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Purpose: In microwave breast cancer detection, it is often beneficial to arrange sensors in close
proximity to the breast. The resultant coupling generally changes the antenna response. As an a priori
characterization of the radio frequency system becomes difficult, this can lead to severe degradation
of the detection efficacy. The purpose of this paper is to demonstrate the advantages of adopting
an interferometric multiple signal classification (I-MUSIC) approach due to its limited dependence
from a priori information on the antenna. The performance of I-MUSIC detection was measured in
terms of signal-to-clutter ratio (SCR), signal-to-mean ratio (SMR), and spatial displacement (SD) and
compared to other common linear noncoherent imaging methods, such as migration and the standard
wideband MUSIC (WB-MUSIC) which also works when the antenna is not accounted for.
Methods: The data were acquired by scanning a synthetic oil-in-gelatin phantom that mimics the
dielectric properties of breast tissues across the spectrum 1–3 GHz using a proprietary breast
microwave multi-monostatic radar system. The phantom is a multilayer structure that includes skin,
adipose, fibroconnective, fibroglandular, and tumor tissue with an adipose component accounting for
60% of the whole structure. The detected tumor has a diameter of 5 mm and is inserted inside a
fibroglandular region with a permittivity contrast εr -tumor/εr -fibroglandular < 1.5 over the operating band.
Three datasets were recorded corresponding to three antennas with different coupling mechanisms.
This was done to assess the independence of the I-MUSIC method from antenna characterizations.
The datasets were processed by using I-MUSIC, noncoherent migration, and wideband MUSIC
under equivalent conditions (i.e., operative bandwidth, frequency samples, and scanning positions).
SCR, SMR, and SD figures were measured from all reconstructed images. In order to benchmark
experimental results, numerical simulations of equivalent scenarios were carried out by using CST
Microwave Studio. The three numerical datasets were then processed following the same procedure
that was designed for the experimental case.
Results: Detection results are presented for both experimental and numerical phantoms, and higher
performance of the I-MUSIC method in comparison with the WB-MUSIC and noncoherent migration
is achieved. This finding is confirmed for the three different antennas in this study. Although a delocal-
ization effect occurs, experimental datasets show that the signal-to-clutter ratio and the signal-to-mean
performance with the I-MUSIC are at least 5 and 2.3 times better than the other methods, respectively.
The numerical datasets calculated on an equivalent phantom for cross-testing confirm the improved
performance of the I-MUSIC in terms of SCR and SMR. In numerical simulations, the delocalization
effect is dramatically reduced up to an SD value of 1.61 achieved with the I-MUSIC in combination
with the antipodal Vivaldi antenna. This shows that mechanical uncertainties are the main reason for
the delocalization effect in the measurements.
Conclusions: Experimental results show that the I-MUSIC generates images with signal-to-clutter
levels higher than 5.46 dB across all working conditions and it reaches 7.84 dB in combination with
the antipodal Vivaldi antenna. Numerical simulations confirm this trend and due to ideal mechanical
conditions return a signal-to-clutter level higher than 7.61 dB. The I-MUSIC largely outperforms the
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methods under comparison and is able to detect a 5-mm tumor with a permittivity contrast of 1.5.
C 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4892067]

Key words: electromagnetic inverse scattering, breast cancer detection, microwave imaging

1. INTRODUCTION

Breast cancer is the most common type in women and inci-
dences are increasing in the developing world due to extended
life expectancy, increased urbanization, and expansion of
Western lifestyles. The World Health Organization launched a
key message to stress the importance of “early detection in or-
der to improve breast cancer outcome and survival remains the
cornerstone of breast cancer control.”1 So far the only breast
cancer screening method that has proved to be effective is
mammography screening. However, its detection capabilities
have been shown to be limited due to poor benign/malignant
tissue contrast (around 10%). Between 4% and 34% of all
breast cancers are missed and nearly 70% of all breast lesions
turn out to be benign.2 The exposure to low levels of ioniz-
ing radiation may reduce patient compliance with screening.
On the other hand, magnetic resonance imaging (MRI) offers
higher performance in terms of resolution and, hence, a correct
diagnosis. Typical resolution in a breast image obtained via a
3 tesla (3 T) MRI system is about 1 mm. However, MRI is
still expensive and not proven to be a practical procedure for
wide screening campaigns. Ultrasound can supplement x-ray
mammograms by discerning between liquid cysts and solid
tumors. Alternative methods at exploratory stage are based
on different tissue parameters such as elasticity, temperature,
and optical properties. Exploiting dielectric contrast to image
relevant features in biological targets has been investigated
for decades3 but recently this research area has gained critical
mass. Higher spatial resolution is achievable by using x-ray
radiation, but radio frequency (RF) technology offers higher
dielectric contrast between normal and diseased breast tissues
which can supplement conventional diagnostics. This can en-
able the reduction of false diagnosis with consequent high
social impact and reduced costs to health systems. Moreover,
it is based on low power nonionizing radiation which facil-
itates cost-competitive screenings. These important potential
outcomes have triggered the investigation of many microwave
imaging techniques, aimed at detecting, localizing, and identi-
fying tumors in breast tissues.4 However, while the contrast be-
tween malignant and adipose breast tissues may be as large as
10, those between malignant and healthy fibroglandular tissues
can be as low as 10%, in both permittivity and conductivity.5,6

This places an important challenge in microwave breast imag-
ing as most breast tumors appear in the fibroglandular tissues.

Several microwave imaging techniques were proposed in
the last two decades. These can be generally grouped into
nonlinear and linear inversions. Nonlinear inversions aim at
retrieving the breast dielectric and conductivity profiles.7,8

However, they are computationally intensive9 and can suffer
from convergence and reliability problems due to false so-
lutions.10 Linear methods (also addressed as radar focusing)
are robust and computationally effective but they only allow

detection and localization of the tumor inhomogeneities11

with the requirement for further classification steps.12 In any
case, the corresponding inverse scattering problem is very
difficult as the tumor is buried within a highly inhomogeneous
medium.

Imaging algorithms are only part of the picture. A crucial
role is played by the RF system and in particular by the an-
tennas. Ultra-wideband (UWB) antennas have been proposed
for this application as they can offer a very large operating
band, stable radiation properties, and compact dimensions
both with planar13–15 and 3D profiles.16 In order to fully as-
sess the achievable performance of a breast cancer detection
system, the presence of the antenna must be taken into account.
Ideal sources are worthy of consideration at a preliminary
stage when the focus is limited to the algorithm. Recent con-
tributions deal with more complex scenarios where antennas
are considered in the numerical model.17,18 Also a number
of antenna prototypes were developed and integrated into ex-
perimental phantom-based systems,19 under preclinical20 and
clinical trials.21,22

Accurate near-field microwave imaging requires charac-
terization/equalization of the antenna behavior. This can be
pursued by a suitable set of measurements or numerical simu-
lations. However, as the breast properties change from patient
to patient, residual errors still remain. With uncertainty levels
as high as the magnitude of the tumor scattered field, the
imaging procedure robustness is dramatically endangered.
In particular, dense breasts are particularly exposed to this
problem as they present lower tumor/healthy-tissue contrast.

In order to mitigate the requirement for antenna charac-
terization in complex near-field scenarios, suitable detection
methods should be properly devised. Interferometric multi-
ple signal classification (I-MUSIC) was developed17 to ad-
dress this issue. This approach represents a multifrequency
variant of the well-known time-reversal MUSIC (Ref. 23)
when adapted to a multi-monostatic configuration. The term
interferometric refers to the diversity created by using dif-
ferent frequency samples. More specifically, images obtained
at different frequencies are multiplicatively mixed with each
other. Theoretical details and performance assessment were
addressed by Solimene et al.24 Preliminary numerical results
on a breast scenario were reported by Ruvio et al.25 In this
study, a 2D numerical mostly fatty breast model was derived
from a MRI scan according to the Wisconsin’s repository.26 It
is shown that the method succeeds in detecting a low-contrast
tumor when the antenna response is completely neglected in
the imaging procedure. As the scattered signal coming from
the tumor is generally weaker than internal reflections in the
antenna and reflections coming from the skin layer and other
benign tissues, clutter removal procedures are an important
step in the diagnostic system. Several clutter-rejection meth-
ods have been proposed in the literature. Some of them rely on
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filtering procedures that attempt to estimate the clutter signal
at a given position and subtract it from the actual measure-
ments.27 Alternatively, some procedures employ a differen-
tial scheme where two sets of measurements corresponding to
two different rotations of the system are subtracted from each
other.28 These procedures strongly depend on the uniformity of
the skin layer, breast shape, and antenna response. Moreover,
they can also result in filtering part of the signal weakly scat-
tered by the tumor scattered signal. Time gating procedures
can exploit entropic metrics that enables identification of time
windows in which signals have to be silenced29 but rely on
similar assumption about the breast.

Subspace projection methods also entail filtering the scat-
tered signals but being based on amplitude differences do not
require uniformity assumptions. Sarafianou et al. proposed a
novel skin reflection removal algorithm30 that operates starting
from a preliminary breast surface estimation which is then
used to create a synthetic phantom. Finally, the field scattered
by this synthetic phantom is subtracted from the actual mea-
surements.

Preclinical testing requires the realization of accurate ex-
perimental phantoms with varying degrees of complexity.31

In general, the realization of synthetic materials that closely
mimic the physical properties of various human tissues be-
comes very difficult when a large operating frequency range
is required.

In this paper, the achievable performance of the I-MUSIC
in combination with a subspace-based anticlutter technique
is experimentally evaluated with a 2D inhomogeneous breast
phantom that was manufactured with oil-in-gelatin emulsions.
These tissue-mimicking materials are able to reproduce the
electrical properties of different normal and malignant breast
tissues.32 Different dielectric properties can be obtained by
varying the percentages of a 50% kerosene–50% safflower oil
solution to simulate the electric behavior of healthy and dis-
eased breast tissues. Experimental data are obtained by using
three different types of antennas (i.e., a planar monopole, a
semifolded monopole, and an antipodal Vivaldi antenna). Data
are then processed to detect a 5-mm tumor included within
a fibroglandular region. Moreover, experimental results were
cross-referenced against equivalent numerical model simu-
lations. The achievable performance obtained by I-MUSIC
is then compared with two other methods in the literature:
the noncoherent migration,33 which is a particular version
of beamforming, and the wideband MUSIC (Ref. 34) which
belongs to the class of spectral estimation algorithms as I-
MUSIC. These three methods under comparison are nonco-
herent in the sense that reconstructions are obtained only by
noncoherent amplitude superimposition of images obtained at
different frequencies. The aim of this paper is to highlight the
enhanced detection performance achieved by using I-MUSIC
when no a priori antenna characterization is given. To the best
of our knowledge, this paper is the first to analyze and quantify,
through experimental and numerical data, the detection capa-
bilities of I-MUSIC by using three noncharacterized antennas
with different antenna/tissues coupling mechanisms.

2. PHANTOM AND MEASUREMENT SETUP

Breast phantoms based on oil-in-gelatin emulsions can re-
produce the electrical properties of various normal and ma-
lignant breast tissues. An essential property of these mate-
rials is the capability to create heterogeneous anthropomor-
phic structures with long-term stability of mechanical and
electromagnetic properties. Moreover, due to their gelati-
nous consistence, these materials are convenient for rela-
tively easy and inexpensive manufacturability as well as being
characterized for the radio frequency range of interest in this
study. For these reasons oil-in-gelatin materials were selected
to manufacture a heterogeneous 2D phantom [Fig. 1(a)] in-
cluding skin, adipose, fibroconnective, fibroglandular, and tu-
mor tissues. Two dimensional phantoms (if not 1D) represent
a convenient and common choice for a faster and fair sys-
tem assessment.14,35–38 In particular, phantom simplification
enables a more detailed investigation when nonideal antennas
are used.18

Different tissues were realized by properly mixing the 50%
kerosene–50% safflower oil solution with a formaldehyde-
based emulsion. The following oil percentages were used to
make the tissues: 80% oil concentration for the adipose tissue,
40% oil for fibroconnective tissue, 30% oil for fibroglandular
and skin tissues, and 20% oil for the tumor.31 The phantom has
an overall diameter of 114 mm including the 2-mm-thick skin
layer. The fibroconnective and fibroglandular regions have 68
and 20 mm diameters, respectively. The multilayer structure
was realized with a multistage procedure: First, the adipose tis-
sue was poured into a mold where a rod was introduced to make
room for the fibroconnective/fibroglandular/tumor structure.
After the adipose tissue had gelled, the same procedure was
repeated for the other internal layers. Finally, a 2-mm-thick
skin tissue was attached to the adipose tissue. Based on such
adipose composition, this breast model can be categorized into
heterogeneous mix (31%–84% adipose).6 In order to create a
challenging detection scenario, the 5-mm-diameter tumor was
asymmetrically located inside the fibrograndular region.

The dispersive behavior of skin, adipose, fibroconnective,
fibroglandular, and tumor properties was measured over a large
frequency range spanning from 1 to 3 GHz using a coaxial
probe [Fig. 1(b)]. As can be seen, the real part of the di-
electric permittivities is reasonably close to the average val-
ues measured by Lazebnik et al.6 The tissues realized for
this study present a conductivity contrast between benign and
tumor tissues which is lower than the average values mea-
sured by Lazebnik et al.6 In particular, the overall permit-
tivity between the tumor and the fibrograndular tissue is no
greater than 1.5:1, which can be considered relatively low. The
phantom was also imaged using MRI in order to assess its
compliance from a morphologic perspective as well. The MR
images were acquired on a 3 T system (Achieva, Philips, the
Netherlands) using a high resolution 3D T2-weighted imaging
sequence with a spatial resolution of 0.7×0.7×0.7 mm3. From
Fig. 2(a) it can be appreciated that the desired layering was
actually achieved.

The system antenna + phantom was immersed into a cou-
pling medium which presents properties equivalent to the

Medical Physics, Vol. 41, No. 10, October 2014
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F. 1. (a) Cross-section of the cylindrical phantom, (b) measured relative
permittivity of tissues, (c) measured conductivity of tissues.

expected adipose tissue. In particular, the average value of
measured permittivity of the coupling medium and adipose
tissue across the operating spectrum 1–3 GHz is equal to
12. The adipose component is in fact dominant in the breast
tissue distribution. The coupling medium was realized with

F. 2. (a) Slice through a 3D MRI phantom dataset, showing the internal
layers; (b) the measurement setup showing the turntable-mounted phantom
and antenna in the coupling medium.

the same 80% oil emulsion used to make the adipose tissue
in the phantom but without gelling agents. The medium
improves coupling from the antenna to the phantom and also
enables antenna miniaturization. With the phantom placed on
a turntable, frequency-domain scattering measurements were
made over 360◦ in 10◦ steps [Fig. 2(b)]. Preliminary results
based on measurements carried out with this phantom were
presented with a planar monopole used as sensor.39

3. THE ANTENNAS

As antennas are generally characterized in terms of far-
field behavior, the choice of best performing antenna for this
particular imaging/sensing application is not obvious. On the
one hand, monopole antennas present very stable behavior
and are resilient to detuning when close to human tissue. On
the other hand, properly oriented Vivaldi antennas provide
greater coupling to adjacent human tissue. Figure 3 shows
prototypes of the three antennas40 used for this compara-
tive analysis. The three antennas were optimized to operate
with a minimum 10-dB return loss across the 100% band-
width ranging from 1 to 3 GHz when immersed in a cou-
pling medium with εr = 12. The dielectric substrate used in
all three designs is 1.58-mm-thick Taconic CER10 material.
Figure 3(a) shows a printed planar monopole. The bottom
edge of the radiating element was beveled to extend a good
impedance match over a larger frequency range. The front
view and a section of the semifolded monopole are depicted
in Fig. 3(b). This antenna consists of a printed part and an

Medical Physics, Vol. 41, No. 10, October 2014
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F. 3. Geometry of the antennas investigated: (a) planar monopole, (b) semi-
folded monopole, and (c) antipodal Vivaldi antenna.

external 0.2-mm-thick brass element. It is worth noticing that
the front area of the planar monopole is reduced by 39% when
the antenna is modified into a semifolded geometry. Finally,
Fig. 3(c) shows the printed antipodal Vivaldi antenna. The
tapering of the two arms is based on spline curves whose
generating points were determined with an efficient global
optimization (EGO) algorithm. The antennas under test were
placed against the multilayer breast phantom so to have the
printed radiating element lying on the xz-plane and centrally
placed against the phantom according to the reference axis
in Fig. 1(a). In particular, the Vivaldi antenna is positioned
in such a way that the edge corresponding to the aperture of
the arms and lying on the x axis is centrally placed against
the multilayer system. The planar monopole, the semifolded
monopole, and the Vivaldi antenna present very different
coupling/radiation mechanisms. The planar monopole tends
to couple energy in an omnidirectional pattern in its azimuth
plane, whereas the semifolded monopole can convey more
power in one direction (toward the phantom). Finally, the

Vivaldi antenna combines good matching and directive stable
coupling/radiation pattern across a large frequency range.

4. THE IMAGING PROCEDURE

The field scattered by the phantom is collected by a TX/RX
antenna over N scanning positions (ro1, ro2,. . ., roN) taken
uniformly around it at Nf frequency bins. The data of a
complete scan can be accordingly arranged in the N ×Nf

scattering matrix S= [S1· ··Sn f · ··SN f ], where Sn f is the col-
umn vector of data collected over the observation positions
at n f -th frequency. These data include the tumor signal but
also strong clutter components generated from the antenna’s
internal reflection, skin, and other benign tissues. As the clutter
tends to mask the tumor signal, it has to be reduced before the
image construction procedure.

A clutter-rejection subspace-based technique is adopted
here.41 This method is chosen for not relying on unrealistic
breast uniformity assumption nor on strong correlation be-
tween different time traces. Only the a priori assumption that
clutter magnitude is higher than tumor signals is exploited.
To this end, it is convenient to express the scattering ma-
trix S through its singular value decomposition (SVD) as
S=UΛVH , where U and V are unitary matrices containing
the left and right singular values, respectively, (·)H represents
the Hermitian operator, and Λ is a diagonal matrix containing
the singular values λ1, λ2,. . .,λP, in decreasing order, with
P=min{Nf , N}. Clutter can be then mitigated by disregard-
ing the projection of the scattering matrix on the singular
functions corresponding to the highest singular values. The
number of projections to discard generally depends on the
source of clutter and requires information which is not a
priori known. Therefore, for this application, it is chosen
only to discard the projection of the scattering matrix over the
singular function corresponding to the highest singular value.
Due to reflections in the antenna and from the skin layer, it
can be considered true that the first singular function mainly
contains clutter contribution. This choice can be considered
conservative but realistic at the same time. Consequently, the
decluttered data matrix is obtained as

Sd =

P
k=2

λkukvkH (1)

with P ≤min(N,Nf ) and uk and vk being the kth column
vectors of U and V, respectively. With the clutter removed,
the scattering data vectors (i.e., the columns of Sd) can be
approximated at the n f -th working frequency by

S
n f

d
=HR( fn f

)A( fn f
)HT( fn f

)b( fn f
), (2)

where HT( fn f
) and HR( fn f

) are the TX/RX antenna re-
sponses, respectively, b( fn f

) is the vector of the scattering
coefficients, and A( fn f

) is the propagator which links the
scatterers [located at (r1, r2,. . ., rM)] to the scattered field
data. In particular, S

n f

d
is the n f -th column of Sd (which

corresponds to the n f -th adopted frequency) and represents
the field scattered by the targets (assumed to be pointlike)
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and collected over the observation spatial positions. Since a
multi-monostatic configuration is considered, the lth column
of A( fn f

) is expressed as

Al(rl; fn f
)= 

G2(ro1,rl; fn f
),. . .,G2(roN ,rl; fn f

)T , (3)

where G(.; fn f
) is the 2D Green’s function relative to the breast

host medium, G(ron,rl; fn f
)=H2

0

�
keq |ron−rl |�, with keq be-

ing the propagation constant relative to an equivalent breast
permittivity εr -equivalent assigned equal to εr -coupling_medium.
Al(rl; fn f

) accounts for the squared Green’s function (due to
the round-trip path) and the antenna’s TX/RX responses. Some
remarks are now appropriate. First, it is noted that in Eq. (2)
mutual scattering between different tumors was neglected.
This is actually a reasonable assumption because the breast is
a highly lossy medium. Second, a multi-monostatic configu-
ration was adopted. This choice is justified for the necessity to
develop an imaging method that does not rely on the antenna
response. In a multi-monostatic configuration, HT( fn f

) and
HR( fn f

) can be considered nearly constant across the differ-
ent scanning positions. However, antenna responses, HT( fn f

)
and HR( fn f

), depend on frequency as well. Hence, as they
are actually considered unknown in Eq. (2), data at different
frequencies cannot be coherently combined while forming the
images. However, data can be separately processed at each
single frequency and the corresponding reconstructions can
be then suitably combined. To this end, the I-MUSIC is pro-
posed.24 First, for each adopted frequency, the correlation ma-
trix is obtained as

R( fn f
)= S

n f

d
S
n f H

d
. (4)

Since multiple views are not exploited, such a matrix is rank
deficient with rank equal to one. Thus the pseudospectrum
can be conveniently built without singular spectrum compu-
tation as

Φ
n f (rk; fn f

)= 1/∥Pn f Ak( fn f
)∥2, (5)

where Pn f = I−Qn f = I−R( fn f
)/∥S

n f

d
( fn f

)∥2 is a projec-
tor onto the noise subspace and Ak( fn f

)= Ak(rk; fn f
)/

∥Ak(rk; fn f
)∥ is the steering vector evaluated at the trial

positions rk within the spatial domain D under investigation.
It is also remarked that, as no a priori information regarding
the phantom is given, the steering vector is constructed by
employing the Green’s function of an equivalent homoge-
neous breast medium. This is done by assigning the dielectric
permittivity of the coupling medium to the equivalent breast
medium in the Green’s function expression.

Rank deficiency of R( fn f
) entails some limitations on the

achievable performance and uniqueness problems, especially
with a low number of scanning positions.24 In order to over-
come these limitations, pseudospectra obtained at different
frequencies can be incoherently combined as suggested by
Yavuz and Teixeira34 By doing so, the so-called wideband
MUSIC is obtained

ΦWB-MUSIC(rk)= 1
 N f
n f=1

P
n f Ak( fn f

)
2
. (6)

In this contribution, single frequency pseudospectra are
combined in an interferometric arrangement as done by Ruvio
et al.25 The multifrequency pseudospectrum is overall built as

ΦI-MUSIC(rk)= 1
 N f
n f=1

P
n f Ak( fn f

)
2
. (7)

Hence, it consists in multiplying pixel by pixel the pseu-
dospectra obtained at different frequencies.

Both methods are herein compared. As beamforming meth-
ods are largely employed in this kind of application, it is inter-
esting to consider also an algorithm taken from this class in the
comparison. To this end, the following noncoherent migration
(N-M)11 approach is also taken into account

ΦN-M(rk)=
N f

n f=1

Q
n f Ak( fn f

)
2
. (8)

In the Appendix it is shown that Eq. (8) actually represents a
particular beamforming algorithm where the time windowing
is not imposed. This corresponds to the fact that no informa-
tion about the antenna is available. In particular, the travel
time within the antenna, which is required to set the time
integration window, is not known.

5. DATA ACQUISITION AND RESULTS

The phantom was scanned radially over 360◦ with a 10◦

angular step (36 scanning positions) according to a multi-
monostatic radar configuration. In all experiments, the reflec-
tions from the antenna (S11) in the frequency domain (range
1–3 GHz) were recorded using a Rohde & Schwarz ZVB8
vector network analyzer, which operated both as the mi-
crowave signal generator and as the recording device. The
antennas were positioned against the phantom by using a rigid
coaxial cable and Perspex holders which are transparent in
the adopted frequency interval. The phantom was scanned
at room temperature with the three different antennas previ-
ously mentioned. Ten frequency samples (Nf = 10, according
to previous notation) uniformly distributed in the frequency
range 1–3 GHz were adopted for the detection procedures.
From the different recorded scans operated by using the
three antennas under assessment, reconstructions were carried
out with the three noncoherent methods under equivalent
conditions (i.e., N and Nf ). The reconstructions correspond-
ing to three different detection methods used to process the
measurements data are shown in Fig. 4 for all antennas under
consideration. Although the target results delocalized in all
reconstructions, the I-MUSIC method offers a better perfor-
mance when compared to the other noncoherent approaches
for enabling more focus and better dynamic range. Together
with visual reconstructions of the detection algorithms, their
performance was also measured by suitable metrics such as
signal-to-clutter ratio (SCR) within breast, signal-to-mean ra-
tio (SMR), and spatial displacement (SD). The SCR within
breast compares the maximum tumor response to the maxi-
mum clutter response in the same reconstructed image. The
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F. 4. Reconstructions based on experimental results. Each reconstruction is normalized to the corresponding maximum value and is expressed in decibel-scale.
Tumor marked with yellow circle.

value of maximum clutter corresponds to the maximum pixel
value of the image excluding the area which comprehends
the tumor peak response up to twice the extent of the full
width half maximum (FWHM) response of the tumor itself.
The FWHM corresponds to the distance between the peak
tumor response and the point at which the energy of the peak
response drops by 3 dB. The SMR compares the maximum
tumor response in the reconstructed image with the average
clutter response in the same image, whereas the SD measures
the error in tumor localization and accounts for the difference
between the tumor position as peak value in the reconstruc-
tion and as actual center position in the scanned phantom.
Results are summarized in Table I and confirm the superior
performance achieved by I-MUSIC in reconstructions. It is
worth noting that the relatively high displacement expressed
in terms of SD could be expected as a consequence of the
approximated equivalent breast relative permittivity used in

the steering vector formation [Eq. (5)]. For the experimental
WB-MUSIC case, metrics could not be extracted as its dy-
namic range is smaller than the 3-dB scale adopted for their
calculation.

T I. Reconstruction metrics. Experimental results.

Method
SCR
(dB)

SMR
(dB)

SD
(mm)

Coplanar monopole
N-M 1.13 8.53 27.2
I-MUSIC 5.87 20.30 26.6

Semifolded monopole
N-M 0.89 9.16 24.7
I-MUSIC 5.46 21.52 25.1

Vivaldi
N-M 1.49 9.78 26.3
I-MUSIC 7.84 26.48 26.9
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Delocalization effects occur in the reconstructions from
measured datasets due to the following issues in the mechani-
cal setup:

• The phantom is rotated with a 10◦ step but the tolerance
of accuracy of the turntable is ±2◦.

• Although the antenna was held in place by using a Per-
spex frame, the interface between antenna and phantom
was kept fixed at each scanning position with a tolerance
of ±1 mm in the transversal direction (i.e., tangential to
the phantom cross-section).

• Furthermore, in the aim of highlighting the detection
capabilities of the I-MUSIC independently from a pri-
ori information on the detection scene, apart from the
calibration of the network analyzer at its port, no further
calibration was carried out (i.e., no response from the
tank was eliminated).

Significant research and sophisticated engineering have
been dedicated in our efforts to mitigate mechanical uncer-
tainties in the data-acquisition system for microwave breast
cancer imaging.21,22

With respect to measured reconstructions showing the su-
periority of the I-MUSIC approach in relative terms, it would
be useful to estimate how measurement uncertainties alter
the achievable performance respect with an ideal controlled
environment. To this end, experimental measurements taken
on the oil-in-gelatin phantom were benchmarked by numer-
ical simulations of equivalent scenarios. An equivalent 2D
phantom was numerically implemented in CST Microwave
Studio and scanned by the three antennas in Sec. 3. Following
the very same procedure adopted for measurements, the phan-
tom was scanned across the same 36 angles. Reconstructions
obtained from numerical data are shown in Fig. 5. Although
the absence of mechanical uncertainties in the numerical

F. 5. Reconstructions based on numerical results. Each reconstruction is normalized to the corresponding maximum value and is expressed in decibel-scale.
Tumor marked with black circle.
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T II. Reconstruction metrics. Numerical results.

Method
SCR
(dB)

SMR
(dB)

SD
(mm)

Coplanar monopole
N-M 1.11 10.65 3.27
WB-MUSIC 1.92 3.81 2.71
I-MUSIC 13.52 81.08 2.71

Semifolded monopole
N-M 3.12 12.25 4.16
WB-MUSIC 3.82 6 3.37
I-MUSIC 7.61 78.07 3.88

Vivaldi
N-M 3.47 12.53 2.08
WB-MUSIC 4.71 7.30 1.61
I-MUSIC 10.11 85.02 1.61

environment leads to a certain disagreement with experimen-
tal results, simulations confirm the reconstructions obtained
through measurements with clear outperforming outcomes
achieved with the I-MUSIC and the Vivaldi antenna. SCR,
SMR, and SD metrics were also calculated for the numerical
case and figures are summarized in Table II.

6. DISCUSSION

The fundamental problem addressed in this study is how
to reduce the dependence from a priori characterization of the
antenna response for microwave breast cancer radar detection.
With the antenna placed in a near-field scenario and cou-
pling with breast tissues which are differently distributed from
patient to patient, the definition of its response is strongly
limited. Previous attempts based on a priori information ex-
tracted from measurements or numerical simulations show
partial efficacy that results in inaccurate diagnostics. By set-
ting a complete experimental and numerical assessment car-
ried out with antennas with different coupling mechanisms,
the I-MUSIC approach maintains its outperforming trend
against otherwise limited detection achieved with migration
and WB-MUSIC. Considering that preliminary antenna re-
sponse characterization and equalization were never exploited
for the detection and image reconstructions, I-MUSIC can
reduce the requirement for a priori antenna information. Only
two assumptions were made in this study: the first one is
relative to the clutter-rejection procedure by discarding the
contribution corresponding to the highest singular value; the
second one regards the choice of an equivalent breast permit-
tivity εr -equivalent equal to εr -coupling_medium for the formation
of the reference Green’s function. Both assumptions were
extensively justified in Sec. 4.

In order to highlight the advantages of the I-MUSIC, a
comparison was made with two linear noncoherent methods
(i.e., wideband MUSIC and noncoherent migration) that are
commonly used in the literature. With both experimental mea-
surements and numerical benchmark, the I-MUSIC shows
higher performance due to its reduced dependence from a pri-
ori, and often unfeasible, characterization. The delocalization
of the detected target from the actual position is visible in Fig. 4

and it is quantified in Table I in terms of SD. This affects all
detection methods under comparison in both experimental and
numerical cases, although it is emphasized in measured data
sets due to mechanical uncertainties. This is mainly due to the
mismatch between the adopted equivalent breast permittivity
in the reference Green’s function and the actual unknown per-
mittivity mapping of the detection scene. The dependence of
this delocalization effect from such mismatch was analyzed by
Solimene et al.24 in controlled canonical scenarios and it draws
the attention toward further developments of the I-MUSIC
approach.

7. CONCLUSIONS

A 2D oil-in-gelatin breast phantom was made for the evalu-
ation of the scanning capability of the I-MUSIC technique us-
ing three antennas with different radiation/coupling properties.
The I-MUSIC was also compared to noncoherent migration
and WB-MUSIC approaches. Measurements were taken and
equivalent numerical simulations were carried out by scan-
ning the phantom in a multi-monostatic configuration across
36 uniformly distributed angles. Apart from the calibration
of the VNA at the antenna terminals, no further characteri-
zation of the detection scene was carried out. The response
of the tank was not subtracted. Neither was a response from
an equivalent tumorless phantom considered. Reconstructions
were obtained from datasets without any preprocessing pro-
cedure apart from the TSVD clutter-rejection technique de-
scribed in Sec. 4 [Eq. (1)]. The I-MUSIC method offers better
focusing capabilities and larger dynamic range between clutter
and tumor levels when compared to the other algorithms un-
der consideration. In particular, the antipodal Vivaldi antenna
outperforms the coplanar and the semifolded monopoles as it
enables more pronounced artifact clutter mitigation in recon-
structions. Considering the limited 1.5:1 dielectric contrast be-
tween tumor and fibroconnective tissues, the 5-mm-diameter
of the tumor, and the independence from a priori antenna char-
acterization, the I-MUSIC system presents promising features
for early stage breast cancer diagnostics.
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APPENDIX: BEAMFORMING AS A PARTICULAR
CASE OF NONCOHERENT MIGRATION

In this section the relationship between the noncoherent
migration and the beamforming algorithm is briefly clarified.
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Let us start by the recalling the beamforming equation

ΦBF(rk)=
 T+Tw

T


m

sdm(t−T +τm(rk)
2

dt, (A1)

where sdm(·) is the signal collected at r0m, T =max{τm}
(over the trial positions and the sensors positions), τm(rk)
= 2|r0m−rk |2/v (v being the assumed propagation speed) and
W = [T, T +TW] is the time integration window. In practical
situations time T should also account for the time delay due
to the propagation inside the antenna structure. By accepting
that no information on the antenna is available, choice of W
is not immediate. Here, time windowing is completely dis-
carded so that Eq. (A1) becomes

ΦBF(rk)=
 

m

sdm(t−T +τm(rk)
2

dt (A2)

which by Parseval’s formula can be rewritten as

ΦBF(rk)=

B

�����


m

Sdm( f )exp[ j2π f τm(rk)]
�����

2

df , (A3)

where B is the signals frequency band and Sdm( f ) denotes
the Fourier transform of sdm(t). By accounting for that, only
a discrete set of frequencies is employed and by recalling the
2D Green’s function asymptotic behavior, Eq. (A3) can be
recast as

ΦBF(rk)=
N f

n f=1

S
n f H

d
Ãk( fn f

)
2
, (A4)

where Ãk ( fn) is the Green’s function column as in Eq. (3)
once the amplitude spreading terms has been compensated.
Now, it is immediate to realize that Eqs. (A4) and (8) coincide
apart from some normalizing weights defined in Eq. (5).
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