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Abstract 
 
Cervical cancer is the fourth most common cancer affecting women worldwide but mortality can be 

decreased by early detection of pre-malignant lesions.  The Pap smear test is the most commonly used 

method in cervical cancer screening programmes. Although specificity is high for this test, it is widely 

acknowledged that sensitivity can be poor mainly due to the subjective nature of this test. There is a 

need for new objective tests for the early detection of pre-malignant cervical lesions. Over the past 

two decades, Raman spectroscopy has emerged as a promising new technology for cancer screening 

and diagnosis.  The aim of this study was to evaluate the potential of Raman spectroscopy for cervical 

cancer screening using both Cervical Intraepithelial Neoplasia (CIN) or Squamous Intraepithelial Lesion 

(SIL) classification terminology. ThinPrep® Pap samples were recruited from a cervical screening 

population. Raman spectra were recorded from single cell nuclei and subjected to multivariate 

statistical analysis. Normal and abnormal Thinprep samples were discriminated based on the 

biochemical fingerprint of the cells using Principal Component Analysis (PCA). Principal Component 

Analysis – Linear Discriminant Analysis (PCA-LDA) was employed to build classification models based 

on either CIN or SIL terminology. This study has shown that Raman spectroscopy can be successfully 

applied to the study of routine cervical cytology samples from a cervical screening programme and 

that use of CIN terminology resulted in improved sensitivity for high grade cases.  

 

  



Introduction 

Cervical cancer is the fourth most common cancer in women worldwide, accounting for an estimated 

528,000 new cases and 266,000 deaths in 2012.1 However, the mortality associated with cervical cancer 

can be significantly reduced if this disease is detected at the early stages of development or at the pre-

cancer stage, termed cervical intraepithelial neoplasia (CIN). Cervical cancer mainly affects younger 

women, about 60% of cases occurring in women under 50 years of age. Persistent infection with 

Human Papillomavirus (HPV) (such as high risk HPV types 16 and 18) is accepted as the major cause for 

the development of cervical pre-cancer and cancer.2 Other risk factors include smoking, 

immunosuppression, long term use of oral contraceptives and socioeconomic status.3 

Cervical cancers are usually preceded by a long phase of pre-invasive disease. This phase is 

characterised microscopically as a sequence of events progressing from cellular atypia to various 

grades of dysplasia or CIN before progression to invasive carcinoma. Introduced in 1968, CIN is the 

most common terminology for cervical histology. It is a three-tiered system, divided into grades 1, 2 

and 3, whereby CIN 1 corresponds to mild dysplasia, CIN 2 to moderate dysplasia, and CIN 3 

corresponds to both severe dysplasia and carcinoma in situ.4 In cytology, the British Society for Clinical 

Cytology (BSCC) reporting system for cervical cancer refers to different grades of dyskaryosis which 

relate to the three-tiered CIN terminology with CIN 1 corresponding to mild dyskaryosis, CIN 2 

corresponding to moderate dyskaryosis and CIN 3 to severe dyskaryosis. Since then, advances in HPV 

research and liquid based cytology led to the introduction of the Bethesda System in the United States 

of America.5 According to this nomenclature, squamous intraepithelial lesion (SIL) encompasses a 

range of non-invasive cervical epithelial abnormalities, comprising low grade (LSIL) and high grade 

lesions (HSIL).  Low grade lesions correspond to cellular changes associated with the HPV cytopathic 

effect (koilocytotic atypia) and mild dysplasia (CIN 1), whereas high grade lesions correspond to 

moderate dysplasia, severe dysplasia, and carcinoma in situ (CIN 2 and 3). The two-tiered terminology 

of SIL is the standard reporting system for cervical cytology used in many screening programmes 

across developed countries.  Since 2012, the College of American Pathologists and the American 



Society for Colposcopy and Cervical Pathology has recommended a uniform terminology to describe 

the histology of HPV-associated squamous disease across all anogenital sites. The two tiered 

terminology of LSIL and HSIL is recommended, as it reflects the biology of transient HPV infections and 

persistent precancerous lesions.6  More recently, the BSCC terminology was also revised to comprise 

the terms low grade, high grade with the option of high grade dyskaryosis being further reported as 

moderate or severe.7  Table 1 summarises the different classification systems. 

 

The gradual progression of cervical cancer can allow the detection of dysplastic changes before 

invasive cancer develops through cervical cancer screening programmes. These screening 

programmes are common in developed countries, greatly reducing the mortality rates due to cervical 

cancer, but are not yet implemented in developing countries due to lack of infrastructure and funding. 

The Papanicolaou (Pap) test is the most common screening method for cervical cancer and its 

precursor lesions.8 The advantages of the Pap test are that it is non-invasive, inexpensive and widely 

accepted. However, although it can have high specificity of up to 95-98%, sensitivity rates can vary 

from 74 to 96%, due to sampling, technical and/or interobserver errors which are associated with the 

subjective nature of cytological screening.9  There is, therefore, a need for new objective screening 

tests for cervical cancer. 

 

Over the past 15 years, excellent sensitivity and specificity values have been reported using vibrational 

spectroscopy, InfraRed (IR) and Raman, for the diagnosis of a wide range of cancers, including breast, 

prostate, oesophageal, colon, lung, oral and cervical cancer.10-12  IR spectroscopy is based on the 

absorption of infrared radiation by the sample and the fact that molecules absorb specific frequencies 

of the incident light which are characteristic of their structure. Raman spectroscopy is an optical method 

based on inelastic light scattering. The sample is illuminated by monochromatic laser light and 

interactions between the incident photons and molecules in the sample result in scattering of the 

light. The coupling of the light generates vibrations within the material which are characteristic of the 



chemical structure and the energy of the scattered light is reduced by an amount equal to the energy 

of the vibrational energy. Thus, the positions, relative intensities and shapes of the bands in a Raman 

spectrum carry detailed information about the molecular composition of the sample.  

A number of papers by Wong and co-workers in the early 1990’s showed significant differences in 

cervical cytology cells between normal, pre-cancer and cancer samples using IR spectroscopy.13-16  

However, these initial studies recorded spectra from cell pellets rather than from individual cells and a 

number of confounding factors such as neutrophils, endocervical columnar cells, metaplastic cells, 

cervical mucus and debris were subsequently identified.17 Similar confounding factors, such as 

inflammation, metaplasia, hormonal changes, metabolic activity, blood and mucus, were identified by 

other groups.18-22 Nevertheless, an early study by Cohenford and Rigas23 reported an important finding 

that morphologically normal exfoliated cells from women with dysplasia or cancer exhibited extensive 

IR spectral changes. This finding was confirmed by Schubert et al.24, who showed spectral changes in 

cytologically normal cells in dysplastic samples, most likely due to HPV infection. Significant overlap 

was observed between negative, LSIL and HSIL cases using ATR—FTIR spectroscopy with maximal 

overlap between negative and LSIL cases25. but a more recent study showed that cervical pre-cancer 

is more accurately identified when histology rather than cytology is used as the gold standard to 

classify the samples.26 

There are relatively fewer studies on cervical cytology using Raman spectroscopy, most likely because 

of the issues with confounding factors.  Vargis et al.27 showed that Raman spectroscopy could classify 

HPV-positive and HPV-negative cytology samples with an accuracy of 98.5%. Rubina  et al.28 reported a 

classification accuracy of ~80% using Raman spectroscopy to distinguish between normal and cervical 

cancer cytology samples. Cytology samples were treated with red blood cell lysis buffer prior to Raman 

acquisition as the spectra of cervical cancer samples were dominated by blood features. Both of these 

studies used cell pellets rather than recording Raman spectra from individual cells and this probably 

resulted in the relatively low classification accuracy in the study by Rubina et al. due to sample 

heterogeneity. A recent study by Bonnier et al.29 presented new methods for recording Raman spectra 



from ThinPrep cervical cytology samples. Pre-treatment of the slides with hydrogen peroxide to clear 

blood residue contamination before Raman recording was shown to minimise variability within the 

data sets resulting in the collection of highly reproducible data with clear discrimination between 

negative cytology and CIN cytology. All data was recorded on glass ThinPrep slides which are currently 

used for clinical cervical cytology rather than spectroscopic substrates such as calcium fluoride 

substrates which are commonly used in biospectroscopy research studies. Although these substrates 

reduce the presence of confounding contributions of the substrate, they are significantly more 

expensive which may prohibit clinical applications.30 

The aim of this study was to evaluate the potential of Raman spectroscopy for cervical cancer 

screening using routine cervical cytology samples from a cervical screening programme.  Cytology 

samples were classified according to both CIN and SIL terminology and Raman classification models 

compared. 

  



Experimental 

Sample Collection and slide preparation  

166 unstained smear samples in ThinPrepTM slides were obtained from the Western Health & Social 

Care Trust Altnagelvin Hospital, Northern Ireland, with the approval of the Research Ethics Committee 

Northern Ireland.  

Smears were collected, processed via the ThinPrepTM method, Papanicolau (Pap) stained and screened 

in the hospital by specialised personnel according to the guidelines in practice. A total of 88 negative, 

35 CIN1 (or 35 LSIL) and 21 CIN2 and 22 CIN3 (or 43 HSIL) cases were randomly selected and included 

in this study.  Each case represents a sample from an individual patient. 

One duplicate slide of each selected case was prepared using the ThinPrepTM method, fixed in 100% 

ethanol and air-dried. The samples were sent to Dublin Institute of Technology for Raman analysis.  

Before recording, each slide was pre-treated with hydrogen peroxidase (H2O2), as per an in-house 

protocol29 to remove any contaminating blood and debris. 

 

Raman Microspectroscopy  

Raman measurements were performed using a HORIBA Jobin Yvon XploRATM system (Villeneuve 

d’Ascq, France), which incorporates an Olympus microscope BX41 equipped with a x100 objective 

(MPlanN, Olympus, N.A. 0.9) and a 532nm diode laser source. To avoid any photo damage to the 

sample, the power of the laser was set at 50%. The confocal hole was set at 100µm and the 1200 

lines/mm grating was used, which gave a spectral dispersion of ~3 cm-1 per pixel. The backscattered 

light was collected using an air-cooled CCD detector (Andor, 1024 x 256 pixels) and the spectrometer 

was controlled by Labspec V5.0 software. The system was calibrated to the 520.7 cm-1 spectral line of 

silicon.  

Raman signals from each cell nucleus were integrated twice for 30 seconds in the spectral range of 

400-1800cm-1. Spectra from a minimum of 10 cell nuclei were recorded per sample, depending on 



the quality of each slide.  The data is presented as the average of all 10 cellular spectra recorded 

from each individual patient. 

 

 

Data analysis 

Data analysis was performed in Matlab [Mathworks, CA, USA] according to protocols developed in 

house.31 Pre-processing of the raw Raman spectra included the application of a Savitsky-Golay filter 

(5th order, 13 points) to smooth the spectra and the subtraction of the glass background according to 

an in house non-negative least squares (NNLS) model.32 The data set has also been corrected for 

baseline and vector normalized to facilitate comparison before principal component analysis (PCA) 

was employed to highlight the variability existing in the spectral data set recorded. Principal 

component analysis – linear discriminant analysis (PCA-LDA) was also employed to generate a 

classification model based on the features highlighted by PCA analysis. The optimal number of 

principal components (PCs) to generate the PCA-LDA model was established and 10 fold cross-

validation used to test it.  Furthermore, leave one out cross validation (LOOCV) was then used to 

evaluate the performance of the PCA-LDA classification model and sensitivity and specificity rates 

were calculated for both SIL and CIN classifications.  

 

  



Results 

Mean Raman spectra of cervical cytology samples in the fingerprint region of 400-1800 cm-1 are shown 

in figure 1a. The samples are presented according to the SIL classification system; negative, LSIL and 

HSIL. The main peaks are indicated and assignments are listed in table 1.33 The mean spectra of 

negative, LSIL and HSIL samples show similar features, the main differences being observed around 

the 1318/1339 cm-1 region, in which the ratio of the intensities of these two peaks increases from 

negative to LSIL and HSIL samples as shown in figure 1b. 

To further highlight any differences between the spectral profiles of the samples, PCA was employed. 

Figure 2a shows the PCA scatterplot for all SIL classified samples. From the PCA scatterplot, it can be 

seen that negative (green), LSIL (magenta) and HSIL (black) samples are separated according to the 

first (PC1) and second (PC2) principal components which account respectively for 76.81 % and 7.548 

% of the variance explained in the dataset. The loadings for PC1 and PC2 are shown in figure 2b and c.  

The negative samples seem to separate from the LSIL samples according to PC1, negative samples 

having more DNA (~814 cm-1), protein and lipids (1307, 1446, 1453 cm-1), Amide III (1242 cm-1) and I 

(1690 cm-1) also featuring prominently. Furthermore, the negative samples separate to a large extent 

from the HSIL samples according to PC2. Negative samples show stronger Amide III (1243, 1375 cm-1) 

and protein/lipid (1339 cm-1) features, whereas HSIL samples display stronger Amide I (1606 cm-1) and 

Amide II (1544 cm-1). In addition, the PC2 loading also highlights differences in nucleic acids, the 

features at 1458 and 1485/7 cm-1 being more prominent in the spectra of negative samples. DNA 

features at 481 and 786 cm-1 are more prominent in negative samples, whereas the feature at 893 cm-

1 is more prominent in HSIL samples. Similarly, phosphate and phosphodiester bonds at 812 cm-1 are 

more prominent in HSIL samples, whereas those at 1087-9 cm-1 are more prominent in negative 

samples. The separation between LSIL and HSIL samples results from a combination of PC1 and PC2. 

Taking the PC1 and PC2 assignments for the negative samples as a reference, the LSIL samples have a 

similar PC2 profile to the negative samples whereas the HSIL samples have a similar PC1 profile to the 

negative samples.  



The PCA results suggest that significant differences can be found in the Raman spectral profile of cell 

nuclei to distinguish between negative, LSIL and HSIL samples. PCA-LDA was therefore used to 

generate a classification model based on the features highlighted by PCA analysis.Results showed that 

a model with 12 PCs was best for LDA. Leave one out cross validation (LOOCV) was then used to 

evaluate the performance of the PCA-LDA classification model and sensitivity and specificity rates are 

shown in  table 3.  

Apart from the HSIL sensitivity, the performance of the PCA-LDA model is quite encouraging, all 

sensitivity and specificity values being above 90%. Sensitivity is also called the true positive fraction 

and accounts for the number of reported positives that are correctly identified as such. As the HSIL 

group consists of samples previously classed by the CIN classification system as CIN 2 and CIN 3, it was 

decided to re-evaluate the data according to the CIN classification.  

Figure 3a shows the mean Raman spectra of CIN 2 and CIN 3 samples. Only small differences can be 

observed; a peak at 1246 cm-1 assigned to Amide III and one at 1417 cm-1 assigned to C=C stretching 

in a quinoid ring are only observed in CIN 2 spectra whereas the CH3/CH2 twisting or bending mode of 

lipid/collagen at 1309 cm-1 is only evident in CIN 3 spectra.  

PCA was performed on the dataset according to the CIN classification and the PCA scatterplot is shown 

in figure 3b. CIN2 (red) is not clearly separated from the other sample groups but, along PC1, it can be 

seen distributed between CIN 3 (black) and CIN 1 (magenta) samples. To further elucidate the 

differences between all CIN samples, pairwise PCA was performed on spectra from CIN 1, CIN 2 and 

CIN 3 samples and the results are shown in figure 4.  CIN 1 and CIN 2 samples show some overlap but 

there is some separation along PC1 (figure 4a). PC1 is positively dominated by Amide I (1663 cm-1) and 

other protein features (~1309, 1449 cm-1), as shown in figure 4b, indicating that these are more 

prominent in CIN2 samples.  Similarly, CIN 1 and CIN 3 show some overlap but there is some separation 

along PC1 (figure 4c). In this case, PC1 is also positively dominated by Amide I (1669 cm-1) and other 

protein features (~1308, 1453 cm-1), as shown in figure 4d, indicating that these are more prominent 



in CIN 3 samples compared to CIN 1 samples.  CIN 2 and CIN 3 samples show reasonably good 

separation with some overlap along PC3 (figure 4e). PC3 is positively dominated by nucleic acid 

features at 722, 786, 810 and 850 cm-1 and Amide III at 1242 cm-1, which are more intense in the 

spectra of CIN 3 samples, whereas Amide I features at 1651 cm-1 and C-H vibration of proteins and 

lipids at 1449 cm-1 are more prominent in the Raman spectra of CIN 2 samples. 

For the PCA-LDA of the dataset according to the CIN classification, a model with 14 PCs was best for 

LDA and, similar to the SIL classification analysis, LOOCV was then used to evaluate the performance 

of the PCA-LDA classification model and sensitivity and specificity rates are shown in table 4.  All 

sensitivity and specificity values of the PCA-LDA model were greater than 90%. 

 

 

 

 

  



Discussion 

In this study Raman spectra were acquired from the nuclei of single cells of Thinprep cervical cytology 

specimens on glass slides. Recording spectra from the cell nuclei may explain the similarity between 

the average spectrum of the different sampling groups, as biochemically the nucleus of a normal cell 

and the nucleus of an abnormal cell are similar. Several studies have reported increases in nucleic 

acids in abnormal tissue samples compared to normal tissue samples.34-37 Abnormal tissue is 

characterised by increased cell proliferation rates and therefore more cells are expected to be 

detected/scanned (per area) on abnormal samples, resulting in substantial differences compared to 

normal tissue samples. In the present study, despite targeting the nuclei of the cells, it is mainly 

protein features which seem to discriminate the groups, although some differences in nucleic acid 

features were also observed. It should be noted that the Raman signals will have some degree of 

contribution from the cytoplasm of the cells as the laser passes through the cell to reach the nucleus. 

A previous study of cervical cytology specimens, although conducted on cellular pellets rather than 

cell monolayers, reported Amide I (1660 cm-1), ∂CH2 (1450 cm-1) and phenylalanine (1002 cm-1) as the 

main features dominating the Raman spectra of negative samples.28 After a treatment to remove 

blood from the samples an increase in protein content (at 1006, 1450 and 1660 cm-1) and changes in 

their secondary structure due to positive Amide III bands were found.  This adds to the case that 

instead of concentrating on increases and/or decreases in DNA and nucleic acids, Raman spectroscopy 

profiling for cervical cancer diagnosis can benefit from a better understanding of protein assignments.  

A change in ratio at 1318/1339 cm-1 was also observed for negative, LSIL and HSIL cases, suggesting a 

decrease in the lipid/protein to guanine ratio in LSIL and HSIL samples, which may result from either 

a reduction of lipids/proteins and/or an increase in the nucleic acid (guanine) content of these 

samples.  

 



The sensitivity and specificity values for the PCA-LDA models generated in this study were extremely 

high, especially when compared with Pap screening.9 All values in the CIN classification were greater 

than 90% and with the exception of the HSIL sensitivity of ~ 86%, the same was also observed for the 

SIL classification. The lower HSIL sensitivity value of 86% seems to suggest that the CIN 2 cases are 

from a heterogeneous group and perhaps some of the samples diagnosed as such might be 

biochemically closer to CIN 1 than CIN 3 and therefore may not be correctly classified as HSIL. 

In fact, a recent study by Doorbar et al.38 which investigated the correlation of CIN classification and 

HPV infection status suggested that some reported CIN 2 cases, when analysed by an 

immunohistochemistry panel of P16INK4a, MCM and HPV-encoded E4, in fact group with CIN 1 rather 

than CIN 3 cases. The study showed that the combination of identification of surrogates of high-risk 

HPV E6/E7 activity (P16INK4a and MCM), together with the detection of the abundant HPV-encoded 

E4 protein, was able to identify both transient and transforming lesions. This approach not only 

allowed to distinguish true papillomavirus infections from similar pathologies but also to divide the 

heterogeneous CIN 2 category into those that are CIN 1-like with transient HPV infection expressing 

E4, and those that do not express E4 and therefore are more closely related to CIN 3 cases with 

transforming HPV infection. 

 

Conclusions 

This study has shown that Raman spectroscopy can be successfully applied to the study of Thinprep 

cervical cytology samples from a cervical screening programme.  Samples were prepared according to 

standard protocols and good quality Raman spectra were recorded from unstained single cervical cells 

on glass slides. Excellent sensitivity and specificity values were obtained particularly when CIN rather 

than SIL terminology was used to classify the samples.  This suggests that the HSIL category is quite 

heterogeneous with CIN2 cases being biochemically different to CIN3 cases.   
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Figure Legends 

Figure 1 a) Mean Raman spectra from negative, LSIL and HSIL cervical cytology samples. Shading 

denotes the standard deviation, b) 1318/1339 cm-1 peak ratios for negative, LSIL and HSIL cervical 

cytology samples. 

 

Figure 2 a) PCA scatterplot, b) PC1 loading and c) PC2 loading of negative, LSIL and HSIL cervical 

cytology samples. 

 

Figure 3 a) Mean Raman spectra from CIN 2 and CIN 3 cervical cytology samples. Shading denotes 

the standard deviation, b) PCA scatterplot for negative, CIN 1, CIN 2 and CIN 3 cervical cytology 

samples. 

 

Figure 4 a) PCA scatterplot and b) PC1 loading for CIN 1 and CIN 2 cervical cytology samples, c) PCA 

scatterplot and d) PC1 loading for CIN 1 and CIN 3 cervical cytology samples, e) PCA scatterplot and 

f) PC3 loading for CIN 2 and CIN 3 cervical cytology samples. 

 

 

 

  



Table 1 Summary of the different cervical cytology / histology reporting systems 

Cervical cytology / histology reporting systems 

CIN1  BSCC2 (1996) 
SIL3 (Bethesda) / 

CAP4 / ASCCP5 
 BSCC (2013) 

1 Mild dyskaryosis LSIL6 Low grade dyskaryosis 

2 Moderate dyskaryosis 
HSIL7 

High grade dyskaryosis  

(moderate) 

3 Severe dyskaryosis High grade dyskaryosis (severe) 

 

1 Cervical intraepithelial neoplasia; 2 British Society for Clinical Cytology; 3 Squamous intraepithelial lesion;          

4 College of American Pathologists; 5 American Society for Colposcopy and Cervical Pathology; 6 Low grade 

squamous intraepithelial lesion; 7 High grade squamous intraepithelial lesion 

 

  



Table 2  Tentative peak assignments28 for Raman spectra shown in Figure 1. 

Raman shift (cm-1) Assignment 

621 C-C twisting mode of phenylalanine (proteins) 

645 C-C twisting mode of phenylalanine (proteins) 

722 Adenine 

786 DNA: O-P-O; Pyrimidine ring breathing mode 

828 Phosphodiester; O-P-O stretching DNA/RNA 

856 Amino acid side chain vibrations of proline & 

Hydroxyproline, as well as a (C-C) vibration of the 

collagen backbone 

1032 CH2CH3 bending modes of collagen & phospholipids; 

Phenylalanine of collagen; Proline (collagen assignment) 

1093 Symmetric PO2
- stretching vibration of the DNA 

backbone–phosphate backbone vibration as a marker 

mode for the DNA concentration C-N of proteins 

1127 ѵ(C-N) 

1175/76 Cytosine, guanine 

1209 Tryptophan & phenylalanine 

1240 Amide III; Differences in collagen content; Asymmetric 

phosphate stretching modes 

1246 Amide III (of collagen) 

1307 CH3/CH2 twisting, wagging &/or bending mode 

of collagens & lipids 

1318 Guanine (ring breathing modes of the DNA/RNA bases)-

C-H deformation (protein); Amide III (α-helix) 



1339 CH2/CH3 wagging & twisting mode in collagen, nucleic 

acid & tryptophan 

1451 CH2CH3 deformation 

1580 C-C stretching 

1607 C=C phenylalanine, tyrosine 

1617 C=C phenylalanine, tyrosine 

1670 Amide I; C=C stretching vibrations; Amide I (anti-parallel 

β-sheet); n(C=C) trans, lipids, fatty acids 

 

  



Table 3  Sensitivity and Specificity from Principal Component Analysis – Linear Discriminant Analysis 

(PCA-LDA) Classification of negative, LSIL and HSIL cervical cytology samples 

 
SIL classification 

Negative LSIL HSIL 

Sensitivity 100.00% 94.29% 86.05% 

Specificity 97.22% 95.42% 100.00% 

 

  



Table 4 Sensitivity and Specificity from Principal Component Analysis – Linear Discriminant Analysis 

(PCA-LDA) Classification of negative, CIN1, CIN2 and CIN3 cervical cytology samples 

 
CIN classification 

Negative CIN 1 CIN 2 CIN 3 

Sensitivity 100.00% 94.29% 100.00% 90.91% 

Specificity 97.37% 98.47% 97.24% 100.00% 
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