
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Science

2011

Feasibility Study of Utility-Directed Behaviour for Computer Game Feasibility Study of Utility-Directed Behaviour for Computer Game

Agents Agents

Colm Sloan
Technological University Dublin

John D. Kelleher
Technological University Dublin, john.d.kelleher@tudublin.ie

Brian Mac Namee
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Sloan, C., Kelleher, J. & Mac Namee, B. (2011) Feasibility Study of Utility-Directed Behaviour for Computer
Game Agents. Proceedings of the 8th International Conference on Advances in Computer Entertainment,
Lisbon, Portugal ,08-11, November. doi:10.1145/2071423.2071430

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Feasibility Study of Utility-Directed Behaviour for
Computer Game Agents

Colm Sloan
Applied Intelligence Research

Centre
Dublin Institute of Technology

Ireland
colm.sloan@student.dit.ie

John D. Kelleher
Applied Intelligence Research

Centre
Dublin Institute of Technology

Ireland
johnd.kelleher@dit.ie

Brian Mac Namee
Applied Intelligence Research

Centre
Dublin Institute of Technology

Ireland
brian.macnamee@dit.ie

ABSTRACT
Utility-based control (UBC) hasn’t been widely adopted for com-
mercial game AI. Some of the reasons for this are that UBC is per-
ceived to be: (1) resource intensive, (2) difficult to design com-
plex behaviours with, and (3) difficult to scale for use in complex
environments. This paper investigates these perceptions to see if
UBC is suitable for controlling the behaviour of non-player char-
acters in commercial games. The investigation compares agents
using a UBC system against two control systems that are more fre-
quently used in commercial games: finite state machines (FSMs),
considered a simple control system, and goal-oriented action plan-
ning (GOAP), considered a complex control system. We present a
case study which suggests that: (1) UBC is more resource inten-
sive than FSMs and less than GOAP; (2) it was reasonably simple
to create complex behaviours with UBC; (3) UBC didn’t scale as
well as FSMs or GOAP for use in complex environments.

1. INTRODUCTION
A non-player character (NPC) is a type of character in computer

games that is controlled entirely through the use of a behavioural
control system and without any continuous instruction from a hu-
man. A designer would ideally script all NPC behaviour to give ex-
actly the type of gaming experience they want for the player. The
scope of modern AAA computer games is so large that scripting
all NPC can be impossible. A common approach to overcome this
time limitation is to use a control system to carry out the bulk of
NPC behaviours and to script only behaviours particular to certain
situations.

A behaviour control system directs the actions performed by a
NPC in a computer game. Some of the behaviour control sys-
tems that can be used to direct the actions of NPCs in computer
games are rule-based systems [15], expert systems [12], decision
trees [29], Markov systems [30], fuzzy-logic based systems [19,
22], hierarchical FSMs [7, 14] and behaviour trees [8].

Many designers of modern computer games spend little time de-
veloping sophisticated control systems. Some AAA title games be-
ing produced today still use NPCs that are predictable and perform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Presented as Full Paper at ACE’2011 - Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11 ...$10.00.

actions that are not appropriate for the particular situation of the
NPC. This behaviour could be the result of limited development
time that designers have to create a behaviour control system or
because the designers don’t want to use much computational re-
sources on NPCs. In this paper, we describe an implementation
of utility-based control (UBC) that is used in an attempt to cre-
ate NPCs that are less predictable and more capable of selecting
actions than NPCs that use popular behaviour control systems. We
attempt to do this without using significant computational resources
or a prohibitively long implementation time.

We will compare UBC to finite state machines (FSMs) [11] and
goal-oriented action planning (GOAP) [26]. These two control sys-
tems have been selected for comparison because the FSM is con-
sidered among the most basic and resource inexpensive of the be-
haviour control systems, GOAP is considered among the most com-
plex and resource intensive and both are used in commercial com-
puter games. Comparing against these two control systems should
allow us to see where a UBC system falls in the spectrum of com-
plexity and resource requirements.

Contribution: The contribution of this paper is a detailed eval-
uation and comparison of three control systems (FSMs, GOAP and
UBC) to judge how suitable a UBC system is to drive the behaviour
of NPCs in computer games. The UBC system will be compared
to these two systems by: (1) quantitatively testing the resource re-
quirements of all three control systems in terms of processing and
memory; (2) an evaluation of the complexity of the behaviours af-
forded by all three control systems where emergent behaviours are
deemed to be more complex, interesting and desirable; and (3) our
personal assessment of how easily each of the three control systems
are implemented and extended. The experiments described in this
paper were carried out in a virtual hospital environment.

Overview: Section 2 will briefly describe the three control sys-
tems used in our experiments. Section 3 will describe the imple-
mentations used to carry out the comparison of the control sys-
tems. Section 4 will detail the results of the evaluation. Section 5
concludes and explains the directions in which we intend to take
this work in future.

2. BACKGROUND
This section will discuss each of the three control systems used

as part of this research: (1) FSMs, (2) GOAP and (3) UBC. It will
briefly discuss each system, how it works, an example of it working
and highlight some of its strengths and weaknesses.

When the word state is used hereafter in this document, it will
refer to the values of a set of variables when referred to with GOAP,
and a behaviour that a non-player character is executing when re-
ferring to an FSM.

2.1 Finite State Machines
Adopted from academia [24, 25], an FSM in a computer game is

a control system consisting of a predefined collection of states, each
defining exactly how an agent should act when in that state [4]. An
agent may only occupy one state at a time [1]. FSMs have been
known to require few resources and to be implemented quickly.
Many variations of the FSM have been developed by professionals
in the games industry and by academics [9, 13, 32, 35].

Figure 1: An example of an FSM

An example of an FSM for a typical guard NPC is shown in Fig-
ure 1. The rounded rectangles represent states, the arrows repre-
sent transitions between states and the words surrounded by square
brackets represent the event that triggers a transition.

When a designer is giving a behaviour to an NPC using an FSM,
the designer must specify every state and how to behave in that
state before the program starts running. A transition to a state can
be triggered by the satisfaction of some set of conditions. The NPC
may then carry out some premeditated fixed sequence of actions
determined by what state he is in, giving the impression of an intel-
ligent behaviour, such as running away from an enemy when health
is below a certain level.

FSMs are flexible and can implemented reasonably quickly when
there are few states. Problems arise with FSMs as more states are
added to them. All transitions between states need to be speci-
fied within the code while the FSM is being designed. This means
that the designer must know all possible transitions from any state
to any other at design-time. It can be very difficult to foresee all
possible situations an NPC may find itself in when dealing with
complex environments such as those in a commercial game. De-
signers may also find themselves tangled in the complex web of
transitions between NPC states even if they can foresee all transi-
tions. Furthermore, the low-level behaviour that must be specified
when using an FSM is often programmed to work for a particu-
lar environment. This makes it difficult for FSMs to be transferred
into a new environment, such as a new game. FSMs have a range
of other drawbacks that are well recognised [6] including the diffi-
culty in adapting them to cope with goal-directed decisions; the fact
that they are not standardized and that they don’t handle concurrent
behaviours well.

2.2 Goal-Oriented Action Planning
GOAP [26] is a goal-oriented planning system that has been used

to control game agents in commercial games [28]. GOAP goes
a step further than other behaviour control systems by allowing
agents to decide at run-time not just what to do but also how it
should be done. Agents using GOAP periodically reevaluate their

situation and choose the optimal behaviour to achieve their most
relevant goal. A goal in GOAP is any set of conditions that an agent
wants to satisfy, be it to get a particular item or to kill a particular
opponent.

GOAP is based on an early STanford Research Institute Problem
Solver (STRIPS) [10]. Actions in STRIPS have two parts: (1) the
conditions that must be satisfied in order for the action to be ex-
ecuted, and (2) the effects that occur when an action is executed.
Unlike STRIPS, GOAP also associates actions with costs, giving
the planner the ability to know which actions are preferable. It also
has the ability to replan, i.e. the ability to make a new plan when a
previous one has failed during execution. Replanning uses knowl-
edge of which actions have previously failed and creates a new plan
to achieve the same goal that doesn’t include any of the actions that
have previously failed.

GOAP agents have predefined goals. Some goal selection mech-
anism is used to pick a goal the agent wishes to achieve. This goal
is passed to a plan formulation process to determine the lowest cost
sequence of actions that will achieve the goal. GOAP uses a re-
gressive A* search [23] from the goal state to the current state. It
finds the lowest cost sequence of actions by searching through a li-
brary of possible actions using action cost to guide the search. The
search begins by searching for an action with the effects that sat-
isfy the goal state and then adds new actions to the plan that are
needed to satisfy any of the conditions of that action. More actions
are added to satisfy the conditions of actions that already exist in
the plan until all conditions are satisfied.

Figure 2: A representation of the GOAP plan formulation pro-
cess

Figure 2 shows a representation of the GOAP plan formulation
process for a nurse in a simulation, where actions are shown as
rounded rectangles, action costs as the numbers next to the rounded
rectangles, effects as arrowheads and conditions as inverted arrow
heads. For example, the nurse has the goal of medicating a patient.
This goal consists of the patient_medicated condition. The plan-
ner will search through the action library for an action that has the
effect of changing patient_medicated into the desired state, which
leads it to the give_pills action. The planner will look through all
actions in search of those with effects that satisfy the has_pills con-
dition. The planner will find the get_pills and get_backup_pills
actions. The get_pills action is added to the plan as that action
has a cost of 10 and is lower than the action cost of 30 for the
get_backup_pills action. The get_pills action has the at_pills con-
dition. The goto_pills action satisfies this effect and is added to the
plan. The planning process then ends because there are no con-
ditions left unsatisfied and the lowest cost plan consisting of the
actions goto_pills, get_pills and give_pills is selected for execu-

tion.
GOAP is essentially an optimal, heuristically guided planner,

like those introduced during the mid 1990s [3]. One difference be-
tween such a planner and GOAP is that GOAP agents refer to a list
of previously failed actions while formulating a plan, which itself
has been done before in early planning research [31]. GOAP differs
from other planners because GOAP specifies not just what action
should be executed but also how it is executed for the particular
agent executing it. This allows actions to be performed differently
for particular agents in a game. For example, an agent using the
goto action could result in it performing the fly action if it is a bird,
but the walk action if it is an elephant. GOAP combines all of these
ideas in a manner tailored to computer games.

One of the strengths of GOAP is that it uses the A* search al-
gorithm which is already well known in the games industry thus
reducing the learning curve for the algorithm and allowing it to
leverage optimizations made to A* for pathfinding. Another is the
ease with which it can reuse planning logic and customise actions
for specific agent types because of its decoupling of what actions
should be performed and how they should be performed. GOAP
has a number of weaknesses. Very specific behaviours are diffi-
cult to craft with GOAP as designers can only work with high-level
logic. This limitation can be overcome by using some scripted be-
haviours in parallel with GOAP but there’s nothing within GOAP
that deals with this problem. Another problem with GOAP is that
because it starts with the goal and works backwards, there is no
way to begin executing the first action in a plan while the other ac-
tions are still being calculated [26], a problem that doesn’t occur
with progressive search planners [16]. GOAP also only allows for
the pursuit of one goal at a time and is difficult to extend for use
with partially-satisfying plans, though it is possible [5]. Perhaps
the biggest complaint game designers normally have with GOAP is
that it requires so many symbols, such as has_pills, when it scales
up to the level of a commercial game. Finally, GOAP finds the
lowest cost plans but these may not necessarily be the best overall
plan as the planner fails to account for how beneficial an action may
be to the planning agent. Unlike GOAP, the complete effect of an
action can be modelled in a UBC system.

2.3 Utility-Directed Behaviour
Utility is a measure of the desirability of a state to an agent with

a set of goals [33]. This desirability is represented by a utility func-
tion that maps a state to a real number. This mapping makes it pos-
sible to judge exactly how far a state is from the state preferred by
an agent with goals. This mapping makes it possible to judge how
an action will affect the utility of a state to an agent with a set of
goals if that action was to be executed. An agent whose behaviour
is driven by utility will select actions that will create states with the
highest utility for the agent with a set of goals. Utility is useful for
selecting actions in two types of situations: (1) when there are con-
flicting goals e.g. a taxi driver wants to drive as quickly as he can
but safely, and (2) when there is uncertainty and weights involved
in achieving multiple goals e.g. a student really wants to publish a
paper soon but also wants to publish at a high-impact conference.
Utility can be used to find the best action to take if weights are as-
sociated with the goals and probabilities are associated with actions
denoting the chance an action will succeed.

The calculation of utility can be done a number of ways. A
Markov decision process [2] is one popular type of control sys-
tem that can use utility. Markov decision processes will require
knowledge of reward and discount functions and will need to be
trained. Training can be unsuitable for computer games because
games change rapidly during development, requiring retraining of

Markov process and also because it can take time to tinker with the
reward and discount functions to get the desired behaviour. More
simple approaches exist such as simply having a one utility func-
tion for each goal that measures the satisfaction of that goal and
having another function to tally the values returned from each of
these functions. Though this simple utility-directed method can
find the best action to perform while working with multiple goals,
it would need functions and values to calculate the utility of a state
for each goal.

For example, let’s imagine that there is a man who wishes to
buy a watch. His first goal is to have as much money as he can
where C100 is the maximum and his second goal is to be stylish,
where 100 style points is the maximum. He has C100 in cash and
a style level of 0. There are two watches that he’s interested in
buying. The first costs C100 and raises his level of style by 95. The
second watch costs C50 and raises his level of style by 60. Assume
there is a fictional unit of measurement called utils which is used
to describe the utility of an action. We’ll say that for every euro
gained is worth 1 util and that style point gained is worth 2 utils.
The utility function for each goal of the man will be used to check
the utility of the state with regard to those goals if each action was
executed. The action of buying the first watch will bring a change
of -100 utils to the goal of having money and +190 utils for the
goal of being stylish, totalling 90 utils. The action of buying the
second watch will bring a change of -50 utils to the goal of having
money and +120 utils for the goal of being stylish, totalling 70 utils.
Therefore the action that creates the highest utility state for the man
is to buy the first watch. The method described in this example will
be similar to the method implemented for use in the experiments.

3. IMPLEMENTATION
A test simulation environment has been developed to compare

the performance of FSMs, GOAP and UBC systems at driving the
behaviours of NPCs in game environments. The gameplay in the
simulation takes place within a virtual hospital where NPCs play
the roles of nurses, doctors, patients, and visitors. Figure 3 shows a
screenshot of this environment.

Figure 3: A screenshot of the hospital simulation

Nurses care for patients by giving them food and medicine when
necessary. Nurses also socialize with nurses and doctors and per-
form administrative duties. Doctors occasionally check how things
are going. Patients ask for food, medicine and company. Visitors
chat with patients and rest when they’re finished chatting. The ac-
tions executed by the NPCs are governed by either an FSM, GOAP,
or utility-based controller.

Each control system was designed to be as simple as it could
be. This is to try to make each as domain-independent as possible.

Each FSM implemented in the simulation has at least two states.
An agent controlled by an FSM starts off in a state that has been se-
lected as the starting state. In each state the control system checks
if certain conditions have been met that would trigger the agent to
move into another state. For example, a nurse performing adminis-
trative duties would switch into a state of giving medication if the
medication level of any patient fall below a certain threshold.

The particular implementation of GOAP used during this eval-
uation uses GOAP in its simplest form without any enhancements
e.g. no caching. The planning agent has a set of goals where each
of which is associated with a priority. The planner will check ev-
ery 0.2 seconds to see if a new plan should be made. A new plan
is made if the planning agent has no plan, has discovered that his
current plan has failed, or if a higher priority goal is no longer sat-
isfied. The planner will create a plan for the highest priority goal
found. The list of goals an NPC has are specified at design-time.
The list of actions an NPC can execute are specified at design-time
and are used to form plans at run-time.

Each agent using our UBC system has a set of goals. The UBC
system can only calculate the utility of a state that is one action
away for the game agent. Unlike GOAP, which dynamically builds
plans by chaining actions together, our particular UBC system en-
codes a sequence of actions as one predefined plan, similar to a
hierarchical task network [34]. For example, the nurse can attempt
to improve the state of to her goal of having all patients medicated
by checking how the utility of the state would be if she executed
one of her predefined plans. She would then select the plan that
changes the state in the best manner for the goal of medicating the
patients. An example of a predefined plan is shown in Figure 4,
where rectangles represent goals, rounded rectangles represent pre-
defined plans and where arrows show which goal may be affected
by a predefined plan. For example, for the goal keeping patients
medicated is affected by the predefined plan that consists of the
actions of going to the medicine cabinet, retrieving the medicine,
going to the patient and giving the medicine to the patient.

Figure 4: A representation of some goals and predefined plans
used in the utility-based control systems

Each goal is associated with a weight that is used to let the NPC
know which goal is more important. Each predefined-plan con-
siders the state created when that action is performed on the best
target for that action. For example, only the hungriest patient will
be considered when calculating the action of the nurse feeding the
patients. All utility-directed NPCs will attempt to maximize the
utility of the state to their goals.

While this hospital environment isn’t quite as demanding as some
found in commercial computer games it is sufficient to compare
the performance of the three control systems. The environment
was created as a modification of the game Half-Life 2 (www.half-
life2.com). This was selected because it was necessary to run the
simulation in a game engine to ensure that all control systems tested
work within the computational and memory restraints placed on a
commercial game.

4. EVALUATION
In order to evaluate the feasibility of UBC as an NPC behaviour

control system for games we compared its performance versus FSM
and GOAP in terms of: (1) the processing and memory require-
ments of the three control structures, (2) the complexity of the be-
haviours they afford, and (3) our assessment of how easily each of
these control systems are implemented and extended. Comparing
the FSM, GOAP and UBC approaches to control in games based
on their processing and memory requirements is justified because
these metrics are widely accepted as fundamentally important for
real-time computational systems. Our motivation for assessing the
complexity of the behaviours these systems can generate is an at-
tempt to capture the potential of each system to generate more di-
verse gameplay. We think that this assessment of the control struc-
tures is relevant from the perspective of a game player because the
more complex behaviours, the greater the potential for replayabil-
ity and hence the more desirable the system. Contrasting with this
perspective of the player, our analysis of how easily each of the
control systems are to implement and extend can be seen as taking
the perspective of the designer on the desirability of the system as
a tool.

NPCs were made to perform a single thinking process with their
control system every 0.2 seconds. The measurement concerns only
how long it took their control system to finish performing whatever
it needed to do to cause a behaviour in an agent. The sum of all pro-
cessing time for each control system was recorded. The simulation
was run five times for each of the control systems. The runs with
lowest and highest average time for each type were discarded and
the remaining three runs of each type were averaged over the pro-
duce a single line (shown in Figure 5) representing the performance
of each type of control system. NPCs were programmed to perform
the same tasks but using each of the three different control systems
for each simulation run. Each simulation lasted four minutes as
this was the amount of time needed for agents to have completed
all of their actions at least once and return to a state where nothing
needed to be done momentarily.

The computer used for all of the tests described had an Intel Core
2 CPU 6600 at 2.4Ghz, 4096MB of RAM and ran Windows 7 Ul-
timate 64 bit.

4.1 Processing
Figure 5 shows the processor usage for UBC agents, GOAP agents,

and agents using FSMs. Because of the large number of game cy-
cles recorded, the average of every ten processing cycle time values
were taken and averaged over to create one value. The average of
this value for each of the simulation runs of a particular control
system represents one data point in the line representing proces-
sor usage over time for that particular control system. The very
beginning of the recorded processor usage in the simulation was
removed from the figure because of a massive spike in computa-
tion that occurred at the beginning of the simulation that dwarfed
the other data points, making it very difficult to distinguish the pro-
cessor usage of any of the behaviour control system throughout the
simulation. This spike occurred because the Half-Life 2 simulation
is creating the level and characters. It was removed because it was
not relevant to the evaluation of the behaviour control systems. The
reason for the increase in processor usage over time for each of the
behaviour control systems is unknown at this time but it appears to
affect each system equally.

Each control system was being used by 32 agents. The FSMs
used the least processing time and although GOAP used the most
processing time because of its A* search, the amount of process-
ing wasn’t prohibitive. Moreover, GOAP didn’t have any visible ill

effects on the simulation except at the beginning of GOAP simula-
tions, where there was notable lag that vanished after a few seconds.
Given that GOAP uses more processing power than the UBC sys-
tem and that GOAP is used in commercial games, this strongly sug-
gests that the UBC system is a computationally viable behaviour
control system for NPCs in commercial games.

Figure 5: A comparison of processor usage for the FSMs,
GOAP and the UBC behaviour control systems when running
in a simulation of 32 NPCs

4.2 Memory
The memory requirements for the FSM and UBC were negligi-

bly small. For GOAP, a database of all goals, actions, and condi-
tions and effects used in the simulation that GOAP uses to perform
search must be held in memory. Each NPC in the simulation only
had a small set of actions to choose from. The data that needs to
be stored for each action is quite small. Commercial games using
GOAP have only needed a few dozen actions, so the memory foot-
print of the databases have been very small, as they were with this
simulation and others [20]. The tiny memory footprint for the UBC
system shows that the system is a viable behaviour control system
for NPCs in commercial games in terms of memory usage.

4.3 Behaviour
Following Juul’s [17] analysis of online games we distinguish

between open and closed games. Open games include emergent
elements that introduce variability into the gameplay. Importantly,
Juul notes that emergent games ”tend to be replayable”, an aspect
that is desirable from a players perspective.

There were no emergent behaviours or surprises of any kind ob-
served when the simulation ran with agents controlled using GOAP.
This may be because the small scope of this simulation simply left
no room for anything unexpected to occur. The FSM also acted ex-
actly as it was scripted to do, as expected. The UBC, on the other
hand, proved more dynamic and interesting. During the trials the
FSM and GOAP controlled nurse NPCs consistently focused on
first giving everyone their medication and then giving them food as
these were respectively the two most important duties of the nurse
NPCs. In contrast, the UBC controlled nurse NPCs judged whether
satisfying the hunger of some patient was better to the overall util-
ity of the nurse and would give food first to a really hungry patient
rather than give medication to a patient that isn’t in great need of
it. This variability in behaviour wasn’t possible to implement in
GOAP as GOAP only considered the cost of plans rather than the
benefit derived from executing a plan. This behaviour would have
been possible to implement in an FSM but it would have to be done

by first calculating the point at which, with the consideration of
the importance of each goal, it is more beneficial to feed a hungry
patient than it is to medicate an patient in need. Having this calcu-
lation automated and resulting in interesting and unexpected action
selection is a real advantage of using utility-based approaches.

4.4 Ease of Use
The complexity of the FSMs grew quite quickly. Each new be-

haviour added to a growing collection of variable checks. The sim-
ulation only required a few behaviours for each NPC, but even in
this case the comprehensibility of the systems plummeted quickly.
This has also been experienced in other research [21]. Because the
order in which things occurred mattered in the FSM, great care had
to be taken not to disturb the flow of the sequence of checks.

On the other hand, GOAP proved remarkably modular. Ac-
tions, goals etc. could be broken down into very comprehensible
chunks. The things that motivate behaviour are separated from
plans, that are themselves separated from how a plan may be carried
out. There is no point at which a designer may feel overwhelmed
by the complexity of the behaviour. As a result of this modular-
ity, there is no code replication in planning. The modularity also
meant that new actions could be added with little thought of con-
sequences. It was difficult to understand how the whole system
integrated its parts together at first but once this was established,
productivity was greatly enhanced. Though, by the time the use
of the system was mastered, most of the behaviours had already
been implemented, owing to the very few NPC types in the simu-
lation. However, once GOAP was set up, it was very easy to add
behaviours to agents.

It was more difficult than suspected to implement utility func-
tions for goals to make it so certain goals were more important
than other to some degree e.g. making sure the patients having
their medication was more important than making sure they were
properly fed. When a new behaviour was added to an agent us-
ing a UBC, the utility functions had to be tweaked again to get the
desired behaviour.

The code used to create behaviours for the FSM and the UBC
system were very specific to their respective NPC and used domain-
specific knowledge that and could not use much code previously
made for other NPCs. GOAP was different in that it was able to
share behaviours across agents. Visitors and nurses were given
the low priority goal of socializing. Both used exactly the same
planning logic but had different implementations of how they went
about fulfilling that goal. Nurses would talk to doctors or other
nurses, while visitors would talk to patients. There was no logic du-
plication for planning. Actions, such as talking, were also shared.
GOAP is also flexible enough to allow goals and actions to be
shared over different projects [27] because the logic may be domain-
independent while the implementation of actions can be domain-
specific.

5. CONCLUSIONS AND FUTURE WORK
The goal of this paper was to evaluate the feasibility of using a

UBC system to drive the behaviours of NPCs in computer games.
The evaluation compared the UBC system to FSMs and GOAP. The
comparison considered processing and memory resource require-
ments of each control system, the variability of the behaviours they
can dynamically generate, and our assessment of how easily each
of these control structures are to implement and extend.

Our findings were that: (1a) The UBC systems needed more pro-
cessing time than the FSMs and less than GOAP; (1b) The UBC
system required roughly the same amount of memory as the FSM
and less than GOAP; (2) NPCs using the UBC systems demon-

strated emergent behaviour whereas the other systems did not; (3)
The UBC system was harder to author than the FSMs and scaled
the worst out of the three control systems. In our opinion, this last
point is probably the reason why UBC systems have, to the best of
our knowledge, never been used to control NPC behaviour in AAA
games.

Nevertheless, the UBC system showed the greatest potential to
generate emergent behaviours, opening the possibility for more chal-
lenging and interesting games. In future, we plan to combine UBC
with GOAP to create a system that has the sensible processing and
memory requirements and the ability to plan for multiple goals,
while also maintaining the simple authorship abilities of GOAP.

6. REFERENCES
[1] D. Abreu and A. Rubinstein. The structure of nash

equilibrium in repeated games with finite automata.
Econometrica: Journal of the Econometric Society, pages
1259–1281, 1988.

[2] D. Bertsekas. Dynamic programming: deterministic and
stochastic models. Prentice-Hall, Inc. Upper Saddle River,
NJ, USA, 1987.

[3] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast
action selection mechanism for planning. In Proceedings of
the National Conference on Artificial Intelligence, pages
714–719. JOHN WILEY & SONS LTD, 1997.

[4] D. M. Bourg and G. Seemann. AI for Game Developers.
O’Reilly Media, Inc., 2004.

[5] D. H. Cerpa and J. Obelleiro. An Advanced
Motivation-Driven Planning Architecture, volume 4, pages
377 – 381.

[6] A. J. Champandard. 10 reasons the age of finite state
machines is over, Dec. 2007.

[7] A. J. Champandard. The gist of hierarchical fsm, Sept. 2007.
[8] A. J. Champandard. Understanding behavior trees, Sept.

2007.
[9] E. Dybsand. A generic fuzzy state machine in c++. Game

Programming Gems, 2:337–Ű341.
[10] R. Fikes and N. Nilsson. STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving.
Artificial Intelligence, 2(3-4):189–208, 1971.

[11] D. Fu and R. Houlette. The Ultimate Guide to FSMs in
Games. AI Game Programming Wisdom, 2, 2003.

[12] J. Giarratano and G. Riley. Expert Systems: Principles and
Programming. Brooks/Cole Publishing Co. Pacific Grove,
CA, USA, 1989.

[13] E. Gordon. A Goal-Based, Multitasking Agent Architecture,
pages 265–274.

[14] D. Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming, 8(3):231–274,
1987.

[15] F. Hayes-Roth. Rule-Based Systems. 1985.
[16] J. Hoffmann and B. Nebel. The ff planning system: Fast plan

generation through heuristic search. Journal of Artificial
Intelligence Research, 14(1):253–302, 2001.

[17] J. Juul. The Open and the Closed: Games of Emergence and
Games of Progression. In Computer Game and Digital
Cultures Conference Proceedings, pages 323–329, 2002.

[18] J. Laird and M. VanLent. Human-level AI’s killer
application: Interactive computer games. AI magazine,
22(2):15, 2001.

[19] C. Lee. Fuzzy logic in control systems: Fuzzy logic

controller–part I. IEEE Transactions on systems, man, and
cybernetics, 20(2):404–418, 1990.

[20] E. Long. Enhanced NPC behaviour using goal oriented
action planning. Citeseer, 2007.

[21] B. Mac Namee. Proactive Persistent Agents-Using
Situational Intelligence to Create Support Characters in
Character-Centric Computer Games. 2004.

[22] B. MacNamee and P. Cunningham. Creating socially
interactive non-player characters: The µ-sic system. Int. J.
Intell. Games & Simulation, 2(1):28–35, 2003.

[23] J. MatthewsŮGenerations. Basic A* Pathfinding Made
Simple. AI Game Programming Wisdom, page 105, 2002.

[24] G. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[25] E. Moore. Gedanken-experiments on sequential machines.
Automata studies, 34:129–153, 1956.

[26] J. Orkin. Applying Goal-Oriented Action Planning to
Games. AI Game Programming Wisdom, 2:217–228, 2003.

[27] J. Orkin. Symbolic representation of game world state:
Toward real-time planning in games. In Proceedings of the
AAAI Workshop on Challenges in Game Artificial
Intelligence, 2004.

[28] J. Orkin. Three States and a Plan: The AI of F.E.A.R. In
Proceedings of the 2006 Game Developers Conference,
volume 12, pages 13–14. Citeseer, 2006.

[29] J. Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[30] L. Rabiner and B. Juang. Introduction to hidden Markov
models. IEEE ASSP MAG., 3(1):4–16, 1986.

[31] G. Reece and A. Tate. Synthesizing Protection Monitors from
Causal Structure. Artificial Intelligence Applications
Institute, University of Edinburgh, 1994.

[32] G. Rosado. Implementing a Data-Driven Finite-State
machine. AI Game Programming Wisdom 2, pages
307–Ű318, 2004.

[33] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards.
Artificial intelligence: a modern approach, volume 74.
Prentice hall Englewood Cliffs, NJ, 1995.

[34] A. Tate. Generating project networks. In Proceedings of the
5th international joint conference on Artificial
intelligence-Volume 2, pages 888–893. Morgan Kaufmann
Publishers Inc., 1977.

[35] P. Tozour. Stack-Based finite state machines. AI Game
Programming Wisdom 2, pages 303–Ű306, 2004.

	Feasibility Study of Utility-Directed Behaviour for Computer Game Agents
	Recommended Citation

	tmp.1338569717.pdf.ITRuQ

