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Asymptotic Methods in the Spectral Analysis of

Sturm-Liouville Operators

Daphne Gilbert

School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland

daphne.gilbert@dit.ie

Abstract

We consider the relationship between the asymptotic behaviour of so-
lutions of the singular Sturm-Liouville equation and spectral properties
of the corresponding selfadjoint operators. In particular, we review the
main features of the theory of subordinacy by considering two standard
cases, the half-line operator on L2([0,∞)) and the full-line operator on
L2(R). It is assumed that the coefficient function q is locally integrable,
that 0 is a regular endpoint in the half-line case, and that Weyl’s limit
point case holds at the infinite endpoints. We note some consequences of
the theory for the well-known informal characterisation of the spectrum
in terms of bounded solutions. We also consider extensions of the theory
to related differential and difference operators, and discuss its application,
in conjunction with other asymptotic methods, to some typical problems
in spectral analysis.

1 Introduction

In its original formulation, the Sturm-Liouville boundary value problem consists
of a linear second order ordinary differential equation expressible in the form

Lu := −u′′(r) + q(r)u(r) = λu(r), r ∈ I ⊆ R, q : I → R, λ ∈ C, (1)

together with suitable separated or periodic boundary conditions at the end-
points of a finite interval I. The spectrum of the associated selfadjoint opera-
tor consists of an increasing sequence of isolated real eigenvalues accumulating
at infinity, the corresponding eigenfunctions being non-trivial solutions of (1)
which satisfy the endpoint conditions [5], [12], [21], [31], [47]. Extension to
the case where one of the endpoints of I is singular was achieved by Weyl in
1910 [51], and if I = [0,∞) or (−∞,∞), then (1) is often referred to as the
one-dimensional time independent Schrödinger equation, following subsequent
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recognition of its importance in the mathematical description of quantum phe-
nomena (see eg [39]). If a singular endpoint is in Weyl’s limit point case then
essential spectrum, which can itself contain both discrete and continuous parts,
may also or alternatively be present, and while the (generalised) eigenfunctions
are still solutions of the Sturm-Liouville equation (1), their behaviour is now
more subtle.

Recognition of the close relationship between solutions of the differential
equation and spectral properties was already evident in the 1836 paper of Sturm,
where the link between the number of points of the spectrum below an eigen-
value and the number of zeros in the associated eigenfunction was noted [47].
Analogues of such properties for the singular case, as well as numerous further
connections between solutions and spectra, were identified in the mid-twentieth
century by Hartman, Wintner and others (see e.g. [18], [20], [52]), while contem-
porary investigations in the Soviet Union contributed a number of independent
results in this regard [16, Chapter V]. In more recent work linking polynomi-
ally bounded solutions to spectral properties, techniques which are applicable
to both one-dimensional and higher dimensional problems have been developed
(see e.g. [22], [40]).

Different challenges emerged in the late 1950’s with the development of rig-
orous scattering theory and a corresponding awareness of the importance of
distinguishing the absolutely continuous component from other parts of the es-
sential spectrum, in connection with existence and completeness of the wave
operators [1], [2], [25]. Subsequent efforts to identify distinguishing features of
the absolutely continuous eigenfunctions include work by Carmona [6] and Wei-
dmann [48], [50], the method of subordinacy, to be outlined in Section 3 [15],
[13], [14], [35], and the use of transfer matrices by Last and Simon [30].

Prior to a seminal paper of Pearson [34], showing that apparently innocuous
potentials can give rise to purely singular continuous spectrum on R+, sig-
nificant activity was focussed on seeking conditions under which the absence of
singular continuous spectrum could be assured (see e.g. [36, Chapter XIII]). The
subsequent realisation that singular continuous spectrum is generically present
in a variety of situations [9] has stimulated further research activity in recent
years (see e.g. [29], [41]), while the method of subordinacy and its extensions
provide some insight into the hitherto obscure behaviour of the associated eigen-
functions [15], [23].

The principal focus of this paper is an overview of the method of subordinacy
and its extensions, together with a brief discussion of the wider historical context
and some illustrative examples to demonstrate its role in applications. Details
of the derivation of the theory and of related background results can be found
in the cited references.
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2 Bounded Solutions and Spectral Properties

The usefulness in practice of methods which characterise the spectrum in terms
of the asymptotic behaviour of solutions is well known, and in this section
we briefly discuss two such approaches, both of which have informed and are
informed by the method of subordinacy. To fix ideas, we restrict attention to
the half-line case where I = [0,∞), L is regular at 0 and in Weyl’s limit point
case at infinity, and q is locally integrable. In this case it is known that an initial
condition of the form

cos(α)u(0) + sin(α)u′(0) = 0, α ∈ [0, π), (2)

is needed at the origin to render the associated operator Hα selfadjoint and
that, under the Hilbert space formulation outlined in Section 3, no endpoint
condition at infinity is required. The spectrum, σ(Hα), is then the complement
in C of the set of all λ for which the resolvent operator (Hα−λI)−1 is bounded
and everywhere defined; an equivalent definition can also be formulated in terms
of the corresponding spectral function, ρα (see Section 3.1).

It follows from the classical separation and comparison theorems of Sturm
(see [21], [42]) that the real line may be partitioned into oscillatory and non-
oscillatory regions, separated by a so-called parabolic point λ? ∈ R ∪ {±∞}.
For λ ∈ (−∞, λ?) any, and hence all, solutions of (1) have a finite number of
zeros for r ≥ 0, while for λ > λ? any, and hence all, solutions of (1) have a
countably infinite number of zeros accumulating only at infinity; we therefore
refer to (1) as being non-oscillatory or oscillatory according as λ ∈ (−∞, λ?) or
λ ∈ (λ?,∞) respectively [20].

Since (1) is oscillatory at λ if and only if the spectrum on (−∞, λ) is an
infinite set [18], the spectrum of Hα on (−∞, λ?) consists of isolated eigenvalues
only, possibly accumulating at λ?, with every λ ∈ (−∞, λ?) being an eigenvalue
for some value of α in (2) [19]. It follows that there exists an L2([0,∞)) solution
uλ(r) of (1) for each λ < λ?; this is known as a principal solution and satisfies

lim
r→∞

uλ(r)
vλ(r)

= 0

whenever vλ(r) is a linearly independent solution of the same equation, with
uλ(r) = o(1) as r →∞ if λ? < ∞ [20], [52]. The restriction of the spectrum to
(−∞, λ?) is then given by

σ(Hα) ∩ (−∞, λ?) = {λ < λ? : there exists a principal solution
of (1) satisfying the boundary condition (2)}.

A second and more pervasive approach to the spectral analysis of the singular
problem, particularly among physicists, effectively bypasses the intricacies of
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Hilbert space theory by defining the “spectrum”, Sα, to be the set of all λ for
which a non-trivial solution u(r) of (1) and (2) satisfies the further condition:

u(r) = O(1) as r →∞. (3)

In the case where α = 0, q ≡ 0, this yields Sα = (0,∞), which is not a closed
set, so that Sα 6= σ(Hα) in general; however, since 0 is not an eigenvalue of
Hα, and σ(Hα) = [0,∞), we see that Sα = σ(Hα) except for a set which has
measure zero with respect to both Lebesgue and spectral measures.

The longstanding conjecture that Sα = σ(Hα) a.e. holds in general appears
to be still unresolved so far as the essental spectrum is concerned (see e.g.
[16, Chapter V], [40, Section C5]), although study of related discrete operators
with almost periodic potentials suggests that for this part of the spectrum the
conjecture is false [53]. In the case of isolated point spectrum, the conjecture
was refuted for λ? = ∞ by a counterexample due to Hartman and Wintner, in
which for each λ ∈ R, the square integrable solution fails to be O(1) as r →∞
(see [20, (v)(c) and p. 648]); we then have Sα = ∅, while σ(Hα) consists of
an infinite sequence of isolated eigenvalues accumulating at infinity. However,
the conjecture is confirmed for isolated point spectrum when λ? < ∞, since if
λ is not in the essential spectrum in this case, the L2([0,∞)) solution of (1) is
O(r−N ) as r →∞ for every fixed N [52].

This informal or “working” definition of the spectrum in terms of bounded
solutions seems to have originated from concern that solutions of the wave equa-
tion of quantum mechanics (i.e. the time dependent Schrödinger equation) be
“physically admissible”, taking into account the accepted interpretation of the
square of the modulus of the value of the wave function at a point as the posi-
tion probability density (see e.g. [10, Section 38], [38, Chapter II]). Apart from
its apparent agreement with physical intuition, the working definition is un-
doubtedly attractive in that it is conceptually simple, easy to apply and agrees
with the Hilbert space definition of the spectrum (at least up to null sets) in
many familiar elementary examples. We shall return to the relationship between
bounded solutions and spectral properties in Section 5.1, taking into account
some connections with the theory of subordinacy.

Although analysis of the spectrum in terms of principal solutions is restricted
to the non-oscillatory region (−∞, λ?), the method is still of interest because it
uses properties of the solution space as a whole to identify the spectrum. This
contrasts with the informal approach in terms of bounded solutions, which aims
to locate the spectrum by applying a specific criterion (3) to the particular so-
lution of (1) which satisfies (2), without any reference to the remainder of the
solution space. It will be seen that the definition of a subordinate solution given
in Section 3.1 directly extends the definition of a principal solution by replacing
the pointwise comparison of solutions for large r with limiting ratios of Hilbert
space norms, thus enabling the idea of a principal solution to be applicable in
both oscillatory and non-oscillatory regions. This key definition is fundamental

4



to the theory of subordinacy, and enables precise correlations between the rela-
tive asymptotic behaviour of solutions of (1) and specific spectral properties of
Hα to be established. The use of properties of the solution space as a whole is
also a feature of related transfer matrix methods, which are particularly effec-
tive in connection with the absolutely continuous spectrum (see e.g. [30], [28],
[17]) and will be briefly introduced in Section 5.1.

3 The Method of Subordinacy

For selfadjoint operators associated with (1), it is the behaviour of solutions at
one or both endpoints of the interval I, not their intermediate properties, that
determines the contribution to the spectrum at each fixed value of the spectral
parameter λ. This situation is made precise by the theory of subordinacy, which
provides rigorous criteria for locating minimal supports for the absolutely con-
tinuous and singular spectra, and also, in the case of two limit point endpoints,
enables the simple and degenerate parts of the spectrum to be identified [15],
[13], [14], [35]. Similar results have been shown to apply to related operators,
such as the one-dimensional Dirac operator, the general Sturm-Liouville oper-
ator, infinite matrix operators and the random Schrödinger operator, and will
be summarised in Section 4.

The method of subordinacy is advantageous in several respects. In the first
place, the results are independent of the detailed properties of q; only very gen-
eral requirements, as, for example, that q be locally integrable and that L is
in the limit point case at the infinite endpoints, need to be met. Moreover,
a complete analysis of the spectrum can be achieved, at least in principle, by
considering the behaviour of solutions at real values only of the spectral param-
eter λ. As a result, the considerable technicalities of the spectral function and
Titchmarsh-Weyl m-function, which are key features in the derivation of the
theory, can now be avoided in applications. Also, to identify the absolutely con-
tinuous component of σ(Hα), it is only necessary to consider the behaviour of
solutions at the limit point endpoint(s), and for certain classes of potentials, the
condition of non-subordinacy can be replaced by a much simpler boundedness
criterion (see Section 5.1).

3.1 The Half-Line Case

We recall that in this case L is assumed to be regular at x = 0; the differential
operator Hα acting on H = L2([0,∞)) is then defined by

Hαf = Lf, f ∈ D(Hα)

where

D(Hα) = {f ∈ H : Lf ∈ H; f, f ′ locally a.c.; cos(α)f(0) + sin(α)f ′(0) = 0}
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for some fixed α ∈ [0, π), and q is locally integrable. Note that since L is limit
point at infinity, there is at most one solution of Lf = λf in H for any λ ∈
C, and that a boundary condition is needed only at 0 (see [15] and references
therein).

Associated with Hα is a non-decreasing spectral function ρα : R → R and
it is convenient in the present context to define the spectrum, σ(Hα), to be the
complement of those points of R in a neighbourhood of which ρα is constant.
The spectral function generates a corresponding Borel-Stieltjes measure, µα,
on R in the usual way, and the minimal supports of µα provide an indication
of where σ(Hα) is concentrated. Minimal supports (sometimes also known as
essential supports) are defined as follows.

Definition 1. A subset S of R is said to be a minimal support of a Borel-
Stieltjes measure τ if

(i) τ(R\S) = 0,
(ii) whenever S0 ⊆ S satisfies τ(S0) = 0, then | S0 |= 0, where | · |
denotes Lebesgue measure.

It follows from the definition that minimal supports of µα are unique up to
Lebesgue and µα-null sets; while they may differ from σ(Hα) by sets of positive
Lebesgue measure, there always exists a minimal support of µα whose closure
is the spectrum [15]. Since µα can be decomposed uniquely into absolutely
continuous, singular continuous and pure point parts, Definition 1 may also be
applied to (µα)a.c., (µα)s.c. and (µα)p.p..

The definition of a subordinate solution given below makes precise the con-
cept of relative asymptotic smallness of a solution at a limit point endpoint and
is meaningful even if all solutions are oscillatory or no solutions are in L2([0,∞)).

Definition 2. If L is regular at 0 and in the limit point case at infinity, then
a non-trivial solution us(r, λ) of Lu = λu is said to be subordinate at infinity if
for every linearly independent solution u(r, λ)

lim
N→∞

‖us(r, λ)‖N

‖u(r, λ)‖N
= 0 (4)

where ‖ · ‖N denotes the L2([0, N ]) norm.

Note that subordinate solutions are unique up to multiplicative constants,
and that if (4) holds for one solution u(r, λ) which is linearly independent from
us(r, λ), then it holds for every solution u(r, λ) which is linearly independent
from us(r, λ).

The following theorem identifies precise correlations between the spectral
parts of Hα and the asymptotics of solutions of Lu = λu, in terms of minimal
supports of (µα)a.c., (µα)s.c. and (µα)p.p.. The derivation of this result is cru-
cially dependent on the corresponding Titchmarsh-Weyl function mα, which is
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a Herglotz function on C+, and whose limiting behaviour as the real axis is
approached normally is closely related both to a generalised derivative of µα,
and to the subordinacy properties of solutions of (1) [2], [15].

Theorem 1 Minimal supports Ma.c.(Hα),Ms.c.(Hα) and Mp.p.(Hα) of
(µα)a.c., (µα)s.c. and (µα)p.p. respectively are as follows:

Ma.c.(Hα) = {λ ∈ R : no solution of Lu = λu is subordinate at infinity},
Ms.c.(Hα) = {λ ∈ R : a solution of Lu = λu exists which satisfies the

boundary condition at 0, is subordinate at infinity, but is
not in L2([0,∞))},

Mp.p.(Hα) = {λ ∈ R : a non-trivial L2([0,∞)) solution of Lu = λu

exists which satisfies the boundary condition at 0}.

Theorem 1 shows that there are striking distinctions between the asymptotic
behaviour of solutions associated with the different parts of the spectrum. If
λ ∈Ma.c.(Hα), then all solutions of Lu = λu are, in some sense, of comparable
asymptotic size at infinity, and this implies, by the limit point property, that no
(non-trivial) solutions are in L2([0,∞)). The absence of an L2([0,∞)) solution
is also a feature if λ ∈Ms.c.(Hα), although not, of course, when λ ∈Mp.p.(Hα).

Generally speaking, however, the more significant distinctions are between
the singular and absolutely continuous supports of µα; thus, for example, if
β 6= α(modπ) is a distinct boundary condition at 0, it is immediate from the
theorem that

Ms.c.(Hα) ∩Ms.c.(Hβ) = Mp.p.(Hα) ∩Mp.p.(Hβ) = ∅,

whereas
Ma.c.(Hα) = Ma.c.(Hβ),

which confirms well-known results of Kato and others concerning the stability
of the absolutely continuous spectrum under finite rank perturbations [25].

It should be noted that some care is needed in interpreting the results of The-
orem 1, given the nature of the relationship between Ma.c.(Hα), Ms.c.(Hα) and
Mp.p.(Hα) and the corresponding spectra, σa.c.(Hα), σs.c.(Hα) and σp.p.(Hα),
which are closed sets. For example, although it is true that σp.p.(Hα) = ∅ if and
only if Mp.p.(Hα) = ∅, analogous statements cannot be made for σa.c.(Hα) or
σs.c.(Hα). Indeed we may have σa.c.(Hα) = ∅ even if Ma.c.(Hα) 6= ∅, and sim-
ilarly for σs.c.(Hα); however, the converse situation is not possible since, using
well-known properties of absolutely continuous and singular continuous mea-
sures, it follows from σa.c.(Hα) 6= ∅ that any minimal support of (µα)a.c. has
positive Lebesgue measure, and from σs.c.(Hα) 6= ∅ that any minimal support
of (µα)s. is an uncountable set of Lebesgue measure zero.

A similar situation holds in the full-line case, which we now consider.
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3.2 The Full-Line Case

Let H denote the one-dimensional operator associated with (1) on H = L2(R),
let q be locally integrable on (−∞,∞) and suppose that L is in the limit point
case at both endpoints. Then the selfadjoint operator H is uniquely defined by

Hf = Lf, f ∈ D(H),

where
D(H) = {f ∈ H : Lf ∈ H; f, f ′ locally a.c.}.

The analogue of the spectral function is now a 2× 2 positive semidefinite spec-
tral matrix function (ρij), and a suitable spectral measure, the so-called trace
measure, µ, is generated from the sum of its diagonal terms.

Let H−
0 ,H+

0 respectively denote the selfadjoint operators on L2((−∞, 0]) and
L2([0,∞)), which are defined in the usual way by L, together with a Dirichlet
boundary condition at 0. In the derivation of minimal supports for the full-
line operator H, a delicate relationship between the trace measure µ and the
Titchmarsh-Weyl m-functions associated with H−

0 and H+
0 is identified, which

is then combined with application of Theorem 1 to H−
0 and H+

0 , to give the
following theorem [13]; note that the definition of a solution which is subordinate
at −∞ is entirely analogous to that of Definition 2, except that the L2([0, N ])
norm is now replaced by the L2([−N, 0]) norm.

Theorem 2 Minimal supports Ma.c.(H), Ms.c.(H) and Mp.p.(H) of µa.c.,
µs.c. and µp.p. respectively are as follows:

Ma.c.(H) = {λ ∈ R : no solution of Lu = λu is subordinate at −∞}
∪ {λ ∈ R : no solution of Lu = λu is subordinate at +∞},

Ms.c.(H) = {λ ∈ R : a solution of Lu = λu exists which is subordinate
both at +∞ and at−∞, but is not in L2(R)},

Mp.p.(H) = {λ ∈ R : a non-trivial L2(R) solution of Lu = λu exists}.

Using Theorems 1 and 2, the well-known result that

σa.c.(H) = σa.c.(H−
0 ) ∪ σa.c.(H+

0 )

follows easily from the fact that

Ma.c.(H) = Ma.c.(H−
0 ) ∪Ma.c.(H+

0 ).

The analogous situation for the singular spectrum is less straightforward, since
the matching of subordinate solutions at the decomposition point 0 is involved;
taking this into account, we obtain, with obvious notation,

Ms.(H) = ∪α(Ms.(H−
α ) ∩Ms.(H+

α )),
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where Ms.(H) = Ms.c.(H) ∪Mp.p.(H), and the union is taken over all α ∈
[0, π).

An important issue in the full-line case is that of spectral multiplicity, which
may be 1 or 2; in the half-line case, the question effectively does not arise, since
the spectrum is always simple. A significant contribution to this topic is due
to I.S. Kac, who identified necessary and sufficient conditions for the existence
of degenerate spectrum in terms of the boundary behaviour of the m-functions
associated with H−

α and H+
α [24]. By combining Kac’s result with Theorem 2,

we obtain the following result [14].

Theorem 3 H has spectral multiplicity 2 if and only if the Lebesgue measure
of the set

M2(H) = {λ ∈ R : no solution of Lu = λu is subordinate at −∞}
∩ {λ ∈ R : no solution of Lu = λu is subordinate at +∞}

is strictly positive; otherwise the spectrum of H is simple.

Thus the degenerate spectrum of H, if it exists, is effectively concentrated on
M2(H), which is a subset of Ma.c.(H), and the simple spectrum on M1(H) =
M(H) \ M2(H), where M(H) = Ma.c.(H) ∪ Ms.(H) is a minimal support
of µ; for further details, see [14]. Note that M2(H) in Theorem 3 cannot be
replaced by S = σa.c.(H−

0 )∩σa.c.(H+
0 ), since it is known that operators H exist

for which | S |> 0, but | M2(H) |= ∅ (see e.g. [14, Example 6.5]).
It is interesting to observe from Theorem 3 that the simple part of σ(H)

is characterised by the existence of a relatively small solution of Lu = λu on
R; this smallness need only be strict at one of the endpoints. The degenerate
spectrum, on the other hand, is characterised by all solutions of Lu = λu on
R being indistinguishable in terms of relative asymptotic size. On R \M(H),
which includes the resolvent set, the solutions of Lu = λu are not well-ordered
in the sense that, although there exists a solution, u−∞, which is subordinate
at −∞, and a solution, u+∞, which is subordinate at +∞, these solutions are
linearly independent; thus there is no non-trivial solution of Lu = λu which is
relatively small at both endpoints.

4 Extensions and Generalisations

The usefulness of the theory of subordinacy in a range of spectral problems has
led to a number of extensions to related operators. In each of the cases which
we now describe, a limit point, limit circle theory is known, which is analogous
to the Weyl theory for the standard singular Sturm-Liouville case. We assume
therefore, as before, that 0 is a regular endpoint in the half-line case and that
the infinite endpoints are limit point.

Generalised Sturm-Liouville operators
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Consider the generalised Sturm-Liouville operator Hα which is associated with
the differential equation

Lu := −(pu′)′(r) + q(r)u(r) = λw(r)u(r), r ∈ [0,∞),

and boundary condition cos(α)u(0)+sin(α)(pu′)(0) = 0 on the weighted Hilbert
space Lw

2 ([0,∞)). Here α ∈ [0, π) is fixed and p, q, w are real valued functions
with p, w > 0 and p−1, q, w locally integrable. Then Theorem 1 holds with
‖ · ‖N = (

∫ N

0
| · |2 w(r)dr)

1
2 [8].

Separated Dirac operators

For spherically symmetric potentials, the separated Dirac equation may be writ-
ten in system form(

0 −1
1 0

)
u′(r) +

(
q1(r) q2(r)
q2(r) q3(r)

)
u(r) = λu(r), r ∈ [0,∞),

where q1, q2, q3 are real valued, locally integrable functions, and u(r) = (u1, u2)t.
To construct the corresponding selfadjoint operator Hα, it is necessary to impose
an initial condition of the form cos(α)u1(0) + sin(α)u2(0) = 0, for some α ∈
[0, π). Then Theorem 1 holds for Hα under the usual L2([0,∞)) ⊗ C2 norm,
and Theorem 2 is also valid for the corresponding operator H on L2(R) ⊗C2

[3].

Infinite matrix operators

Let Hα be the selfadjoint operator associated with the semi-infinite matrix
a0 b0

b0 a1 b1 0
b1 a2 b2

b2 a3 b3

0 . . . . . . . . .
. . . . . .




u0

u1

u2

u3

. . .

. . .

 = λ


w0u0

w1u1

w2u2

w3u3

. . .

. . .


and boundary condition cos(α)u1 + sin(α)b0(u1 − u0) = 0, where α ∈ [0, π) is
fixed, and ai, bi, wi ∈ R, bi 6= 0, wi > 0, for i = 0, 1, 2, ...... This case includes
the Jacobi matrix operator for which bi = wi = 1, and Theorem 1 holds for Hα

under the usual `w
2 norm with ‖u‖N = (

∑N
n=0 wn | un |2)

1
2 [7], [26], [45].

An interesting variant is the matrix operator associated with orthogonal
polynomials on the unit circle and the Szegő recurrence relations,

−→
X (z, n) =

1
(1− | an |2)

1
2

(
z an

anz 1

)
−→
X (z, n−1), n ∈ N, | an |< 1, | z |∈ [0, 1],

with initial condition −→
X (z, 0) = (1, 1)t. Here the interior of the unit cir-

cle takes the place of C+ in the construction of an analogue, F (z), of the
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Titchmarsh-Weyl m-function, and F (z) in turn is associated with an orthog-
onality measure µ on the unit circle which has a similar role to the spectral
measure µα on R in the half-line case. Theorem 1 now holds for µ with
‖−→X (z)‖N = (

∑N
n=0 ‖

−→
X (z, n)‖2) 1

2 , where −→
X (z) = (−→X (z, 0), . . . ,−→X (z, n), . . .),

−→
X (z, n) = (x1(z, n), x2(z, n))t and ‖−→X (z, n)‖ = (| x1(z, n) |2 + | x2(z, n) |2) 1

2

[17].

Random Schrödinger operators

Here the general form of the differential operator considered is

Lwu := −u′′(r) + qw(r)u(r) = λu(r), r ∈ [0,∞),

where {qw(r) : r ∈ [0,∞)} is a random function on a probability space (Ω,F , P ),
or a random generalised function. In this context, we assume that Lw is in the
limit point case for P -almost all w, so that Hw,α, defined from Lw together
with the boundary condition cos(α)u(0) + sin(α)u′(0) = 0, is selfadjoint with
probability 1; the unique selfadjoint operator Hw is defined by Lw on R in a
similar way. Then under the assumption that a technical condition related to
the well known Kotani trick holds, analogous results to Theorems 1 and 2 can
be established for λ-intervals of the real line [32].

Remark In addition to extensions of the theory to a number of related op-
erators, some refinements to the concept of a subordinate solution have been
proposed and used in applications; for example, power law subordinacy [23],
strong non-subordinacy [8], uniform non-subordinacy [49] and sequential subor-
dinacy [35], [44]. Power law subordinacy is a significant generalisation of the
original concept, which enables dimensional Hausdorff properties of the singular
continuous spectrum to be investigated, and has provided detailed results for the
almost Mathieu operator and Fibonacci Hamiltonian. Strong and uniform non-
subordinacy are associated with the relatively “well-behaved” situation where
no solution of (1) is subordinate for any λ in a compact interval I; in such
cases, various uniformity properties on I can be inferred for the ratios of norms
of solutions and for the spectral density functions ρ′α. From Definition 2 it is
evident that, to establish non-subordinacy of solutions, it is only necessary (and
usually much more convenient) to demonstrate non-sequential subordinacy for
a single sequence.

5 Applications

In principle, Theorems 1, 2, 3 and their extensions provide distinguishing crite-
ria which enable a complete and detailed analysis of the spectrum to be carried
out for a range of differential and difference operators. However, in practice it
is rare for explicit expressions for the solutions of the governing equations to be
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available, so that in applications the theory is often used indirectly or in conjunc-
tion with suitable asymptotic estimates of the behaviour of the solutions at the
endpoints. Some typical strategies include use of the Liouville-Green approxi-
mation, application of Levinson’s theorem and its extensions, various results on
boundedness and non-subordinacy, and related transfer matrix methods.

Before considering specific examples, we briefly return to the relationship
between bounded solutions and spectral properties.

5.1 Boundedness Revisited

The following result, linking boundedness of solutions to non-subordinacy, can
greatly simplify the analysis when absolutely continuous spectrum is present
[44].

Lemma 1 Let L be as in (1) with I = [0,∞), and suppose that

sup
x≥0

∫ x+1

x

q−(r)dr < ∞, (5)

where q− denotes the negative part of q. Then if all solutions of Lu = λu are
bounded for some fixed λ ∈ R, L is in the limit point case at infinity and, for
the same fixed λ,

(i) u′ is bounded for all solutions u of Lu = λu,
(ii) no solution of Lu = λu is subordinate at infinity.

Note that Lemma 1 shows that, provided (5) is satisfied, the boundedness of
solutions of Lu = λu is a sufficient condition for λ to be in Ma.c.(Hα); however,
it is not a necessary condition, as may be seen by considering a fundamental
set of solutions, {(r + 1)

1
2 cos( 1

2 ln(r + 1)), (r + 1)
1
2 sin( 1

2 ln(r + 1))}, of Lu = λu
when q(r) = −2−1(r + 1)−2 and λ = 0. Variants of Lemma 1 for the Dirac and
Jacobi matrix operators may be found in [4], [40], [45], and an alternative proof
is contained in [41].

It turns out that Lemma 1 may be recast in terms of transfer matrices. To
see this, let λ ∈ R be fixed and suppose that for x ∈ I = [0,∞), {uλ(x), vλ(x)}
is a fundamental set of solutions of Lu = λu satisfying uλ(0) = v′λ(0) = 0,
u′λ(0) = vλ(0) = 1.

Then setting

Tλ(x) :=
(

u′λ(x) v′λ(x)
uλ(x) vλ(x)

)
,

it is easy to check that for any solution yλ(x) = auλ(x) + bvλ(x) of Lu = λu,
with a, b ∈ C,

Tλ(x)
(

y′λ(0)
yλ(0)

)
=

(
y′λ(x)
yλ(x)

)
.

12



If we now define

‖Tλ(x)‖ := sup
‖y‖=1

‖Tλ(x)y‖ = sup
|a|2+|b|2=1

(| y′λ(x) |2 + | yλ(x) |2) 1
2 ,

where y = (y′λ, yλ)t, then it may be seen from Lemma 1 that, subject to (5),
all solutions of Lu = λu are bounded if and only if lim supx→∞ ‖Tλ(x)‖ <
∞. It follows that issues relating to boundedness of solutions and spectral
properties can be investigated using results from subordinacy and from the
study of transfer matrices. Interest in the latter approach has already led to a
number of promising new developments (see e.g. [17], [30], [28]).

5.2 Examples

In each of the following examples, it is readily verified that, as appropriate, 0
is a regular endpoint and the infinite endpoints are limit point. The operators
Hα and H are defined as in Sections 2 and 3 unless otherwise stated.

Example 1 Let q = p+s+w on [0,∞), where p ∈ L1([0,∞)), s is smooth and
long range with s′ ∈ L1([0,∞)), and the von Neumann-Wigner part, w, satis-
fies w(r) → 0 as r →∞, and is conditionally integrable, i.e. limr→∞

∫ r

0
w(r)dr

exists. Then for all α ∈ [0, π), σ(Hα) is purely absolutely continuous on (0,∞)
apart from at most a countable set of embedded eigenvalues, known as res-
onances. This result is obtained by using asymptotic integration to obtain
suitable estimates of solutions of Lu = λu for λ > 0 and large r, and applying
Theorem 1 [3]; some generalisations are obtained in [4], where Lemma 1 and a
limiting absorption principle are also used.

Example 2 Let L0 := − d2

dr2 + cos(r), r ∈ (−∞,∞),

L := − d2

dr2
+ cos(r) + δ cos(| r |γ), 0 < γ < 1, r ∈ (−∞,∞),

and denote by (an, bn), n = 1, 2, ...., the stability intervals of the selfadjoint oper-
ator H0 associated with L0. Then it is well known that σ(H0) = ∪n[an, bn],and
is purely absolutely continuous, with bn < an+1 for all n ∈ N; moreover, as
n →∞, the length of the stability intervals is O(n) and the length of the gaps
becomes arbitrarily small (see e.g. [11], [36, Chapter XIII, Section 16, Example
1]). However, the essential spectrum of the perturbed operator H associated
with L is a countable union of closed intervals, each consisting of a central band
of absolutely continuous spectrum and two outer bands of singular spectrum,
these banded intervals being disjoint for suitably chosen δ and sufficiently small
n. In addition, every interval of absolutely continuous spectrum, respectively
gap in the essential spectrum, of the perturbed operator H is a subset of a sta-
bility interval, respectively subset of a spectral gap, of the unperturbed operator
H0. To achieve these results, trace class methods are used to show that if (b, a)
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is a spectral gap of H0, then (b − δ, a + δ) ∩ σa.c.(H) = ∅, and adaptations of
arguments used in [45] are combined with Lemma 1 and Theorems 1 and 2 to
show that if (a, b) is a stability interval of H0, then (a + δ, b − δ) is a stability
interval of H [46]. The degeneracy of σa.c.(H) can be inferred from Theorem 3.

Example 3 Using the notation of Section 4, let Hw denote the Goldsheid-
Molchanov-Pastur model and Hw,α a selfadjoint operator arising from Lw :=
−d2/dr2 + kW (r), r ∈ [0,∞), where k > 0 and W (r) is Gaussian white noise.
If F ≥ 0 is the intensity of a constant electric field, then with probability 1
the perturbed GMP operator HF

w = Hw − Fr has purely absolutely continuous
spectrum with σ(HF

w ) = R, and the perturbed operator HF
w,α = Hw,α−Fr has

dense pure point spectrum on R for F < k2/2 and purely singular continuous
spectrum with σ(HF

w,α) = R for F ≥ k2/2. These results are established by
using the asymptotic expansions of Airy functions in a transformation of the
eigenvalue equations and applying analogues of Theorems 1 and 2 for random
operators [32].

Example 4 Let L be as in (1), with I = [0,∞) and q : I → C satisfying
Im q ≥ 0 and Im q(r) → 0 as r → ∞. Let Hα denote the non-selfadjoint oper-
ator associated with L and a selfadjoint boundary condition at the origin (cf.
(2)). Then if Im q /∈ L1([0,∞)), the absolutely continuous spectrum of Hα is
empty. This result depends on a characterisation in terms of Hardy spaces of
the absolutely continuous subspace, Ne, of a maximally dissipative, completely
non-selfadjoint operator with essential spectrum on the real axis (see e.g. [33]).
Also involved are an analogue of the Titchmarsh-Weyl function and an asso-
ciated spectral measure, which together enable a theory of subordinacy to be
established for the class of operators considered, through which the proof is
completed [37].
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