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BOUNDS FOR THE POINTS OF SPECTRAL
CONCENTRATION OF STURM-LIOUVILLE PROBLEMS

D. J. GILBERT anp B. J. HARRIS

§1. Introduction. We consider the spectral function p,(A) associated with
the Sturm-Liouville equation

VA =qx)y=0  forxel0, ), (1.1)
with the boundary condition
y(0) cos a + 1 (0) sin =0 for some ae|0, ). (1.2)

We suppose that g is a real-valued member of L'[0, o). We further suppose
that there exist A;=0 and functions a(x) and n(A) such that

fe“"'“'q(:)d: =a(x)n(A)  for x=0 and A=A, (1.3)

where
(I) a(x) is decreasing,

(1) a(-)e L'[0, ca),

(1) 7(A)—0 as A—0.

It was shown in [9] that these conditions are satisfied, for example, if
(1+0g(eL'[0,) or if |gleL'[0,) is decreasing. An example of an
L'[0, e0) function which is non-monotonic but for which (1.3) and (I)-(I1I)
hold is given in §7.

It is known that the condition g& L'[0, o0 ) implies that the spectral function
Pa(4) is absolutely continuous on [0, ©0); see [5] and [10]. In [9], an explicit
formula in the form of a series was derived for pi(4) for all A=A, where 4,
is computable. This formula is applicable for all ge L'[0, «0) satisfying (1.3)
and (I)-(1I).

In a recent paper [5], the question was considered of points of spectral
concentration for operators defined by (1.1), (1.2), with g(x) rapidly decaying
and satisfying smoothness conditions. A point of spectral concentration is
defined to be a local maximum of pi(4), and is thus a value of A for which
the spectral function is increasing relatively rapidly. We refer to [1] and [5] for
a discussion of the physical significance of such points. The results of [5] lead
to intervals of the form [Ay, @) which are devoid of points of spectral concen-
tration. The object is to impose conditions on g which enable A to be com-
puted. The existence of A, is proved in [5] for =0 and xq(x)e L'[0, ).
Under additional conditions this existence result, together with some numerical
estimates, may be used to estimate Ag.

[MaTHEMATIRA, 47 (2000), 327-337]
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Our strategy is similar to that of [5] in that we provide estimates of A,,
such that pg(A4) exists in [Ap, ©0) and is of one sign. We do this by deriving
the major term of pG(A) an an estimate of the remainder which holds for all
A=A,. We achieve our results using a series expansion of a particular solution
of the Riccati equation associated with (1.1). This solution turns out to be
closely related to the spectral derivatives of interest, and enables us to extend
significantly the class of potentials for which estimates of A, are available. We
also obain analogous results for a#0; the calculation of pf(A) in this case is
more complicated, and we give the main term and an asymptotic estimate
of the remainder which shows that ultimately there are no points of spectral
concentration, ‘

Although our results extend the class of operators for which estimates of
Ay are available, there is an important sense in which they are complementary
to, and not merely an extension of, the results of [5]. This is because more
stringent conditions on ¢ can be expected to lead to improved estimates for
Ag, as exemplified in [5]. Thus, for &= 0 and g satisfying the conditions of [5],
tighter estimates of A, are more likely to be obtained using [5, Theorem 2]
than from Theorem 1 of the present paper. We illustrate this effect in §7,
Example 2. Other examples are concerned with cases where ¢ satisfies our
conditions, but not those of [5].

The authors wish to express their gratitude to the referees for a number of
helpful comments.

§2. The resulis.

THEOREM 1. If Ag=Aq is so large that, for all A= Ay,

32n(4) f a(t)dr=1,
0
then, for all A= Aq, pi(A) exists and satisfies

)

1| 4
P?{(M'—m’ﬁ;l“”z ﬂ(l)fﬂ(l)dl-

0

In particular py(A) has no points of spectral concentration for A= A,.

THEorEM 2. For a=0, pi(A) exists for all A sufficiently large, and

sin*(o)pla(A) + = OA (A asA—oo.

2rA*?

Thus, there are again no spectral concentration points for A sufficiently large.

It is convenient to gather together a number of consequences of (I), (II)
and (I1I),
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LemMa 1. Under the conditions of (1)-(111),

(i) lim, . ta(r) =0,

(i) ta(n)’eL'l0, ),

(i) [T e*™tg(t)dt exists and is continuous as a function of x for
O=x<u0,

Proof. (i) This is Abel’s (or Pringsheim’s) Theorem for Integrals (cf. [8],
p. 350).
(ii) We note that
ta(r)’ = (ta(H)a(t) = a(a(t))e L'[0, 20) by (i) and (11).

(1i1) Using (1) and (1.3),
lim |x J > a(f) dit| = lim xa(x)n(A) = 0.

X—#0
X

Hence an integration by parts gives

£ 5]

J' ezmmq(d‘)dtdi = _xj EZEA m'q(l)dl + J e‘:"‘a“'”sq(s)df,

&

b ——

and the result follows from (1.3).

§3. The method. Let v(x, A) be a complex-valued solution of the Riccati
equation

v=-A+q-0, 3.1)
such that, for A =0,
w(x,A)—iA'? =0  asx—om, (3.2)
and
w(x, A)—irA*e L'|0, w0). (3.3)

To see that such a solution, if it exists, is unique, we may argue as follows.
Suppose not; then there exist distinct vi(x, A) and vy(x, A) with v(x, 1) =
iA'"? +u;(x, A) for j= 1,2, where u,(-, A)e L'[0, 20) and u,(x, 1) —0 as x —c0.
Substitution in (3.1) gives

(uy = wz) + (202 4wy + w1y —uz) = 0,

whence
;% [141(2, A) = a1, )] exp| 204"t + + J wy(s, 1) + uals, A)ds ) =0,
. 0

and after integration the contradiction follows from (3.2).
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It was shown in [9] that, for 4 = 1, and =0,

‘ _ po(A)
Pa(A) sin® a(7(0, 1)* + (S(0, A) + cot a)*’
where S(x, A) and 7{(x, 1) denote the real and imaginary parts of v(x, 1). An
important feature of (3.4) is that it enables the boundary behaviour of the
Titchmarsh-Weyl m-function associated with (1.1) and (1.2) to be related to
the particular solution v(x, 1) of the Riccati equation. To see this, note firstly
that, from (3.4) with = /2, we have

Prsa(A) l

(3.4)

po(d)  S(0,A) + T(0, A)* -3)
and from [4], equation (3.3),
o) = lim |[m(A + ig, O)f, (3.6)
Priz(A)  eser
where m(, 0) is the m-function corresponding to @ = 0 such that
S(0,2)*+ 7(0, 1)* = lim |m(A + ie, 0)[*. (3.7)

0"

Moreover, substituting for S(0,4)*+ 7(0,4)* in (3.4) from (3.7), and using
(3.6), yields

0, Y= sin 2¢¢

I {pa(m 00
Pa(A)  prs(A)
and the right-hand side is precisely the formula identified in ([6], equation (3.5))
for lim, o+ R{m(A +ig,0)}.
We can now infer from (3.3) and (3.7) that

S(0, A) + iT(0, ) = lim m(A + ig, 0)

e—=0"

sin” @ — cos’ aJ,

for all A = A,. It then follows from ([6], Lemma 1.2(i)) that

]
po(d) = = 70, 1), (3.8)
from which, if T(0, A) is differentiable, we also have
1970, 4)
bA) = ——=2, 3.9
pa(d) P (3.9

As in [9], the main feature of our method in the present paper is a series
representation of the solution v(x, 1) of (3.1)-(3.3). The series for v(x, 1) intro-
duced in [9] is not well suited to this type of calculation because of the compli-
cated expression for A in the exponent. We therefore construct a series for a
solution of (3.1), satisfying (3.2) and (3.3), which is better attuned to our needs.
We note that, owing to the uniqueness of u(x, 1), equation (3.4) and the sub-
sequent analysis remains valid in the context of the new series, thus enabling
us to identify pi(4) in terms of 7(0, 1) and to estimate p{(A) from (3.9).
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We seek a solution of the form

o A) = A T (A, (3.10)

a=1

where 3" | [va(x, A)|€ L'[0, %) and goes to zero as x—»0. We set u(x, A)=:
S(x, JL} + aT(x A) as before. We show, in Lemma 2 below, that the series which
we derive for the right-hand side of (3.10) is uniformly, absolutely convergent
for x=0 and 1= Ay, so that a term by term differentiation and rearrangement
are justified. Substitution of (3.10) into (3.1) and a rearrangement gives

n=2 mo= ]

an (=] n=1
Y (h+2A Pv)=q-vi- X (uﬁ +2v, ¥ u,,,),
a=1

and

an
o)+ 200 %0, + vh+ 200 Poy+ T (Ul + 2iAP0,)
3

n=

=g-vi— Ev,. v+ 20, E Uy (3.11)
m=1
We choose v, so that
vl +2id' Py, = g,
vh+ 2iA 2y = =1,

n-2 (3-1 2)
u:,=21'/1.'”v,.:—(v§_.+2v,, i ¥ u,,,) for n=3.
m=1
This leads to the choice
[r =}
oy, A) =—e 2% J &> a(ndt,
va(x, A) = e P | 22y (2, AYdl, (3.13)

t,(x, A) = g

Wo—— § &

=2
E,mm;(vi a+20,- ¥ u,,,)d!

m=1

ReEmMArK 1. An alternative derivation of the results of this section, relating
ph(A) to S(0,A) and TY0, A), runs as follows; the details are given in [7]. It is
known that (1.1) is in the limit point case at infinity, so for 3{A4} =0 there
exists an L0, o) solution y(x, ) of (1.1), which is unique up to a constant
multiple. Hence, for 3{A} =0, the quotient y(x, 1)/¥(x, 4) is unique and satis-
fies (3.1). It is shown in [7] that, under conditions which are satisfied in the
present context for each A= Ay, the solution v(x, 1) of (3.1) satisfying (3.2) and
(3.3) may be identified with the limit of this quotient as A approaches the real
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axis normally; moreover, for a=0,v(0,4)=lm, o md+ig,0) and
lime_qt 3{m(A + iz, 0)} = mpo(A).

§4. Properties of the series.

LEMMA 2. IfIN(A) [ a(Ddt=1, then |v,(x, A)|=a(x)n(1)/2"~" for n=1,
2, 3,..., 50 that

y Y Jua( A)eL'[0,0) and ‘_}: lva(x, A)| =0 asx—o0,

N-

Proof. This is clear from (1.3) for n = 1. Hence, from (3.13),

oo

[oalx, A)| f=’f N(A a(ty'dr=n(A)a(x)

x

o

Ja“WJEHHMﬁJ

0

Suppose that the result were true for v, where 1=k=n~-1, with n=3. From

(3.13),

n=2
[on i[>+ 2{vp-1| S |vnldt

o=

|va(x, A)| =

=

22.u—4 291—1 "Efl zm—l

wi—f W]

2 2 2 2 e
[a(t) Ny, 2a(0°n(d) I }dt

Ednmmjﬁmmm

n= 1 211 =3 + E“(r)ﬂ(l))d‘f

X

aw(gmm [ amd,),

241 1
0
and the result follows.

It follows from Lemma 2 and the hypotheses of the theorems that
Z" \ talx, A) is uniformly, absolutely convergent for x=0 and A=A,. Also,
from (3.12),

|0 (x, A)[EZA”ZIUH|+|UH l| + 2|v, - o Z |0
~adx)n(d) 2112 4 H(O)U(J

=1 ————+ Ba(0)n (R)]
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so that ¥ wi(x,A) is uniformly absolutely convergent for xe(0, ) and
A=Ao. It follows that v(x,A) =id"*+ %, _ v.(x,A) does indeed represent a
solution of (3.1) for A= A,.

It will be necessary to consider dv(x, A)/dA for A=Ay, and to this end we
define, forn=1,2,3....,

w,(x, )= % va(x, 4).

LEMMA 3. For A=A, and xe[0, %), where Ag=A, is so large that
32n(A) [ a(ndt=1 for all A= Aq,

W](x1 A): Iva.—lflt.,—?lfl"'z.\' J Elllmzu‘(z‘ A.)df,
H';(..\.', l)= e—ziﬁ.uz_‘ J' 63”"'”2'(:"1. l/:“1 iz 2l?1w1)dh

o)
=2aMix il aa =12
wa(x, A)=e"2* “Je 1A '(r,l. V2, 4 20, - Wy
v

n—2 n—-2
+2Wast 3 Umt 20,1 X W dl,

m=1 o=
Jorn=3,4,5,.... Also,

o0

A—I{E
|Wu(x=:1)|£2“—?§'MJa(t)dt forn=1,2,3,....

X

Proaf. We use induction on n. We note from (3.13) that

av|

e e T

A e** g (rydt — e "™ J O

= —p T Ee M [ g2 — yg(n)dt

—F &

P

o

== :-.E-m”!.\-f Jez“m'q(t)dt s,
x &

by Lemma 1(ii1). [t follows that

o

lwi(x, A)|=A7"2 J' oy, A) |dt=A7"*n(A) J alt)dr.

X
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Our proof of the result in the case n>1 hinges on the equality of the mmed
partial derivatives °v,/dx0A and 9%,/9Adx. To ensure this, we show that
dv, /dx, dv, /dA and 9°v, /dAdx are continuous. It is clear from (3.12) and (3.13)
that dv, /dx is continuous for 7> 1, and it may readily be shown, by the induc-
tion hypothesis, that the same is true of dv,/dAdx. The continuity of dv, /9A
may also be shown by the induction hypothesis, but it requires the fact that
twi(r, A)e L'[0, @) for k=1,. yn—1. This may be shown from Lemma 2,
since

|l =const ra(t)*e L'[0, o)

for A=A4,, by Lemma 1(ii).

Differentiation of (3.12) with respect to A gives
2
k4.1 +2iA"w,
dddx

n—2 n—2
:_"A‘.-Uivn_zvn—lu'.u—l _2“’731-! E l:‘J'l‘l_zun—l E Wi (4-1)
m=1 m=]
The equality of d°v,/0A0x and 9°v, /dxdA = Ow, /dx enables us to deduce from
(4.1) that

_a... (wn(r’ l)ﬁ lfﬂ.”;’f)
ot

L n—2 m=2
:-ue“”'"(:.%. Yt 2 W1+ 20—y T U200y w,,,).
= | m=1
An integration now gives the stated result, using Lemma 2 and the induction
hypothesis. Also,

==

|w,,(x..1)|£j '/2|u,,|+2|w,, il Z |8 4+ 2]0 -1 Z | W |l

X

oo

<2 a(t)dt

-2

EA'J/!H(A)JA;{‘-) 1+8n(l) Z 2] mJ'a(S)ds‘
m=1
4]
vany '3 2t f a(s)ds v
m=1 A
2172 = =
2,.1];;( )Jd(l) +16m(4) f a(s)ds tdt
x 0
AT 2] )J

as asserted.
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§5. Proof of Theorem 1. We recall from (3.4) and (3.10) that
S0, A)+iT(0, 1) = iA'"* + 1 v,(0, A). (5.1)
TR

d

and, by Lemma 3, 97(0, 1)/04 exists and

aT{Ov ‘H') = l;l._”E i 3[
dA 2

So, by (3.9) and Lemma 3, for A=A,,

5 w,.(o,A)}. (52)
=1

n=

-] -La( o
2 T n=1

=
i w(0, A
<3 0.2

-1/2 =
5'1 n(ﬂ.)ja(t)d!}: [

T |'|'=I2"_2

0
_4 -1/2 ;
=47 () | atods
0

as asserted,

§6. Proof of Theorem 2. We note from (5.1) and Lemma 2 that
{70, 1)* + (S(0, &) +cot @)’} ' = 17" (1 + O(A7")). (6.1)

[t follows from (5.1), (5.2) and Lemmas 2 and 3 that, for A sufficiently large,
dS(0, A)/dA and 97(0, 1)/9A exist, which implies that pZ(A) exists since

sin” at{ 700, 1)* + (S(0, 1) + cot &)’} pia(A)

2 a7, ) 9S(0, it)]
—1 (0, ) ——— s B s A
) laT(O,l)_ﬂ‘{Tr ) 7 +(S(0, A) + cot @) ) 70, 4)
T A {700, 1)* + (S(0, A) + cot a)*}
== A4 O (A) (6.2)
2

as A— o, by (3.4) and (3.9). From (6.1) and (6.2)
sin® apl(d) = _ZL A7 0 (A))
i !

as A— oo, and the result follows.
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§7. Examples. We consider throughout the case @ =0 so that Theorem 1
is applicable.

Example 1. Suppose that ge L'[0, «0) is monotone and continuously dif-
ferentiable, with g(x), ¢'(x)—0 as x =, An integration by parts gives

[5a] o (> =3
20A 12y 20113y
vy o (e g(t) e ;
J XM\ dy = ( TR ) 'Jm' — (1)t

3 { g(x)A™"? if g(x)=0and ¢'(x)=0,
T legA? ifg(x)=0and ¢'(x) = 0.
We set a(x) = |g(x)], n(2) =A% and A = (327 |q()|d1).

We look next at an example of a rapidly decreasing ¢ which was considered

in [5].

Example 2. Suppose that g(x) = ce ™" cos (x); then
J em‘m'q(!)dt et % J EJ(EMW =1/a+1 + e H2iA02 — 1/4—I)dr
_dele
h ]/'} ]
8A4 -5

so we may choose a(x)=e "™*and n(A)=4|c|/(81'*=35) to give Ag=
(256|¢| + 5)%/64.

It is interesting to compare our estimate of Ay in Example 2 with similar
estimates obtained in [5], taking into account the restrictions on ¢ which apply
in each case. Setting ¢ =-3, and using each of the methods developed n [5],
which assume respectively that

(1) g(x) is absolutely continuous and g(x), xg(x), {xg(x)}'e L'[0, o2),

(ii) the conditions of (i) hold, and ¢(x) is twice differentiable,
values of 41° and 15" for A, were obtained. The corresponding value for A
using Theorem 1 is 97°. As noted above, more stringent conditions on ¢ can
be expected to tighten estimates of Ay, so given that our conditions on g are
significantly weaker than (i) and (ii) above, this example suggests that our
estimates are comparable with those of [5]. We remark in this connection that
the recent development of numerical methods to identify points of spectral
concentration in [2], [3] suggests that spectral concentration does actually occur
in the case of Example 2, and that the theoretical estimates of both [5] and the
present paper may be far from optimal.

Example 3. Suppose that
sin (] +x
gy = 22U +2)

L+ forl=y;
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then
It’wqu“)d’: lJ 1 (e.f('ll”:l l)r-nl_el(il“l—ljl—I)dr
2] () '

and an integration by parts shows that

]

J. eﬂtl“lr q([)d[ = (ZA'»/%T-]—.)(] + x)_.y.

X

We set a(x)=(1+x) and (1) =2/(21"*~1), so that

1 64 \*
=—{1+—].
% 4( '7—1)

In particular, Example 3 shows that, whilst the conditions (1 +g(fe
L'[0,20) or ge L'[0, 20 ) and monotone are sufficient for the applicability of
Theorem 1, they are not necessary.

We note that the potentials of Examples | and 3 are outside the class of
potentials considered in [5].
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