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Abstract: We proposed a novel optical coupling technique based on two 
parallel singlemode-multimode- singlemode (SMS) fiber structures. This 
technique utilizes one SMS structure to excite multiple cladding modes 
within an output singlemode fiber. The excited multiple cladding modes 
will be coupled to the input SMF in the second SMS structure by placing the 
two SMS fiber structures in parallel and in close contact each other. The 
coupled cladding modes will be re-coupled to a guided core mode by the 
second SMS fiber structure. Theoretical analysis for such technique was 
provided and experimentally we have achieved a pass band spectral 
response with an extinction ratio higher than 20 dB and a maximum 
coupling efficiency of 5.9%. 

©2012 Optical Society of America 

OCIS codes: (060.2340) Fiber optics components; (060.1810) Buffers, couplers, routers, 
switches, and multiplexers; (060.2330) Fiber optics communications. 
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1. Introduction 

Optical couplers based on parallel long period gratings (LPG) written in single mode fibers 
have been extensively investigated recently [1–4]. This technique utilizes the fact that an LPG 
can couple light from the guided core mode to a selected cladding mode and can also couple 
light from a cladding mode to a guided core mode. Another approach is based on tapered 
optical microfiber which utilizes evanescent field coupling within the tapered region [5–8]. 
However both of these techniques suffer from the disadvantage of high cost due to the 
relatively complex fabrication processes involved. Compared to these techniques, a 
singlemode-multimode-singlemode (SMS) fiber structure offers low cost and ease of 
fabrication and has been used for temperature, strain and refractive index (RI) sensing [9–14]. 
In an SMS fiber structure multimode interference occurs within the multimode fiber (MMF) 
section when light is injected from a singlemode fibre (SMF) into the MMF. When the light is 
coupled again to the output singlemode fiber (SMF), it will excite both core and cladding 
modes propagating within the SMF. The excitation of both core and cladding modes can be 
useful, for example if the SMS fiber structure is followed by a fiber Bragg grating (FBG), 
both core and cladding mode Bragg wavelengths will be guided to the SMF core and such a 
structure can be used as an RI sensor [15]. In this paper we propose and investigate a novel 
fiber-to-fiber coupling technique based on two parallel SMS fiber structures by utilizing the 
process whereby cladding modes are excited in one SMS structure and re-coupled to a core 
mode in a second SMS fiber structure. A theoretical analysis based on the proposed 
configuration is provided, along with experimental verification. 

2. Theoretical background 

The fiber configuration for the proposed coupling technique is shown in Fig. 1. 

 

Fig. 1. Configuration of the fiber-to-fiber coupling technique based on two parallel SMS fiber 
structures. 

In Fig. 1, there are two separate SMS fiber structures which are constructed from coating 
stripped SMF and MMF by fusion splicing. Both the SMF and MMF fibers have a step index 
profile. While the coating is stripped from a short length of the fibers used in order to 
facilitate fabrication, all the connecting input and output fibers retain their polymer coatings. 
When the two SMS structures are physically apart (a large value for the separation d in Fig. 1) 
then they behave as expected, for example for SMS 1, when light is injected from SMF 1 into 
MMF A, multiple modes will be excited and will propagate within MMF A and then excite 
both core and cladding modes in SMF 2 . The core mode within the SMF 2 will propagate 
with minimal energy loss but the cladding modes will dissipate due to absorption when the 
modes reach the portion of the fiber with unstripped polymer. However if the two SMS fiber 
structures are placed close to each other, ideally in physical contact, and assuming light is 
injected into Port 1, then the cladding modes in SMF 2 will be coupled to SMF 3 due to 
evanescent field coupling between the two parallel fibers SMF 2 and SMF 3. The coupled 
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cladding modes in SMF 3 will enter the fiber core of MMF B, which in turn will excite a 
guided core mode in SMF 4 and hence the coupled light will be transmitted to port 4. 

Assuming the amplitudes of the core and cladding modes within the SMF are A(z) and 
B(z) respectively and MMF A and B are the same type of fiber but with different lengths L1 
and L2, then the field after a propagation distance L1 within MMF A can be written as: 

 ( ) ( ) ( )1 1

1

1 , exp
M

m m m

m

A r L b r j Lβ
=

= Ψ∑  (1) 

where Ψm(r) is the field profile within MMF (both A and B) corresponding to m
th

 eigenmode, 
βm is the propagation constant of the m

th
 eigenmode within the MMF, M is the total number of 

modes propagating within the MMF and bm is the excitation coefficient for each mode which 
can be expressed as: 
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where Ω(r) is the eigenmode of the SMF 1 which is the input to the MMF A. At the output of 
MMF A, the light will be coupled to both core and cladding modes within SMF 2 and the 

excitation coefficient for each mode b′n can be expressed as: 
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where Φn(r) is n
th

 eigenmode within SMF 2 (n=1 represents the core mode and n>1 represents 
cladding modes). The field of the n

th
 cladding mode at a position L1 within the SMF 2 can thus 

be written as: 

 ( ) ( )1
1 ,

n n n
B r L b r′= Φ  (4) 

The mode fields above are normalised as 

 ( ) ( ) ( ) ( ) ( )
0 0 0
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Over the length of the coupling region, assuming the two parallel fibers are identical, then 
there is no mismatch between the propagation constants of the two fibers and hence the 
amplitudes of the n

th
 cladding modes B1n and B2n at position L1 + L can be expressed as [16]: 

 ( ) ( )1 1
1 , 1 , cos( )

n n n
B r L L B r L C L+ =  (6) 

 ( ) ( )1 1
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n n n
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where Cn is the evanescent field coupling coefficient of the n
th

 cladding mode between the two 
parallel fibers which can be approximately expressed as [17]: 
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where a0 is the radius of the fiber cladding and d (shown in Fig. 1) is the separation between 

the two parallel fibers, K0 and K1 are the modified Bessel functions, 
2 2

2
2

c s

c

n n

n

−
∆ =  is the 

relative refractive index difference between the cladding (nc) and surrounding medium (ns). 

2 20
2

n c n

a
U n N

π
λ

= − , 2 20
2

n c s

a
V n n

π
λ

= −  and 2 20
2

n n s

a
W N n

π
λ

= −  are the normalized 

parameters and Nn is the effective refractive index of the n
th

 cladding mode. 
The cladding modes in SMF 3 will then be coupled to core modes propagating within 

MMF B which can be expressed as follows: 
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The core modes transmitted within MMF B will be coupled to the core mode within SMF 
4 which will propagate within the SMF 4 core. The amplitude of the core mode within SMF 4 
can thus be expressed as: 
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By numerically solving the above equations, the characteristics of the light coupled from 
port 1 to port 4 can be calculated. 

3. Numerical simulations 

Simulation was firstly carried out to investigate the spectral response of the SMS fiber 
structures with two different MMF lengths. Figures 2(a) and 2(b) shows examples of the 
simulated transmission spectra for the guided core mode and selected cladding modes within 
SMF at different MMF lengths. In this simulation example, the SMF has core and cladding 
diameters of 8.3 and 125 µm and refractive indices of 1.4504 and 1.447 respectively and the 
surrounding medium is assumed to be air. The MMF has core and cladding diameters of 50 
and 125 µm and refractive indices of 1.4446 and 1.4271 respectively and the lengths of the 
MMF sections are 9.7 and 10.6 mm respectively. 
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Fig. 2. Simulated transmission spectra for (a) LP01 core mode and (b) LP02-06 cladding modes 
within SMF in the SMS structure with different MMF lengths. 

Figure 2(a) shows that for both MMF lengths, the guided core mode has a minimum loss 
less than 0.1 dB at a particular wavelength, corresponding to the self-imaging condition for 
each particular SMS fiber structure [7,8]. Figure 2(b) shows that the cladding modes each 
have different spectral responses vs. wavelength, and have minimum power at the peak 
wavelength corresponding to the self-imaging condition for the core mode. Since these 
cladding modes have different propagation constants, and hence different effective refractive 
indices, the result is a difference in the coupling coefficient for each mode. Figure 3 shows the 
simulated coupling coefficients for LP02-10 cladding modes between two close contact SMFs. 
In this simulation, we assume the RI of the surrounding medium is 1.44 and the separation 
between the two SMFs is zero (d=0). 
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Fig. 3. Calculated coupling coefficients between two parallel SMFs for LP02-10 cladding modes. 

Figure 3 shows that a higher order mode has a larger coupling coefficient and that the 
coupling coefficient is wavelength dependant – for the same order cladding mode the coupling 
coefficient is larger at a longer wavelength. All the coupled cladding modes will be re-coupled 
to the SMF 4 core mode through MMF B. The simulated spectral response of the coupling 
between two SMS fiber structures is shown in Fig. 4. In this simulation we assume the two 
fibers are in perfect contact (d=0). 
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Fig. 4. Calculated coupling from Port 1 to Port 4 at different coupling lengths and SRI. 

Figure 4(a) shows that when the light is injected from Port 1, the light is coupled to Port 4 
and the coupling efficiency increases as the surrounding refractive index (SRI) increases from 
1.33 to 1.44. The coupling efficiency and the spectral response change in a complex fashion 
as either the SRI or the coupling length L change. Figure 4(b) shows that at the same SRI 
value, even with a coupling length difference of only 1 mm, the coupled spectral response is 
significantly different. The reason is that the coupling coefficients for each of the cladding 
modes are significantly different as shown in Fig. 3. Both the SRI and coupling length will 
significantly influence the coupling efficiency for each mode, the result is that the final light 
interference between these coupled cladding modes changes in a complex fashion. 

As is well known in practice it is very difficult to consistently achieve an ideal contact (d 
= 0) between two fibers. Investigations for the influence of separation distances d on the 
coupling were carried out as shown in Fig. 5. 

#159513 - $15.00 USD Received 5 Dec 2011; revised 12 Jan 2012; accepted 18 Jan 2012; published 25 Jan 2012
(C) 2012 OSA 30 January 2012 / Vol. 20,  No. 3 / OPTICS EXPRESS  3104



 

Fig. 5. Calculated influence of separation d on the coupling from Port 1 to Port 4 with coupling 
length L = 60 mm at two different SRI conditions (a) ns = 1.33 and (b) ns = 1.44. 

For lower values of the SRI, ns = 1.33, Fig. 5(a) shows that the influence on the coupling 
efficiency of a change of 1 µm in the separation d is significant: the coupling efficiency 
decreases by 19.2 dB. However as the SRI value ns gets closer to the cladding refractive index 
of the fiber, the influence of separation d is much smaller as shown in Fig. 5(b). The inset in 
Fig. 5(b) shows that even with a larger SRI value of 1.44, larger values of the fiber separation 
d will nevertheless have a significant influence on the coupling efficiency which decreases 

from −10.1 to −37.5 dB as fiber separation d increases from 0 to 10 µm. 

4. Experimental verification 

Experiments based on the above coupling technique were carried out. In the experiments, the 
two SMS fiber structures were fabricated by fusion splicing SMF with MMF lengths of 10.8 
and 10.0 mm respectively. The SMF used was conventional SMF28 fabricated by Corning 
and the MMF had a core diameter of 50±1 µm. Both fibers have step index profiles. The 
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normalised transmission spectra for the two SMS fiber structures when they are completely 
separated are shown in Fig. 6. 

 

Fig. 6. Normalised transmission spectral responses of the two SMS fiber structures when 
separated. 

Close physical contact between the two SMS fibre structures is arranged in free space over 
a contact region with a length of 12 cm. The fibres are pre-strained and aligned side-by-side 
with each other using V-grooves at either end of the 12 cm contact region. 

Experiments were firstly carried out to investigate the influence of coupling length by 
injecting light at Port 1, with water as a surrounding liquid (SRI value of 1.334) but with 
different coupling lengths L circa 56 and 41 mm as shown in Fig. 7(a). For comparison 
purposes the simulated results with L = 55.8 and 40.5 mm are also presented in Fig. 7(a). In 
the simulation, the separation between two SMS fiber structures is set to zero, and all the 
other parameters are the same as above. 
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Fig. 7. (a) Comparison between simulation and experimental results for an SRI = 1.334 and (b) 
measured results at two different SRIs of 1.334 and 1.438 with different coupling lengths L = 
41 and 56 mm. 

Figure 7(a) confirms that when light is injected at Port 1, a portion of the input light is 
coupled from SMS 1 to Port 4 of SMS 2 because of the coupling of the cladding modes from 
SMF 2 in SMS 1 to the guided core mode in SMF 4 in SMS 2 by MMF B. It can be seen that 
with different coupling lengths, the coupling efficiency is different and the spectral response 
changes in a complex fashion as the coupling length L changes. Figure 7(a) also shows that 
the simulation results have a good match with the experimental results. The divergence 
between simulation and experiments is due to the differences in the fiber parameters (such as 
MMF lengths, RI of core and cladding, coupling length) used in the simulations along with 
variations in the value of the SRI and perturbations of the gap between the two structures. 
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To investigate the influence of SRI, another SRI matching liquid which consisted of a 
mixture of water and dimethyl sulfoxide was used. The refractive index of the mixed liquid is 
found from an Abbe 5 refractometer to be 1.438. The measured spectral response of the 
coupling between two SMS fiber structures was shown in Fig. 7(b). 

Figure 7(b) shows that the coupling efficiency increases as the SRI value increases from 

1.334 to 1.438 and the maximum efficiency is 5.9% (−12.3 dB). In both cases with L circa 41 
and 56 mm, the spectral response has a band pass characteristic with typical extinction ratios 
higher than 20 dB. These results indicate that the SMS structure based coupling technique has 
potential applications in band pass filters and optical add-drop multiplexers in coarse 
wavelength division multiplexed optical communication systems. 

The spectral response at Port 3 was also measured and was found to be the same as that 
shown in Fig. 6 and hence is not shown in Fig. 7. 

Other input/output port combinations were also investigated. As expected light injected 
into Port 4 and detected at Port 1 has a similar spectral response to the Port 1 to Port 4 case 
above. The light injected from Port 2 to 3 was also investigated and our experimental result 
shows that there is no output power at Port 3. This is because although there are cladding 
modes coupled from SMF 4 to SMF 2 after light is transmitted through MMF B in SMS 2, the 
coupled cladding modes do not transit through the other MMF to be re-coupled to the guided 
core mode in SMF 2. These coupled cladding modes in SMF 2 will therefore dissipate due to 
absorption by unstripped polymer coating on the SMF. 

It is noted that the length of the MMF has a significant influence on the transmission 
spectral response of the SMS fibre structure. In our experiments, we have found that a 100 
micron variation in MMF length will introduce a circa 25 nm wavelength shift in the 
transmission spectra. However we can neglect the effect of length variations since the novel 
fabrication technique used can easily achieve better than one micron MMF length accuracy, 
thus ensuring that the fabrication of an SMS fibre structure is highly reproducible. 

5. Conclusion and discussion 

In conclusion, a novel fiber-to-fiber coupling technique based on evanescent-field coupling 
between two parallel SMS fiber structures was proposed. A theoretical analysis and 
experimental demonstration for such a coupling technique was provided. Experimental results 
show that the coupling has the characteristics of a pass band spectral response with an 
extinction ratio higher than 20 dB. Unlike fiber-to-fiber coupling based on parallel LPGs in 
which only one cladding mode is excited by the LPG, there are multiple cladding modes 
excited by the MMF in the SMS structure. The prediction of the coupled spectral response is 
more difficult than that for a coupling technique based on parallel LPGs since there are a 
larger number of cladding modes with different coupling coefficients, but the interference 
between multiple cladding modes potentially offers the possibility to customise the coupled 
spectrum, by a suitable selection of parameters The transmission and coupling of multiple 
SMF cladding modes is influenced by a number of factors such as core diameters and 
refractive indices of the SMF and MMF, coupling length L and the SRI values and hence the 
characteristics of the spectral response are complex. In order to optimize the structure, an in-
depth theory for the parallel SMS fiber structures should be developed. Experimentally we 
have achieved a maximum coupling efficiency of 5.9%. While this value is low, it is 
nevertheless an indication that coupling can take place and with further optimisation, the 
coupling efficiency could be improved. For example, it is well known that self-imaging 
phenomenon in an SMS fiber structure means that in theory there is no power loss on re-
coupling for some wavelengths [10]. Since the proposed structure in this paper is based on 
two SMS fiber structures, it is possible to achieve improved operation for our proposed 
structure using optimized values for the diameter and length of MMFs, coupling length L and 
SRI, etc, all of which will significantly improve the coupling efficiency. 

It should be pointed out that the technique proposed in this paper is sensitive to both the 
magnitude of the gap between the two parallel fiber structures and to variations in the 
coupling length. Our simulation shows that if the coupling length variation is below a value of 
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50 microns, there is no significant change for the spectral response. Compare to the coupled 
LPG technique, our proposed technique has a relatively low extinction ratio. This is possibly 
due to the fact that there are multiple cladding modes excited which interfere with each other 
and make it very difficult to achieve a relatively high extinction ratio. 
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