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The Use of a Fiber Comb Filter Fabricated by a CO»
Laser Irradiation to Improve the Resolution of a
Ratiometric Wavelength Measurement System

Pengfei Wang, Gilberto Brambilla, Ming Ding, Yuliya Semenova, Qiang Wu, and Gerald Farrell

Abstract—An edge filter-based ratiometric wavelength mea-
surement system is modeled and analyzed in this paper. The results
confirm that the noise of input signal and photodetectors limits the
resolution of the wavelength measurement system. The achievable
resolution is calculated for a given noise level of the input signal
and photodetectors’ resolution. An improved ratiometric wave-
length measurement system consisting of two fiber comb filters is
presented both theoretically and experimentally, which performs
coarse and fine wavelength measurements simultaneously. The
resolution of the system is significantly improved to better than
5 pm while maintaining the potential for high measurement speed
and wide measurable wavelength range.

Index Terms—Edge filter, fiber comb filter, wavelength measure-
ment, laser irradiation.

I. INTRODUCTION

AVELENGTH measurement is required in dense wave-

length division multiplexing optical communication
systems for monitoring the channel wavelength of the tunable
lasers involved, and it is also required in fiber Bragg grating
(FBG) or Fabry—Perot (FP) filter-based optical sensing systems
for detecting the wavelength shift caused by the environmental
factors, such as strain or temperature. Numerous wavelength
measurement techniques have been reported recently, which
can be mainly divided into passive ratiometric wavelength mea-
surement schemes and active wavelength scanning schemes.

A conventional ratiometric wavelength measurement scheme
consists of a beam splitter, an edge filter, and two photode-
tectors. The edge filter provides a monotonic increasing spec-
tral response in the measurable wavelength range from A; to
Ao (it can also be monotonic decreasing), which converts the
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wavelength measurement into a signal intensity measurement.
The ratiometric wavelength measurement scheme has the ad-
vantages of simple configuration, requires no mechanical move-
ment, and offers the potential for high-speed measurement as
compared with the active wavelength scanning schemes. Pre-
vious investigations proposed different types of edge filters bulk
thin-film filters [1], biconical fiber filters [2], fiber gratings [3],
macrobending single-mode fiber filters [4], [5], and multimode
interference-based multimode fiber filters [6]. Our previous in-
vestigations of the ratiometric wavelength measurement system
revealed theoretically and experimentally the impact of the lim-
ited signal-to-noise ratio (SNR) of the input signal, e.g., signal
to spontaneous-emission ratio (SSE) for the lasers, on the de-
sign of the edge filter spectral response [7].

Initially, in this paper, a conventional ratiometric wavelength
measurement system is modeled and analyzed, taking account
of the noise of both the input signal and photodetectors. The
effects of noise on the system performance, such as the measur-
able wavelength range and the system resolution, are modeled.
The achievable measurement resolution is calculated for a
given noise scale (within £0.5 dB) for a range of input signal
noise levels and photodetector resolution values. An improved
ratiometric wavelength measurement system involving two
fiber comb filters is presented, which performs coarse and fine
wavelength measurements simultaneously. The resolution of
the system is significantly improved while maintaining the
potential for high measurement speed and wide measurable
wavelength range (the presented example improves the achiev-
able resolution from about 50 pm to better than 5 pm).

II. MODELING AND ANALYSIS OF THE RATIOMETRIC
WAVELENGTH MEASUREMENT SYSTEM

Fig. 1(a) shows the schematic configuration of a conventional
ratiometric wavelength measurement system employing a fiber
edge filter. The input signal is split into two equal signals. One
passes through a reference arm and the other passes through
the edge filter. Two photodiodes are placed at the ends of both
arms. By measuring the ratio of the electrical outputs of the
two photodetectors, the wavelength of the input signal can be
determined assuming a suitable calibration has taken place.

In such a ratiometric wavelength measurement system, the
narrowband input signal with a center wavelength Ay could be
a signal from a tunable laser or a reflection from an FBG or FP
filter. Such an input signal can be approximated by a Gaussian
function with a spectral width A\ and a center wavelength A.
In practice, the input signal generally has a limited SNR, e.g.,

0733-8724/$26.00 © 2011 IEEE



1144

Input signal

L~
N

Splitter

Edge filter

Detectors 4

Reference arm

Measured
wavelength

»

Discrimination (dB)

&

(=)

I8 wavelength %)

(b)

Fig. 1. (a) Configuration of a conventional ratiometric wavelength measure-
ment system. (b) Desired spectral response of the edge filter involved.

due to SSE of the tunable laser as mentioned previously, which
means that there is measurable power even far from the center
wavelength in spectrum. Therefore, taking into account SNR,
the output spectral response of the source can be simply de-
scribed as (assuming the power at the peak wavelength is 0
dB-m) ([1], [8]-{10])

101ogyo[Ix, (A)]

[ 10l0gy, [exp (741112%)} A-dl<@ )
— 0
S(A) 4+ rand([-0.5,0.3]) R, [A— Ao > Q

where S(A) is the SNR of the source. rand([—0.5,0.5]) is
a small random number within the range of [—0.5,0.5] and
R, is the range of noise variation which depends on the
source used (for some commercial tunable lasers, the value
is about 1 dB). The parameter €} is determined by the nature
of the source noise and the value of the source SNR (5), i.e.,
10logo[exp(—41n 2(Q2%)/(AN3))] = —S and thus €2 can be
expressed as 2 = \/exp(S/17.372)/2 - A)2.

The transmission response of the edge filter versus the wave-
length A is denoted as Ty (\) (and Ty (f) = —10logo(Ty(N))
denotes the transmission in dB units). A simple case for the
transmission response 7' (\) of an edge filter in the wavelength
range (A1, A2) is a linear function, i.e.,

(T7(X2) = Ty (M)
(A2 — A1)

It is well known that the current output from a photodiode
is the integral of the optical power over a wavelength range.
Therefore, the ratio of the outputs from the two photodetectors
at a wavelength Aq is

Ti(A) = Tr(M) + (A=) @

) J PO - Iy () - Tr(0)dA
R(Ag) = —101logq, ( [ Pa(X) - L, (A)dX )
=Pr— P, @
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where P;()\) and P(\) are the output powers of the
splitter in Fig. 1(a). In an ideal case, it can be assumed

that Pi(A) = FP(A) = 0.5 and are independent of
the input wavelength within the measurable range.
Pro (= —10logglf Pu(X)- 1h,(N) - Ty(N)dA])  and

P, (= —10logyo[[ P2(A) - Ir,(A)dA]) are the output powers
from the upper arm with an edge filter and from the lower
reference arm, respectively. From (3), one also can see that for
an ideal source (infinite SNR) and noise-free photodetectors,
the ratio R(\g) is identical to the transmission response
Tt(Ao). In practice, photodetectors have limited power
measurement resolution due to inherent noise, which limits
the resolution for commercial optical power monitors to circa
0.01 dB. In our analysis, this resolution of the photodetectors
is modeled with a random value number within the resolution
range of 0.01 dB as follows:

R, (Xo) = [Pf + rand([—0.5,0.5])RM;]
=[P, 4+ rand([-0.5,0.5])RMs] (4)

where RM; and IRM, are the resolutions of the two photode-
tectors (e.g., 0.01 dB, as mentioned earlier). Since the two res-
olutions for the photodetectors are statistically independent, the
resolution for the output ratio is KM + RMo.

To demonstrate the aforementioned model of the ratiometric
system, a numerical example is presented here. A tunable laser
with the wavelength range 1500-1600 nm is assumed as an
input signal. The SNR of the laser is —50 dB and the linewidth
is 0.24 nm. Four different edge filters are considered in the cal-
culation. The transmission values for the four filters are 0 dB
at A = 1500 nm and 10, 20, 30 and 40 dB, respectively, at
A = 1600 nm. The resolution of both the photodetectors is as-
sumed to be 0.01 dB. With the aforementioned formulas, the
predicted output ratio for a tunable laser input is presented in
Fig. 2(a). In Fig. 2(a), the transmission of the edge filter itself
is also presented. One can see that as the slope of the edge filter
increases, the output ratio deviates from the edge filter trans-
mission curve; thus, it cannot be used as a wavelength discrim-
inator in the wavelength region near 1600 nm. It is caused by
the noise of the input signal as verified experimentally in [7].
Fig. 2(b) presents the corresponding output ratio at 1550 nm for
a wavelength shift of 0.05 nm and a slope for the edge filter of
0.2 dB/nm. It can be seen that the detectable wavelength shift is
limited, due to photodetector noise and the limited input signal
SNR.

It is clear that for a desired measurable wavelength range, the
input signal noise limits the slope of the transmission curve; due
to the limited photodetector resolution, the system resolution is
also limited. That is to say, for a given measurable wavelength
range, the achievable resolution of the system is determined by
the noise of the input signal and photodetectors involved. To
determine the relationship between the measurement resolution
and different noise levels for different input signal SNRs and
photodetector resolution, wavelength ranges 1500—-1600 nm and
1500-1560 nm are taken as two examples; for different noise
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Fig. 2. (a) Dependence of the system output ratio and the edge filter transmis-
sion on the input signal wavelength. (b) Output ratio of the system for a wave-
length shift of 0.05 nm; for each wavelength, the photodetectors are sampled
200 times.

levels of the input signal and photodetectors, the achievable res-
olutions are calculated with the aforementioned model. The cor-
responding results are presented as contour plots in Fig. 3(a) and
(b), respectively (resolution is expressed in pm).

From the calculated results, it is seen that a low SNR for
the input signal and high resolution of the photodetectors corre-
spond to a high wavelength measurement resolution. In practice,
the SNR of the input signal is typically fixed by the design of the
source; thus, to improve the measurement resolution for a given
wavelength range, photodetectors with a higher resolution are
required. However, the use of high-resolution photodetectors is
associated with higher cost and slower speeds due to signal av-
eraging required. However, Fig. 3 suggests that a narrower mea-
surable wavelength range corresponds to higher resolution. The
challenge is to achieve a higher resolution while maintaining a
wide measurable wavelength range. To achieve this, an alter-
native method is proposed here that involves adding two comb
filters with a periodic spectral response to the conventional con-
figuration, as presented next.
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Fig. 3. Contour plots of the achievable measurement resolution for different
SNR levels for the input signal and photodetector resolution. (a) Measurable
wavelength range is from 1500 to 1600 nm. (b) Measurable wavelength range
is from 1500 to 1560 nm.

III. RATIOMETRIC WAVELENGTH MEASUREMENT SYSTEM
COMBINING TwO FIBER COMB FILTERS

As shown in Fig. 2(a) and (b), calculated by using both (2)
and (3), increasing the slope of the edge filter can be an effective
method to improve resolution when the noise of the photodetec-
tors and the wavelength range are given. However, as presented
in Fig. 2(a), the input signal noise puts a limitation on the edge
filter slope. Therefore, the resolution of the ratiometric system
is determined by the SNR of the input signal and by the pho-
todetectors noise within a certain wavelength range. The other
possible way to increase resolution of the measurements is to di-
vide the entire wavelength range of measurements into several
smaller equal ranges and to use edge filters with higher slopes
within each of the small wavelength range.

Fig. 4(a) presents the schematic structure of the modified ra-
tiometric wavelength measurement system involving two comb
filters. The spectral responses of the two comb filters are pre-
sented in Fig. 4(b). For the purpose of measurement, the spec-
tral response within the half-period of each comb filter is used as
an edge filter. The operation of this modified ratiometric wave-
length measurement system is as follows: first, the edge filter is
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Fig. 4. (a) Schematic structure of the modified ratiometric wavelength mea-
surement system involving two comb filters. (b) Ideal spectral response of the
comb filters.

used for a coarse measurement, in order to determine the input
signal wavelength with a low resolution. Then, the comb filter
is used for a refined measurement. However, if only one comb
filter is deployed, then the system will fail to measure wave-
lengths located near the peak or valley of the comb filter trans-
mission. To overcome this problem, the modified measurement
system includes additionally a second comb filter, the spectral
response of which is shifted with respect to the first comb filter
so that the second comb filter can be used for the measurement
if the measurable wavelength is located near the peak or valley
of the first comb filter transmission [see Fig. 4(b)].

In our example, the source SNR is assumed to be about
—50 dB and the resolution of photodetectors is 0.01 dB. From
Fig. 3(a), for a conventional edge filter measurement system, if
the wavelength range is from 1500 to 1600 nm, the achievable
resolution is about 50 pm. However, if the comb filter arrange-
ment shown in Fig. 4(a) is used (with a free spectral range (FSR)
of 20 nm and a discrimination of 10 dB within a wavelength
range of 10 nm), the resolution can be improved by an order of
magnitude. As shown in Fig. 4(b), the entire wavelength range
from A; to Ay is divided into ten equal regions, each with a
discrimination of 10 dB, with five positive and five negative
slopes. If (3) and (4) are applied to the spectral response of any
one part of the slopes in Fig. 4(b), resolution can be improved
by the factor of 10 compared to that achievable in the whole
wavelength range. Generally, to achieve high resolution, the
period of the comb filter should be narrow enough to get a
high slope; however, Fig. 2(a) shows that the input signal SNR
determines the maximum discrimination at As; therefore, the
maximum discrimination of an ideal comb filter should be no
larger than 30 dB. The relationship between the period and
the slope of comb filter in a practical case will be discussed
in the next section. Fig. 5 shows the calculated output ratio
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Fig.5. Outputratio of the modified system as the wavelength shifts by 5 pm; for
each of the two wavelength values, the photodetectors are sampled 200 times.

assuming that the wavelength of the input signal shifts by 5
pm at 1556 nm. With the modified system, resolutions better
than 5 pm can be achieved. It is clear that the measurement
resolution with the comb filter is improved significantly by
comparison to the value of 50 pm achieved with the con-
ventional system shown in Fig. 1(a). The resolution can be
improved further by optimizing the comb filter specifications,
such as the discrimination and FSR. In practice, these comb
filters and their triangular spectral responses can be realized by
all-fiber Mach—Zehnder interferometers (MZIs) with a periodic
Gaussian spectral response.

IV. FABRICATION AND CHARACTERIZATION OF A FIBER
CoMB FILTER

As shown in Section III, two ideal comb filters can signifi-
cantly improve the resolution of the whole wavelength measure-
ment system. In order to experimentally verify the claim that
resolution can be improved, a fiber inline MZI was fabricated,
to provide a comb filter response, by a two-point CO» laser ir-
radiation method as reported in [11]. A fiber MZI fabricated
using the COs laser irradiation method offers a number of ad-
vantages, such as a simple structure, small footprint, and greater
mechanical strength compared with the conventional fiber MZIs
[12]-[14].

In the experiments, as shown in Fig. 6, a COy laser
(SYNRAD, Model: 48-2 KWL) with a maximum power
30 W at a wavelength of 10.6 m was employed to fabricate
the fiber comb filter. A ZnSe cylindrical lens with a focal
length of 254 + 0.5% mm was used to shape the CO, laser
beam into a narrow-line range with a width of circa 300 pm.
Beam movement was achieved fixing gold-coated mirrors on a
1-D motorized translation stage (AEROTECH ABL-1500). A
Labview program controlled the stage movement and a shutter;
therefore, the length of the fiber two-point interferometer-based
comb filter and the laser exposure time could be accurately con-
trolled. The polymer coating layers of the optical single-mode
fiber (Corning SMF-28) was stripped mechanically and the bare
fiber was placed on the 2-D translation stages without external
tension; the fiber was kept perpendicular to the laser beam line.

The COy laser beam irradiated the bare single-mode fiber and
created the first microbend; then, the translation stage with the
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Fig. 7. Microscopic image of the fiber microbent region fabricated by a CO»
laser irradiation.

ZnSe lens and the mirrors moved the laser beam to a new po-
sition. The fiber was irradiated again to create the second mi-
crobend. The transmission spectra of the fiber two-point comb
filter were analyzed during fabrication using a broadband LED
source and a high-resolution (20 pm) optical spectrum analyzer
(YOKOGAWA AQ6370).

The laser output power was 22.5 W and the exposure time was
25 s. Fig. 7 shows the microscopic image of the microbend re-
gion created in the fiber. The core mode leaks from the fiber core
into the cladding at the first microbend, travels in the cladding
region between the two microbends, and couples back to the
fiber core at the second microbend; as a result, interference oc-
curs between the cladding and core modes. Fig. 8 shows the
transmission spectrum of the fiber comb filter with a length of 40
mm between the microbends created by the CO laser; the en-
tire transmission spectrum is quasi-periodical with respect to the
wavelength and this quasi-periodicity can be used to improve
the resolution of the measurement system. As shown in Fig. 8§,
a comb filter with a minimum insertion loss of around 13 dB and
an extinction ratio of up to 9.56 dB is achieved. The comb filter
response has large variations in transmission, possibly caused
by the difference in the CO2 laser power used for the fabri-
cation of the two microbends. The COs laser used in the ex-
periments has a £5% power fluctuation; therefore, the two mi-
crobends are not identical and the relative weights of the modes
which interfere at the microbends are different. A comb filter to
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-14 1 ———-at70°C
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5 .18
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IE _20_
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Fig. 8. Transmission spectra of the fiber comb filter with an interference length
of 40 mm, at 20° C (solid line) and 70° C (dashed line).

be used in the improved wavelength measurement system ide-
ally should exhibit a spectral response with equal wavelength
spacing (namely the spectral separation between two adjacent
interference fringes), extinction ratio, and low insertion loss. As
discussed earlier and also in [15], the baseline loss of an edge
filter has to be low within a certain wavelength range (here, the
insertion loss of the comb filter is lower than 5 dB), while the
discrimination range of edge filter should be less than 20 dB to
reduce the influence of the source signal SNR and of the pho-
todetectors resolution on the ratiometric system.

However, the comb filter we fabricated has shown a big trans-
mittance variation over the wavelength range; such variation on
the spectral response will cause a significant calibration error
and will have a significant influence on the wavelength mea-
surement system. To overcome this shortcoming, the fabrication
method needs to be improved to create microbends that are as
similar as possible. The idea is to use a laser beam with a low
output power programmed to scan across the fiber in the trans-
verse direction with a particular speed. The process of transverse
scanning will be repeated along the fiber with certain steps, with
each step equal to the length between two microbent points; the
scanning cycle will be completed when an ideal transmission
spectrum is achieved.

To achieve the desired transmission spectral responses of the
two comb filters shown in Fig. 4(b), the fiber comb filter was
fixed to a 5 cm diameter aluminum base plate, the tempera-
ture of which is controlled using a thermoelectric cooler (TEC)
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Fig. 9. Measured output ratio of the improved wavelength measurement
system as the input wavelength shifts by 10 pm; for each step change of the
input wavelength, the photodetectors are sampled 200 times.

driven by a 12 W laser diode temperature controller (Thorlabs
TED200C). Full contact between the fiber comb filter and the
base plate is ensured. Using the accurate independent temper-
ature controller for the purpose of calibration, the transmission
spectral responses were measured at temperatures of 20°C and
70°C. The range of temperatures was limited by the capabilities
of the TEC used. The transmission spectral responses measured
at temperatures of 20°C and 70° C are shown in Fig. 8. From the
figure, it is clear that the peaks of the spectral response shift to
the longer wavelength when the temperature increases and the
average slope of the temperature sensitivity of the fiber comb
filter is circa 0.056 dB/°C; furthermore, the results also confirm
that the same comb filter design, but maintained at different tem-
perature, can be used as the second comb filter in the improved
ratiometric measurement system by changing the temperature
in order to achieve the shifts of the spectral response, as illus-
trated in Fig. 4(a) and (b).

The wavelength resolution of the improved system was mea-
sured using a tunable laser (Agilent 81600) as an input signal
source, with a wavelength step change of 10 pm from 1560.00
to 1560.04 nm. The measured ratio variation is shown in Fig. 9,
which proves that the improved measurement system is very ca-
pable of resolving wavelength changes less than 5 pm, verifying
the claims made by the simulations earlier in this paper.

To increase the resolution of the improved wavelength mea-
surement system, the extinction ratio of the fiber comb filter
needs to be reasonably high in order to reach a high discrim-
ination value within a narrow wavelength range. In our exper-
iments, the increase of the length between the two microbent
points was found to decrease the spectral separation between
two adjacent interference fringes in an approximately inversely
proportional fashion; besides, the interference spectrum shows
larger irregularity and a reduced extinction ratio, which gener-
ally decreases the fiber comb filter performance. In addition,
the increase in the interferometer length also increases the in-
sertion loss, resulting in a high baseline loss of the interference
spectrum, which indicates a stronger coupling to the radiation
modes in the interferometer. For this reason, the fiber comb
filter with an interference length of 40 mm is a tradeoff between

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 8, APRIL 15, 2012

high-wavelength measurement resolution and an overall perfor-
mance. Further investigation to improve the performance of the
proposed fiber comb filter is underway.

V. CONCLUSION

A conventional ratiometric wavelength measurement system
has been modeled and analyzed numerically. The simulated re-
sults have shown that the system performance is limited by
both the input signal and photodetectors noise. The achievable
resolution has been calculated for a given SNR for the input
signal and photodetectors resolution. To improve the resolu-
tion of the system, an enhanced ratiometric wavelength mea-
surement system that involves the addition of two comb fil-
ters has been proposed. The modified system performs coarse
and fine wavelength measurements simultaneously. The resolu-
tion of the system is significantly improved while maintaining
the potential for high measurement speed and wide measurable
wavelength range. The fiber comb filter can be fabricated in
single-mode fiber by using CO- laser irradiation.
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