of the pathogen under two dynamic temperature scenarios which simulated 

temperature fluctuation from retail to consumer storage conditions. The vacuum packed cold-

smoked salmon (50 g) were inoculated with 3 strain cocktail of L. monocytogenes (as 

described in section 2.2) and stored at specific temperatures. The storage temperature was 

monitored using data-logger- monitoring devices (Squirrel view 3400, MSC, Ireland). The 

packages were stored in high precision incubator (+ 1 ˚C; Friocell, MSC, Ireland) at three 

consecutive stages: (1) retail storage, (2) consumer transport from retail to consumer storage 

and (3) consumer storage, for both the scenarios tested as indicated in Tables 7.1 and 7.2.  
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Table 7-1: Scenario 1: Representing cycle of the dynamic temperature profile for retail 

refrigeration, consumer shopping and consumer storage conditions. 

. 

Retail Refrigeration 

Time (h) Temperature (°C) 

 

12 4 

6 8 

12 16 

 

 

Consumer Shopping 

Time (min) Temperature (°C) 

 

30 Room temperature (+18 ˚C) 

 

 

Consumer Storage 

Time (h) Temperature (°C) 

 

12 12 

12 6 

 

 

Final analysis for levels of L. monocytogenes 
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Table 7-2: Scenario 2: Representing cycle of the dynamic temperature profile for retail 

refrigeration, consumer shopping and consumer storage conditions. 

 

Retail Refrigeration 

Time (h) Temperature (°C) 

 

12 4 

6 8 

12 16 

 

 

Consumer Shopping 

Time (h) Temperature (°C) 

 

3 Room temperature (+18 ˚C) 

 

 

Consumer Storage 

Time (h) Temperature (°C) 

 

12 12 

12 6 

 

 

Final analysis for levels of L. monocytogenes 
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The sampling for the levels of L. monocytogenes was done at the end the consumer 

refrigeration storage. The sampling was carried out for 18 days to cover the shelf-life (as 

recommended by the producers). The validation was done by numerically integrating 

equation 7-2 and 7-3 along with the time and temperature profile obtained for the two 

temperature scenarios in Excel 2007.  

The temperature range chosen for the fluctuating temperatures were obtained from the Food 

Safety Authority of Ireland (2002) survey. In Ireland, 75 % of the retail refrigeration is 

between (4 - 16 °C), 62.5 % of households takefrom 30 mins up-to 3 h for travelling from the 

retail storage to consumer storage and 92 % of household stored food products under 

refrigerated condition are between  4 °C - 12 °C (FSAI, 2002).  

7.3.6. Comparison of salmon-model with predictive software 

 

The predictions obtained for L. monocytogenes from salmon-model were compared with 

those obtained from the growth predictor Combase (www.combase.cc) and the Seafood 

Spoilage and Safety predictor (SSSP) v. 3.1. Comparison of the predictions was based on the 

bias factor (Bf), the accuracy factor (Af) and the goodness of fit (GoF; Ross, 1996; Mataragas 

et al., 2006). Both programs can provide predictions for microbial growth under fluctuating 

temperature conditions. In SSSP, the temperature fluctuations recorded from this study can be 

uploaded and the predictions obtained from the developed model in this study are compared 

to those obtained using sliced vacuum packed cold-smoked salmon in contrast to Combase 

where the predictions are based on using synthetic media. 

 

 

http://www.combase.cc/
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7.4. Results and Discussion 
 

The ubiquitous and psycho to mesophlic (0 – 40 °C) nature of L. monocytogenes makes the 

control of this pathogen difficult as it can multiply at refrigeration temperatures which are the 

recommend storage conditions for lightly preserved food. 

Several factors that would influence the growth of L. monocytogenes in vacuum packed cold-

smoked salmon were considered before conducting this study such as, actual food matrix 

(vacuum packed cold-smoked salmon), background microorganisms, storage time and 

temperature, and consumer travel patterns from retail to consumer refrigeration storage 

conditions. To perform a more accurate challengetest, Garido et al., (2009) recommends that 

‗‗inocula concentration used experimentallyshould be similar to those detected naturally in 

the foodproduct but enough for precision counts‖. In this study 1 log CFU/g was used for the 

challenge-test which is in line with what would be naturally found on vacuum packed cold-

smoked salmon (Minnetan and Warten, 2005, Garrdo et al., 2009, Chitlapilly Dass et al., 

2010a and Chitlapilly Dass et al., 2010b). 

The growth of L. monocytogenes in vacuum packed cold-smoked salmon was monitored at 

isothermal storage conditions from 4 – 16 °C. Fig 7.1 represents the growth of L. 

monocytogenes during 18 days of storage at 4, 8, 12 and 16 °C. The control sample tested 

negative for the presence of naturally contaminated L. monocytogenes. The variations in 

growth were a function of the storage temperature tested. According to Regulation (EC) 

2073/2005, food safety criteria establish that ready to eat products should not exceed the limit 

of 100 CFU/g of L. monocytogenes throughout their shelf life. The regulation is applied to 

lightly preserved foods able or unable to support the growth of L. monocytogenes (Garrido et 

al., 2009). The pathogens reached 2 log CFU/g (+ 2.5 log CFU/g) after 15, 3 and 2 days of 

storage at 4, 8 12 and 16 °C respectively. 



144 

 

 

Figure 7-1: Growth curves of L. monocytogenes in vacuum packed cold-smoked salmon at 

different storage temperatures (4 °C (-▪-), 8 °C (-■-), 12 °C (- ▲-) and 16 °C (-x-)). 

. 

The growth data under isothermal conditions (4, 8, 12 and 16 °C)were fitted to the DMFit 

Excel add-in, in order to calculate the maximum specific growth rate (µmax), lag phase (λ) and 

maximum population density (MPD; Table 7.3). 

 

Table 7-3Parameters and statistics of the model of Baranyi and Roberts for the growth of L. 

monocytogenesin vacuum packed cold-smoked salmon (mean +Standard error of two 

independent experiments with two replications each) 

 

Temp 

(˚C) 

Maximum specific growth 

rate 

µmax 

(log CFU/h
-1

) 

Lag phase 

λ 

(h) 

Maximum population 

density 

ymax 

(log CFU/g
-1

) 

Standard error of 

fit 

R
2 

4 0.031(+ 0.003) 159(+26.5) 6.97(+0.18) 0.332 0.971 

8 0.096(+ 0.001) 93(+7.8) 7.82(+0.09) 0.411 0.983 

12 0.153(+ 0.007) 44(+10.1) 8.01(+0.17) 0.430 0.964 

16 0.193(+ 0.004) 23.4(+6.5) 8.53(+0.13) 0.451 0.982 
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The parameter ho represents the ‗work to be done‘ by the cell to adapt itself to the new 

environment and move from the lag phase to the exponential growth phase. The parameter ho, 

related to the physiological state of the cells, was calculated as the product of µmax × λ as 

obtained under the isothermal condition investigated in this study. The effect of temperature 

on ho is shown in Fig 7.2. At temperatures between 8 and 16 °C the average value of 

howas1.63 and 4.9 at 4 °C. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 6 8 10 12 14 16

Temperatue (°C)

h
o

 

Figure 7-2: Effect of storage temperature on the adaptation work (h0) of L. monocytogenes in 

vacuum packed cold-smoked salmon.Data points are mean (+standard error) of two 

independent experiments with two replications each. 

 

The effect of temperature on the adaptation work parameter ho required by the cell to adjust 

to new environment was relatively constant for storage temperatures 8 to 16 ºC (ho= 1.63). At 

the storage temperature of 4 ºC, the value of ho increased indicating that storage at low 

temperatures altered the physiological state of the bacteria. These findings are in line with 

other studies (Xanthiakos et al., 2006; Panagou and Nychas, 2008) where the physiological 
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state of L. monocytogenes was relatively constant at temperatures between 10 to 16 ºC but 

increased substantially at lower temperatures.  

The square root model was applied to model the maximum specific growth rate (µmax) 

obtained at isothermal conditions as a function of the storage temperature studied (Fig 7.3). 

The Tmin was calculated from the slope of the square root model and found to be - 4.23 ˚C 

which was in line with other studies on L. monocytogenes (Xanthiakos et al., 2006). The 

square root model described the effect of storage temperature (r
2
= 98.98 %) satisfactorily.  

 

Figure 7-3: Square root type model for the effect of temperature on the maximum specific 

growth rate ( max ) of L. monocytogenes in vacuum packed cold-smoked salmon. Data 

points are mean (+standard error) of two independent experiments with tworeplications each. 

 

The salmon-model was validated against growth observed under dynamic conditions using 2 

temperature scenarios mimicking retail storage conditions, consumer shopping habits and 

consumer refrigeration storage conditions (Table 7.1 and 7.2). 

For the initial microbial population, the initial inoculum level (1 log CFU/g) determined by 

plate counting was used. The maximumpopulation (ymax) was taken as the mean value 
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estimatedfrom the individual curve fittings during storage under isothermal conditions 

(8.5logCFU/g). Predictions were based on two different values for ho; the average value ofho 

observed at static storage temperatures from 8 to16°C was 1.63 andfor 4°C was 4.9. The 

comparison between predicted and observedgrowth of L. monocytogenes in cold-smoked 

salmon stored atdynamic temperature conditions for ho= 1.63 is shown in Fig 7.4 and 7.5. 

 

 

Figure 7-4: Comparison between the observed (-•-) and predicted (─) growth of 

L. monocytogenes in vacuum packed cold-smoked salmon under periodical changing 

temperature (Scenario 1). Comparison between the ‗salmon-model‘ (─)  and predictive 

program SSSP (─ ─) and Combase (─ - ─ -) in scenario A.(…) indicate lower and upper 95% 

confidence intervals of the ‗Salmon model‘ 
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Figure 7-5: Comparison between the observed (-•-) and predicted (─) growth of 

L. monocytogenes in vacuum packed cold-smoked salmon under periodical changing 

temperature (Scenario 2). Comparison between the ‗salmon-model‘ (─)  and predictive 

program SSSP (─ ─) and Combase (─ - ─ -) in scenario 2.(…) indicate lower and upper 95% 

confidence intervals of the ‗Salmon model‘ 

 

Predictions based on the value of ho= 1.63 fitted accurately the growth of L. monocytogenes 

in both the scenarios tested. The prediction of the model was very poor when the average 

value of ho observed at static temperatures 4 °C wasused, resulting in significant under-

prediction of the model.These results are in agreement with other studies at low temperatures 

(Xanthiakos et al., 2006, Panagou and Nychas, 2008, Koustsoumanias et al., 2010 and 

Garrido et al., 2010), who attributed this by the sudden cold shock that influenced the 

physiologicalstate of the organism. 

In scenario 1, which follows the 30 min shopping regime, the pathogen reaches 2 log 

CFU/gat the end of 100 h (~ 4 days). In Scenario 2, the pathogen reaches 2 log CFU/g after 

36 h of storage. In comparison to scenario 2, scenario 1 took longer time to reach the 2 log 

CFU/g levels. In both the scenarios even before reaching half of the recommended shelf-life 
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(as indicated on the products packaging) in this case 18 days, the products reached dangerous 

levels, pointing to the possible reduction in the shelf-life for safe usage of the product. In this 

study, it is evident that longer exposure of vacuum packed cold-smoked salmon during 

consumer transportation from retail to consumer refrigeration storage had an impact on the 

higher growth rate of L. monocytogenes. Thus, an improvement in the form of shorter 

transportation time and proper storage condition can be effective in reducing the proliferation 

of L. monocytogenes. 

Comparison of salmon-model with the growth prediction software  

The predictions of the salmon-model under dynamic temperature conditions were compared 

to the growth predictor software Combase and SSSP (Fig 7.4 and 7.5). The Combase model 

yielded significant over prediction of growth in comparison to the SSSP and salmon-model. 

SSSP growth model predicted values that were close to that of the salmon-model as indicated 

by the values of Af, Bfand GoF in Table 7.4. 
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Table 7-4: Comparison of validation indices for the developed Salmon model and the other 

predictive programs for modelling the growth of L. monocytogens under periodical change in 

temperature. 

 

 

 

 

 

 

 

 

 

The bias and accuracy factor were assessed to understand the overall performance of the 

models. The values of Bf and Af were close tounity, indicating good agreement between 

observations andpredictions. 

The predictions of the salmon-model under fluctuating temperatures were compared with the 

simulated results obtained from SSSP and Combase. The predictions of SSSP were closer to 

the ‗salmon-model‘ when compared to the Combase predictions. The predictions of SSSP 

were based on the product characteristics of pre-sliced vacuum packed cold-smoked salmon 

and the temperature input was imported from the data logger data used in recording the 

temperature fluctuation in this study. The over prediction of Combase predictor was due to 

the fact that this program was developed through experiments conducted in synthetic 

microbiological media or simulated foods and may thus overestimate the microbial growth 

Model Af Bf GoF 

Salmon Model    

Scenario 1 1.061 1.043 0.419 

Scenario 2 1.057 1.052 0.312 

Combase growth predictor    

Scenario 1 1.198 1.182 1.731 

Scenario 2 1.213 1.189 1.930 

SSSP growth predictor    

Scenario 1 1.110 1.107 1.017 

Scenario 2 1.127 1.093 1.009 
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that actually occurs in real foods. Predictions based on such models are not necessarily valid 

in complex food environments because significant factors for microbiological growth such as 

food structure and microbial competition are not taken into account (Pin et al., 1999; te Giffel 

et al., 1999 and Koutsoumanis et al., 2006).  

Describing the growth of L. monocytogenes in vacuum packed cold-smoked along the food 

pathway is important, as this would aid in understanding the rate of contamination as the food 

moves along the retail to consumer refrigeration storage and also aid in the designing of the 

control measures. SSSP growth predictor was used in predicting the increase in the L. 

monocytogenes growth at each of the storage/shopping condition illustrated in Tables 7.1 and 

7.2. The input used in simulating the retail, consumer shopping and consumer refrigeration 

storage in SSSP growth predictor is elaborated in Fig 7.6. SSSP growth predictor was used 

over the other software as it gave close predictions to the model developed in this study. 
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1 log CFU/g of initial level of L. monocytogenes contamination in vacuum packed cold-

smoked salmon was used to predict the growth of L. monocytogenes at retail storage 

condition. 

 

. 

 

 

Growth levels of L. monocytogenes from the retail storage condition were used as initial feed 

for two consumer shopping scenarios 30 min and 3 h and levels of L. monocytogenes were 

obtained. 

 

 

 

 

Growth levels of L. monocytogenes from the two consumer shopping scenarios were used as 

initial input for retail storage conditions to obtain the final levels of L. monocytogenes 

respectively for the 2 scenarios of shopping time. 

 

Figure 7-6: Flow chart representing the application of the use of SSSP growth model in 

predicting the growth of L. monocytogenes at retail storage, consumer shopping and 

consumer storage conditions of vacuum packed cold-smoked salmon food pathways. 

 

In Fig 7.7 and 7.8, the growth of L. monocytogenes at each storage/shopping condition is 

demonstrated. The temperature fluctuations encountered during retail storage on day 1 

resulted in L. monocytogenes levels reaching 1.07 log CFU/g. Following a shopping period of 

30 min, the L. monocytogenes counts were 1.12 log CFU/g, showing a 4.6 % increase from 

the retail storage. The population of L. monocytogenes after one day at consumer 

refrigeration storage conditions reached 1.21 log CFU/g which was a 13 % increase from the 
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retail storage. The limit of 2 log CFU/g was reached after 6 days of storage in the consumer 

refrigeration storage. The final level of L. monocytogenes after storage for 18 days was 8.6 

log CFU/g. 

 

 

Figure 7-7: The growth of L. monocytogenes along the vacuum packed cold-smoked salmon 

food pathways of scenario 1 as predicted by SSSP growth predictor. 
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Figure 7-8: The growth of L. monocytogenes along the vacuum packed cold-smoked salmon 

food pathways of scenario 2 as predicted by SSSP growth predictor. 

 

In the second scenario, after the retail fluctuation the level of L. monocytogenes on day 1 

reached 1.04 log CFU/g, after 3 h of shopping the levels of L. monocytogenes were 1. 21 log 

CFU/g which was a 16 % increase from the retail storage conditions. The levels of L. 

monocytogenes after consumer storage of 1 day reached 1.39 log CFU/g showing a 33 % 

increase from the retail storage. The 2 log CFU/g limit was reached after 4 days of storage at 

the consumer refrigeration storage. 

While assessing the individual parameters in the food-pathways (retail, consumer shopping 

and consumer refrigeration storage), the results showed that the consumer shopping time and 

temperature and the consumer refrigeration storage temperature are the most important 

factors affecting the concentration of L. monocytogenes at the time of consumption. This is in 

agreement with the conclusions of the available risk assessment studies of L.monocytogenes 

in ready-to-eat foods (Koutsoumanis, et al., 2010), which stress theimportance of consumer 
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handling and storage temperature in consumerexposure to L. monocytogenes at the time of 

food consumption. The results from this study indicate that careful control of storage 

conditions can bring a significant reduction in levels of L. monocytogenes contamination; 

hence communication strategies should be focused on highlighting this to the consumers. 

This strategy should be directed to improve consumer awareness of the importance of correct 

storage conditions, where temperature abuse will be mostfrequent: unlike temperatures in a 

professional setting,it cannot be controlled by legislation (Cheroutre-Vialette and Lebert, 

2000). Emphasis should be made on the health risk associated with consuming such products 

kept under abusive storage conditions, in particular preventive tips should be given to high 

risk populations.  

 

7.5. Conclusions 
 

The results obtained showed that the developed ‗salmon-model‘ can effectively be used to 

study the L. monocytogenes growth behaviour at fluctuating temperature conditions. Such 

model could follow the microbial impact of different steps associated with retailing and 

consumer behaviour to food and this could be an important support to the food safety system. 

The modelprovides the sea food industry with a useful tool for effectivemanagement and 

optimization of product safety and maycontribute to more realistic estimations of safety 

risksrelated tovacuum packed cold-smoked salmon.Among predictive models used for 

comparison with the ‗salmon-model‘, the SSSP growth predictor gave better prediction when 

compared to the Combase growth predictor, as SSSP growth predictions are based on work 

conducted on sliced vacuum packed cold-smoked salmon. 
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Chapter 8 : Growth modelling of 3-cocktail strains of L. monocytogenes 

and native microflora in vacuum packed cold-smoked salmon marketed in 

the Republic of Ireland 
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8.1 Summary 
 

This study examined the growth characteristics of Listeria monocytogenes as affected by 

native microflora at refrigeration and abuse temperatures in vacuum packed cold-smoked 

salmon as retailed in the Republic of Ireland. A three strain cocktail of L. monocytogenes 

(isolated from a previously related study) was inoculated on vacuum packed cold-smoked 

salmon and stored at 4, 8, 12 and 16 °C for 18 days. The growth characteristics: lag phase 

duration (LPD, h), growth rate (GR, log10 CFU/h), and maximum population density (MPD, 

log10 CFU/g), of L. monocytogenes and the native microflora in vacuum packed cold-smoked 

salmon stored were determined by DM-Fit Excel add-in. At 4 °C, L. monocytogenes did not 

reach the stipulated 2 log10 CFU/g after incubation for 18 days, while L. monocytogenes 

reached 2 log10 CFU/g at abuse temperatures (8, 12, 16 °C) after 3 to 4 days (+ 2) of 

incubation. The pH decreased from 6.8 to 5.8 (+ 0.3) at 8, 12 and 16 °C after 18 days of 

storage, while aw showed only a slight variation at all the temperatures tested. Square root 

model and inverse of square root model were applied to model thegrowth rate and lag phase 

duration as a function of storage temperature for both L. monocytogenes and native flora and 

the results were satisfactory (R
2
> 0.9) respectively. The GR, LPD and MPD of L. 

monocytogenes were restricted by the presence of native flora at refrigeration temperature of 

4 ˚C. At higher temperatures the effect of native microflora was marginally diminished. The 

MPD of the native microflora was > 8 log10 CFU/g, whilst the MPD of L. monocytogenes 

were < 7.8 log10 CFU/g. This study demonstrates the risk of L. monocytogenes reaching 

unacceptable levels on vacuum packed cold-smoked salmon upon storage under abuse 

temperature and the role of native microflora in controlling L. monocytogenes under the 

studied conditions.  



158 

 

Some parts of this paper have been submitted for publication in Journal of Food Safety and 

also presented at Food Microbiology conference and Food Simulation conference (212-213). 
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8.1 Introduction 
 

The growth behaviour of L. monocytogenes in vacuum packed cold-smoked salmon has been 

researched extensively. Studies have identified that salt, aw, smoke components, lactate, pH, 

storage temperatures had effects on the growth of L. monocytogenes in smoked salmon 

(Augustin and Carlier, 2000, Lappi et al., 2004; Tome et al., 2007). Among these, 

temperature is considered the most important factor for spoilage (Koutsoumanis et al., 2010). 

There were also studies which reported the influence of native microflora on the growth of L. 

monocytogenes in vacuum packed cold-smoked salmon during refrigeration temperature 

(Tome et al., 2007 and Hwang and Sheen, 2009). The native microflora present on smoked 

salmon reaches 10
6
–10

8
log10CFU/g after 3 weeks storage under vacuum at refrigeration 

temperature (Leroi et al.,2000), 60 % of the microflora is represented by lactic acid bacteria 

(LAB) while the remaining 40 % are Gram-negative microorganisms such as 

Enterobacteriaceae, Shewanella putrefaciens, Photobacterium phosphoreum and Aeromonas 

spp. which are characterized by a high spoiling potential and are responsible for unpleasant 

smell and taste (Miettinen et al., 2006). This native microflora has a profound effect on the 

growth of L. monocytogenes and slows the growth rate of Listera (Hwang and Sheen, 2009). 

Nevertheless, these studies mainly reported the increase or decrease of cell countsof L. 

monocytogenes in vacuum packed cold-smoked salmon during storage. Data on L. 

monocytogenes and the native microflora, and the growth relationship between these two 

microflora in vacuum paced cold-smoked salmon are still limited and requires further 

investigation. 
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The objectives of this study were to examine the growth characteristicsof L. monocytogenes 

and native microflora in vacuum packed cold-smoked salmon at refrigerated and abuse 

temperatures typically encountered during retail and consumer storage. In this study, the 

change in the pH and aw was also monitored throughout the shelf life of vacuum packed cold-

smoked salmon and its effect on the growth of L. monocytogenes was demonstrated. 

 

8.3. Materials and Methods 

8.3.1. Stock culture preparation 
 

Three strains of L. monocytogenes, LMSS 11, LMSS 17 and LMSS 23 (from the collection of 

strains isolated from vacuum packed cold-smoked salmon by Chitlapilly et al., 2010b) were 

used. Stock cultures were maintained in vials of 20 % glycerol at - 80 °C until further use. 

The cultures were revived by adding 1 ml of 20 % glycerol stock to 9 ml of tryptic soy broth 

(TSB: Scharlau – Chemie, Barcelona, Spain) and incubated at 30 °C for 24 h. Before the start 

of the experiment, a loop-full of each strain was transferred into 9 ml of TSB and subcultured 

twice at 30 °C for 24h. 

8.3.2. Inoculation of smoked salmon and sampling 

 

Fifty grams of vacuum packed cold-smoked salmon were obtained from the manufacturer 

followed by inoculation with 3 strains cocktail of L. monocytogenes. The cocktail was 

prepared by combiningequal volumes of each of the 3 cultures (grown overnight in TSB at 30 

°C) in sterile tubes and centrifuged at 3000 x g at 4 °C for 30 min. The pellets were washed 

with sterile ¼ Ringer‘s solution (Oxoid LTD, UK) and centrifuged for 30 min at 3000 x g at 4 

°C and the resulting pellets were resuspended in the ¼ Ringer‘s solution to a final volume of 
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5 ml. The cell level in the resulting composition was 6 log10 CFU/ml, as assessed by 

McFarland‘s standard (BioMérieux, Marcy-l'Etoile, France). 

The 50 g pack of vacuum packed cold-smoked salmon was inside the laminar air-flow 

chamber using a sterile scissors and 200 µl of the appropriate diluted culture was added to the 

cold-smoked salmon sample to obtain 1 log10 CFU/ml. To attain uniform distribution, the 

inoculum was spread on the surface of the smoked salmon using sterile spatula. The cold-

smoked salmon sample was re-vacuumed packed (Multivac, MSc, Ireland). The entire 

process of inoculation and re-vacuum packing took approximately 10 min. Two hundred and 

sixteen packs were inoculated (54 packs for each temperature) and stored at 4, 8, 12 and 16°C 

(+ 2 ˚C) in incubation chamber (Friocell, MSc, Ireland). The experiment was replicated twice 

(n = 2). 

8.3.3. Microbial analysis 

 

The samples were analysed everyday for 18 days (shelf-life as provided by the manufacturer). 

Enumeration was done by transferring 25 gm of smoked salmon aseptically into a stomacher 

bag and blending with 225 ml of ¼ Ringer‘s solution in a stomacher (Lab blend 400, Seward 

Medical, London, UK) for 60 s at medium speed. One ml of the homogenate was taken and 

decimal dilutions were prepared with ¼ Ringer‘s solution. 0.1 ml sample of three appropriate 

dilutions were spread platedin duplicates on Palcam (Scharlau-Chemie, Barcelona, Spain) for 

Listeria and incubated for 48 h at 30 °C and on plate count agar (PCA; Scharlau-Chemie, 

Barcelona, Spain) for the growth of native microorganism at 24 °C for 48 h. Data from the 

plate count were log transformed.  

8.3.4 Determination of lag phase duration, growth rate, and maximum population 

density 
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L. monocytogenes growth data (log CFU/g) during storage at 4, 8, 12, and 16 
◦
in vacuum 

packed cold-smoked salmon were fitted to the primary model of Baranyi and Roberts (1994) 

using the DMFit Excel add-in available at www.combase.com, to obtain the lag phase 

durations (LPD, h), growth rates (GR, log10 CFU/h), and maximum population density 

(MPD, log10 CFU/g).  

The square root model was applied to model the maximum specific growth rate (GR) as a 

function of the storage temperature studied (Ratkowsky et al., 1983) 

= b (T - Tmin) ---------------------- Equation 8-1 

Where b is a constant, T (°C) is the storage temperature and Tmin is the theoretical minimum 

temperature for growth of the organism, Tmin was estimated by extrapolation of the regression 

line to = 0. 

The inverse of square root model was applied to model the LPD as a function of the storage 

temperature studied (Augustin et al., 2000). The Tmin of both lag phase and exponential 

growth phase is reported to be different; hence the inverse square root model was used to 

determine the Tmin for lag phase, thereby determining the fast growing bacteria in the vacuum 

packed cold-smoking bacteria (Koutsoumanis et al., 2010). 

 = b (T - Tmin) --------------------------------Equation 8-2 

Where b is a constant, T (°C) is the storage temperature and Tmin is the theoretical minimum 

temperature for growth of the organism, Tmin was estimated by extrapolation of the 

regression line to  = 0. 

8.3.4. Physicochemical estimation 

 

The pH of cold-smoked salmon was measured using an Orion pH meter (Beverly, Mass., 

U.S.A.) for 18 days. The water activity (aw) of vacuum packed cold-smoked was measured 

http://www.combase.com/
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using an AquaLab Model CX2 water activity meter (Decagon Devices, Pullman,Wash., 

U.S.A.) for 18 days. The pH and aw were measured for each day for 18 days to cover the shelf 

life of the product. The samples were recorded as replicates of five and the mean was noted 

as final value. 

 

8.4. Results and Discussion 

8.4.1. Growth of L. monocytogenes and native microflora in vacuum packed cold-

smoked salmon 
 

The growth of L. monocytogenes and native microflora in vacuum packed cold-smoked 

salmon at 4, 8, 12 and 16 °C are shown in Fig 8.1. Several factors that would influence the 

growth of L. monocytogenes in vacuum packed cold-smoked salmon were considered before 

conducting the study such as storage temperature and the actual food (vacuum packed cold-

smoked salmon) with its native microflora. To perform a more accurate challenge test, 

Garido, et al., (2010) recommends that ‗‗innocula concentration used experimentally should 

be similar to those detected naturally in the food product but enough for precision counts‖. In 

this study 1 log10 cfu/g was used as the initial innoculum level was similar to what would be 

naturally found on the product (Minnetan and Warten, 2005, Garrdo et al., 2009, Chitlapilly 

Dass et al., 2010a). With respect to the temperature range studied, this study took into 

consideration a survey conducted by the Food Safety Authority of Ireland (FSAI, 2002), 

which showed that in over 70% of domestic refrigerators were temperatures were reported to 

be above 6 ˚C. Research shows that native microflora have a profound effect of restricting the 

growth of L. monocytogenes  (Hwang and Sheen, 2009), therefore in this study the native 

flora in its natural environment (vacuum packed cold-smoked salmon) were studied to 

estimate their role in the actual risk of L. monocytogenes growth under various storage 

temperature scenarios.  
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Figure 8-1: Growth of L. monocytogenes (—) and native microflora (—) at 4, 8, 12 and 

16 °C in vacuum packed cold-smoked salmon. 

 

The current legal contamination limit of lightly preserved food with L. monocytogenes is 2 

log10 CFU/g in 25 g of the product (FSAI, 2002). This study demonstrates that at refrigeration 

temperature of 4 °C, L. monocytogenes did not reach the 2 log10 CFU/g after 18 days of 

incubation, whilst, at 8 °C, the 2 log10 CFU/g was reached after 5 days of incubation and at 

12, 16 °C the 2 log10 CFU/g was achieved after 3 - 2 days of storage respectively.  

The growth of native flora reached 5 log10 CFU/g at 4 ˚C after 18 days of storage, while at 8 

˚C it reached 7.5 log10 CFU/g and 8.5 and 9.1 log10 CFU/g after 18 days of storage at 12 and 

16 ˚C respectively. Whereas, L. monocytogenes reached, 1.89 log10 CFU/g at 4 ˚C, 4.3 log10 

CFU/g at 8 ˚C, 6.7 log10 CFU/g at 12 ˚C, and 7.8 log10 CFU/g at 16 ˚C after 18 days of 
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storages. The native microflora in vacuum packed cold-smoked salmon observed in this study 

were those cultivable on PCA. Researchers have demonstrated that 60 % of the native 

microorganism inhabiting vacuum packed cold-smoked salmon was mainly lactic acid 

bacteria (LAB), while the remaining 40 % were Gram-negative microorganisms such as 

Enterobacteriaceae, Shewanella putrefaciens, Photobacterium phosphoreum and Aeromonas 

spp. (Leroi et al., 2000, Stohr et al., 2001, Minetten et al., 2005 and Chitlapilly Dass, et al., 

2011). The growth levels of L. monocytogenes appeared to be affected by the levels of native 

microflora, in particular when the native microflora reached its maximum growth at the end 

of the 18 days of storage. Hwang and Sheen (2009) reported that the growth of L. 

monocytogenes was restricted by the growth of native microflora in vacuum packed cold-

smoked salmon, according to their research the native microflora was dominated by the 

presence of LAB. Similarly, Gimenez and Dalgaard (2004) reported that monoculture of L. 

monocytogenes grew to 8 log10 CFU/g in vacuum-packed cold-smoked salmon stored at 5 to 

25 
◦
C. Gimenez and Dalgaard (2004) study showed that in the presence of native 

microorganism, L. monocytogenes reached only 2 to 4 log10 CFU/g. 

Leroi, (2001) demonstrated that native flora was dominated by LAB, hence the presence of 

this bacteria could have slowed the growth of L. monocytogenes at all the temperatures tested. 

In this study the inhibitory characteristic of LAB on L. monocytogenes could be attributed to 

the listericidal activity an inherent property of LAB (Jorgensen et al., 2000). These effects 

have been reported on vacuum packed cold-smoked salmon by various researchers (Nilsson 

et al., 1999; Jorgensen et al., 2000 and Leroi et al., 2001). 

The growth data obtained in this study were fitted to the DM-Fit Excel add-in, in order to 

calculate the maximum specific growth rate (GR, log10CFU/g), lag phase (LPD, h) and 

maximum population density (MPD, log10 CFU/g) (Table 8.1). The GR of L. monocytogenes 

ranged from 0.018 log10 CFU/g to 0.136 log10 CFU/g and the GR of native microflora ranged 
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from 0.021 to 0.211 at storage temperatures of 4 to 16 ˚C in vacuum packed cold-smoked 

salmon. There was a 2 fold increase in the GR of native flora from that of L. monocytogenes 

at all the storage temperature tested. These results showed that the native microflora grew at a 

faster rate when compared to L. monocytogenes and possibly could have lowered their growth 

rate. The LPD of the native microflora ranged from 193 to 23 h over the storage temperature 

range of 4 – 16 ˚C, these values were one fold less when compared to those of L. 

monocytogenes which ranged from 219 to 31 h. These results indicate that the fast growing 

native microflora having shorter lag phase may have inhibited the growth of L. 

monocytogenes which have longer lag phase. One of the reasons for the inhibition could be 

the depletion of the available nutrients on the vacuum packed cold-smoked salmon by the 

native microflora before the start of the exponential growth phase of L. monocytogenes 

(Garido et al., 2010 and Koutsoumanis et al., 2010). The MPD of L. monocytogenes were 2.9 

to 7.6 log10 CFU/g at 4 to 16 ˚C, whereas the MPD of native microflora was approximately 

4.6 to 9.13 log10 CFU/g. Combination of native microflora and refrigeration temperature 

could have restricted the growth of L. monocytogenes at 4 ˚C. The MPD of L. monocytogenes 

was significantly higher at 16 
◦
C than those observed at 4, 8, and 12 

◦
C. The growth of L. 

monocytogenes appeared to be more active at higher storage temperaturesand more 

competitive against the native microflora (Augustin and Carlier et al., 2000 and Hwang and 

Sheen 2009).  
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Table 8-1: Parameters and statistics of the model of Baranyi and Roberts for the growth of 

Listeria monocytogenes in vacuum packed cold-smoked salmon (mean +standard error of 

two independent experiments with two replications each) 

 

8.4.2. Temperature dependence of GR and LPD on the growth of L. monocytogenes and 

native microflora 

 

The GR of L. monocytogenes and native microflora was modeled as a function of storage 

temperature using the square root model (Fig 5.2 and 5.3). The LPD for L. monocytogenes 

and native microflora were modeled as a function of storage temperature using the inverse of 

the square root model (Fig 5.2 and 5.3). The ‗reciprocal square root model‘ used is based on 

the assumption that the lag phase is inversely related to the specific growth rate (Baranyi and 

Roberts, 1994). It has been applied, for example, by Zwietering et al., (1994) and 

Koutsoumanis and Nychas (2010), and has been tested positively for Lactobacillus curvatus 

and L. monocytogenes respectively. The equations obtained for GR and LPD for both L. 

monocytogenes and native microflora are as follows:  

 = 0.026 (T - 0.047) ------------------ Equation 8-3 

 = 0.009 (T - 0.027) -------------------- Equation 8-4 

 = 0.024 (T - 0.083) ------------------ Equation 8-5 

 Temperature 

(°C) 

GR 

(log10CFU/h) 

LPD 

(hours) 

MPD 

(log10CFU/g) 

Standard 

error of 

fit 

R
2 

L. 

monocytogenes 

4 

8 

12 

16 

0.018 (+0.002) 

0.089 (+0.008) 

0.156 (+0.005) 

0.187 (+0.003) 

219 (+18) 

102 (+8.1) 

67 (+5.1) 

31 (+6.3) 

2.907 (+0.004) 

4.352 (+0.009) 

6.374 (+0.002) 

7.668 (+0.0050 

0.262 

0.218 

0.365 

0.423 

0.965 

0.975 

0.934 

0.951 

Native 

Microflora 

4 

8 

12 

16 

0.021 (+0.004) 

0.106 (+0.001) 

0.149 (+0.008) 

0.201 (+0.002) 

193(+21) 

94 (+13) 

51 (+9.3) 

23 (+3.2) 

4.694 (+0.008) 

7.391 (+0.005) 

8.016 (+0.009) 

9.135 (+0.006) 

0.421 

0.381 

0.265 

0.324 

0.981 

0.923 

0.945 

0.931 
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 = 0.011 (T - 0.019) -------------------- Equation 8-6 

 

 

Figure 8-2: Square root type model and inverse square root type model for the effect of 

temperature on the GR, LPD of L. monocytogenes respectively. Data points are mean 

(+standard error) of two independent experiments with two replications each. 
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Figure 8-3: Square root type model and inverse square root type model for the effect of 

temperature on the GR, LPD of Native microflora respectively. Data points are mean 

(+standard error) of two independent experiments with two replications each. 

 

The parameters coefficients of GR and LPD of both L. monocytogenes and native microflora 

are given in Table 8.2. The square root model and the inverse of square root model described 

the effect of storage temperature on GR and LPD respectively and showed satisfactory results 

(R
2 

> 9.0). LPD prediction is complex as lag time duration may strongly depend on the initial 

physiological state of the cells and on the population size of the bacteria (Baranyi and 

Roberts, 1995; Baranyi, 1998). During lag phase, the bacteria undergo acclimatisation to its 
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new environment and germinate (Koutsoumanis, 2010). The LPD for native microflora is less 

when compared to LPD of L. monocytogenes. Thus the native microflora enters the 

exponential growth phase faster rate than L. monocytogenes and begin to utilize the available 

nutrients in the vacuum packed cold-smoked salmon. When the L. monocytogenes enters into 

the exponential growth phase, they would have to compete with actively growing native 

microflora and to utilize the nutrients in the vacuum packed cold-smoked salmon (Jacobson, 

2006). This could be the reason for the difference in growth rate between L. monocytogenes 

and native microflora.  

Table 8-2: Parameters coefficients of GR and LPD of both L. monocytogenes and native 

microflora. (mean + standard error of two independent experiments with two replications 

each) 

 

 

 GR (Tmin °C) LPD (Tmin °C) 

L. monocytogenes - 2.04  (0.02) - 3.26 (0.07) 

Native microflora - 3.15 (0.08) - 3.9 (0.05) 

 

 

8.4.3. Changes in the pH and aw of cold-smoked salmon during the 18 days storage 

period 
 

The aw, at all the temperatures tested showed only 0.46 (+ 0.03) units change during the 18 

days (Fig 8.4) shelf-life of vacuum packed cold-smoked salmon, there was no significant 

change during shelf-life in all the storage temperatures studied. 

pH of vacuum packed cold-smoked salmon at 8, 12 and 16 ˚C reduced from 6.8 to 5.8 (+ 0.2) 

showing a one unit reduction, while at 4 °C it showed 0.79 (+ 0.01) unit reduction. The one 

unit reduction in the pH at 8 – 16 ˚C could be attributed to the presence of LAB which is part 

of native microflora and also higher growth rate of the native microflora at these higher 

temperatures owing to the higher utilization of nutrients. These bacteria have been associated 
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with the production of organic acids and thus turning the environment acidic (Leroi et al., 

2001).  

Lactic acid bacteria can survive at low temperature (4 °C) and this could have slowed the 

growth of L. monocytogenes at 4 °C. The antilisterial activity of LAB has been attributed 

primarily to the production of antimicrobial compounds such as organic acids, hydrogen 

peroxide, and bacteriocins (Amezquita and Brashears, 2002). Several researchers have 

demonstrated the use of LAB as a protective culture against L. monocytogenes in various 

lightly preserved products and have proved to be beneficial (Djenane et al., 2005 and 

Concha-Meye et al., 2010). In a recent study LAB incorporated as an alginate film 

demonstrated that these films inhibit L. monocytogenes growth on vacuum packed cold-

smoked salmon during refrigerated storage and did not alter the sensory quality (Concha-

Meye et al., 2010). Thus future studies focusing on the incorporation of LAB as a protective 

culture for controlling L. monocytogenes are warranted.  
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Figure 8-4: Change in pH and aw of vacuum packed cold-smoked salmon recoded through-

out the shelf-life of 18 days. The samples were recorded as replicates of five and the mean 

was noted as final value. 

 

8.5. Conclusions 
 

In this study, the growth of L. monocytogenes in vacuum packed cold-smoked salmon was 

dependenton the native microflora and the storage temperatures. The results showed that the 

GR, LPD and MPD of L. monocytogenes were affected by the growth of native flora during 

refrigeration storage (4 ˚C); the growth of L. monocytogenes did not reach 2 log10CFU/g at 

the end of the storage period of 18 days. This was deemed to be within the safety limits of the 
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presence of L. monocytogenes in ready to eat food. As storage temperatures to control the 

growth of L. monocytogenes in vacuum packed cold-smoked salmon can be difficult to 

maintain from retail until consumer consumption, investigations of novel techniques to 

control L. monocytogenes growth such as the incorporation of LAB merit further research 

with the aim of protecting public health. 
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Chapter 9 : Quantitative risk assessment of Listeria monocytogenes in cold-

smoked salmon in the Republic of Ireland. 
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9.1 Summary 
 

In this study, a quantitative Monte Carlo risk assessment model was developed to assess 

likely human exposure and the probability of human illness by L. monocytogenes on cold-

smoked salmon in Ireland. A surveillance study conducted at the retail level served as the 

starting point for the model with a mean prevalence of L. monocytogenes in cold-smoked 

salmon of 22.1 % and a mean count on contaminated cold-smoked salmon of 2.60 log10 

CFU/g (95 % confidence interval 0.00 – 4.53 log10 CFU/g). The model simulated likely 

growth conditions considering the uncertainty in transport and consumer storage conditions, 

while also assessing final risk of illness by taking into account the likely exposure frequency 

and levels. The model predicted the annual log probability of illness by consuming 

contaminated cold-smoked salmon in a low risk andhigh risk population, with mean values –  

5.76 and – 1.63, respectively (assuming weekly consumption). The model sensitivity analysis 

highlights the importance of reducing the initial contamination levels of L. monocytogeneson 

raw fish and the maintenance of proper storage conditions. Various ‗what-if‘ scenarios were 

studied to assess the likely impact on the log probability of illness per serving. Careful 

control of consumer storage temperature and time were identified as the best strategies to 

decrease the probability of illness. The quantitative risk assessment developed in this study 

may help risk managers to make informed decisions with regard to possible control measures 

for L. monocytogenesin cold smoked salmon and therefore improve food safety.  

Some parts of this chapter have been submitted to the International Journal of Food 

Microbiologyand is currently under review and also presented at the Food simulation 

conference (Page: 212-213). 
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9.2 Introduction 
 

Risk assessment is the scientific process of determining the relationship between exposure to 

a given pathogen under a defined set of conditions and the likelihood of an adverse health 

effect or disease (Pouillot et al., 2007). Quantitative Microbiological Risk assessment 

(QMRA) can help to obtain the necessary information regarding the severity of a health 

disturbance because it is based on knowledge concerning exposure to the pathogen and an 

individual‘s response.Some risk assessments have been conducted around Europe with regard 

to L. monocytogenes in cold-smoked salmon (Pouillot et al., 2007, Lenhart et al., 2008 and 

Garrido et al., 2010). This chapter details the development of a risk assessment model for L. 

monocytogenes on cold-smoked salmon in Ireland and represents the first published study of 

its kind for the Republic of Ireland.  

 

9.3. Material and Methods 

9.3.1. Model development 

The model developed in this study describes the probability of developing listeriosis 

following the consumption of cold-smoked salmon potentially contaminated with L. 

monocytogenes, taking into account primary data obtained in the exposure assessment step, 

including: occurrence and levels of L. monocytogenesat the point of sale, growth of L. 

monocytogenesfrom the point of sale to consumption, time and temperature fluctuations(at 

retail, consumer transport and consumer storage), serving size and consumption frequency of 

smoked salmon. This model describes human exposure as a distribution of ingested L. 

monocytogenes, taking into account the possible growth from market to table. The model was 

created in Microsoft Excel 2003 with the @Risk add-on package (Version 4.05, Palisade 

Corporation, New York, USA). Probability density distributions were used to take account 



176 

 

ofinherent uncertainty and variability in the input parametersin the model. The model was 

broken down into 3 main modules, as illustrated in Fig 9.1. The framework of the three 

modules is described below: 

1. Exposure assessment: (a) Prevalence and initial contamination (retail storage): At this 

initial stage if the product is contaminated, it will have a certain level of pathogen at 

that point in time. (b) Consumer transport: The pathogen concentration could increase 

during consumer transport due to the time and temperature fluctuations during transit 

between purchasing and consumer storage. (c) Consumer storage: The pathogen could 

increase during storage depending on the consumer storage conditions, potentially 

leading to an increase in the final level of L. monocytogenesin the product. (d) 

Consumer consumption: The consumers will invariably eat different quantities 

(population variability) of the product, resulting in varying degrees of exposure. 

Various serving sizes have been observed among different groups of population. 

2. Dose response: The dose response relates the amount consumed to a clinical outcome, 

in this study a listeriosis illness, and is used to translate exposure into a log probability 

of illness. 

3. Risk characterisation: This stage combines the first two steps to characterise the risk of 

illness for the given simulated exposure level. The model simulated the annual risk of 

illness for a high risk and low risk population considering different consumption 

frequencies (i.e. monthly and weekly consumption).Each module was modelled with 

each proceeding module acting as an input into the next. The model provides a baseline 

description of listeriosis threat in Ireland by consuming cold-smoked smoked salmon 

contaminated with L. monocytogenes. Table 9.1 summarises all the main model inputs. 
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Figure 9-1 Schematic representation of the three modules used in the development of the 

baseline model of L. monocytogenes in smoked-salmon. 
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Table 9-1: Model Inputs used in building the risk assessment model 

 

 

9.3.2. Exposure assessment 

Prevalence and Initial concentration 
 

The prevalence and levels of L. monocytogenes in vacuum packed cold-smoked salmon was 

estimated from a survey carried out in a retail outlet in Ireland between 2007 and 2008 

(Chitlapilly Dasset al., 2010a). The prevalence was described by a Beta distribution assuming 

Description Units Variable Formula/model/values 

Prevalence Percentage Prev Beta(26+1,120-26+1)  

Initial contamination 

level 

log CFU/g  Cumulative (x:s) Table 2 

Time from retail fridge 

to consumer fridge 

Hours T1 Uniform (30,180)/24 

Temperature consumer 

transport 

ºC Tp1 Uniform (4,8) 

Temperature consumer 

storage 

ºC Tp2 FSAI, 2001 Table 3 

Maximum storage time 

in consumer fridge 

Days Tmax 30 

Minimum storage time 

in consumer fridge 

Days Tmin 21 

Consumer storage time Days T2 Uniform (Tmin:Tmax) 

 

mCurv 

 

 m 

 

1 

 

nCurv 

 

 v 

 

10 

Bacterial adaptation  ho µmax × λ 

 

Growth constant  qo 1/exp(h0)-1 

 

Concentration of L. 

monocytogenes after 

consumer travel from 

retail to consumer 

storage 

logCFU/g y(T1) Baranyi and Roberts model 1994 

Equation (1) 

Concentration of L. 

monocytogenes after 

consumer storage 

logCFU/g Y(T2) Baranyi and Roberts model 1994. 

Same as Equation (1), with 

change in parameters Y01, Ymax1, 

t1and µmax1 replaced by new 

parameter Y02, Ymax2, t2and µmax2 

Serving size g S Normal(35,26,Truncate(0,)) 
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α equal to (21.6 + 1) and β equal to (120 - 21.6 + 1). The levels of L. monocytogenesin the 

unprocessed fishwere modelled by fitting a continuous cumulative distribution to observed 

data (Chitlapilly Dasset al., 2010a; Table 9.2). 

 

Table 9-2Initial levels of L. monocytogenes in smoked-salmon at retail level 

(Chitlapilly Dass et al., 2010a). 
 

L. monocytogenes  

count at the retail 

level 

(log10 CFU) Probability 

5 0.037 

5.5 0.074 

6.5 0.111 

8 0.148 

15 0.185 

21 0.222 

22 0.259 

23 0.296 

23 0.333 

33.5 0.370 

34 0.407 

42.5 0.444 

56 0.481 

58 0.519 

58.5 0.556 

62 0.593 

63 0.630 

66 0.667 

75 0.704 

79.5 0.741 

87 0.778 

89 0.815 

89.5 0.852 

99.5 0.889 

240 0.926 

498 0.963 

 



180 

 

Consumer transport 

The duration for consumer transport from retail to home refrigeration was described by a 

uniform distribution assumed a minimum and maximum time of 30 min and 3 hrs, 

respectively(FSAI, 2002). A uniform distribution is a rough modelling tool used to describe 

uncertainty when only the minimum and maximum value is known. The consumer transport 

temperature was also described by a uniform distribution, with a minimum and maximum 

temperature of 8 and 12 ºC (FSAI, 2002), respectively. The growth of L. 

monocytogenesduring transportation from retail to consumer fridge was calculated using the 

growth model suggested by Baranyi and Roberts, 1994 (Equation 9- 1). 

 

        ------------------Equation 9-1 

 

Where: A(T1) is the concentration of L. monocytogenes following consumer transport (for 

length of time T1) from retail to consumer storage (log CFU/g), T1 is the time taken by the 

consumer to transport the smoked salmon from the retail outlet to the consumer fridge, y01 is 

the initial level of L. monocytogenes in smoked salmon at retail level, µmax1 is the 

maximumgrowth rate. The maximum population density (ymax1) for specific time and 

temperature combinations (8 and 12 ºC), where obtained from fitting the observed data 

(Chitlapilly Dass et al., 2010a) in DMFIT Excel add-in.  
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The sigmoid curve parameters m and v determines the shape of the curve. The parameter m 

determines the curve‘s shape during the transition from the exponential to stationary phase. 

Therefore an empirical value, m = 1 is suggested for this curvature parameter (logistic 

potential growth). The rate v determines the rate of the transition fromthe lag to the 

exponential phase, therefore an empirical value of v = 10 is suggested for this curvature 

(Barayni and Roberts, 1994). 

The values of m and v were assigned by Turner et al.,(1976) to obtain a unified generic 

growth model, (Baryany and Roberts, 1994) and q represents the physiological state of the 

cells and given a value 0.002 for L. monocytogenes (Panagou, 2008).  

 

Consumer storage 

Auniform distribution was used to define the consumer refrigeration temperature (Tp2); the 

data for consumer refrigeration was obtained from a survey conducted in Ireland (FSAI, 

2002) as detailed in Table 9.3. The average refrigerator temperature recorded during the 

study ranged from 1.7 to 11.8 °C. Refrigerators in around half of the households surveyed 

had an average temperature above the recommended temperature range of 1-5 °C. The 

growth of L. monocytogenesduring consumer storage was calculated using the growth model 

suggested by Baranyi and Roberts, (1994). The storage time (T2) was based on the shelf life 

printed on the smoked salmon packand was modelled using a uniform distribution, with the 

minimum storage time of 21 days (shelf life printed on the smoked salmon pack) and 

maximum time of 30 days (5 days added to the shelf life). Growth during consumer storage 

was also modelled using equation 1, with parameters Y01, Ymax1, t1and µmax1 replaced by new 

parameters Y02, Ymax2, t2and µmax2, respectively. Where, Y02 is the initial level of L. 

monocytogenes in smoked salmon after retail storage, µmax2 maximumgrowth rate and 
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maximum population density (ymax2) which where obtained from fitting observed data 

(Chitlapilly Dasset al., 2010a) in DMFIT Excel add-in. The parameter t2 represents the 

temperature during consumer storage.After modelling the growth resulting from the 

consumer storage the model yielded a final concentration of L. monocytogenesbefore 

consumption. 

The overall equation 9- 2 was obtained by combining the two modules (consumer transport 

and consumer storage) to obtain the final concentration of L. monocytogenes before 

consumption. Where, Y(t) is the final concentration of L. monocytogenes (log CFU/g) after 

total storage time (i.e. retail storage, consumer transport and consumer storage time). 

 

     ------------------ Equation 9-2 
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Table 9-3Temperature distribution in domestic refrigerators on the island of Ireland (FSAI, 

2002) 

 

 

  

 

 

Consumption data  

The level of L. monocytogenes in a smoked salmon serving was assumed to be evenly spread 

on the sample and the ingested dose was dependent on the number of L. monocytogenes 

present in 250 g of smoked salmon and the corresponding amount ingested. Accurate data 

about individual consumption patterns were not available. However, a consumption survey 

carried out in Ireland (IUNA, 2004) on ready to eat fishwas used (Table 9.4). The likely 

number of cells ingested per contaminated serving was calculated using equation 9-3 

E = Log (10^Y(t) × S)--------------- Equation 9-3 

 

Where, Eis the level of exposure to L. monocytogenesper contaminated serving (log10 

CFU/g), Y(t) is the final concentration of L. monocytogenes at the point of consumption and 

S is the serving size. 

 

 

Temperature (ºC) Percentage 

<5 51 

6-7 28 

8-12 21 
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Table 9-4Consumer consumption survey of ready-to-eat fish meals (IUNA, 2007) 
 

 

 

 

9.3.3. Dose response model 
 

The dose response curve was used to translate the simulated exposure into an estimate of risk 

of illness. A flexible Weibull-Gamma model,as suggested by Farber et al (1996), was 

used.The model incorporated two scenarios by dividing the population of Ireland into two 

sub-groups, low-risk individuals (healthy population) and high-risk individuals (infants, 

pregnant women, HIV and individuals above > 65 years of age). Data from the central 

statistic office (CSO, 2006) indicated that 7.41 % of the Irish population are children less 

than 4 years old, pregnant women account for 1.68 % of the population, 11.03 % of the 

population is over 65 years of age, while the prevalence of HIV patients is approximately 0.1 

% (HPSC, 2008). The high risk category could be approximately 20.21 % (pregnant women, 

children <1 year, elderly > 65 years of age and HIV/AIDS patients) of the total population (as 

used by Cummins et al., 2010). The flexible Weibull-Gamma model equation is described by 

the following equation 9-4: 

 

P = 1-[1 + (10^E
b
)/ß]

-α
--------------------- Equation 9-4 

 

 Age 

(Years) 

Mean 

(g/d) 

Standard deviation 

(g/d) 

Median 

(g/d) 

95 percentile 

(g/d)  

Male 18-64 27 30 20 86 

Female 18-64 20 23 14 69 
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Where, P is the probability of illness for an individual exposed to a dose E. The parameters α 

and β are host/pathogen relationship. For both sub-populations, α was selected as 0.25 and b 

as 2.14, whereas β is 10
10.98 

for the high-risk population and 10
15.26 

for the low-risk population 

(Farber et al., 1996 and Bemrah et al., 1998).The dose response model is illustrated in Fig 

9.2. 

 

 

Figure 9-2Dose response model for ‗High risk‘ and ‗Low risk‘ populations 

 

9.3.4. Risk Characterisation 

 

The annual probability of illness was estimated fromknowing the probability of illness per 

serving and assuming a frequency of consumption (i.e. weekly or monthly consumption 

frequency) as detailed in equation 9-5. The simulated annual log probability of illness was 

derived as an output in both the low and high risk population. 

Pill= 1 - (1 - P)
n
----------------------------- Equation 9-5 
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Where Pill is the annual probability of listeriosis, P is the probability of illness per serving in 

the high risk (PHR) or low risk population (from equation 9-4), and n is the consumption 

frequency (n = 52 for weekly consumption, and n = 12 for monthly frequency).  

9.3.5. Model run 
 

The input parameters were combined onto a spreadsheet (Microsoft Excel, 2003) running the 

@Risk add-on package (Palisade Software, Newfield, NY, USA) and the Monte 

Carlosimulation were performed using Latin hypercube random sampling. The simulation 

was performed using the parameters and calculations presented and the model was run for 

10,000 iterations. A table summarising all the model inputs for the baseline model is provided 

in Table 9.1. The model resulted in a number of output distributions following the 

consumption of cold-smoked salmon contaminated with L. monocytogenesas detailed in 

Table 9.5.  
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Table 9-5Simulated outputs from the risk analysis 

Symbol Description Model/Distribution Units 

Y(t) Final concentration of L. 

monocytogenes 

Baryani and Roberts (1994), 

Equation (2) 

log10CFU 

E Number of bacetria ingested 

per contaminated seving 

Log(10^Y(t) × S) log10CFU/g/serving/person 

P(HR and LR) Probability of illness inhigh 

risk population and low risk 

population 

P(HR and LR)=1-(1+(10^Eb)/ß)-α   

where (ßLR = 1015.26 for low risk 

population  

ßHR= 1010.98 for high risk 

population 

α = 0.25 and b = 2.14 for both 

the population 

(Lindqvist & Westoo, 2000) 

Probability 

Pill(HR and 

LR) 

Probability of illness per 

year 

Pill(HR  and LR) = 1- (1 - P)n 

Where,  n = 12 for monthly 

consumption 

n = 52 for weekly consumption 

Probability 

 

9.3.6. Scenarios 
 

In order to test possible risk management measures, various scenarios were proposed 

focusing on the parameters identified by the sensitivity analysis. The scenarios represented 

the individual effect of each control measure or a combination of multiple parameters. The 

changes were assessed based on the log probability of illness per serving in both the high risk 

and low risk populations and were compared with the baseline model. Scenario A looks at 

setting the maximum concentration of the pathogen at the time of purchase from the retail 

store to be truncated at 100 CFU/g, this scenario would represent strict adherence to the 
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safety criteria according to the current EU regulation with regard to L. monocytogenes. In 

Scenario B, the travel time from the retail cabinet to the consumer storage was set to a 

maximum of 30 min. Scenario C represents the situation where the consumer storage time 

was set to be a maximum of 15 days and minimum of 7 days. Scenario D was where the 

consumer storage temperature is set to be constant at 4 °C throughout the storage period. 

Scenario E is a combination of scenario C and D, combining the consumer storage time and 

temperature. Scenario F looks at the combined effects of the control measures in scenarios A, 

B, C and D. A table of scenarios used is given in Table 6. Values are the same as the baseline 

model except where stated. 
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Table 9-6Changes in inputs from the baseline model used in the scenario analysis 

 

Scenario Initial contamination 

level (log10CFU/g) 

Consumer 

shopping time 

(min) 

Consumer 

storage (Days) 

Consumer storage 

temperature (°C) 

Baseline model Cumulative (1, 103) Uniform (30 min – 

3 h) 

Uniform (21 – 

30) 

Uniform (3 – 10) 

A Same as baseline 

truncated at 102 

   

B  30   

C   7 – 15  

D    4 

E   7 -15 4 

F Same as baseline 

truncated at 102 

30 7-15 4 

 

9.3.4 Model assumptions 

 

The results of the risk assessment can be influenced by assumptions and hence results must 

be viewed in the context of theassumptions made (Cummins et al., 2010).The following 

modelling assumptions have been made in the development of this risk assessment model: 

 L. monocytogenesare assumed to be uniformly distributed on the surface of the cold-

salmon. 

 Consumption of cold-smoked salmon is the same for both high risk and low risk 

population categories.  

 Consumers do not store cold-smoked salmon for more than 30 days. 

 Consumers‘ behaviour (serving size and frequency) is the same throughout the year. 
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 The high risk category did not include people in the hospitals, treatment centres or 

crèches. 

 As smoked-salmon are vacuum sealed at the end of the production, cross 

contamination was not modelled, cross contamination of opened packs were also not 

studied (at consumer level). 

 A Weibull–Gamma model is assumed for the dose response model and may be a 

pessimistic model to use. 

 The dose response model assumes all strains are virulent; this may be a pessimistic 

assumption giving rise to high risk estimates. 

 

9.4. Results 

9.4.1. Baseline model 
 

This chapter details the development of a risk assessment model for L. monocytogenes in 

vacuum packed cold-smoked salmon in Ireland and represents the first published risk 

assessment study on L. monocytogenes in Ireland. Estimation of exposure to L. 

monocytogenes in cold-smoked salmon involves a number of complex and interrelated 

processes, describing the transmission of L. monocytogenes through the food pathway up-to 

the point of consumption.  

The baseline model resulted in a number of output distributions which were used to predict 

the following: A) Final concentration (Y(t)) of L. monocytogenes after retail storage, 

consumer shopping behaviour and consumer storage. B) Number of L. monocytogenes (N) 

ingested per contaminated serving. C) Log probability of illness (Pill) for a low risk and high 

risk individual in a year.  
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The predicated mean dose of L. monocytogenes ingested by people eating a contaminated fish 

was simulated as 3.66 log CFU/g (Fig 9.3). The frequency distribution, of the log probability 

of illness per serving in Ireland in both ‗high risk‘ and ‗low risk‘ groupsare given in Fig 9.4. 

The mean log probability of illness in the high risk group is – 3.4 log which is approximately 

1 in 2,500 (people) risk of getting ill. The mean log probability of illness in low risk group is 

- 8.02 log, which is approximately 1 in >100 million (people) risk of getting ill (Table 9.7). 

The results highlight the significant risk to high risk population. Given some of the 

pessimistic assumptions used in the model (as above), the model may overestimate the risk, 

this is highlighted by the fact that the average number of reported listeriosiscases in Ireland is 

37 per year (FSAI, 2007). There may also be some underreporting of cases which would 

result in some deviation.Not withstanding this, the model can be used to evaluate risk 

reduction measures 

For this study the end of the production line was used as the first point in the model thus 

restricting the production processevaluation. Studies carried out by Pouillot and co-workers 

(2007) and Yang and co-workers (2006) on cross-contamination in kitchen from smoked 

salmon, concluded that cross-contamination in the home is a less important factor 

contributing to listeriosis risk when compared to the initial contamination levels and L. 

monocytogenes growth during home storage. Hence for this study, the baseline model 

integrated growth of bacteria at retail storage, consumer shopping behaviour and consumer 

storage at varying temperatures.  

The model resulted in a number of output distributions which can be used to predict the log 

probability of illness for both low risk and high risk individuals following the consumption of 

contaminated smoked salmon. The distribution for prevalence and concentration of L. 

monocytogeneswere based on the analysis of samples stored at dynamic temperatures, 

representative of the variable storage temperatures that these products can be expected to 
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experience in the retail and consumer home. This also took into account the consumer 

shopping time and temperature the product is exposed to.  

The development of the quantitative risk assessment model based on various surveys, 

assumptions and the inclusion of input uncertainty has resulted in a helpful tool to evaluate 

the relationship between risk factors which may be used to mitigate L. monocytogenes risk. 

The model was simulated from retail level to the consumers‘ home; the interventions have 

been set at these steps for the food chain 

 

 

Figure 9-3Simulated L. monocytogenes ingestion by consuming contaminated smoked-

salmon 
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Fig 9.4a 

 

Fig 9.4 b 

Figure 9-4a and b Frequency distribution of the log probability of illness in Ireland in both 

‗High risk and ‗Low risk‘.
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Table 9-7Simulated outputs for the baseline model for L. monocytogenes in smoked-salmon. 

 

Output (units)  Mean SD Percentiles (log) 

    5
th
 10

th
 50

th
 75

th
 95

th
 

Final concentration (log10CFU)  2.60 0.8

3 

1.1 1.28 2.21 2.80 3.14 

Ingested dose 

(log10CFU/g/serving/person) 

 4.7 0.8

0 

3.01 3.85 4.15 4.61 5.31 

Log Probability of illness per serving 

in the high risk (Probability) 

 

 - 3.8 0.9

4 

-11.01 -10.93 -10.21 -9.72 -9.31 

Log probability of illness per serving 

in the low risk (Probability) 

 -8.02 0.9

2 

-12.01 -12 -11.98 -11.02 -10.94 

 

9.4.2. Sensitivity to parameters 

 

A sensitivity analysis indicated that probability of illness per serving was most sensitive to 

the input distribution initial contamination level, time and temperature during consumer 

storage. 

The sensitivity analysis is a systematic evaluation of model inputs, parameters and 

assumptions (Cummins et al., 2006). The sensitivity of the model inputs was measured by the 

spearman rank order correlation (Fig 9.5). The parameters that influenced the model 

predictions were the initial contamination level Y(t) correlation coefficient 0.97, time during 

consumer storage T1correlation coefficient 0.13 and the temperature encountered during 

consumer transport Tp2 correlation coefficient 0.06. The initial contamination level was 

found to be the most important factor responsible for the increase in the number of L. 

monocytogenes in cold-smoked salmon at the time of consumption. This could be controlled 

by eliminating or reducing the levels of L. monocytogenes contamination during the 
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production stage and before the final vacuum packaging of the cold-smoked salmon 

product.The sensitivity analysis also highlights that the risk management strategies should 

focus on controlling the consumer storage conditions, which can result in a significant 

reduction in risk. The significant parameters influencing final exposure to L. monocytogenes 

could be used to develop possible risk management strategies.  

 

 

 

Figure 9-5 Sensitivity analysis for the annual risk of illness for high risk population. 

 

9.4.3. Scenario analysis 
 

Table 9.8 shows the simulated log probability of illness per serving in both the low and high 

risk population. The impact on the log probability of illness varied according to the scenarios 

tested. Reduction of consumer storage time and temperature had a significant effect in 

decreasing the log probability of illness in both the low and high risk population (scenarios B, 
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C, and E). The most significant reduction was scenario F (34.7 % and 17. 07% reduction, in 

both high and low risk population, respectively) which was a combination of low (< 3 log 

CFU/g) initial contamination, shortened consumer travel time and controlled consumer 

storage temperature and time. A reduction in initial count and consumer travel resulted in a 

moderate decrease (Table 8) in the log probability of illness in both high and low risk 

population (scenario A and E).  

 

Table 9-8Simulated log probability of illness for the tested scenarios 

 

 

 

 

 

 

 

 

 

 

The ―what-if‖ scenario analysis results indicated that, the temperature and the storage period 

inhousehold refrigerators (scenarios B, C and E) significantly influenced theexposure to L. 

monocytogenesfollowing the consumption ofcontaminated cold-smoked salmon in Ireland. 

Secnario A had lower impact on the log probability of illness. Table 8 shows the percentage 

change of scenarios compared to the baseline model 

Scenario Log probability of illness 

per serving 

High risk population  
(% change from baseline) 

 

Log probability of illness 

per serving 

Low risk population  
(% change from baseline) 

Baseline model      -3.8 -8.02 

A -4.1 (7.8 %) -8.9 (10.9 %) 

B -4.6 (21.0 %) -8.8 (9.7 %) 

C -4.3 (13.1 %) -8.6 (7.2 %) 

D -4.8 (26.3 %) -9.1 (13.4 %) 

E -3.8 (0 %) -8.04 (2.4 %) 

F -5.12 (34.7 %) -9.39 (17.07) 
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The infectious dose of L. monocytogenes is 10
3 

CFU and hence requires consumption of 

about 10,000 cells to cause infection (Chikindas and Gandhi, 2005). However, this estimate 

could vary depending on the health state of the population (Cummins et al., 2010). Therefore 

it is important to avoid or minimise the growth and eventual increase of microbial load. This 

is attainable when the recommended time and temperature is maintained until consumption. 

Therefore, reduction in the temperatureof household refrigerators to 4◦C without exceeding 

15 days of storage period is the best strategy to reducethe log probability of illness in both 

low and high risk populations.  

The results from this study indicate that a careful control of storage conditions can bring a 

significant reduction in risk. Unlike the conditions employed in professional settings, storage 

conditions implemented by the consumer cannot be controlled by legislation (Cheroutre-

Vialette., 2000). This strategy should be directed to improve consumer awareness on the 

importance of correct storage conditions, where temperature abuse will be most 

frequent.Emphasis should be made on the health risk associated with consuming such 

products kept under abusive storage conditions, in particular preventive tips should be given 

to high risk populations.  

Considering the results of the present study, the model is of practical value. Nevertheless, 

continuous studies on the levels of L.monocytogenes in cold-smoked salmon at the point of 

sales and the consumer behaviour of food handing and storage are necessary in order to 

improve this first risk assessment carried out in the Republic of Ireland.  

 

9.5. Conclusions 
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Risk assessment is a scientific approach which is able to provide an estimate of the impact of 

contaminated food on public health. Risk assessment can be a valuable tool in assessing risk 

to human heath from consuming cold-smoked salmon. The model developed in this study 

will be useful for the regulatory authorities to evaluate the likely risk for L. monocytogenes 

related illnesses. The model provides a better understanding of the potential threat from L. 

monocytogenes in cold-smoked salmon. Further study on the levels of L. monocytogenes in 

smoked salmon at the point of sale and consumer behaviour regarding food storage, handling 

and consumption are necessary in order to improve the first approximation to listeriosis risk 

assessment in the Republic of Ireland. 
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Chapter 10 : General Conclusions and Recommendation for Future Work 
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10.1 General Conclusions 
 

The overall aim of this project as detailed in chapter 1 was to investigate the prevalence and 

source of L. monocytogenes in different stages of vacuum packed cold-smoked salmon 

production chain /retail market and to develop a risk assessment model. This will enable a 

closer analysis of the source and contamination pathways of L. monocytogenes in Irish 

vacuum packed cold-smoked salmon and facilitate the calculation of risk associated with the 

consumption of smoked salmon contaminated with L. monocytogenes. This was achieved by 

addressing specific project objectives as detailed in chapters 3, 4, 5, 6, 7 and 8. These 

objectives were met and the following conclusions are reported below: 

 

10.1.1 Identification and isolation of L. monocytogenes in vacuum packed cold-smoked 

salmon 
 

Historically, it has been challenging to isolate L. monocytogenesfrom food or other samples 

and this explains why it remainedunnoticed as a major food pathogen until recently (Gasanov 

et al., 2005).Once L. monocytogenes contaminates a foodprocessingplant it can survive there 

for a long time if the temperatureis low and the organism is protected by the food components 

(Fonnesbech Vogel et al., 2001). For these reasons standardisation of methods for typing L. 

monocytogenes isolates is necessary in epidemiological surveys investigating food-born 

outbreaks. This investigation will aid in identifying the source of contamination and routes by 

which L. monocytogenes is distributed and how they contaminate vacuum packed cold-

smoked salmon.  

For the detection and identification of L. monocytogenes; phenotypic, biochemical and 

immunological assays and genotypic methodology are used. However, the time for 

preparation, skills and objectivity when evaluating resultsconsistently differ among these 
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methods (Zunabovic, 2010). In the study presented in this thesis, the official method for 

isolation (EN/ISO 11290 -01 and - 02) of L. monocytogenes from ready-to-eat food was 

assessed for its efficacy for isolating and detecting L. monocytogenes. The advantage of this 

method is thatListeria spp. are sensitive to the enrichment media which resuscitate the injured 

Listeria spp. and the selective plating technique uses chromogenic media for the 

identification of L. monocytogenes (Gasanov et al., 2005).  

The frequently recommended (ISO) Listeria agarsPalcam and Oxford do not distinguish 

between pathogenicand non-pathogenic Listeria spp. (Stam, 2007). Although,ALOA 

distinguish between the L. monocytogenes and L. ivanovii, Palcam had better rates of 

recovery when compared to ALOA and Oxford (Chitlapilly Dass, et al., 2011).  

The present study utilised culture-dependent molecular tracking techniques for identification 

and sub-typing of L. monocytogenes.The major advantage that moleculartechniques offer 

over conventional methods is thatthese are based on differences within the genome anddo not 

rely on the expression of specific antigenic factorsor enzymes to facilitate identification. 

They areextremely accurate, reliable and some can be performedin the same time frame as 

immunoassay methods. In this study, L. monocytogenes was grown on Palcam (selective 

culture method) and identified by 16S rRNA gene sequence analysis and sub-typed by 

MLVA. 

The method of identification by 16S rRNA gene sequence analysis is rapid and accurate 

when compared to cultural methods, but it is cost intensive when compared to the ISO 11290-

01 and -02 methods for detection. A drawback of this method is the requirement of 

specialised equipment, such as an automated DNA sequencer, to carry out the analysis.  

In the recent years MLVA has become one of the most popularmethods for bacterial typing. 

In the prevalence study (Chitlapilly Dass et al., 2010a), subtyping techniques aimed at 
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finding differences between unrelated strains. Thisunderlines the differences in regional 

prevalence of single genotypesand second genotype which is representative of the imported 

smoked –salmon. Most of the studies are representative of regional prevalence, the need for 

global studies to integrate information derived fromdifferent areas of the world is vital. 

Interestingly, there were some similarities between the allelic profiles between this study and 

that of Murphy et al., (2007) study on Irish L. monocytogenes isolates.  

MLVA can be used for global epidemiological surveillance, while providing better 

discriminatorypower and ensuring inter-laboratory data-sharing.MLVA is more desirable 

over typing techniques as their data are stored in a web server that can be queried by any 

useranywhere in the world (Murphy, et al., 2007). Even if MLVA schemes are based on the 

tandem DNA repeats they can be identified by many allelic profiles (Keim, 2007).Ithas the 

potential to indicate relatedness of isolates and henceidentify outbreaks, based on MST 

comparisons with an activedatabase. MLVA subtyping of Listeria would support 

controlmeasures aimed at protecting public health. 

In the ecology study, MLVA could easily distinguish between the Listeria isolates originating 

from different zones in a cold-smoked salmon processing factory, and thereby a 

contamination pathway could be established (Chitlapilly Dass, et al., 2010b). The MLVA 

technique reported here is easy to perform, relatively fast, inexpensive and can be 

conveniently incorporatedinto any molecular biology laboratory without the need to 

acquireadditional expensive equipment. Whereas, PFGE may take up to aweek to complete 

(non-standardised), MLVA results can beavailable in less than eight hours following DNA 

extraction.Furthermore, this approach requires only a conventional PCRfollowed by standard 

agarose gel electrophoresis. It would berelatively easy to standardize the method, thereby 

facilitatinginter-laboratory data exchange, in a manner similar to PulseNet (Swaminathan et 

al., 2001). However, as MLVA isbased on an estimation of the number of tandem repeats in 
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anisolate as indicated by amplicon size, the accuracy of the results may be lower than can be 

achieved by direct sequencing of eachamplicon (Lindstedt et al., 2003, 2004). Access to 

‗Bionumerics‘ softwarepackage (Applied Maths, Sint–Martems–Latem, Belgium) 

orequivalent bioinformatics software is essential when using this approach (Murphy et al., 

2007). 

 

10.1.2L. monocytogenes’ prevalence in vacuum packed cold-smoked salmon 

 

Having established the detection protocol, culture-depended molecular typing technique was 

utilised in determining the prevalence in vacuum packed cold-smoked salmon in Dublin, 

Ireland (Chitlapilly Dass et al., 2010 a). This was the second study after nearly 9 years of the 

first recorded prevalence study in the Republic of Ireland (FSAI, 2001). The prevalence of L. 

monocytogenes (21.6 %) in smoked-salmon from various outlets recorded in this study 

showed 8.6 % increase when compared to the prevalence (13 %) conducted in 2001 by FSAI. 

The prevalence reported in this study is in line with other studies carried out in Europe where 

the prevalence range from 10- 40 % (Lindquist et al., 2000, Delignette-Muller et al., 2006, 

Pouillot et al., 2007 and Garrido et al., 2009).  

One of the objectives of this prevalence study was to quantify levels of L. monocytogenes (in 

the various smoked-salmon brands tested), in order to estimateactual consumer exposure to 

the organism.The highestnumber of L. monocytogenes was found in a brand A and D (>10
5 

CFU/g). Since several lots of the same producers showed elevated levelsof the pathogen, this 

could be related to an in-house contamination as the strains isolated from the lots showed 

genotypic similarities.  
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Despite the fact that the majority of vacuum-packed productsexhibited a label reading ‗‗use 

by date‖ and ‗‗store at 0–5 °C‖, in reality many of the retail and domestic refrigerators are 

toowarm for the safe storage of food (reaching temperatures 9 °C; Johnson et al., 1998), 

allowing the growth of the pathogen andother spoilage organisms in a shorter time (Francois 

et al., 2006).Since storage time and temperature are important in controllingthe growth of L. 

monocytogenes, improved consumer educationconcerning refrigerator temperature control is 

needed (Kosa, et al., 2007), together with more informative labelling of all RTE 

(manufacturers and in-storepackaged),preferably a safety-based use by date type (Cates, Kosa 

and Canavan, 2004).  

As an extension of the prevalence study, a cold-smoked salmon factory in Dublin, Ireland 

was divided into various zones depending on its proximity to the product and the presence of 

L. monocytogenes was analysed for a period of one year (Chitlapilly Dass et al., 2010 b). 

Overall prevalence of the zones were 24.54 %, while the highest was recorded in zone 4, 

which was 58.3 %, this zone was the outside the smoked-salmon production area. Zone 1 

which was the product handing area recorded 16.6 % contamination with L. monocytogenes. 

This study shows ubiquitous nature of L. monocytogenes and its persistence in nature and on 

inanimate objects (wooden surface, stainless steel, salt).  

As a part of the factory evaluation study, 60 individual raw salmon were tagged and traced 

for the presence of L. monocytogenes after every step of the processing of cold-smoked 

salmon. Of the 60 salmon samples tested, L. monocytogenes were isolated in varying degrees 

from the raw salmon (28.33 %), and the final vacuum packed cold smoked salmon (21.60 %).  

Process contamination in particular has proved to be animportant source of Listeria 

contamination in food production andnumerous studies show that in-house L. monocytogenes 

floracontaminates seafood during processing (Autio et al., 1999; Fonnesbech Vogel et 
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al.,2001; Medrala et al., 2003). Nevertheless, there are indications that L. monocytogenes 

contaminates final products from seafood raw materials (Eklund et al.,1995; Fonnesbech 

Vogel et al., 2001 and Chitlapilly Dass et al., 2010b). 

The greatest challenge in controlling L. monocytogenesin the food industry is therefore to 

prevent persistence of the bacterium in specific niches; whereroutine cleaning and 

disinfection are ineffective. The factory in which the study was conducted had implemented 

internalcontrol and sanitation procedures. However, the cleaningprocedures do not 

completely eliminate L. monocytogenes from the processing environment. Thiswas revealed 

by the observation that 16.6 % of samplestaken from surfaces in direct contact with food 

were stillcontaminated with L. monocytogenes after cleaning. Ifthe cleaning procedures are 

ineffective and theconditionsare favourable, biofilms incorporating L. monocytogenes may be 

formed on different surfaces (Beresford et al., 2001). These attached bacteria may bevery 

pernicious, contaminating products in the processeither continuously or only occasionally, 

when a piece ofbiofilm is dislodged to the process (Pouillot et al., 2007). The most 

problematicsites examinedwere conveyer belts and other transport systems, floorsand drains, 

cooking equipment andcutting boards. The results clearlydemonstrated the types of 

equipment requiring specialattention both with respect to hygienic design and whenplanning 

routinesfor cleaning and disinfection. In orderto solve the problems observed in this study, 

there is aneed for close co-operation between the suppliers of equipment, cleaning agents‘ 

manufacturer, the staff of cleaningcompanies and hygiene specialists from the foodindustry. 

There istherefore evidence in the literature that L. monocytogenes may be avoided by 

vigorous cleaningand sanitation but that, due to the ubiquitous nature ofthe organism, 

sporadic contamination may still occur (Nesbakken, 1995; Fonnesbech Vogel et al., 2001). 
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10.1.3L. monocytogenes’ route of contamination in vacuum packed cold-smoked salmon 
 

In this study, transmission dynamics of L. monocytogeneswas established by tracing the 

contamination pathways of L. monocytogenes in final vacuum packed cold-smoked salmon. 

In the first approach to establish the contamination pathways, the L. monocytogenes isolates 

obtained from the various brands of vacuum packed cold-smoked salmon as a part of the 

prevalence study was typed by MLVA, to study the relatedness among the isolates. 

Surprisingly, the L. monocytogenes isolates from Irish and the UK smoked salmon producer 

were genetically related whilst the L. monocytogenes isolate from the eastern European were 

genetically unrelated and formed a separate branch in the MST analysis. The Irish and UK 

smoked salmon producer used the same slaughter house in the UK to procure the raw-

salmon; this could be related to the similarities in the isolates. This study brings about the 2 

hypothesis for the possible route of contamination (1) raw salmon could have carried the L. 

monocytogenes isolates as a part of its natural flora which was supplied to the two processers 

(Irish and U.K.); (2) the slaughter house could have harboured an in-house flora which was 

responsible for the contamination, which could have been transferred to the two processors. 

The un-relatedness of the eastern European isolates to the other isolates could be due to the 

geographical distance of the two processors or the strain could be specific to the smoked-

salmon processing factory or the slaughter house from where the salmon was procured. As 

this study looked at the relatedness among the different isolates obtained from various brands 

manufactured in Ireland and abroad a clear picture of the route of contamination could not be 

established. Nevertheless the study was able to establish relatedness among geographically 

distant processors (Irish and U.K.) who procured raw salmon from the same slaughter house, 

pointing to the fact that raw salmon entering the factory could be the cause of contamination 

in the final product. 
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In the second approach a smoked salmon processing factory in Ireland was investigated for a 

period of one year to establish a possible contamination pathway. The factory‘s zone one 

which was the product contact surface contaminated the final product; certain batches of the 

final product had more than one type of L. monocytogenes. The L. monocytogenes types that 

were isolated from the final product originated from raw fish, skinner and filleting board. 

There was no cross-contamination from the drain or garbage collection area into the food-

handling area. This points that the strains present in product region could have originally 

come from the raw material and was not eliminated through cleaning. This study further 

confirms the prevalence study results, that raw salmon is the main cause of contamination of 

L. monocytogenes in smoked salmon followed by the in-house flora present in the equipment. 

To further these results, 60 raw salmon were tagged along the production line. In addition to 

the strains originating from raw salmon, there where also strains of L. monocytogenes 

originating on the cold-smoked salmon after curing and filleting. When compared to the 

levels of L. monocytogenes present in the raw salmon there was a reduction of 6.74 % of L. 

monocytogenes after cold-smoking, this could be attributed to the bactericidal activity of 

brining and the smoke components used in the process of cold-smoking (Miettinen and 

Wirtanen 2006). These results are similar to that obtained in various studies where there was 

a reduction in the final number of L. monocytogenes after the process of cold-smoking 

(Fonnesbech Vogel et al., 2001, Medrala et al., 2003 and Gudbjornsclottir et al., 2004). 

Thus results from the three surveys carried out in this study to establish a possible 

contamination pathway, pointed out that L. monocytogenes from raw salmon could be the 

starting point of contamination and further along the production line in-house strains are shed 

on the smoked-salmon from the processing equipment, which would have formed a bio-film, 

as these strains were consistently isolated during the one year period of the survey.  
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This study could not be extended to trace the origin on L. monocytogenes in the raw fish from 

the fish farm and slaughter house due to time and resource restriction.  

 

10.1.4 Development of product specific dynamic model for L. monocytogenes in vacuum 

packed cold-smoked salmon 
 

The food supply chain is increasingly global in natureand relies on a complex system 

involving fish catchment, slaughter house, ingredients suppliers, smoked-salmon processors, 

distributors, importers, and food retailers in many different regionsof the world. To achieve 

safety of food from catchment to fork, and to reduce the frequency,impact and severity of 

food-borne illness outbreaks, there have to be effective workingpartnerships and cooperation 

throughout the entire food pathway‘s (Benson, 2010). However, the delivery ofsafe food 

depends on the pathway‘s weakest link, since this is where problems are mostlikely to 

occur.Breaks in the food supply pathway can occur at any time as food moves from fish farm 

to table. 

The psychrotrophic nature of L. monocytogenesmakes this pathogen in ready to eat products 

difficult in controllingsince refrigerationtemperature is used to increase the shelf life of this 

type of products.According to Regulation (EC) 2073/2005, food safety criteria establishthat 

ready to eat products should not exceed the limit of 100 CFU/gthroughout their shelf life. In 

this study a low inoculum size of L. monocytogenes along with actual product (smoked 

salmon) and its natural flora was used to study the growth of L. monocytogenes at abuse 

temperatures encountered along the food pathways which is described by the retail storage, 

consumer travel from retail to consumer storage and consumer storage. The results obtained 

confirm the growth dependenceon temperature, coinciding with some other 

researchers(Francois et al., 2006; Glass & Doyle, 1989; Jacobsen & Koch,2006). 
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The temperature range used in this study was obtained from various survey results in Ireland 

on domestic and retail refrigeration (FSAI, 2002). It was evident in this study that when 

temperature was maintained at 4 °C throughout the shelf life, the L. monocytogenes (1 log 

CFU/g) inoculated on smoked-salmon does not reach 2 log CFU/g up-to 20 day. The shelf-

life recommended on the package is 18 days, so under constant low temperature with low 

initial contamination the 2 log CFU/g is not reached within the recommended shelf-life. This 

suggests that, low temperature storage is the key for L. monocytogenes growth reduction 

withinthe self-life of product, with special emphasis once the productis purchased and 

remains under the responsibility of consumers (Pouillot et al., 2007 and Garrido,et 

al.,2010).Therefore, for a better control of ready-to-eat products it would be necessary to lay 

down strict criteria of temperature(0–4 °C) throughout the food chain (including home 

storage). 

Gay, (1996) emphasized that storage conditions, pre-incubation temperatureand inoculum 

concentration appear to influence the subsequentgrowth curve (specially lag phase) when a 

low inoculumwas used (1 log CFU/g). Another factor of interest when studying real 

contaminatedsamples is the effect of the background competitive flora on thegrowth rate of 

pathogen.The effect of competition between natural microbiota and L. 

monocytogenesobserved in the present study is in accordance with thatreported by other 

authors (Cole, 2003 and Ross, et al., 2000), reaching a maximum concentrationlower than 

predicted. 

In this study, a link could be established between the food pathways starting from the retail 

storage up-to the consumer storage and a final count of L. monocytogenes could be 

established using fluctuating temperatures obtained from the Irish survey (FSAI, 2002). 

These results reflect the real life scenario with the temperature abuse. The model developed 

in this study predicted growth more accurately than the predictive models Combase and 
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SSSP. The predictive model Combase does not use the real food providing overestimation, 

while SSSP fared better in comparison to Combase as the experiments on SSSP were based 

on the real food (in this case, vacuum packed sliced cold-smoked salmon).  

Prevention of L. monocytogenes contamination in smoked-salmon demands a combined 

effort of the wholefood chain from smoked-salmon processing company to retailer and 

consumer. This study can be (at least partially) attributed to the setting of the new European 

hygiene legislation andthe implementation of food safety management systems in the 

foodproducing companies. 

 

10.1.5 Quantitative risk assessment of L. monocytogenes in vacuum packed cold-smoked 

salmon. 
 

Microbiological risk assessment is an important tool for evaluating and communicating the 

impact of raw material quality, processing and changes on food safety. Quantitative microbial 

risk assessment (QMRA) is a unique scientific approach that links data from food (in the 

farm-to-fork approach) and the various data on human disease to produce a clear estimation 

of the impact of contaminated food on human public health. It is also the most powerful tool 

available today to clearly assess the efficacy of each possible mitigation strategy.In this 

study, L. monocytogenes in vacuum packed cold-smoked salmon was modelled from the end 

of the production line to consumption. The model predicted the log probability of illness by 

consuming contaminated vacuum packed cold-smoked salmon in a low risk andhigh risk 

population. 

Minimising data gaps and assumptions are important steps towards producing a QMRA that 

provides better predictions. The baseline model integrated growth of bacteria at retail storage, 

consumer shopping behaviour and consumer storage at varying temperatures. Dose-response 
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assessment is the most difficult module for the evaluation of the risks related to food. In the 

present risk assessment we preferred to use the model published by Farber, (1996). The log 

probability of illness was carried out for high and low risk populations. The risk to the high 

risk category was 3 times greater than that for low risk category; this highlights the need for 

caution for the high risk category when eating vacuum packed cold-smoked salmon. 

A sensitivity analysis indicated that probability of illness was most sensitive to the input 

distribution describing consumer storage time and temperature, growth occurring during the 

consumer storage, initial contamination level, growth during consumer transportation and 

prevalence. The sensitivity analysis provided the focus of future studies, and pointed out that 

the research should focus on collecting data on these variables to reduce the uncertainty in the 

estimation of the variability of the levels of L. monocytogenes (Lindqvist, 2000). The ―what-

if‖ scenario analysis results indicated that, the temperature and the storage period 

inhousehold refrigerators (Scenario B, C and E) seems to determine theexposure to L. 

monocytogenesfrom consumption ofcontaminatedvacuum packed cold-smoked salmon in 

Ireland. 

The present risk assessment model makes it possible to define precise objectives and priorities for 

future studies.Considering the results of the present work, the model is of a practical value and 

the predictions by the model seemed to confirm surveillance and monitoring systems data of that 

smoked-salmon are high risk foods as far as listeriosis is concerned if they are stored under 

adverse storage conditions.  

In conclusion, risk models can be beneficial to food industry because they can describe the 

conditions that can be applied to control a process or specify a formulation in order to 

minimize the risk of pathogen growth. 
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10.2 Recommendation for future work 
 

Incorporation of Real-time PCR for the detection of L. monocytogenes in surveillance study 

would be advantageous as this technique allows the direct quantification of target DNA. The 

reaction mix of the Real-time PCR contains a fluorescent marker (SYBR Green) that binds 

specifically to double strand DNA of the L. monocytogenes. The increase of fluorescence 

after each successive cycle allows the direct quantification of target DNA. This method has 

been used to identify and quantify L. monocytogenes in foods and clinical samples in several 

studies. Establishing the actual number of contaminating L. monocytogenes cells in food and 

environmental samples is an important factor when investigating outbreaks of listeriosis. This 

technique was not incorporated in this study due to the requirement of specialized equipment 

and materials which substantially increase the cost of testing. For those reasons MLVA was 

used as next method of choice in this study, but for future studies Real-time PCR will prove 

advantageous, as they directly quantify the levels of the bacteria and will be useful for food 

testing and epidemiological investigations. 

L. monocytogenes originating from the raw salmon was one of the main sources of 

contamination in vacuum packed cold-smoked salmon in this study, to precisely identify the 

route of contamination, sampling the salmon immediately after catchment would provide 

information to clarify if L. monocytogenes is originally part of the natural flora of the salmon. 

It would be interesting to sample the salmon entering the slaughter house to see if there was 

L. monocytogenes specific to the slaughter house. This experiment would provide answers for 

the treatment required to eliminate L. monocytogenes at the start of the cold-smoking process 

so that the pathogen is not carried on to the final product and also avoid cross contamination 

of the processing environment.  
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Presence of persistent L. monocytogenes in the processing equipment and environment were 

also responsible for contamination in the final product. It would be useful to study the 

physiological condition of the persistent bacteria to understand the mode of their survival and 

anchorage to in-animate objects. These items of equipment would have been put through 

rigorous cleaning regime; in-spite of these regimes the bacteria has found a mode to survive. 

For these reasons, this study would be useful to design cleaning protocols to target these 

specific physiological conditions responsible for its survival. 

Investigation of non-thermal technology for the treatment of raw salmon and finished product 

would be useful to eliminate the pathogen before processing or after processing. Some of the 

non-thermal technology that could be compared for the efficacy in the reduction of L. 

monocytogenes and also maintain the quality parameters of salmon are ozone, E-beam, 

Gamma irradiation and plasma.  

The quantitative microbial risk assessment carried out in this study considered the retail 

storage, consumer transport and consumer storage conditions. Temperature fluctuation 

occurring during the transportation from the end of production line to the retail distributors 

and its implication on the growth of L. monocytogenes was not considered. It was assumed 

that the temperature remained constant and levels of L. monocytogenes did not increase 

during the transport from production site to the distributors and then from the distributors to 

the retail storage. Future work on collecting data reflecting the above assumption would add 

knowledge to the QMRA established in this study. 
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Outline of the thesis 

Chapter Title Summary Outcome 

1 Introduction and review of literature - Survival characteristics of Listeria monocytogenes 

- Prevalence of L. monocytogenes in sea-food 
products in the EU and other countries 

- Aspects of microbial quantitative risk assessment 

- Aspects of microbial growth modelling 

 

2 General materials and methods - Methods used in this study to detect, isolate and 

characterise L. monocytogenes from vacuum packed 

cold-smoked salmon 

- Inoculation of smoked salmon with L. 

monocytogenes 

- Statistical methods used in the evaluation of models 

applied in this study 

 

3 Development of rapid and reliable 

method for detection of L. 

monocytogenes 

- Various selective plating methods tested for the 

isolation of L. monocytogenes. 

- Evaluation of the plating methods using 16S rRNA 
method developed in this study. 

1. Paper accepted in the Journal of Food control 

2. Poster presented at the 21st International ICFMH 

Symposium-Food Microbiology 2008, September 1-4, 

Aberdeen, United Kingdom. 

 

4. Prevalence of L. monocytogenes in 

vacuum packed cold-smoked salmon 

marketed in retail outlets in Dublin 

- Prevalence of L. monocytogenes in cold-smoked 

salmon marketed in retail outlets in Dublin for a 

period of one year 

1. Paper accepted in the Journal of Food Safety. 

 

5. Contamination pathways of L. 

monocytogenes in an Irish cold-

smoked salmon processing factory 

- Factory was divided into four zones and samples 

from each zone were analysed for the presence of L. 

monocytogenes 
- The L. monocytogenes isolates were characterised 

using MLVA to study the similarities of the isolates 

from various zones 

- Contamination pathways of L. monocytogenes in 

vacuum cold-smoked salmon was established 

1. Paper accepted in the Journal of Food Research 

International. 

6. Tracking L. monocytogenes during 

different processing stages of vacuum 

packed cold-smoked salmon in a 

cold-smoked salmon processing 

- 60 raw salmon were tagged and sampled after every 

critical step in the processing of vacuum packed 

cold-smoked salmon, to confirm the contamination 

pathways established in the previous Chapter (5) 

1. Paper accepted in the International Journal of Food 

Hygiene and Safety. 
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factory 

7. Dynamic modelling of  

L. monocytogenes in vacuum packed 

cold-smoked salmon 

- Development of a product specific growth model for 

vacuum packed cold-smoked salmon contaminated 

with L. monocytogenes was constructed that 

covering retail and consumer storage temperature 

range. 

1. Paper in review in the journal of Food Protection 

2. Paper presented at the 6th International Conference 

on Predictive Modelling in Foods 2009, September 8-

12, The Renaissance, Washington, 999 Ninth Street 

NW, Washington DC, USA 

 

8. Growth modelling of 

L. monocytogenes in vacuum packed 

cold-smoked salmon at 4, 8, 12 and 

16 °C. 

- Determine of the kinetic parameters of both L. 

monocytogenes (isolates of L. monocytogenes 

obtained from vacuum packed cold-smoked salmon 

Chapter 4) and native microflora at 4 °C and at 

abuse temperatures 8, 12 and 16 °C. 

- The nature of growth relationship between native 
flora and L. monocytogenes was also studied. 

 

1. Paper accepted in the journal of Food Safety. 

 

2. Paper presented at the European Simulation – Food 

Simulation 2008, June 26-28, University College 

Dublin, Dublin, Ireland 

 

3.Poster presented at the 8th Joint Meeting of Seafood 

Science and Technology Society of the Americas 

Atlantic Fisheries Technology Conference and 1st 

North Carolina Marine Biotechnology Symposium 

2008, October 19-22, Wrightsville Beach, North 

Carolina, USA 

 

4. Poster presented at the 21st International ICFMH 

Symposium-Food Microbiology 2008, September 1-4, 

Aberdeen, United Kingdom. 

 

9. Risk assessment of L. monocytogenes 

in vacuum packed cold-smoked 

salmon 

- Development of quantitative risk assessment model 

of human listeriosis linked to the consumption of 

vacuum packed cold-smoked salmon. 

1. Paper in  International Journal of Food Microbiology 

2. Paper presented at the 6
th

 International Conference on 

Simulation and Modelling in the Food and Bio-

Industry, FoodSimulation 2010 June 24- 16, CIMO 

Research Centre, Braganca, Portugal 

 

10 General conclusions and 

recommendations for future work 

- The chapter presents the conclusions, implications, 

limitation and recommendation for future work. 
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Appendix 1 
 

Colony morphology of L. monocytogenes on Palcam agar 

 

Greyish-green or black colonies with black corona, opaque with smooth slimy surface 

 

Palcam agar showing growth of L. monocytogenes 

 

Colony morphology of L. monocytogenes on TSA 

 

White to off-white raised smooth colonies, with opaque and slimy surface. 

 

TSA showing growth of L. monocytogenes 
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Appendix 2 
 

Catalase test 

 

 Approximately 0.2 mL of hydrogen peroxide solution was placed on aclean glass 

slide 

 Colony was carefully picked with disposable sterile loop  

 The colony was spread on the surface of the hydrogen peroxide solution.  

 The hydrogen peroxide solution covered the colony  

 Vigorous bubbling occurred  within 10 seconds 

 

 

Positive catalase test showing vigorous bubbling in the presence of L. monocytogenes 

and hydrogen peroxide solution 

 

Impregnated oxidase test strip method 

 Freshly grown colonies were picked with the help of disposable loop 

 The swab containing the oxidase reagent was rubbed on top on the loop containing the 

colony. Blue colour appeared within 10 seconds. 

 

Positive oxidase test showing blue colour in the presence of 

L. monocytogenes and oxidase reagent 
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