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Abstract—In machine learning based clinical decision support
(CDS) systems the features used to train prediction models are
of paramount importance. Strong features will lead to accurate
models, whereas as weak features will have the opposite effect.
Feature sets can either be designed by domain experts, or
automatically extracted for unstructured data that happens to
be available from some process other than a CDS system. This
paper compares the usefulness of structured expert-designed
features to features extracted from unstructured data sources
in an oncological survival prediction application scenario.

I. INTRODUCTION

Clinical decision support (CDS) systems [1] are a par-
ticularly promising real-life application of machine learning
techniques. Good CDS systems need to strike a delicate
balance between giving medical practitioners confidence in
system reliability and taking advantage of the kind of insight
that the automated analysis of large multivariate data sources
can allow - insight that is not available to typical medical
practitioners.

One of the ways in which medical practitioners can be given
more confidence in CDS systems is to involve them closely
in their design. For predictive machine learning systems the
design of input feature sets is one of the key influences that
practitioners can exact on system design. Often, however, in
certain application domains there is an opportunity to access
further secondary unstructured data with which to augment
these hand-crafted feature sets with the expectation that this
secondary data may enhance the predictive power of resulting
models. This, unfortunately, is done at the risk of actually
damaging the predictive power of the resulting models [2] and
so we must ask whether unstructured secondary data is worth
including in predictive models or whether it is better to focus
on well understood features designed by experts?

This paper examines this question. Using an oncological
survival prediction problem we compare the performance
of survival prediction models built using a set of features
designed by expert oncologists with the performance of pre-
diction models built using these designed features augmented
with features automatically extracted from secondary unstruc-
tured data sources relating to the same patients. The data in
question is in the form of discharge reports collected over a
ten year period in a real oncology clinic.

The paper continues with a review of medical CDS systems
before discussing in detail the experiments performed. After
presenting the results of these experiments we conclude with
a discussion of the implications of these results.

II. BACKGROUND

The potential of computer science to play a useful role in
clinical decision support (CDS) has been recognised since the
early 1960s [3]. Many of the early CDS systems were built
using handcrafted rules elicited from medical practitioners;
the parade example of this type of work being the MYCIN
system for diagnosis of blood infections [4]. Although this
hand-crafted approach has had success these systems suffered
from the fact that they required large time inputs from medical
experts. However, at the same time as these systems were
being developed work also began on machine learning based
approaches to CDS system development.

Machine learning systems are developed by automatically
deriving predictive classification models from large data sets.
As such they are well suited to the development of medical
predictive classification models as medical datasets recording
patient symptoms and correct diagnoses are a byproduct of
standard hospital recording procedures. One of the earliest
systems to use an automatically derived model was the Leeds
Abdominal Pain System [5]. This systems used Bayesian
probability theory and a large patient dataset to derive a model
that could calculate the probability of seven possible causes of
acute abdominal pain. Building on this early success a strong
tradition of probability based CDS systems has developed, for
examples see: [6], [7], [8].

With the maturation of other machine learning techniques,
such as decision tree induction [9] and back propogation neural
net training [10], the range of machine learning approaches
applied to the development of CDS systems broadened - for
example neural net based approaches (e.g., [11], [12], [13])
and decision tree based approaches (e.g., [14], [15]).

However, no matter which machine learning algorithm is
applied a crucial issue is the design of the feature set used
for training the model. Including all possible information can
result in the algorithm overfitting the data with a concomitant
reduction in the generalizability of the resulting model [2].



Conversely, excluding features from the data set may deprive
the algorithm of information that it could use to increase the
predictive power of models that are built. Furthermore, the
question of whether to use only structured data specifically
designed for training a CDS system, or to use all available
data (for example unstructured free-text fields) is important.
The focus of this paper is an investigation of the use of such
secondary unstructured data in a survival prediction problem
for oncology patients.

III. EXPERIMENTS

To investigate the usefulness of different kinds of feature
sets in building survival prediction models we performed a
series of experiments on an oncological problem. This section
will describe, in detail, the nature of these experiments begin-
ning with a description of the dataset used and how this data
was manipulated; then covering the experimental methodology
used before presenting the results of the experiments.

A. Datasets

All of the experiments described in this paper use a dataset
from the Urology Department of the Republican Clinical
Oncologic Dispensary in Kazan in the Russian Federation.
This dataset contains discharge reports for patients diagnosed
with kidney cancer that were treated in the clinic between 2000
and 2010. The overall dataset contains 843 fully anonymised
records.

Each discharge report contains 25 structured data points
describing the state of a patient’s health; the results of medical
tests and other analyses; the history of a patient’s contacts with
the clinic; whether or not the patient survived their cancer;
and information on the treatment of the patient. Information
is presented in the form of numeric values (e.g. patient
age), categorical values (e.g. operation type) and three free-
text fields that describe (1) a patient’s medical history, (2)
a description of any surgical treatments carried out and (3)
a description of any diagnostics carried out. These free-text
fields were present on the form used by oncologists to make
reports, and they were free to make whatever entries they
chose. Many oncologists choose not to use these fields, while
others use them frequently. Similarly, the length of the texts
entered by oncologists vary from just a few words, to in-
depth descriptions made up of hundreds of words. Regardless
of their length the texts, which are in the Russian language,
typically contain various abbreviations, medical terminology
and differing typography. Some examples of free-text entries
made by oncologists are shown in Figure 1.

B. Data Preparation

Using the raw dataset three derived target variable were
generated indicating whether or not a patient had survived 1,
3 and 5 years after treatment respectively. So that prediction
modules could be developed for each of these targets the
full dataset was divided into three subsets in which the total
time that a patient had been under observation by the clinic
exceeded the survival time being predicted. The sizes of these

Fig. 1. Examples of text from the free-text fields in the oncology dataset

datasets and the distribution of target variables within them
are shown in Table I.

In order to fully explore the potential contribution that the
free-text fields could make to prediction model building, two
approaches were taken to extracting meaningful data from
them: (1) automated extraction and (2) manual extraction.
In the automated extraction approach a bag-of-words feature
extraction (in which a document is represented as a vector of
the words it contains from a possible vocabulary) was used.
Simple whitespace tokenisation was used and feature reduction
was achieved by removing terms that appeared in only 3 or
fewer documents. Stop word removal, using a Russian stop
word list, was also used. This approach resulted in different
numbers of features for each of the three datasets, as shown
in Table I.

The second feature extraction approach used was to man-
ually extract medically interesting features from the free-text
fields. The features extracted and their levels were:

• disease relapse - boolean
• presence of metastasis1 - boolean
• presence of metastasis to an adrenal gland - boolean
• presence of metastasis to bones - boolean
• the size of a tumor - numeric
• presence of thrombi2 - boolean
Using a set of instructions given by an oncologist, student

volunteers were used to extract these features if present within
any of the free-text fields in the dataset. In cases where the
text fields were empty, or where no reference was made to the
particular feature a default of false for boolean values and 0
for numeric values was used.

C. Experiment Methodology

Th purpose of the experiments undertaken was to compare
the performance of classifiers built using different combina-

1metastasis refers to the spread of cancer cells from the initial or primary
site of the disease to another part of the body

2thrombi are clots in blood vessels



TABLE I
THE DETAILS OF THE THREE SMALLER DATASETS GENERATED FROM THE OVERALL ONCOLOGY SET

Name Size Survived
Class Size

Died Class Size Bag of Words
Features

Patients under observation for > 1 year 841 741 100 103
Patients under observation for > 3 year 564 443 121 65
Patients under observation for > 5 year 342 254 88 23

tions of features. The combinations considered were:
1) The designed feature set only
2) The features automatically extracted from the text fields

only
3) The features manually extracted from the text fields only
4) The designed feature set plus the features automatically

extracted from the text fields
5) The designed feature set plus the features manually

extracted from the text fields
After some initial experimentation with different classifi-

cation algorithms three approaches were considered for the
presentation of results: (1) the naive Bayes classifier [16], the
Voting Feature Intervals (VFI) [17] classifier and the J48 Deci-
sion Tree classifier [18]. These classification approaches were
chosen because the naive Bayes and decision tree classifers are
widely used in CDS systems and the VFI clasisifer achieved
particularly good preformenace on the tasks being investigated.
Implementations of these classification approaches from the
Weka platform [19] were used in all experiments. For each
of the three classification problems outlined in Section III-B
a 10-fold cross validation experiment was performed for each
of the 5 feature combinations described above.

D. Results

The results from the different 10-fold cross validation
experiments are shown in Tables II - IV. In these tables we
present overall classification accuracy, the accuracies achieved
on each of the two classes (survived and died) and the
average class accuracy - a more informative measure than
overall classification accuracy for datasets in which the class
distribution is imbalanced. For each dataset and classifier type
the best average class accuracy achieved is highlighted in bold.

The first point to note about these results is that in general
the prediction accuracies of the system are not especially high.
This is not unexpected as this sort of classification problem is
particularly difficult and mid-range accuracies are common -
this is one of the reasons why these sort of systems are only
used as decision support tools and final decisions are left to a
human expert.

There is also a considerable amount of variation in the
performance of the different classification algorithms. It was
not possible to build a decision tree classifier using the
three datasets that performed well. As is particularly evident
from the Died Class Accuracy scores in Tables II and IV
the decision tree models built simply could not distinguish
between the two classes. The VFI classifier, on the other
hand was the best predictive model we could create and out-
performed the other two classification approaches in almost

all cases.
It is worth noting that the models built using only the

features extracted from the free-text fields (both manually and
automatically extracted) do not perform well. This suggests
that the although there is enough information in these feature
sets to inform a prediction, the predictive power of these sets
alone is not especially high. Similarly, as the time horizon
for which survival prediction is being performed is increased,
the accuracy of predictions decreases. Again this is not unex-
pected as the underlying classification problem becomes more
difficult as the time horizon is stretched further into the future.

Finally, in all but three cases (the prediction for survival
after 1 year using a naive Bayes classifier and the predictions
for survival after 1 and 5 years using a decision tree classifier),
the addition of features from the free-text fields has a negative
impact on classification accuracy. The times wher this is
not the case are when the underlying models themselves are
performing poorly. This result addresses the question that is at
the core of this paper. In this application scenario there appears
to be no benefit in adding extra unstructured information to
the structured feature set designed by expert oncologists.

IV. CONCLUSIONS AND FUTURE WORK

The purpose of this paper is to examine the usefulness of
secondary free-text data as well as structured, expert-designed
features in building models for an oncological survival predic-
tion problem. Typically, survival prediction models use hand-
designed feature sets that are the result of input from domain
experts, in this case oncologists. While it intuitively makes
sense that hand-designed feature sets would lead to good
prediction models, and the involvement of domain experts
in the design and development of decision support systems
is useful in instilling confidence in domain experts in the
potential of CDS systems, there is often an opportunity to add
extra predictive power to systems by adding model features
that may not be obvious to domain experts. These features can
often be mined from secondary sources not directly designed
for the task.

In the scenario considered in this paper oncologists had
the opportunity to add free-text descriptions to the structured
data collected in patient discharge reports designed to be used
for survival prediction in an oncology clinic. The question
asked in the experimental section of this paper is whether
or not features extracted from these free-text fields could be
useful in developing more predictive models than those built
simply using the feature set hand-designed by the collaborating
oncologists. Interestingly, in this case, it appears that this
extra information is not useful for building prediction models.



TABLE II
SURVIVAL PREDICTION 10-FOLD CROSS VALIDATION ACCURACIES FOR PATIENTS UNDER OBSERVATION FOR > 1 YEAR

Manually
extracted features
only

Automatically
extracted features
only

Designed
features only

Designed
and manually
extracted features

Designed and
automatically
extracted features

Naive Bayes Overall Accuracy 0.869 0.816 0.872 0.872 0.850
Died Class Accu-
racy

0.12 0.337 0.53 0.56 0.64

Survived Class
Accuracy

0.97 0.881 0.918 0.914 0.879

Average Class
Accuracy

0.545 0.609 0.720 0.737 0.7595

Voting Feature
Intervals

Overall Accuracy 0.830 0.876 0.838 0.836 0.835

Died Class Accu-
racy

0.36 0.04 0.62 0.59 0.57

Survived Class
Accuracy

0.893 0.991 0.868 0.869 0.87

Average Class
Accuracy

0.6265 0.5155 0.764 0.7295 0.72

Decision Tree Overall Accuracy 0.881 0.875 0.869 0.862 0.879
Died Class Accu-
racy

0 0.03 0.08 0.09 0.13

Survived Class
Accuracy

1 0.991 0.976 0.966 0.98

Average Class
Accuracy

0.5 0.5105 0.528 0.528 0.555

Performance better than that achieved using the designed set
of features could not be achieved with either extra features
manually extracted from the free-text fields in the discharge
reports, or from sets of features automatically extracted from
the free-text fields. While this is only a small initial experiment
on a single application scenario it is indicative of the power
of including domain experts in-the-loop when developing
decision support systems, and reinforces the fact that the
design of feature sets is a particularly useful phase in which
to solicit expert involvement.

To continue this work in the future we intend to perform
larger studies using more datasets with similar characteristics
to the data used in the experiments described in this paper.
We also intend to investigate the use of interactive data
understanding tools, such as those described in [20], to aid
domain experts in the design of useful features.
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TABLE III
SURVIVAL PREDICTION 10-FOLD CROSS VALIDATION ACCURACIES FOR PATIENTS UNDER OBSERVATION FOR > 3 YEARS

Manually
extracted features
only

Automatically
extracted features
only

Designed
features only

Designed
and manually
extracted features

Designed and
automatically
extracted features

Naive Bayes Overall Accuracy 0.789 0.745 0.828 0.817 0.793
Died Class Accu-
racy

0.157 0.248 0.512 0.521 0.5

Survived Class
Accuracy

0.962 0.88 0.914 0.898 0.872

Average Class
Accuracy

0.5595 0.564 0.713 0.7095 0.686

Voting Feature
Intervals

Overall Accuracy 0.766 0.789 0.819 0.814 0.810

Died Class Accu-
racy

0.248 0.041 0.587 0.595 0.567

Survived Class
Accuracy

0.907 0.993 0.883 0.874 0.876

Average Class
Accuracy

0.5775 0.517 0.735 0.7345 0.7215

Decision Tree Overall Accuracy 0.796 0.782 0.817 0.810 0.817
Died Class Accu-
racy

0.116 0.066 0.331 0.298 0.308

Survived Class
Accuracy

0.982 0.977 0.95 0.95 0.955

Average Class
Accuracy

0.549 0.5215 0.6405 0.624 0.6315

TABLE IV
SURVIVAL PREDICTION 10-FOLD CROSS VALIDATION ACCURACIES FOR PATIENTS UNDER OBSERVATION FOR > 5 YEARS

Manually
extracted features
only

Automatically
extracted features
only

Initial designed
features only

Initial designed
and manually
extracted features

Initial
designed and
automatically
extracted features

Naive Bayes Overall Accuracy 0.725 0.737 0.789 0.772 0.763
Died Class Accu-
racy

0.125 0.148 0.443 0.409 0.42

Survived Class
Accuracy

0.933 0.941 0.909 0.898 0.882

Average Class
Accuracy

0.529 0.5445 0.676 0.6535 0.655

Voting Feature
Intervals

Overall Accuracy 0.740 0.754 0.769 0.754 0.763

Died Class Accu-
racy

0.182 0.08 0.545 0.511 0.523

Survived Class
Accuracy

0.933 0.988 0.846 0.839 0.846

Average Class
Accuracy

0.5575 0.534 0.6955 0.675 0.6845

Decision Tree Overall Accuracy 0.734 0.743 0.725 0.734 0.725
Died Class Accu-
racy

0.091 0 0.034 0.091 0.023

Survived Class
Accuracy

0.957 1 0.965 0.957 0.969

Average Class
Accuracy

0.524 0.5 0.4995 0.524 0.496
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