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Abstract

The work presented in this thesis was born from the desire to map documents with similar
semantic concepts between them. We decided to address this problem as a named entity
recognition task, where we have identified key concepts in the texts we use, and we have
categorized them. So, we can apply named entity recognition techniques and automatically
recognize these key concepts inside other documents. However, we propose the use of a
classification method based on the recognition of named entities or key phrases, where the
method can detect similarities between key concepts of the texts to be analyzed, and through
the use of Poincaré embeddings, the model can associate the existing relationship between
these concepts. Thanks to the Poincaré Embeddings’ ability to capture relationships between
words, we were able to implement this feature in our classifier. Consequently for each word
in a text we check if there are words close to it that are also close to the words that make
up the key phrases that we use as Gold Standard. Therefore when detecting potential close
words that make up a named entity, the classifier then applies a series of characteristics to
classify it.

The methodology used performed better than when we only considered the POS structure
of the named entities and their n-grams. However, determining the POS structure and the
n-grams were important to improve the recognition of named entities in our research. By
improving time to recognize similar key phrases between documents, some common tasks
in large companies can have a notorious benefit. An important example is the evaluation of
resumes, to determine the best professional for a specific position. This task is characterized
by consuming a lot of time to find the best profiles for a position, but our contribution in this
research work considerably reduces that time, finding the best profiles for a job. Here the
experiments are shown considering job descriptions and real resumes, and the methodology
used to determine the representation of each of these documents through their key phrases is
explained.
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Chapter 1

Introduction

Today’s world is very demanding with the use of the latest technologies, so practically
everyone should know how to use a computer. This same thing has caused the number of
users on the internet to grow enormously every day, and consequently the amount of textual
information in digital form. This is because it is easier to digitize the textual information and
make it accessible to everyone. So that practically now any document is found electronically,
from books, news, articles, job descriptions, to personal documents such as birth certificates or
resumes. All this causes the need to look for methodologies for easy information management,
such as information extraction (IE) and text classification.

In this sense, information extraction plays a very important role when extracting structured
information from unstructured electronic texts. And since IE considers that in a set of
documents these can be represented by entities or subjects, it is also possible that these
documents could be classified by subject. Thus, the classification of texts becomes extremely
useful when what is intended is to handle large amounts of information.

The classification of texts allows to find texts similar to a certain text, and in this way to
discard texts that do not keep a relationship with the initial text. This has allowed Internet
users to find information that is relevant to them when searching for a certain topic on the
Internet, thanks to the fact that search engines use ranking and classification algorithms, and
this allows them to improve their results. Besides, many online store platforms, as well as
music and streaming platforms, have incorporated classification algorithms to recommend to
their users some movies, songs, games, books, or articles related to their search.

For this reason, it is of great interest for the development of this research to analyze the
methods of classification of texts based on the extraction of key concepts.
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1.1 Background

Key phrase extraction is the process through which phrases that represent the most relevant
topics of a text are selected, and this may be done through named entities, n-grams, noun
phrases that meet certain lexical patterns, or label sequences using Conditional Random
Fields. In this way, the extracted key phrases provide the necessary information so that the
documents can be categorized according to common themes (Sahrawat et al., 2020). From
this perspective, it is possible to perform key phrase extraction employing methods such as
named entity classifiers. Well, in essence, a key phrase can be seen as a named entity that can
be defined depending on the context in question. For example, the entity named "Skill" could
be defined in the context of job offers, where it is important to highlight the skills required
by the company for that job.

However, some key phrases or relevant concepts from the text can be ignored if you try
to extract them through methods such as named entity classifiers. For this reason, it would be
possible to take advantage of measures for semantic similarity between words, sentences,
or whole texts. This is known as Semantic Textual Similarity (STS) (Chandrasekaran and
Mago, 2020).

Even taking into consideration the textual semantic similarity, it might not be enough
to effectively classify similar concepts. Fortunately, several techniques can encode the
relationships between words, just as vector models do. These vector models represent the
semantic relationships between the words in a text (Wang et al., 2020), but it is important
to know which model to use to get the most out of these representations. Being able to
find similarities between key concepts in large sets of texts represents a challenge, and for
that, it is necessary to address different techniques for extracting key phrases, as well as
implementing methods to capture textual semantic relationships. It is necessary to have a
methodology that can efficiently solve this task.

1.2 Research questions

Being able to find reliable similarities between key phrases (semantically speaking) can lead
to an improvement of text classification, and thus improve the processing of information in
the industry. Although there are different techniques to extract and classify information, it is
necessary to conduct a study that focuses on the analysis and comparison of these techniques
to know their efficiency.

This research aims to explore the different current methodologies to find similarities
between texts and then determine the best of them. Knowing how these methodologies
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work, it might be possible to implement some of its techniques and generate a competitive
proposal. Because of all the above mentioned, the research questions that guide this work are
formulated:

• Does semantic similarity between key phrases have an improvement when classifying
documents?

• Do word embeddings have importance when capturing semantic relationships between
words?

• Does a graph structure have the ability to effectively represent relations between
words?

• Can key phrases be represented as named entities by using n-grams?

• Can Part-of-Speech be used to represent the relationship between words?

To answer these research questions, there are some tasks that we must fulfill. These tasks
are listed below:

• Do a study on the scientific investigations related to the classification of texts and the
extraction of key phrases.

• Investigate the measures used to treat semantic similarity.

• Investigate the different models proposed to encode the relationships between words in
a text.

• Collect text documents and manually extract the key phrases to consider them as Gold
Standard.

• Carry out comparative experiments between the different methods studied and deter-
mine their level of effectiveness.

• Analyze the set of key phrases that make up the Gold Standard, in order to determine
possible characteristics of each of the classes.

• Design a technique that allows the generation of key phrases similar to the original
ones of the Gold Standard.

• Define rules about the Gold Standard classes that allow the identification of new key
phrases.
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• Develop a classifier model based on a graph structure, which includes the Part-of-
Speech as well as the use of synonyms.

• Compare the proposal with the studied methods, and show the results obtained.

1.3 Motivation

The current demand for professionals in the technological sector has grown disproportionately
due to the huge technological advances of the last decade. This has led to the emergence
of multiple technology-oriented companies around the world. From small companies to
multinationals, they all offer job vacancies almost daily.

On the other hand, there are more and more people specializing in the use and develop-
ment of technologies. This causes HR departments to spend a lot of time reading applicants’
resumes. Besides, many of the applicants can be arbitrarily discarded because of not having
enough capacity in the HR departments to read all the resumes in such a short period of time.

This is a very time-consuming and inaccurate task as it does not consider all the profiles
available for the job offered. However, with the help of computers, thousands of documents
could be processed and analyzed in a matter of minutes. For this reason, it is necessary to
clean the documents, eliminating the information overload that does not provide relevant
aspects of the content. This is achieved by applying some machine learning techniques to
extract the key concepts from each text, through which a document can be represented.

By applying some machine learning methods it may be possible to find similarities
between the key concepts of a resume and the key concepts of a job offer. In this way, the best
profiles of professionals for a given job offer you can found, and thus start by interviewing
them without wasting a lot of time reading resumes that fail to satisfy the skills necessary for
the job.

For this dissertation, Job Descriptions of the website www.jobs.ie in the Information
Technology sector have been considered. These Job Descriptions have been manually labeled,
highlighting their key concepts based on categories defined by the type of document.

1.4 Contribution

We have developed a web-based tagger system, which allowed the key phrases of the Job
Descriptions in the IT sector to be manually labeled. This system also allow the possibility
of labeling any type of text document, as well as defining its classes (labels) as needed. This
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system have the ability to export a labeled document to a structured format, ready to be used
for machine learning algorithms.

We are going to design a series of rules based on the features of manually labeled key
phrases. These rules will be incorporated into the classifier model that we will propose.

The key phrase classification model that we are going to present will be based on a graph
structure, where valuable information about each key phrase will be stored, such as the
Part-of-Speech or the synonyms of each word that makes it up. This model will consider
some characteristics of the grammatical structures of manually labeled key phrases. In this
way it is intended to offer an alternative to the classification of texts, detecting the key phrases
of a text document.

1.5 Thesis outline

The rest of the thesis is structured in 6 chapters as follows:

Chapter 2: Literature Review

In this chapter, we show a critical analysis of the different sources that we have consulted re-
garding the area of text classification where the different existing approaches are studied from
the simplest to the most elaborate, the use of semantic textual relations in the improvement
of this classification task. It also critically analyzes how the extraction of key phrases and
named entities can contribute to the classification of texts. And it is right there in that Named
Entity Recognition task, which shows a critical analysis on supervised, semi-supervised and
unsupervised methods.

Chapter 3: Named Entities

Chapter 3 addresses the topic of Named Entities as an important IE subtask since it seeks to
locate and classify named entities of a text, which represent important and remarkable data,
and with these named entities a text could be represented. Depending on the type of texts to
be studied (scientific articles, sports news, job offers, etc.) it is how these named entities can
also be studied as n-grams and for the same reason be extracted as n-grams. So an n-gram
is a subsequence of n words of a sequence of words in some text. However, it is necessary
to consider that each of the words in this subsequence of words belongs to a grammatical
category known as Part-of-Speech (POS). In this way, the category of a word can be known
or predicted based on the words that precede or follow it.
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Chapter 4: Semantic Similarity

This chapter addresses a very important aspect of text classification that is known as semantic
similarity. When it comes to comparing whether a document is similar to another different
techniques can be useful to determine the degree of similarity, even when they do not use
the same words. For this, different mathematical mechanisms calculate the level of semantic
relationship between concepts, known as semantic measures. Specifically, a similarity
measure known as Wu&Palmer is explained, which is a Knowledge-based measure.

Also, this chapter explains the selection process developed to select new key phrases
created from the set of original key phrases, and that with the help of synonyms it was
possible to create them. These new key phrases that were created and selected were added to
the original set, thus expanding the training set.

Chapter 5: Enriched Graph Structure for Key Phrases Recognition

This chapter presents a proposal for a key phrase classifier, based on a data structure repre-
sented by a graph. The key phrase storage and enrichment technique proposed in this section
are based on a graph structure. Here each key phrase is tokenized and the tokens are stored
as nodes of the structure, and the edges that connect to each token have a weight that changes
depending on whether a key phrase similar to an existing one is added.

On the other hand, alternate nodes are added to the original ones, based on their synonyms.
The alternate routes are created from the synonyms of the tokens that make up each key
phrase, in this way the classifier could recognize key phrases where some of its words have
some relationship with those of the original key phrases. This proposed classifier is compared
with other classifiers and the results are discussed.

Chapter 6: Models for Word Representations

This chapter explains the importance of representing textual information with numeric data,
for this reason, it is necessary to use models with the ability to represent words optimally.
This section deals with the topic of word embeddings as models for the representation of
words. For this, some models that stand out for the representation of words are explained.
First, the implementation of Word2Vec for computing vector representations of words is
addressed, where for each word a vector of words close to it that have a semantic relationship
is generated. Then an unsupervised learning algorithm called GloVe is explained, which
also generates vectors for the representation of words, calculating the relationship between
words. Finally, it is explained how Poincaré Embeddings can improve the representation of
words based on hyperbolic space, allowing the learning of parsimonious representations of
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symbolic data by simultaneously capturing hierarchy and similarity. This has an advantage
over vector models based on Euclidean space.

Chapter 7: Poincaré Embeddings for Named Entities Recognition

This chapter explains how we can take advantage of Poincaré embeddings to capture the
syntactic and semantic relationships between the words that make up the named entities that
we have used. Thanks to the fact that this implementation allows mapping the words used
in hyperbolic space, we can easily and reliably determine which are the closest words to a
given word. Following this logic, we can repeat the process of obtaining the closest words
for each word found, so that we can build sentences. And thus determine if these phrases
have logic and resemble any of the named entities of the training set.

Chapter 8: Conclusions

Finally, the findings of this research are shown based on the results obtained with our
proposals and experiments, discussing the limitations as well as the contributions made
throughout the work. The possible applications that this work could take in the future are
also explained.





Chapter 2

Literature Review

Different automatic methods for classifying textual information are studied separated depend-
ing on the different approaches implemented in the last years. The first approaches refers
to the task of classifying texts into classes or groups, where traditional and the most recent
methods are covered. The importance of this task is highlighted, and some of the ways to easy
represent a text document are included such as key phrases. Then, state-of-the-art approaches
related to the task of key phrase extraction are discussed since high quality key phrases can
represent the content of text documents such as scientific publications, books, news, etc., and
then improve the information retrieval and classification of them (Papagiannopoulou and
Tsoumakas, 2020). Named Entity Recognition (NER) seen as a similar task of key phrase
extraction is then studied and the state of the art is presented.

When conducting an in-depth study on the state of the art for text classification and the
different techniques or methods used to achieve it, we wish to propose a competent alternative
that considers the main points found in this study.

2.1 Text Classification

Automatic text classification is the task of grouping textual documents into predefined classes.
Text classification systems are based on 4 levels: document level, paragraph level, sentence
level and sub-sentence level. This task problem is widely studied since nowadays with
the daily amount of textual information generated thanks to the Internet, it has become
necessary to automatic classify gigantic amounts of information when searching an specific
topic. However, the performance of the correct text classification is affected by the type of
algorithm that will be used. In this sense, there are algorithms that are based on probabilistic
and statistical models which require some characteristics to be extracted from the data set.
And on the other hand, there are the algorithms that make use of deep neural networks.
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Probabilistic classification techniques require textual information to be processed pre-
viously to obtain good results, this previous stage is known as feature extraction, which
consists of extracting and labeling through artificial methods characteristics that can serve as
an example for that textual data set. In this way, a selection of the most relevant information
is made, avoiding information overload. Some feature extraction methods that can be applied
are weighted word techniques (TF-IDF and TF) and word embeddings such as Word2Vec
(Mikolov et al., 2013b) and GloVe (Jeffrey Pennington, 2014). Then statistic-based models
can be applied for text classification, such as Naïve Bayes, K-nearest neighbor, Support
Vector Machine, Decision Trees and Random Forest. However, this is an expensive task as
we need to extract first these features in order to train a classifier model.

On the other hand, deep learning techniques (deep neural networks) automatically find
high-level features from data, providing valuable semantic representations for text. The first
two implementations using deep learning in the task of text classification are feed-forward
neural network and recursive neural network having an improvement over the probabilistic
methods mentioned before. These deep neural networks can be classified by structure
in: Recursive Neural Network methods, Multilayer Perceptron methods, Recurrent Neural
Networks, Convolutional Neural Network methods, Attention-based methods, Transformer-
based methods, and Graph Neural Network methods.

2.1.1 Shallow Text Classification

Shallow learning is the term given to neural network approaches that mainly use one hidden
layer. These approaches also make use of handcrafted features,representing a time consuming
activity.

Naïve Bayes approach is one of the simplest shallow classifiers where it is assumed
that all features are independent of each other. This technique requires a small training
data. Naïve Bayes approach is one of the simplest shallow classifiers where it is assumed
that the value of a determined feature is dependent on the value of another feature. This
technique requires a small training data. In this sense (Ruan et al., 2020), proposed a new
class-specific deep feature weighting technique for Multinomial Naïve Bayes text classifiers
by using a statistical feature weighting technique. This approach calculates the conditional
probabilities of text classifiers by computing the frequencies of features from training data.
This approach considers the statistical metric Raic that can measure the dependency between
a term and a class. However, it introduces two new factors, considering the class distribution
of the documents containing a term ai and the class frequency factor. Where a term ai

denotes a class ci feature, and the class frequency factor refers to the number of classes of the
documents containing a term ai. The experiments were carried out over 19 text classification
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benchmark datasets and using the V-fold cross validation technique. The proposed method
notably outperforms other feature weighting implementations in terms of accuracy and
execution time.

However, before any machine learning method can be applied to classify texts, is neces-
sary to transform this unstructured data into a structured format to be processed for learning
algorithms. In traditional text classification, documents are represented by bags-of-words
(BOW) where every word in a document is included only if it appears 3 or more times and if
it is not an stop-word (Joachims, 1996), (Scott and Matwin, 1998).

2.1.2 Deep Text Classification

Approaches based on multiple hidden layers are considered as Deep Learning techniques
because they involve multiple levels of representations and features that can be learned
automatically from the input dataset. However, the training of these kinds of models is more
difficult than training shallow models (Li et al., 2020).

These approaches have a huge disadvantage since they only consider the term frequency
in the document, ignoring the semantic relationships between terms. And the problem is that
two documents can be treating the same information topic even when they do not use the
same words (synonyms can be used to refer to the same concept).

2.2 Textual Semantic Relations

Feature selection methods are important when classifying text documents, however classical
methods only consider the correlation between features and categories. Zong et al. (2015)
propose a novel discriminative and semantic feature selection (DFS + Similarity) method
consisting of two stages, first by selecting features with strong discriminative power in
documents and then by computing the semantic similarity between features and documents,
without relying on any other external information source. Using the selected features, every
document is transformed into feature vectors, and then by employing an SVM model with
these vectors as input data the effectiveness of the proposed method is evaluated in terms of
macro-F measure and micro-F measure. The performance of the proposed method (DFS +
Similarity) is compared with the traditional feature selection methods: Chi-Square statistic,
information gain (IG), and mutual information (MI). Two different datasets often used in
text categorization tasks are used to make comparisons of methods: Reuter-21578 and 20-
Newsgroups. The results obtained by the proposed method outperforms other methods over
a full range of different number of features, achieving its highest macro-F (0.9220) and
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micro-F (0.9682) when the number of features is 5000. The number of features is a factor in
the performance of text categorization.

2.3 Key phrase Extraction

In the task of automatically extracting key phrases from text, Witten et al. (2005) proposed an
algorithm called KEA which consists of two phases training and extraction. In this approach,
a prediction model is constructed by using a set of documents with key phrases labeled,
and then the model is used to find key phrases in new documents. In this approach the
Naïve Bayes technique is used due to its simplicity and its capacity to learn two sets of
numeric weights, positive (is a key phrase) and negative (is not a key phrase) instances,
selecting the best set of key phrases. However, best key phrases are not always statistically
significant (frequent) or they even do not appear in the document. Liu et al. (2011) called
this phenomenon as vocabulary gap between documents and key phrases, and that is why
they suggested a more flexible and reliable method.

Liu et al. provided a new perspective to key phrase extraction, considering a document
and its key phrases as two different languages, even when both describe the same object. Liu
et al. used word alignment models (WAM) in statistical machine translation (SMT) to learn
translation probabilities between the words in documents and the words in key phrases. The
result is a unified framework for key phrase extraction, where the appropriate suggested key
phrases are not necessarily frequent in their corresponding text documents. This approach
has the advantage of being language-independent (with the possibility of be performed
in different language documents). However, as textual information daily increases on the
Internet more precise methods are necessary to correctly extract the most representative key
phrases.

In 2017 was introduced a task for extracting from scientific publications key phrases
and the relations between them, the task was called: SemEval 2017 Task 10 (Augenstein
et al., 2017), and it has a big interest for publishers who can recommend similar publications
to readers if they have the correct most representative key phrases for each article. In this
task Buscaldi et al. (2017) presented an approach for key phrases classification based on
Support Vector Machines (SVM), using WordNet and word embeddings as features. External
knowledge was integrated from an existing resource through WordNet and some other learned
from a large corpus (Google News Dataset) using word embeddings. The obtained results
in Buscaldi et al. method outperform the results obtained by the best system presented at
SemEval 2017.
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On the other hand, the research study made in (Mothe et al., 2018) showed that there are
not differences when using word embeddings and when not using it. Mothe et al. proposed
an automatic key phrase extraction method using graph-based methods, where the principle
is to construct a graph of words and/or phrases. In this way, nodes represents the candidate
key phrases and edges connects two nodes if they are related, and the weighting for edges is
computed using co-occurrences or semantic relatedness. Authors showed how to integrate
word embeddings into key phrase extraction models considering the graph-based method.
The obtained results showed that integrating word embeddings does not improve enough the
results when compared with to the same methods without using word embeddings.

However, the results obtained in (Mothe et al., 2018) are poor Precision, Recall and
F-score since unsupervised methods do not generalize well. And for this reason, in (Bennani-
Smires et al., 2018) address the extraction of key phrases with EmbedRank (an unsupervised
method to automatically extract key phrases from a document taking advantage of sentence
embeddings), achieving higher F-scores than graph-based systems. Also the diversity and
coverage among the selected key phrases is increased by the method, and evaluated by a
user study conducted by the authors. This research work was the first to present an unsu-
pervised method based on phrase embeddings based for key phrase extraction. EmbedRank
approach was compared with the corpus-independent methods: TextRank, SingleRank,
WordAttractionRank, TopicRank and Multipartite, outperforming them.

Some recent research works (Gollapalli et al., 2017), (Alzaidy et al., 2019) stated that
employing linear-chain Conditional Random Fields (CRF) can improve the performance over
baseline models. Alzaidy et al. address key phrases extraction problem as a sequence labeling
problem, by exploring a neural learning model by combining a bi-directional Long Short-
Term Memory (Bi-LSTM) layer to capture the semantics of the sequential input text data with
a CRF layer to model dependencies in the output producing a probability distribution over
the tag sequence. This approach works better when constructing document level models than
sentence level models, as the first captures more context and resulting more accurate. The
best sequence of labels is found thanks to the Viterbi algorithm. This approach outperforms
the baseline models.

2.4 Named Entity Recognition (NER)

The Named Entity (NE) task is a subtask of Information Extraction (IE) and was developed
by the committee in the Sixth Message Understanding Conference in 1995. It became an
important task in IE field since it aims to locate and classify named entities in a text into
categories previously defined (e.g. People, Organizations, Geographic Locations) (Grishman
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and Sundheim, 1995). In this way, named entities can be used to represent text documents by
highlighting the most relevant information and thus reducing information overload.

2.4.1 Supervised Approaches

Supervised methods use annotated data, it means input and output variables are given.
However, create this annotated data is very time consuming, but the results of the models
trained can be good enough in the task of NER.

In the task of biomedical NER, (Dingare et al., 2005) present a Maximum Entropy
Markov Model based system for identifying protein, DNA, RNA, cell line, cell type and
newgene. By using a logistic regression model to classify each word and thanks to its ability
to incorporate a variety of overlapping features. The system makes use of exhaustive local
context using different features to represent the context of each word, considering the word
itself, previous and next words, bi-grams, character n-grams up to a length of 6, and word
shapes referring to mappings of words to describe attributes (if it contains capitalization,
numerals, greek letter). POS tags from the GENIA gold standard are also integrated and
the use of abbreviation matching to ensure consistency of labels is also considered. The
system performance is evaluated in the BioCreative NER task (Ando, 2007) and the BioNLP
NER task (Nigel Collier, 2004) to identify NEs in biomedical abstracts. The results obtained
are high with f-score = 83.2% for BioCreative task and f-score = 70.1% for BioNLP task,
achieving the state-of-the-art performance.

As seen in (Alzaidy et al., 2019) approach, key phrases extraction problem can be treated
as a sequence labeling problem by using conditional random fields same as used in (Finkel
et al., 2005) for the Stanford Named Entity Recognizer (NER). Named Entity Recognition
(NER) labels sequences of words in a text that are names of things (persons, organizations,
places, time, etc.) and where these are called classes. As Stanford NER implements the
conditional random fields it is also known as a CRF Classifier. CRF are discriminative
models suitable for prediction tasks where contextual information is considered to make a
prediction as it captures sequential relations.

2.4.2 Semi-Supervised Approaches

Having manually tagged data is very expensive since it takes a long time to generate them.
On the other hand, the amount of unlabeled texts is abundant and that is why it is necessary
to use them in NER task. Semi-Supervised methods attempt to use some of the data labeled.

(Liao and Veeramachaneni, 2009) propose a simple semi-supervised approach in the
task of NER by implementing Conditional Random Fields (CRF) since NER task is seen
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as a sequence classification problem. This algorithm uses independent evidence to produce
labels of high precision. First, the algorithm uses a small amount of manually annotated
data to obtain after a high-confidence data, and then it is used to discover low-confidence
data by using independent evidence. And this process is repeated until no impressive
performance is achieved. The final model obtained outperforms the initial supervised model
with gold standard provided. In addition, this method can use an initial gold standard
(CoNLL 2003 English NER) being from a different domain than the testing dataset (TF
financial news corpus). When using data from different domains the accuracy achieved in
this semi-supervised method is better than in supervised methods. Another advantage is that
this approach achieves better results than supervised methods that requires large amounts of
manually annotated data.

In the NER task in Tweets, Ritter et al. (2011) proposed a distantly supervised approach
which applies Labeled LDA to leverage large amounts of unlabeled data in addition to large
dictionaries of entities gathered from Freebase, and combining information about an entity’s
context across its mentions. This because classifying named entities in tweets is a difficult
task since tweets contain a plethora of distinctive named entity types (Companies, Products,
Bands, Movies and more), and almost all these types are relatively infrequent. On the other
hand, tweets often lack sufficient context to determine an entity’s type without the aid of
background knowledge.

Mohamed and Oussalah (2014a) presented an approach by using the Wikipedia article info
boxes where it has significantly reduced the classifier’s processing time since the information
inside the info box is structured. The proposed approach achieved a classification accuracy
of above 97% with 3600 named entities and CoNLL-2003 shared task NER dataset used to
validate the classifier’s performance.

Certainly, large manually tagged data sets improve the performance of named entity
classifiers, even though this involves a lot of time and human effort. Despite all this,
there are labeled data sets for specific domains, which can strengthen the confidence of
a classifier. However, it would be ideal if this knowledge could be transferred to other
classifiers without having to create a specific corpus for each domain. In this way Hao
et al. (2021) they propose a semi-supervised disentangled framework for transferable NER,
capable of extracting and using domain-invariant and domain-specific information to predict
named entities. To achieve disentanglement the authors employ three mutual information
regularization terms and domain tagging supervision. The method they propose consists of 3
parts: input embedding with word-level and character-level information, disentanglement,
and label prediction. And it shows optimal performance compared to other base methods such
as: In domain, Init tuning, Multi-task learning, Layer Adaptation, Cross-Lingual Transfer
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Learning, Multi-Task Cross-Lingual. It also proves to be superior in all transfer directions,
managing to be generalizable to various domains. Several experiments were done considering
only 20% of the data set, and gradually increasing until reaching 100%, always offering the
best results in F-1 Score compared to the other methods.

2.4.3 Unsupervised Approaches

Unsupervised methods use no manually-annotated data and use ranking techniques to classify
data. However, they are computationally complex models in comparison with supervised
methods and less accurate, but no limited to specific domains.

In this sense, Nadeau et al. (2006) present a NER system that does not require manually
tagged training data. This system consists of two stages or modules, where it first automat-
ically generates a long list of named entities using the named entity extraction algorithm
proposed by Etzioni et al. (2005) and then by resolving three problems (entity-noun ambigu-
ity, entity boundary detection and entity-entity ambiguity) through heuristics addressed in
(Mikheev, 1999), (Palmer and Day, 1997) and (Petasis et al., 2001) respectively, achieving
disambiguation of named entities. The system is evaluated with the standard corpus MUC-7
Enamex (Chinchor and Robinson, 1997) containing three classical named entity types (per-
son, location and organization), in addition to one new corpus including a new class (car
brands). Heuristics applied to address the problem of named-entity ambiguity improves the
performance considerably in comparison with the first stage. The system achieves good
enough results to be no supervised, however it is not competitive with the most complex
supervised systems.

Munro and Manning (2012) present an unsupervised approach that learns to recognize
named-entities in parallel corpora that does not need to be easily alignible. The proposed
system first produces seed candidates by calculating the edit likelihood deviation (selecting
only the word/phrase pairs with the highest and lowest values). Then, using the seeds the
system learn context, word-structure and alignment models. And finally Stanford NER
predictions were added as features in the final model to allow optimal weights. The system
is evaluated with the parallel corpus of English and Haitian Krèyol text messages used in
the 2010 Shared Task for the Workshop on Machine Translation. The obtained results in
this unsupervised method are strong enough with F-measure= 0.861 for English language
and F-measure = 0.846 for Krèyol, however the linguistic nature of the language pairs could
affect the performance of the method.

Certainly exists the necessity to design and build models capable of transferring NER
knowledge from one language to another, since not all languages have labeled data sets, and
building these data sets is very time-consuming. The most recent research in this area has led
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to proposing really complex and very effective methods, given the lack of manually labeled
resources for many languages. Bari et al. (2020) present an unsupervised cross-lingual NER
model capable of transferring NER knowledge from one language to another. This means
that there is no need to resort to external resources such as dictionaries or domain-specific
tagged data sets. This model is based on the CO theory, about how it is that humans learn a
second language, in which there is a transfer of knowledge from the base language to the
new language, associating the meanings of the original language with the new words. The
way this model works is by promoting knowledge sharing through cross-lingual mapping,
making use of a common embedding matrix of the two languages. It also uses adversarial
training which provides an initial word-level mapping, and after that, a fine-tuning is applied
iteratively to improve the mapping. In addition to this, an augmented fine-tuning is applied,
to find a relationship between the words as a whole and avoid erroneous labels that can
generate noise in each iteration, since larger named entities can be affected by noise than
named entities with few words. This model was tested with 5 different languages and proved
to have excellent results over previous models from the scientific community. The authors
emphasize that their model is the first to provide a completely unsupervised solution with
real results, which is why it is considered the state of the art in unsupervised methods for the
recognition of named entities.

2.4.4 Neural Network Approaches

In Dernoncourt et al. (2017) a tool based on ANN to easy recognizing named entities is
proposed, it is called NeuroNER. It implements the LSTM model, that is a variant of RNN.
The NeuroNER engine contains three layers: Character-enhanced token-embedding layer,
Label prediction layer and Label sequence optimization layer. This tool allows to train the
ANN model and evaluate the performance obtained by the created model, facilitating the
annotation, training and prediction to anyone, resulting a free source to be used online 1.

However, rule-based systems are time consuming to be developed and generally works
well only for specific domain named entities. Artificial Neural Networks (ANN) models have
improved the performance on NER task, thanks to their ability to learn effective features
directly from the training dataset, instead of handcrafted features developed for an specific
domain. Kuru et al. (2016) considered a sentence as a sequence of characters instead of a
sequence of words and presented a character-level tagger for language-independent NER.
With this idea and using a stacked bidirectional LSTM model for encoding patterns on the
sequential data, the character level tag probabilities produced by the LSTM are passed to

1http://neuroner.com/
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a Viterbi decoder to convert them into word level tags. This model has the advantage of
considerably reducing the vocabulary size compared with word-level models, at the same
moment that computational cost is reduced. The results obtained in this research work
perform similar to the state of the art NER models.

Some recent approaches that implements deep learning models have achieved the state of
the art performance in NER task. Yadav et al. (2018) presented a NER model combining
character and word-level information with specific learned representations of prefixes and
suffixes of the words, allowing for a better semantic representation of words improving the
meaning understanding of words. This method is language-independent and outperforms any
other RNN models using character and words levels, this is how the model achieved the state
of the art performance.

There exists surveys focused on NER systems, some of them covering a variety of
supervised, semi-supervised, unsupervised and neural network methods (Sharnagat, 2014),
others covering domain specific NER systems (Shaalan, 2014), (Etaiwi et al., 2017) and
(Patil et al., 2016), and the most recent of them a comprehensive survey of deep neural
network architectures for NER highlighting the improvements achieved by neural networks
(Yadav and Bethard, 2019).

Deep Learning Approaches

(Akbik et al., 2019) have moved from the original “one word, one embedding” paradigm
to use contextualized embedding models, where different embeddings are produced for the
same Word depending on its context. In this work the authors try to address the issue of
underspecified embeddings that causes incorrect classification of named entities. So the
approach dynamically aggregates contextualized embeddings of each unique string, and
then a pooling operation is implemented to represent a global Word representation from all
contextualized instances that authors use in combination with the current contextualized
representation as new Word embedding. Therefore, this approach produces representations
of words that change as new instances of the same word are found in the training data. First,
the algorithm embed a Word in a sentence context and aggregate the produced embedding
to the memory for this Word. Then, the pooling operation is applied overall contextualized
embeddings for that Word in the memory to create the pooled contextualized embedding.
Finally, this last embedding is concatenated with the original contextual embedding. So,
the final pooled contextualized embedding contains local and global interpretations. The
proposed method is evaluated in the CoNLL-03 shared task, and the WNUT-17 task on
emerging entity detection, and is compared with BERT approach (Devlin et al., 2018), the
semi-supervised multitask learning approach (Clark et al., 2018), the ELMo word-level
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language modeling approach (Peters et al., 2018), and the best published numbers for
WNUT-17 (Aguilar et al., 2019). The proposed method present better results than the other
implementations, indicating that the method is perfect for NER task.

In the field of Biomedical research the task of Named Entity Recognition has become
so important, however traditional NER methods use pre-defined features to capture specific
properties of named entities, which is expensive. In this sense, (Habibi et al., 2017) present a
generic method based on deep learning and word embeddings which outperforms state-of-
the-art entity specific NER tools. The architecture of this classifier system is made up of
three main layers. The first layer is the embedding layer, where the input is a raw sentence
and produces an embedding for each word of the sentence. Then the resulting sequence of
embeddings is used in the second layer, which is a bi-directional LSTM-layer, generating
a more detailed representation of the input. Finally, the third layer receives that refined
representation in a CRF-layer where a final output will be obtained by using the Viterbi
algorithm. All these layers conform a neural network that can be trained by propagation. In
this work authors are interested in recognizing five types of named entities: genes/proteins,
chemicals, diseases, cell lines and species. The performance of their classifier systems is
compared with five baseline NER tools and a CRF classifier, and results are evaluated in
terms of precision, recall and F-1 score. The results obtained by the authors approach stands
out considerably above the others in F-1 score. Their method manages to tag precisely single-
token mentions more than on multi-token entities, but it also can tag precisely multi-token
entities, without relying on any post-processing rules. For this reason, the costly development
of domain-specific NER tools could be minimized.

After the study about the classification of texts, we realized that this can be carried out
through key concepts. These concepts or key phrases can be extracted through the use of
methods such as Naive Bayes, Support Vector Machines, Conditional Random Fields, among
others. These same methods or techniques are used for the recognition of named entities, for
which we will use these principles to develop a classifier model with the ability to identify
the most relevant concepts in texts of our interest.





Chapter 3

Named Entities

Since our case study needs to identify key concepts with specific characteristics of our
set of texts, we have proposed and developed a web-based tagger system. Thanks to our
tagger system, it is possible to identify the most relevant key concepts or phrases inside Job
Descriptions. At the same time, the system facilitates tagging through suggestions learned
by previously tagged key phrases. This allows key phrases manually tagged by people to
be highly reliable since as humans we can naturally distinguish between one category and
another. Another great advantage of our system is that it allows us to create or define our
classes or categories. So it lets us treat practically any type of text. Finally, it permits us
to export the tagged texts to a structured format, which can be processed by classifying
models such as Stanford’s. In this way, we achieve a high-quality training set and save time
by automatically converting to a structured format. Without a doubt, this is a significant
contribution that we make, as we facilitate the labeling of texts.

3.1 Introduction

The Named Entity Recognition (NER) task is a subtask of information extraction (IE) and
was developed by the committee in the Sixth Message Understanding Conference in 1995. It
became an important task in IE field since it aims to locate and classify named entities in a
text into categories previously defined (e.g. People, Organizations, Geographic Locations).
In this way, texts can be represented by their named entities (R. Grishman, 1996). Although,
sometimes many of the NEs can be ambiguous to be classified in more than one class, e. g.
the automotive company created by Henry Ford in 1903, where “Ford” can be referred to
many entities (Name, Company, etc.) (Mohamed and Oussalah, 2014b).

On the other hand, NER systems require a large amount of highly accurate training data
to perform well at the task named entities recognition (S. Tardif, 2009). In this way, excellent
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training data can be achieved by human feedback, since humans can easily differentiate from
one context and another, assigning the correct tag to each named entity in the texts.

That is why our set of texts (Job Descriptions) has been manually tagged highlighting the
most representative named entities of each text. These named entities are classified into 6
categories: Role, Knowledge, Skill, Character, Responsibility and Talent. However, these key
phrases that represent our texts range from 1 to 14 words in length and are very specific to
the field of Information Technology (IT), so we will not refer to them as named entities but
as "key phrases", since our objective it is to identify these specific key phrases that represent
our documents and not to identify named entities in general as described above.

3.2 N-grams

An n-gram is a subsequence of n elements of a sequence of words given in a text and is widely
used in the study of natural language. The way in which the grams are extracted depends on
the area that is being studied as well as the objective in mind. In the case of studying natural
language, grams are a technique used that allows machine learning algorithms to extract data
from text strings.

3.2.1 N-gram language model

An n-gram model is a type of probabilistic model that allows a statistical prediction to be
made of the next element of a certain sequence of elements that has occurred so far. An
n-gram model can be defined by a Markov chain of order n−1, due to its relative simplicity
to increase the study context by increasing the size of n.

The Markov model is a special type of discrete stochastic process in which the probability
of an event occurring depends only on the immediately preceding event. A Markov chain is
a sequence X1,X2,X3, ..., of random variables. The domain of these variables is called the
state space; the value of Xn is the state of the process at time n. If the conditional probability
distribution of Xn +1 in past states is a function of Xn by itself, then:

P(Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, ...,X2 = x2,X1 = x1) = P(Xn+1 = xn+1|Xn = xn)

(3.1)
where xi is the state of the process at time i (David. C. Lay and McDonald, 2016).
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3.2.2 N-grams used

In our case, we have a corpus composed of plain text Job Descriptions in the field of IT. And
these kind of documents can be represented by the classes: Role, Knowledge, Skill, Character,
Responsibility and Talent. However, we want to know what n-grams are used most in each
class. To achieve this we have measured the length of the key phrases (n-grams) that make up
each class, immediately we grouped them by n size, and then we counted their frequencies in
the corpus. Figure 3.1 shows the distribution of the existing n-grams in each class.

With the graphic representations of the n-grams can be seen that most of the classes
are mainly made up of bigrams, with the Role, Skill and Knowledge classes being the
most common. However, the Knowledge and Character classes are mainly represented by
unigrams, with a large percentage difference from the rest of the classes. That means that
these two classes are characterized by being unigrams and bigramas.

On the other hand, it is possible to observe that the trigrams occupy the third position
in representing each of the classes, being the only one more balanced group based on the
number of occurrences. Four-grams represent from 6% to 12% of the composition of each
class, ranking fourth in the main named entity sizes. As the rest of the n-grams have such a
low presence in the classes, with the exception of the Responsibility class, being the only
class that represents a less disproportionate distribution of key phrases of short and long
length. Furthermore, the Responsibility class has the longest n-grams existing in the corpus,
being something characteristic of this class.

3.3 Part-of-Speech (POS)

In grammar, a part of speech is a category for words that have similar grammatical properties,
in this way those words that belong to the same category show a very similar syntactic
behavior. So based on their different uses, the words are classified into different types of Part
of Speech. The Parts of speech found in the English language are:

• Noun: is a word that refers to a thing (book), a person (Betty Crocker), an animal (cat),
a place (Omaha), a quality (softness), an idea (justice), or an action (yodeling). It’s
usually a single word, but not always: cake, shoes, school bus, and time and a half are
all nouns.

• Pronoun: is a word that is used instead of a noun or noun phrase. Pronouns refer to
either a noun that has already been mentioned or to a noun that does not need to be
named specifically. The most common pronouns are the personal pronouns, which
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(a) Skill (b) Role

(c) Character (d) Knowledge

(e) Talent (f) Responsibility

Fig. 3.1 Distribution of n-grams in each class
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refer to the person or people speaking or writing (first person), the person or people
being spoken to (second person), or other people or things (third person).

• Verb: verbs are words that show an action (sing), occurrence (develop), or state of
being (exist). The basic form of a verb is known as its infinitive. The forms call, love,
break, and go are all infinitives.

• Adverb: adverbs are words that usually modify verbs. They may also modify adjec-
tives, other adverbs, phrases, or even entire sentences.

• Adjective: describe or modify —that is, they limit or restrict the meaning of— nouns
and pronouns. They may name qualities of all kinds: huge, red, angry, tremendous,
unique, rare, etc.

• Preposition: A preposition is a word —and almost always a very small, very common
word— that shows direction (to in "a letter to you"), location (at in "at the door"),
or time (by in "by noon"), or that introduces an object (of in "a basket of apples").
Prepositions are typically followed by an object, which can be a noun (noon), a noun
phrase (the door), or a pronoun (you.

• Conjunction: is an uninflected linguistic form that joins together sentences, clauses,
phrases, or words. Some common conjunctions are and, or, but, and although.

• Interjection: is a word or phrase that is grammatically independent from the words
around it, and mainly expresses feeling rather than meaning. Some examples are: Alas!
ouch! phooey! ugh! Uh-oh! um! wow2!

• Numeral: is a conventional symbol that represents a number.

• Article: is used with nouns to specify grammatical definiteness of the noun (such as
"a", "an", and "the"). Articles are frequently considered part of a broader category
called determiners, which contains articles, demonstratives (such as "this" and "that"),
possessive determiners (such as "my" and "his"), and quantifiers (such as "all" and
"few") (Merriam Webster, 2020).

3.3.1 POS Tagging

Part-of-speech tagging is the process of marking a word in a text with a tag carrying the
corresponding information to a particular part of speech, based both on its definition and its
context (its relation to adjacent and related words in a phrase, sentence or paragraph) (Sketch
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Engine, 2020). This tagging is done using computational algorithms that associate discrete
terms, as well as hidden parts of the speech, through a set of descriptive labels. These POS
tagging algorithms are divided into two types: rule-based and stochastic.

However, doing a part-of-speech tagging is not so easy since some of the words to be
tagged can represent more than one POS depending on their use and context. So it is not
uncommon for some words to be ambiguous.

POS Tagging of the corpus

POS tagging was applied to the key phrases contained in the corpus of Job Descriptions
concerning the IT field used in this investigation. To achieve the task, the tagger provided
by the Natural Language Toolkit (NLTK) library was used through the python programming
language. This tagger receives and processes a sequence of words (previously tokenized),
adding to each of them its POS tag. So for each of the 3336 key phrases in the corpus,
the pos_tag() method was called and then all the sequences found in the key phrases were
grouped (and the occurrences of each one were counted).

The reason for using the default function POS tagset and not the universal POS tagset is
that the first one allows more detailed classification. While the universal POS tagset only has
12 categories, the default POS tagset offers the possibility of tagging with 35 different classes,
making the structure of a named entity more precise and thus recognizing its similarity with
another. The 35 classes that make up the default tagset are as follows (Bird et al., 2009):

• CC coordinating conjunction

• CD cardinal digit

• DT determiner

• EX existential there

• FW foreign word

• IN preposition/subordinating conjunction

• JJ adjective ‘big’

• JJR adjective, comparative ‘bigger’

• JJS adjective, superlative ‘biggest’

• LS list marker 1)
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• MD modal could, will

• NN noun, singular ‘desk’

• NNS noun plural ‘desks’

• NNP proper noun, singular ‘Harrison’

• NNPS proper noun, plural ‘Americans’

• PDT predeterminer ‘all the kids’

• POS possessive ending parent’s

• PRP personal pronoun I, he, she

• PRP$ possessive pronoun my, his, hers

• RB adverb very, silently

• RBR adverb, comparative better

• RBS adverb, superlative best

• RP particle give up

• TO to go ‘to’ the store

• UH interjection

• VB verb, base form take

• VBD verb, past tense, took

• VBG verb, gerund/present participle taking

• VBN verb, past participle is taken

• VBP verb, sing. present, known-3d take

• VBZ verb, 3rd person sing. present takes

• WDT wh-determiner which

• WP wh-pronoun who, what

• WP$ possessive wh-pronoun whose
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(a) Skill (b) Role

(c) Character (d) Knowledge

(e) Talent (f) Responsibility

Fig. 3.2 Most representative POS-tag for each class

• WRB wh-adverb where, when

In Figure 3.2 it can be seen which are the POS-tags of the most representative key phrases
for each class. In the class Character mainly unigrams are used (NN and JJ), while the most
present bigrams have the structure JJ NN, and most of the trigrams have the structure NN TO
VB.

While the class Knowledge is strongly represented by unigrams of the NN form, followed
by the NNS form, and bigrams with the structures NN NNS, NNP NNP, NN NN, NNP NNS
and NNP NN. So it would be rare to find a trigram in this class, or a higher-order n-gram.

On the other hand, the class Role is made up mostly of bigrams and trigrams, so it would
be very rare for an named entity in this class to be just one word. The main structures
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of bigrams in this class are: NNP NNP, NN NN, JJ NN and NN NNP, while the main
structures of trigrams are: NNP NNP NNP and JJ NNP NNP, and for first time four-grams
play a representative role in a class, having the structure: NNP NNP NNP NNP. Something
important to mention in this class is that its key phrases are mainly made up of proper nouns
in the singular form, being something characteristic of this class.

The class Skill is mainly made up of bigrams, which is something that characterizes the
class and it is worth looking at its component structures: NN NN, JJ NN, NN NNS, NN VBG,
JJ JJ, NN RB, NNP NNP, VBG NNS, JJ NNS and NNP NN, where nouns and adjectives are
the most used POS tags and resulting characteristic of their key phrases.

The class Talent is made up of unigrams, bigrams and trigrams, with the bigrams being
the most representative and with the following structures: VB NNS, NN NN and JJ NN. The
main trigrams have the structures: NN TO VB and NN NN NNS, and unigrams are represented
with the form NN. This class strongly uses nouns, which are part of any of its key phrases.

Finally, the class Responsibility is mainly made up of trigrams that have the following
structures: NNP NN NNS, NN NN NNS, VBG NN NNS, VBG JJ NN, JJ NN NNS, NN CC NN,
VBG JJ NNS, NN NN NN, VB JJ NNS, VBG NN NN and NNP JJ NNS. And those trigrams
are formed with singular and plural nouns, adjectives and verbs in gerund (present participle).
The main bigrams that conform the class have the structures: NN NN, NN NNS, JJ NN, VBG
NNS and NNP NN, where it is possible to realize that these bigramas are formed in the same
way as the tigrams (with nouns, adjectives and verbs in gerund). And as for the unigrams
they are characterized for being NN and VBG, concluding that the use of verbs in present
participle is something characteristic of the class responsibility.

In this chapter, we managed to map all the key phrases as n-grams, so that we could
analyze how each of the classes that we defined for the Job Descriptions behaves. Another
interesting finding is to know the POS structures that characterize each of our 6 previously
defined categories or classes. The study of these features is important because it will help us
to define rules later. Thanks to this we could propose a competitive classifier model.





Chapter 4

Semantic Similarity

One of the main contributions made in this chapter is to propose a way to generate new key
phrases from an original set. This through synonyms for each of the words that make up
each key phrase. Of course, not all the newly generated key phrases could refer to the same
meaning as the original ones, so we propose a selection process to only preserve those key
phrases that express the same concept as the original key phrases. Our selection process
considers the results returned by the Google search engine for a new key phrase as the first
filter, and it is important to mention that this stage is crucial since through it we know if the
newly generated key phrase is used by people around the world. As we know, the Google
search engine has access to practically all electronic texts on the Internet, so it is easier to
discern if a key phrase is used frequently in texts or if its use is sporadic or even null. In
addition to this filter, a stage is used where a semantic similarity measure is made between
the original key phrase and the new key phrases. Finally, a filter is made where those key
phrases that do not comply with the POS structures of those observed in the previous chapter
are discarded.

4.1 Introduction

When comparing one text with another it is possible to measure its similarity through different
techniques, for example, one text can be similar to another if both have high occurrences of
the same words (that is, the word that is in text A is also found in text B). However, two texts
could be talking about the same topic without using the same words and then it would not be
useful to compare them syntactically since syntactically speaking they are not similar, for
this it is necessary to find a semantic similarity between both texts (which can use different
words to refer to the same topic).



32 Semantic Similarity

Semantic similarity is a metric determined on a set of terms, where the distance between
them is based on the similarity of their meanings or semantic contents. In this way it is
defined that two entities are similar if: (i) both belong to the same class, (ii) both belong
to classes that have a common primary class, or (iii) one entity belongs to a class that is a
primary class to which the other entity belongs. Furthermore, two relationships are similar if:
(i) they both belong to the same class, (ii) they both belong to classes that have a common
principal class, or (iii) a relation belongs to a class that is a principal class to which the another
relationship belongs (Paolozzi Stefano and Grifoni, 2009). There exists different different
semantic measures which are mathematical mechanisms used to calculate the strength of the
semantic relationship between concepts, and this relationship is normally represented with
numerical values in a range from 0 to 1, where 0 is not at all similar and 1 means completely
similar (Harispe et al., 2017).

It is important to note that semantic similarity differs from semantic relatedness since
the latter refers to any relationship between two concepts such as the words neighboring the
concepts and that are part of their context, while the semantic similarity is limited to concepts
that mean the same to the originals (Feng et al., 2017). For example, "engineer" is a concept
similar to "architect", but is related to "software" and "methodologies".

4.2 Semantic Measures

The objective of semantic measures is to evaluate the similarity or relationship between two
entities taking into account their meanings. For example, "serve" and "help" are semantically
more similar than "serve and "server" even though these two share a similar high syntactic
structure. A semantic measure can be defined as

σk : Ek ×Ek → R+ (4.1)

with Ek representing the set of elements of type k ∈K, and K representing the different
types of elements that can be compared with respect to their semantics, for example, K=

{words,concepts,sentences, texts,etc...} (Harispe et al., 2017).
Semantic measures play an important role in a wide variety of NLP applications, and

therefore there is a variety of them that is mainly divided into two categories according to
Harispe et al.:

• Corpus-based measures allow the comparison of language units (words, concepts,
sentences or texts) from the analysis of unstructured or semi-structured texts, and are
mainly only based on statistical analyzes of the use of words in texts (based in the
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analysis of co-occurrences of words and the linguistic contexts in which they appear).
These measures are based on a strategy that will be used to capture the meaning of
a word (this meaning is seen as a function of its use in a semantic space built from
a set of texts). And depending on the strategy adopted to characterize the meaning
of a word, and to represent the semantic space in which this meaning is defined, it is
how a specific canonical form will be selected to represent a word (this canonical form
corresponds to a data structure that is expected to encompass evidence of the meaning
of the word).

• Knowledge-based measures are designed to compare entities defined in ontologies
which are formal definitions of types, properties, and relationships between entities that
fundamentally exist for a particular domain of discourse (e.g., the field of computing).
These measures can also be used to compare units of language (sentences or texts)
but they are not limited to just that, so they can be used to make the comparison of
any piece of knowledge formally described and covering a wide variety of elements
(concepts , genes, people, music, etc...).

4.2.1 Wu&Palmer similarity measure

Wu&Palmer similarity is a Knowledge-based measure where we have used the semantic
dictionary WordNet (Miller, 1995). This measure returns a value denoting how similar are
two concepts, considering the depth of the two concepts in the taxonomy and that of their
Least Common Subsumer (most specific ancestor node) (Bird et al., 2009). Wu&Palmer
similarity measure can be defined as:

Simw& p(C1,C2) =
2∗N

N1+N2+2∗N
(4.2)

Where C1 and C2 are two concepts in the taxonomy, N1 and N2 are the distance that
separates C1 and C2, respectively from the specific common concept, and N is the distance
that separates the most specific common ancestor of C1 and C2 from the root node (Slimani,
2013).

Several parents can be shared by C1 and C2 considering multiple paths, however, the
LCS does not necessarily appear on the shortest path connecting C1 and C2, as its name says
it is the deepest common ancestor in taxonomy. When there are multiple candidates for the
LCS, then the candidate whose shortest path to the root node is the longest will be selected.
And when the LCS has multiple routes to the root, the longest route is used for the purpose of
the calculation. So, can be said that two concepts tend to be more similar as depth increases.
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4.3 Selection process for new key phrases

Starting from the key phrases that were manually tagged in the set of job descriptions,
new phrases were generated which were variants with synonyms of the first ones. For
example, from the original key phrase “focus on multiple issues” seven new phrases are
generated through synonyms “focusing on multiple issues”, “focussing on multiple issues”,
“concentrate on multiple issues”, “focus on multiple issue”, “focus on multiple topic”, “focus
on multiple subject”, “focus on multiple matter”. However, we can see that not all of these
new phrases are optimal to refer to the original, and for that reason a selection process
will be necessary to discard phrases that do not refer to the same concept. This selection
process consists of 3 phases or selection tasks in order to discard the new phrases generated
through synonyms, and these selection tasks help us to keep only the phrases that refer to the
same idea as the original ones. The selection tasks are Google query results, Wu& Palmer
similarity measure, and part-of-speech structure.

• Google search results. The first selection task used is based on the results returned
by the Google search engine when a query is made for the new phrase with the exact
terms (it means that Google searches for exactly that phrase on the web and not the
words that compose it separately ). If the results returned by Google are 0 then it means
that this phrase does not exist on the web and then from there it is discarded, and if the
results it returns are minimal (1 - 100) it means that this phrase, although it exists, is
very little used (what which can mean that some user made a mistake when writing
or that the phrase contains a new term) and then it must be analyzed by the following
selection task.

• Wu&Palmer Similarity. The second selection task uses the similarity of Wu&Palmer,
through which the similarity of each original key phrase has been compared with their
respective new phrases through synonyms. If the original phrase is 20% to 100%
similar to the new phrase, then the phrase is retained for analysis by the last selection
task, otherwise, it is discarded.

• Part-of-speech. The third and final selection task refers to the part-of-speech, which is
based on the expressions or structures found in the set of original key phrases of each
class. So the POS structure of the new phrase is checked against the POS structure of
the set of original phrases that belong to the same class and if it corresponds to any
then it is preserved, otherwise, it is discarded.
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In the end, a set of coherent and similar phrases to the original ones is obtained, and
thus the variants in the graph structure can be expanded, now being a rich graph through
synonyms.

4.3.1 Google results threshold selection

The thresholds of selection tasks one and two were determined through visual observation,
for example for selection task number one, it is clear that if Google does not return a result,
then the phrase does not exist, but through observation, it was possible to determine that
those phrases that only occur less than 100 times on the web are meaningless, as can be seen
in Table 4.1.

It can be seen that in the new key phrase "provide production supporting" the word
"supporting" is not being used in the correct grammatical tense since it begins by speaking
in the present tense "provide" and therefore "support” should also be present. Regarding the
phrase "furnish production support" it is possible to observe that the word "furnish" is not in
common use in this context since the closest synonym to "provide" according to the context
is "supply".

Then for the key phrase "data entry skills" it is possible to see that "information entry
skills" yields very few results since when people speak in a computational context of entering
information they do so referring to the specific term of the computer field "data" because
"information” is a more general concept.

For the key phrase "learn things quickly" it is easy to see that there is a plural sense of
learning things and not just one thing because otherwise, it would specify what is the thing
required to learn, that is why "learn thing quickly” is discarded since it should speak in the
plural. On the other hand, although "speedily" and "promptly" are synonyms of "quickly"
they are not the best to be used within this context of the sentence, so there are not many
appearances on the web.

Regarding the key phrase "focus on multiple issues" when using the word "focussing"
with double ss it yields few results since it is more common to use it with an s in the United
States. On the other hand, when the words “topic” and “matter” are used instead of "issues"
the grammar is incorrect since these singular words go after the “multiple” quantifier, which
requires a plural noun.

It can be seen that for the original key phrase “understanding of typography” the only
phrase similar is “understand of typography” since “intellect” and “reason” lack a semantic
meaning similar in context to “understanding”.
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Table 4.1 Google results for new phrases

Original key phrase New phrases Google results
provide production support supply production support 2130

furnish production support 71
provide production supporting 3

data entry skills information entry skills 4
data entering skills 86

data entry skill 19600
learn things quickly memorize things quickly 5850

learn thing quickly 68
learn things speedily 59

learn things quick 1100
learn things promptly 6

focus on multiple issues focusing on multiple issues 25600
focussing on multiple issues 7

concentrate on multiple issues 5410
focus on multiple issue 3210
focus on multiple topic 3

focus on multiple subject 13600
focus on multiple matter 0

understanding of typography reason of typography 3
intellect of typography 0

understand of typography 2230
work well under pressure go well under pressure 8

work good under pressure 2800
process well under pressure 1
make well under pressure 4

work considerably under pressure 0
software development life cycle software developing life cycle 674

software development living cycle 0
software development lifetime cycle 43
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Table 4.2 Wu&Palmer similarity between original "key phrases" and new phrases

Original key phrase New phrases Wu&Palmer Similarity
graphic design graphical design 0.5

graphic designing 1.0
graphic project 0.852

verifying confirming 0.4
validating 0.2

identify key 0.166
distinguish 0.8

describe 0.153
captivate beguile 0.181

fascinate 0.285
Mac macintosh 0.526

CPU products processor products 0.56
cpu merchandise 0.94

cpu product 0.94
professional service pro service 0.815

professional servicing 0.5625
video editing picture editing 0.576

video edit 0.5
solution focussed solution concentrate 0.583

solution focus 0.576
C# services C# service 0.852

C# servicing 0.558

In summary, it can be said that for a new phrase to be considered, it must have high
occurrences on the web, which means that its extensive use in existing textual information on
the web supports its existence and common use in texts.

4.3.2 Wu&Palmer threshold selection

As for the Wu&Palmer measure, it is used by comparing each original key phrase with their
respective phrases generated from synonyms, so that the similarity of each new phrase with
the original is calculated. But we managed to see that only those similarities greater than
0.2 (20%) are important, and the rest are discarded as they do not present a strong semantic
equivalence to the original one. Table 4.2 shows what is described before.

In the first example of the table, when you talk about the key phrase “graphic design”
you can also refer to it as “graphical design”, then you can say that any similarity equal to or
greater than 50% is trustworthy.
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Table 4.3 Part-of-speech when using lowercase and uppercase for key phrases

Key phrase Original POS Lowercase POS
Digital Graphic Designer NNP NNP NNP JJ JJ NN

Adobe Creative Suite NNP NNP NNP RB JJ NN
IT Support NNP NNP PRP NN

degree in Informations Systems NN IN NNP NNPS NN IN NNS NNS
MS Sharepoint 2013 NNP NNP CD NN NN CD

In the second example of the table, when the term "verifying" is used in a sentence, it can
be replaced by any of the terms "confirming" or "validating" and although here the degree of
similarity is less than 50%, these terms correctly replace the original so a degree of similarity
greater than 20% is acceptable.

Now, in the third example of the table, the term "identify" can also be understood as
"distinguish" having a high degree of similarity, but "key" and "describe" do not bear much
relation to the original term representing a similarity below 20%. And the same is observed
in the fourth example, where "captivate" and "fascinate" can be understood as similar with a
percentage of 28.5% but the word "beguile" is no longer closely related to "captivate", being
18.1% similar.

From the above, it can be concluded that any similarity between two sentences of less
than 20% represents a very weak relationship between the two and therefore it is not worth
considering them for the set of new key phrases, because otherwise, they would be including
phrases that they do not have a great semantic relationship to the original ones and the quality
of the corpus would be affected.

4.3.3 POS threshold selection

This filter consists of only preserving new key phrases with a part-of-speech that is included
in the POS list of the original key phrases.

Key phrases showed in Table 4.3 were discarded when applying the POS selection
task, and this happens because these key phrases have different part of speech when using
uppercase letter and when using lowercase. For that reason, both part-of-speech have to be
considered when using this selection task (the part-of-speech of the original key phrase and
the part-of-speech of the lowercase key phrase). That way, relevant POS structures will not
be discarded.
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4.4 Preserved key phrases

Once the selection tasks have been defined to select the new phrases to be contemplated
within the corpus, there are the different combinations in which these selection tasks can
be used to obtain the best phrase options. However, the Google selection task is the most
important filter of them, since from that moment it will be validating that those new key
phrases really exist on the Internet and are widely used by people. In this way, key phrases
that are rarely used will be discarded, mainly due to typing errors. Sometimes users could
have omitted or added extra letters at the time of writing them, or perhaps by non-native
users of the language who may have mistakenly constructed a phrase where the words were
not the best used. And even if there were several occurrences of those key phrases wrongly
used by internet users, then the second most important filter or selection task should be the
semantic similarity between the original key phrase and the new key phrase.

Algorithm 1: Algorithm employing the three selection tasks
Result: Selected_phrases = list
Result: Discarded_phrases = list
for each original key phrase as o_key_phrase do

for each new phrase as p do
if google_results(p) > 100 then

if wu_palmer similarity between p and o_key_phrase > 0.2 then
p_class = get_class(p);
if part_of_speech(p) in pos_structures(p_class) then

Selected_phrases.append(p);
else

Discarded_phrases(p);
end

else
Discarded_phrases(p);

end
else

Discarded_phrases(p);
end

end
end

However, the POS selection task is optional since the most important selection tasks
are the first two mentioned above. And in the case of using the POS selection task, all key
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Table 4.4 Key phrases manually discarded from the set of key phrases preserved by the
selection process

Original key phrase Preserved key phrase Manually discarded
customer facing client facing customer face

customer confront
handle various issues handle diverse issues handle various subject

handle various subject
learn new technologies learn new engineering hear new technologies

hear new technologies
use AutoCAD utilize autocad purpose autocad

apply autocad
employ autocad
purpose autocad

learn things quickly discover things quickly hear things quickly
hear things quickly
learn things rapidly

phrases need to be converted to lowercase and consider both POS structures. The Algorithm 1
describes the combination of selection tasks used with specific conditions.

Although the use of synonyms allowed creating many phrases semantically similar to
the original ones, not all of them were of high quality (since the grammatical form was
incorrect in many cases). But it is possible to observe that through the selection process these
grammatical errors were discarded.

4.4.1 Manual selection

This selection process help us to keep only the most important key phrases, however a last
filter is necessary to guarantee the maximum quality of new key phrases. This filter must
be evaluated manually by a human, discarding those key phrases that lack a logical sense of
communication.

A total of 9,689 new key phrases were generated through the use of synonyms and after
using the first selection task of this process, only 4,161 key phrases were preserved. Which
means that 57.05% of new key phrases were discarded. Of the 4,161 key phrases preserved,
only 74 key phrases were discarded in the second selection task of the process. In the last
filter, 612 key phrases were discarded, which leaves a total of 3,475 key phrases preserved.
This means that only 35.86% of the new key phrases are preserved after the selection process,
as seen in Figure 4.1.
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Fig. 4.1 Discarded key phrases in each selection task

However, of the key phrases preserved after this process, there are some that lack a
meaning similar to the original, as it can be seen in Table 4.4. The created key phrase
"customer face" is different from "customer facing". The first phrase refers to a person’s face,
while the second phrase refers to dealing directly with people who buy products or services.
Another example is with the phrase "learn things quickly" which is different in meaning from
the phrase "hear things quickly", where the first refers to the ability to learn and the second
refers to the action of listening.

After the manual selection a total of 503 key phrases were discarded, leaving only 2,972
key phrases.

4.5 Experiment

To measure the quality of the new set of key phrases created from the originals, two classifiers
will be trained with the Stanford classifier (Finkel et al., 2005) . The first classifier will
only contain the job descriptions tagged with their original key phrases, while the new key
phrases kept after the selection process will be added to the second classifier as illustrated in
Figure 4.2. This expansion of key phrases is done for each job description used for classifier
training. At the end of each original job description, new key phrases that are semantically
similar to those originally tagged will be added.
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Fig. 4.2 The original set is expanded by adding new created key phrases

To know how accurately the original model versus the expanded model will be, the
V-fold cross-validation technique will be used. For this work, the 70% of original job
descriptions were taken to train the first classifier and the remaining 30% to evaluate its
performance. These steps were executed 10 times by randomly taking 70% each time and
using the remaining 30% in each case for its evaluation. For the second classifier the same
process was used but using the expanded set. The results for the experiments are measured in
terms of Precision, Recall and F-1 score. Although, it is important to comprehend four main
metrics before explaining how these measures are defined. The metrics needed to calculate
the 3 measures, are explained as follows:

• True Positive (TP): It means that the class predicted by the classifier was correct.

• False Negative (FN): It means that the classifier could not assign or predict a class,
however, the word originally does have a class or label.

• False Positive (FP): It means that the classifier assigned a label or class, but the word
did not originally have a label.

• True Negative: (TN): It means that the classifier could not predict a class or label for
the word, but the word did not originally have a class or label either.

Once we distinguish these four metrics, it is easier to understand the 3 measures which
are expressed as follows:
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Fig. 4.3 Results obtained for both models, in 10 executions for the Precision measure

Fig. 4.4 Results obtained for both models, in 10 executions for the Recall measure
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Fig. 4.5 Results obtained for both models, in 10 executions for the F1 measure

• Precision T P
T P+FP : Represents the correct predicted positives over the total of predicted

positives.

• Recall T P
T P+FN : Represents how many of the actual positives the model predicted as

positives.

• F1 2∗ Precision∗Recall
Precision+Recall : Represents the harmonic average of Precision and Recall.

Figure 4.3 shows the results of the classifiers expressed in terms of Precision and Fig-
ure 4.4 shows the results in terms of Recall. Figure 4.5 shows the F1-score obtained for each
classifier. To analyze the results obtained in detail, consult Table B.1 in Appendix B.

As can be seen in Figure 4.3, the precision is slightly higher for the original data set.
Although in Figure Figure 4.4 we observe that the Recall is slightly higher for the model with
the enriched set. This leads us to recognize that performance is similar for both data sets, as
seen in Figure 4.5, where it can easily be seen that there is no significant improvement to
the trained classifier model with the expanded set. This may be mainly due to the fact that
the new key phrases that were added to the training set do not actually appear in the test set.
Therefore there is no improvement in the recognition of named entities or key phrases. To
support this hypothesis, we will use the Jaccard similarity coefficient with the intention of
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knowing the degree of similarity between the set of extended entities and the test set of each
execution.

4.5.1 Jaccard Similarity Coefficient

The Jaccard Index, also known as the Jaccard similarity coefficient, is a statistic used in
understanding the similarities between sample sets. The measurement emphasizes similarity
between finite sample sets, and is formally defined as the size of the intersection divided by
the size of the union of the sample sets. The mathematical representation of the index is
written as:

J(A,B) =
A∩B
A∪B

Breaking down the formula, the Jaccard Index is essentially the number in both sets,
divided by the number in either set, multiplied by 100. This will produce a percentage
measurement of similarity between the two sample sets. That is, it is equal to zero if there
are no elements that intercept and equal to one if all elements intercept.

By using this formula, we measure the degree of match between the expanded Named
Entity set with the test set. Thus with the sets of the first execution, the second, the third and
up to the tenth execution. The degrees of similarity between these data sets are shown in
Table 4.5.

In all runs of the experiment it is notable that the degree of similarity decreases when the
extended training set is used for the classifier. This means that the new named entities that
are created from synonyms increase the training set (Vocabulary size) but these new named
entities do not appear in the test set, so they do not cause an improvement in the performance
of the classifier. To see why there are no significant improvements when the training set is
expanded, we have analyzed the named entities from the original set that appear in the test
set against those from the expanded set that appear in the test set, as shown at column 4. In
this column can be observed that only a little more named entities are recognized compared
to the original set, only from 3 to 10 more entities which does not generate a significant
improvement and which explains the F-1 results obtained in Table B.1.

In this chapter, we managed to find a way to generate new key phrases similar to those
originally tagged with our web system. This was achieved through the use of synonyms
and a selection process that allowed us to keep only those key phrases that were consistent
and referred to the same concept as their original key phrases. We also demonstrate how to
take advantage of the Google results API which returns the number of results for a specific
search, thus reliably validating the generated key phrases. Later, we experimented to find
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Table 4.5 Jaccard index obtained between expended sets and testing sets

Sets Jaccard
Index

Vocabulary
Size

Vocabulary Included
in Test Set

Normal dataset 1 0.07 2,202 201
Expanded dataset 1 0.04 4,533 208
Normal dataset 2 0.09 2,133 237
Expanded dataset 2 0.05 4,384 246
Normal dataset 3 0.08 2,078 228
Expanded dataset 3 0.05 4,196 236
Normal dataset 4 0.08 2,168 223
Expanded dataset 4 0.05 4,444 233
Normal dataset 5 0.08 2,229 225
Expanded dataset 5 0.05 4,444 228
Normal dataset 6 0.09 2,190 241
Expanded dataset 6 0.05 4,351 246
Normal dataset 7 0.07 2,141 204
Expanded dataset 7 0.04 4,325 216
Normal dataset 8 0.07 2,261 190
Expanded dataset 8 0.04 4,481 197
Normal dataset 9 0.08 2,175 214
Expanded dataset 9 0.04 4,427 217
Normal dataset 10 0.09 2,101 246
Expanded dataset 10 0.05 4,249 258
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out if adding the new key phrases to the original set could lead to better recognition results.
However, we found that by doing this we did not get a significant improvement, because
these new key phrases did not appear in the test set. So in this particular case, we did not
achieve an improvement in the recognition of key phrases, when we added the newly created
key phrases.





Chapter 5

Enriched Graph Structure for Key
Phrase Recognition

The main contribution made in this section is the capacity to map key phrases in a graph
structure, at the same time that new key phrases similar to the original ones are added. This
graph structure allows capturing the syntactic and semantic relationships of the key phrases,
saving a lot on their storage. Thanks to the fact that this proposed structure manages to
map the semantic and syntactic relationships of the key phrases, it saves a lot of space by
simplifying their storage.

5.1 Introduction

The current chapter presents a proposed classifier in the task of Named Entity Recognition
(NER) based on a data structure represented by a graph with enriched language functions.
These rich language functions are intended to make named entity or key phrase recognition
more accurate. The idea is based on the experiments in the previous chapter where new
key phrases were created from the original set with the help of semantic similarity. So in
this graph structure, we have nodes and weights in the links that connect these nodes, but
with the difference that new nodes are added to the original nodes. These new nodes (or
alternative routes) are obtained from the synonyms of each one of the words that conform to
the original key phrase. In this way it is intended that the classifier can recognize key phrases
that are semantically similar to those of the original set, thus expanding the possibilities of
recognizing a key phrase. The performance of this proposed structure is compared against
the performance of some NER classifiers.
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5.2 Proposed Graph Structure

The graph structures allow mapping the syntactic and semantic relationships that exist
between words and even between concepts, so they can result in powerful representations of
natural language. For that, we will explain the scheme of the graph with enriched functions
of the language that we propose in this work.

5.2.1 Definition

The formal definition of the proposed graph to represent the key phrases, as well as the
relationships between them, is as follows:

G = (V,E, fE ,α)

Where, V represents a set of vertices or nodes, E are the set of edges that connect to the
set of vertices, fE is the weighting that the edges receive, and α is the function that calculates
the weight that edges receive.

In this case, a vertex or node represents a word of a key phrase, and the edges are those
that connect the words of a key phrase. In turn, these edges have a weight that represents how
frequent a word is for a set of similar key phrases. This weight is recalculated every time a
new key phrase is added to the graph. So, when a word of a key phrase already exists in the
structure in the same branch where it is being added, then the weight of this edge increases
in one unit.

5.2.2 Syntax

Figure 5.1 illustrates an example in JSON format of real data that has been stored in this
graph-based structure. In this figure, it is possible to observe the features that are considered
to represent the key phrases.

It is also possible to observe that the nodes of the graph are stored and structured between
two curly brackets which encapsulate the properties of each node in key-value pairs. Each of
these properties is explained in detail below:

• Level: The level refers to the depth that the node has in the graph. For example, in
figure 5.1, there are 4 nodes and the level is sequential. Here the key phrase called:
"Work well under pressure" consists of 4 words. When decomposing and storing this
key phrase, the word "Work" is the one that starts this key phrase, so it is first stored and
its assigned level is 1. Later the word "well" is stored and the assigned level is 2. After
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Fig. 5.1 Storage format for key phrases on the graph structure.



52 Enriched Graph Structure for Key Phrase Recognition

the word "under" is stored and level 3 is assigned to it. Finally, the word "pressure" is
stored with level 4, and this is how the storage of this key phrase is finished. So each
time a different key phrase is stored, it will have its respective levels according to the
number of words that make it up.

• Type: For each node or word that makes up a key phrase, it is assigned a state or type
(INITIAL, MIDDLE, or FINAL). So in figure 5.1, the word "Work" is the one that
starts the key phrase, so it will be of the INITIAL type. The subsequent words "well"
and "under" will be of type MIDDLE. And the word "pressure" which is the one with
which the key phrase ends will be of the FINAL type.

• Class: The class refers to the type of tag (Role, Knowledge, Skill, Responsibility,
Character, or Talent) that was assigned to the key phrase. So in the example in
figure 5.1, all the words that make up the key phrase "Work well under pressure" will
have the same class "Skill".

• Edges: This property is a list of weights corresponding to each of the edges that
connect this node with other nodes. For example, in the key phrase in figure 5.1, the
node "38" connects with the node "39" and the weight of this edge is equal to "0.4".
Similarly, this node "38" connects with node "2872" with a weight of "0.6". Then
node "39" connects with node "40" and its edge weight is "0.6". Similarly, node "40"
connects with node "41" with a weight of "0.6". And it is observed that node "41" no
longer connects with any other node because this node is of type FINAL. This means
that every node of the FINAL type will not have information on this property.

• Nodes: This property allows us to save a reference to the nodes that connect to this
node. So it can be easy to determine which word is next, given a starting word. In
figure 5.1, it is observed that node "38" is followed by two more nodes which are
identified by their id "39" and "2872". Then node "39 connects node "40", and in turn
node "40 connects node "41". But it is observed that node "41" is no longer connected
to another node. So this represents the end of the key phrase and, as in the previous
property, no information will be stored.

• Value: This property represents a unit of the key phrase to which it belongs. In other
words, this property stores a word that is part of a key phrase. For example, in figure 5.1
the key phrase "Work well under pressure" was broken down into four words, so each
one is stored in a node. In consequence, the initial node will have the value of "Work",
then the next node will store the value "well", then the next node will store the value of
"under", and finally the last node will have the value of "pressure".
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• Id: This property is through which the node is recognized, so it is a unique identifier.
This identifier is numerical and progressive, which means that every time a node is
added to the graph, this node will take the identifier of the previous node + 1. In such a
way that in figure 5.1, the key phrase "Work well under pressure" starts its insertion
into the graph at position "38". Then the word "well" is inserted at position "39",
then the word "under" is added at position "40" and ends with the word "pressure" at
position "41".

5.2.3 Construction Process

To proceed with the construction of the graph, first, we take the set of key phrases that make
up our Gold Standard, which consists of 3,336. Each of these key phrases has been previously
tagged with a class (Role, Knowledge, Skill, Responsibility, Character, or Talent). While
each of these key phrases is being added to the graph, the key phrases that were generated in
the previous chapter are also added using semantic similarity. As mentioned in the previous
chapter, the total number of key phrases generated using synonyms is 2,972. So at the end,
the graph is made up of 6,308 key phrases. This graph starts from a root node from which
several branches are born, where the classes used are those that determine these branches.

The construction process for this graph structure consists of 2 stages: Tokenization and
Insertion of nodes. In the first stage, the Tokenization of the named entities is carried out for
easy handling and storage. The second stage concerns the Insertion of the nodes, and for that
reason we have classified each token as an initial node, a middle node, or a final node, to
distinguish its position in the branch. This process is further detailed below, to explain why
we intend to do so.

• Tokenization: For each key phrase a decomposition is performed, in consequence,
each key phrase now becomes a list of tokens or words, as shown in figure 5.2. This
task will facilitate the treatment of named entities at word-level.

Fig. 5.2 Representation of the tokenization performed in some key phrases.
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• Insertion of the first token: Before inserting the first token of a key phrase, it is
verified if that token with that value and that class already exist in the graph. If the
value of that token already exists in the graph but its class is different, then another
branch is created from the root node and added as a new node. But if the value of that
token and its class already exist as is in the graph, then the value of its edge is simply
increased, as seen in figure 5.3, where the new key phrase "Fluent in Chinese" has the
same initial node that the key phrase "Fluent English". And in the opposite case, a
new node is added to the root node, as shown in figure 5.4, where the new key phrase
"Handle various issues" belongs to the same class or category that "Fluent in Chinese"
and "Fluent English" but its initial node does not exists on the graph.

Fig. 5.3 Insertion of a key phrase when its initial token already exists in the graph.

• Insertion of intermediate tokens: Before inserting an intermediate token, it is verified
if that token already exists after the previous node is inserted. If the token already
exists, then the value of its edge is increased. Otherwise, a new branch is generated and
a new node is inserted. And this phase is applied for each intermediate token of each
key phrase. This step is illustrated in figure 5.5, where the new key phrase "Fluent in
German" belongs to the same class or category that "Fluent in Chinese" but also it
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Fig. 5.4 Insertion of a key phrase when its initial token does not exists in the graph.

contains the first and the second word that the other key phrase. For that reason the
value of the edge "Fluent" increases one unit, as well as the edge "in".
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Fig. 5.5 Insertion of a key phrase when its initial and intermediate token already exists in the
graph.

• Insertion of the last token: Finally, for the insertion of the last token of a key phrase,
it is verified if that token already exists, and if so, the weight of its edge is simply
increased. Otherwise, a branch is generated and a new node is inserted, which does not
point to more nodes. Suppose that the key phrase "Fluent in Chinese" already exists in
the graph, and we want to add the same key phrase again. Therefore, only the values
of its edges will increase without the need to insert a new node. But otherwise, as
shown in figure 5.5, the key phrase "Fluent in Chinese" needs to be added, however,
there is already a very similar key phrase on the graph, which is "Fluent in English",
in this case, there is only need to insert a new node, which would be "Chinese". So
we comprehend the importance of storing the key phrases in a graph structure that
saves us storage space and makes it easier for us to know which key phrases are most
common by class.

Following this process is how we manage to obtain the complete graph that stores all the
named entities that we mentioned. And then we are ready to make use of it.
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5.3 Experiments

To measure the performance of this proposed graph structure as a named entity classifier, a
comparison has been carried out against three other NER classifiers called Stanford NER
(Finkel et al., 2005), CRF++ (Lafferty et al., 2001) and MITIE (King, 2009).

Making use of the Web-based Tagger System described in Appendix A of this thesis is
how we have obtained the datasets that have been used to train the classifiers as well as the
datasets to test them. In such a way that the Web-based Tagger System allowed us to use 75%
of our total set of documents randomly as a training set for classifiers. And the remaining
25% was used as a test set. This only represented one run or execution, so to have a higher
level of confidence we have repeated this process 9 more times. It means that in each of these
executions, a different random 75% is taken any time. And the classifiers are tested with the
remaining 25% corresponding to each execution. This is known as V-fold Cross-Validation,
and it is the method we use to measure the performance of our classifier compared to the
other three mentioned above. Table B.2 shows the complete results from the experiments
carried out to determine the performance of different classifier models including our proposed
method. However, as it is possible to observe in the table, the results are difficult to read as
there are many values displayed. Consequently, they have been averaged per class and a new
table has been generated where only the averages per class are displayed, as shown in Table
5.1. Also for the reader’s convenience, the results obtained by each classifier in each class
have been plotted. These graphs are shown in figure 5.6.

Table 5.1 Average of the results by classifier and by class of the entire experiment.

Model Class Measures
Precision Recall F-1

Stanford Character 0.8772 0.5221 0.6513
Knowledge 0.7132 0.5832 0.6490

Responsibility 0.5038 0.3359 0.3882
Role 0.8072 0.6232 0.6883
Skill 0.7254 0.4334 0.5400

Talent 0.6672 0.2357 0.3494
CRF++ Character 0.9343 0.2962 0.4447

Knowledge 0.7603 0.3349 0.4631
Responsibility 0.6055 0.1340 0.2185

Role 0.8717 0.3530 0.4953
Continued on next page
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Table 5.1 – Continued from previous page
Model Class Precision Recall F-1

Skill 0.8438 0.2633 0.3992
Talent 0.9127 0.0992 0.1763

MITIE Character 0.6585 0.4002 0.4962
Knowledge 0.6298 0.4850 0.5469

Responsibility 0.4506 0.2171 0.2911
Role 0.7484 0.5825 0.6511
Skill 0.5784 0.3636 0.4430

Talent 0.4801 0.1343 0.2081
Graph Structure Character 0.6094 0.3889 0.4724

Knowledge 0.7311 0.3458 0.4686
Responsibility 0.3881 0.0482 0.0855

Role 0.5695 0.3835 0.4553
Skill 0.6620 0.2388 0.3497

Talent 0.5363 0.1900 0.2772

Table 5.1 shows the performance of each classifier for every class, highlighting the
best results obtained for each class. When analyzing the values from the table, the CRF++
classifier presents the highest Precision, proving to be superior to the others for each class. It
happens because CRF++ returns very few results, but the vast majority of its predicted labels
are correct. For this metric, our classifier based on a graph structure proved to have lower
performance than the others, which means that of the named entities recognized with a class,
few of them actually belong to the assigned classes.

As for the Recall metric, the Stanford classifier shows better results than the other
methods. It happens because the classifier returns many results or predictions, but most of the
labels it predicts are incorrect. On this occasion, our method proves to be superior to CRF++
but less than the other two methods, ranking third in performance. That implies that of all
the named entities tested that originally belonged to a class, not all of them managed to be
identified or labeled by our method, with very few of them being able to be labeled correctly.

The results show that the Stanford classifier has better performance since its harmonic
Precision and Recall measure denoted by F-1 is superior to the F-1 measure of the other
methods by up to 19%. This means that the Stanford classifier returns more results where the
vast majority of them are correct.



5.3 Experiments 59

(a) Skill (b) Role

(c) Character (d) Knowledge

(e) Talent (f) Responsibility

Fig. 5.6 Graphic representation of Table 5.1.
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The MITIE classifier takes second place in performance, showing better results in the
Role and Knowledge classes. But we observed that these two classes outperform others in
every case because of their nature since they are formed of specific words from a field study
such as computing field, besides having an extensive variety of samples. Also, they are
formed of few words compared to the Responsibility class, which is characterized by having
named entities that are composed of many words and with a considerable variety. That is
why the Responsibility class always returns poor results in all the classifiers. On the other
hand, the Talent class has very few examples in the training set since they are named entities
that rarely appear as much in the documents as those that belong to the Role or Knowledge
class. For this reason, regardless of the classifier we use, the Talent class always returns
the lowest results. As for the Skill class, it usually has an average performance due to two
things, firstly because it has a good number of samples, but also, these samples have very
varied sizes (some named entities formed by 2, 3, 4, 5, 6, 7, 8, 9, or 10 words). It increases
the complexity of fully recognizing a named entity and causes only segments of them to
be recognized. The Character class is the third-best performing class after the Role and
Knowledge class, and this is because its named entities are frequently unigrams, bigrams,
and trigrams, which makes them easy to recognize. But it does not have as many samples as
the first two classes, and it does not allow to achieve better results.

After analyzing the results obtained in terms of the F-1 measure, it was easy to determine
that the graph structure we proposed to store and enrich named entities achieves similar
results to those of the CRF++ classifier. Consequently, these two classifiers rank last in
terms of the F-1 measure. Although our graph structure did not produce the best results in
recognizing named entities, it proves proficient against one of the tested classifiers. It leads
to consider our proposed method as a starting point for improvements through incorporating
new methods such as word embeddings. We will consider Poincaré embeddings in the next
chapter to improve our proposal in recognizing named entities, since word embeddings can
capture valuable information on the relationships between words.

In this section, we proposed a graph structure to store key phrases by capturing their
semantic relationships and thus obtaining an easy way to recognize key phrases. However,
the results obtained were not the best for the classification of key phrases due to the small
data set. But it serves as a starting point to improve our classification of texts in the next
chapter.



Chapter 6

Models for Word Representations

In this section, we want to study how the representation of words can be carried out through
word embeddings and, thus, can determine the best model for our case study. We want to
know the advantages of using each of the existing classifier models, and how we can take
advantage of their implementations to efficiently capture the semantic relationships between
the words in our set of key phrases.

6.1 Introduction

Humans have a natural ability to communicate between them through a natural language, the
same that is developed and improved when interaction is continuous. In this way, humans
know what to answer when another person asks something without having complications. So,
languages are important when communicating, but for a machine is difficult to understand a
conversation like a human can do.

Languages are extremely flexible, it means that a person can refer to the same thing or
idea in multiple ways. It makes it more difficult for a machine to understand and give the
best answer to a specific question. In this sense, the task of Natural Language Processing
(NLP) aims to make computers understand human language in a similar way as humans do.
However, this is a very complex problem to be solved as computers can only understand
numbers. To provide solutions it is necessary to represent textual information with numeric
values, and then be processed by computers in a relatively easy way. In this sense, the word
embeddings refers to numeric representations of words.
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6.2 Word Embeddings

There exist several approaches to word embeddings representing some advantages and
disadvantages of each one. One of the simplest word embedding approaches is called Bag
of Words (BOW), where the main advantage is that there is no need for a large corpus to
get the word embedding and get good results. However, one of the biggest problems is the
huge amount of memory used by this approach, since huge vectors are created including
empty spaces. Another problem of the BOW approach consist in the lost of any semantic
relationship between words, since it does not considers any context information (words that
precede and proceed to a given word).

6.2.1 Word2Vec

Word2Vec is a tool that provides an efficient implementation of the continuous bag-of-
words and skip-gram architectures for computing vector representations of words, where
semantically similar vectors are close to each other in N-dimensional space, where N refers to
the dimension of the vector. It represents a great advantage since the size of vector embedding
is very small in comparison with other word embeddings approaches (Mikolov et al., 2013a).
Both architectures use neural networks to learn the word representations underlying each
word.

A text corpus is entered to the Word2Vec tool, producing the word vectors as output.
What Word2Vec does is to construct a vocabulary from the training text corpus and learns
vector representations of words. With the resulting vectors, it is possible to find the closest
words for a specific given word. It is possible thanks to the context information considered
by the approach, capturing some semantic relationships between the word and the words
around.

One of the main advantages of Word2Vec is its capacity to work with huge data sets,
allowing to train models with up to hundreds of billions of words (something impossible for
the normal Bag of Words approach).

Windows Size in Embedding’s Literature

It is a local and symmetric window surrounding a word, it means R number of words before
and R number of words after the given word. For example, in the next sentence:

• "To be responsible for successfully implementing IT projects to ensure delivery in line
with business and customer expectation."
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Table 6.1 Comparative table between Bag of Words and Word2Vec

Bag of Words Word2Vec
No need for a large corpus to get
good results.

Uses deep neural networks to learn
relationships between words.

Computationally, this model is not
very complex.

Converts words into corresponding
vectors in N-dimensional space.

It creates a dictionary of unique
words from the corpus.

Considers context information (re-
tains semantic information).

It uses zeros and ones to represent
each document in vector embed-
dings.

Creates very small word embedding
vectors.

It wastes disk space since it cre-
ates huge vectors (containing empty
spaces).

Continuous Bag of Words (CBOW)
implementation.

The model does not consider any
context information for words. So,
semantic information is discarded.

Skip-gram model implementation.

a five-word symmetric window around implementing would be ("To", "be", "responsi-
ble", "for", "successfully") and ("IT", "projects", "to", "ensure", "delivery"). A three-word
symmetric window around implementing would be ("responsible", "for", "successfully") and
("IT", "projects", "to"). There exist models that use asymmetric windows, but they are not as
common.

Is known that larger windows capture more topical relations (e.g. "Obama-President")
while small windows capture syntactic relations (e.g. "jumps-jumping"). Also is known that
bigger vectors capture more senses of the word. But it may not be optimal to have them too
large, since this leads to redundancy (i.e. there are lots of dimensions that aren’t doing much,
and perhaps just capturing noise). But too small is bad too: in the limit, one may not be able
to distinguish words at all (Spirling and Rodríguez, 2019).

Continuous Bag-of-Words Model

Unlike the Bag-of-words model, it employs continuous distributed representations of the
context. This basically means that given user-specified context words, the continuous bag-of-
words (CBOW) model tries to predict the word in the middle by combining the distributed
representations of context. And where the order of context words does not have influence
on prediction (Mikolov et al., 2013a). Table 6.1 shows a comparison between the standard
BOW model and the CBOW model. The training complexity of CBOW architecture is
represented as
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Q = N ×D+D× log2(V ) (6.1)

Continuous Skip-gram Model

Given a user-specified word it is used as input to a log-linear classifier with continuous
projection layer, predicting the surrounding words to the provided word. The training
complexity of this architecture is proportional to

Q =C× (D+D× log2(V )) (6.2)

with C representing the maximum distance of the words. This means, if we choose C=10
then for each training word a randomly number R between 1 and C will be selected, and
then use R words that proceed and R words that precede the provided word as correct labels
(Mikolov et al., 2013a).

The Word2Vec tool was tested using the official python implementation 1. Since
Word2Vec approach considers context information, it is possible to find the most simi-
lar words given a specific word. Through the method most_similar() a list of the most similar
words with their similarity index is returned in a list. In our case we decided to get the 10
most similar words, and to carried out the experiment was needed to provide a corpus for
training which is described in next section.

Corpus and Training

The original dataset consist of 160 Job Descriptions of IT field collected from the website
www.jobs.ie and tagged with 6 classes: Role, Knowledge, Skill, Character, Responsibility
and Talent. All The tagged Job Descriptions were joined in a single file text containing a
total of 121,292 tokens and including 3,347 key phrases (named entities). First, the dataset
was converted to the Stanford format (structured in double column) being the first column
for tokens or words and the second column for the class assigned to each token (one of
the 6 classes previously mentioned) or 0 if the token does not have a class assigned. Then,
a second conversion was applied to the corpus, passing everything to one line, and each
token separated for just a blank space. I lowercased, tokenized and removed the stopwords
from the corpus before constructing the model. Then I trained the model for creating vector
representations for words of size 100 as stated by (Mikolov et al., 2013a) and a context
window size of 10 words as suggested for authors (it means that 10 words before and 10

1The official Word2Vec Implementation in Python was taken from the following link:
https://pypi.org/project/word2vec/
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words after the node are considered as context information). However, in order to know if 10
is the best value for window size, we have used the values of 5 and 15 as well.

Experiment

The experiments were performed with three models: a model trained using a window size of
5, a model trained using a window size of 10, and the model trained using a window size of
15. So, I looked for the 10 most similar words for each one of the classes used to tag the key
phrases on the corpus, as shown in Table 6.2.

Table 6.2 Word2Vec implementation with different context window sizes, showing the most
similar words for user-specified words

User-specified word Most similar words
window size = 5 window size = 10 window size = 15

role analyst engineer engineer
engineer analyst helpdesk
manager administrator years
designer engineering analyst
science science administrator
trainer field field
senior developer degree

advisor degree junior
field senior minimum

degree computer level
knowledge ms azure azure

microsoft operating sql
exchange sql frameworks

git git operating
jquery ms javascript
oracle microsoft web
web web app

server crm techniques
sql understanding git

machine jenkins restful
skill english verbal communication

verbal both interpersonal
Continued on next page
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Table 6.2 – Continued from previous page
User-specified word window size = 5 window size = 10 window size = 15

solving communication verbal
communication written solving

german oral facing
french solving written

problem handle excellent
written problem ability

troubleshoot interpret spoken
interpersonal spoken deadlines

character detail creative creative
initiative motivated passion
creative passion problem-solving

problem-solving prioritise motivated
motivated detail enthusiastic
prioritise initiative willingness

eager eager enough
flexibility attitude prioritise
attention willingness detail
oriented problem-solving eager

responsibility provide determine effectiveness
ensure end promotion

projects smooth assist
end ensure liaise

manage delivery provide
internal maintenance end

maintains all internal
versions stakeholders ensure

availability assist co-ordinate
provision internal maintenance

talent accuracy mentoring natural
quickly learn quickly

willingness quickly willingness
mentoring learner learner

learn acumen learn
Continued on next page
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Table 6.2 – Continued from previous page
User-specified word window size = 5 window size = 10 window size = 15

lead willingness become
acumen natural leadership
happen happen acumen

innovation leadership excellence
quantitative complex prioritise

As can be seen in Table 6.2, the 10 most representative words for each class are listed
according to the degree of similarity. And surprisingly for each of the window sizes, the
results are very good since each of the words returned for each class makes sense. It is
possible to observe that many of the words that appear in the model with window size 5 also
appears in the other two models, only that they are in different positions. So it does not affect
if we use any of the three, but for convenience we will use a window size of 10 for the model
as suggested by the authors (Mikolov et al., 2013a).

6.2.2 GloVe: Global Vectors for Word Representation

The Euclidean distance can be used to get nearest words to one word which is an effective
method for measuring the linguistic or semantic similarity of the corresponding words.
The similarity metrics used for nearest neighbour evaluations produce a single scalar that
quantifies the relatedness of two words. This simplicity can be problematic since two given
words almost always exhibit more intricate relationships than can be captured by a single
number. For example, man may be regarded as similar to woman in that both words describe
human beings; on the other hand, the two words are often considered opposites since they
highlight a primary axis along which humans differ from one another. In order to capture
in a quantitative way, the nuance necessary to distinguish man from woman, it is necessary
for a model to associate more than a single number to the word pair. A natural and simple
candidate for an enlarged set of discriminative numbers is the vector difference between
the two word vectors. GloVe for nearest neighbor evaluations produce a single scalar that
quantifies the relatedness of two words.

GloVe is an unsupervised learning algorithm for obtaining vector representations for
words (Stanford University, 2014). When talking about unsupervised methods for learning
word representations, the statistics of word occurrences in a corpus is an essential source of
information to achieve the task. GloVe is a model with a weighted least-squares objective.
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The main intuition underlying the model is the simple observation that ratios of word-word
co-occurrence probabilities have the potential for encoding some form of meaning. That
model is represented by the equation

J =
V

∑
i, j=1

f (xi j)(wT
i w̃ j +bi + b̃ j − logXi j)

2 (6.3)

where V represents the size of the vocabulary, and f (xi j) is a weighting function that
should adhere to the following properties:

1. f(0) = 0

2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.

3. f(x) should be relatively small for large values of x, so that frequent co-occurrences are
not overweighted.

Although so many functions can satisfy these properties, the authors suggest to work
with one class of functions parameterized as, f (x) = ( x

xmax
)α if x < xmax otherwise f (x) = 1.

The authors discovered that a good value for xmax is 100, and using α = 3
4 offers a better

performance in comparison with a linear version using α = 1 (Jeffrey Pennington, 2014).

Corpus and Training

The original dataset consist of 160 Job Descriptions of IT field collected from the website
www.jobs.ie and labeled with 6 classes: Role, Knowledge, Skill, Character, Responsibility
and Talent. However the vocabulary extension is very short, and in order to enrich that
vocabulary a second dataset taken from http://mattmahoney.net/dc/text8.zip was aggregated
to the original. The reason to merge both corpus is that in my corpus I have recent terms
related to IT field, however they are not enough in order to find high quality variations of
relations. In other words, the dataset taken from text8 has a large vocabulary but it does not
have all the new terms used in the job descriptions dataset. The new extended corpus created
from combining both datasets contains 24515391 tokens and is composed of 255001 unique
words, with a total vocabulary of 72646 words. I tokenized and lowercased the combined
corpus, and built the vocabulary, and then constructed a matrix of co-occurrence counts X. In
constructing X, I choose a context window of 15 in order to distinguish left context from
right context.

Following the explanations of authors, for the experiments carried out I set xmax = 100,
= 0.75, and trained the model using AdaGrad (Duchi et al., 2011), stochastically sampling
nonzero elements from X, with initial learning rate of 0.05. I ran 15 iterations for vectors
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Table 6.3 Experiment performed with window sizes 10, 15 and 20

Hybrid Model
Tested NE Window size 10 Window size 15 Window size 20
Integration developer No class predicted Knowledge Role
Providing support No class predicted Role No class predicted
Customer facing No class predicted Knowledge No class predicted
Excellent communication Knowledge K / Skill R / K / Skill
Problem solver Knowledge Skill K / Skill
Software development No class predicted Knowledge Role

of size 50, and a context of 15 words to the left and 15 words to the right since it has the
ability to capture more topical relations in comparison with a low value limited to capture
just syntactic relations (Spirling and Rodriguez, 2019). The model generates two sets of
word vectors, w and w̃. When X is symmetric, b and b̃ are equivalent and differ only as a
result of their random initialization; the two sets of vectors should perform equivalently. On
the other hand, there is evidence that for certain types of neural networks, training multiple
instances of the network and then combining the results can help reduce overfitting and noise
and generally improve results (Ciresan et al., 2012). With this in mind, I choose to use the
sum w + w̃ as my word vectors. Doing so typically gives a small boost in performance, with
the biggest increase in the semantic analogy task.

Windows Size Selection

As mentioned before a small window size is not good enough to capture topical relations.
However, when using a window size too much larger it will generate noise. Then, a small
experiment was performed using different window sizes (10, 15 and 20) to know the informa-
tion returned by the model in every execution. In Table 6.3 shows the experiments carried
out to determine the window size to be used.

It is possible to observe that when the used size window is 10, it is almost impossible to
obtain a label belonging to that key phrase. But when the window size is 20, multiple classes
are suggested, making it imprecise which class is correct. For this reason the value 10 for
window size is the most appropriate to use to predict a class for a key phrase.

Experiment

The experiments were performed with three models: model trained with text8 dataset, model
trained only with the labeled job descriptions, and the model trained with a corpus resulting
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from combining text8 and the labeled job descriptions. So, I looked for the 10 closest words
to a specific key phrase (the same) in each of the vector models, as shown in Table 6.4.

As can be seen in the first experiment the term scrum does not exist in the vocabulary of
Text8 model as it is a recent term. In the Job Descriptions model we got the 10 closest words
to the key phrase, but in the hybrid model we also got the possible label to the key phrase.
That last characteristic can be observed in the other three experiments as well, where the
possible label is included in the closest neighbors provided and where it has a high priority
in the hybrid model.

Given a word the hybrid model provides the closest neighbors including the class or label
to which it belongs and then with these closest words it is possible to create sentences or key
phrases, and is in the last one of these that is helpful the use of the class or label, in this way
by concatenating one closest word each time that belongs to the same class than the word
before a key phrase can be created or recognized.

6.2.3 Poincaré Embeddings

Learning representation of words has become a central question in natural language process-
ing. The ability to capture information from the data is the foundation for the learning and
generation of the downstream natural language processing tasks.

Word embeddings are effective for many natural language processing tasks because they
are flexible and encode valuable syntactic and semantic information. Word embeddings
are motivated by the concept that semantic similarities between words are based on their
distributional properties in the large amount of text. The idea of distributional properties is
called distributional hypothesis (Harris, 1954), meaning that linguistic items with similar
distributions have similar meanings. Popular word embeddings such as GloVe, Word2Vec,
and FastText are widely used in various tasks and have shown great success. Although these
embedding methods have proven successful, very few methods exist that are able to encode
tree-like or graphlike hierarchical relationships of the data.

Poincaré embeddings are better at capturing latent hierarchical information than tradi-
tional Euclidean embeddings.

Latent hierarchical structures

Hyperbolic geometry is a non-Euclidean geometry which studies spaces of constant negative
curvature. It is, for instance, associated with Minkowski spacetime in special relativity. In
network science, hyperbolic spaces have started to receive attention as they are well-suited to
model hierarchical data. For instance, consider the task of embedding a tree into a metric
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Table 6.4 Experiments with three models

Vector Model
Tested NE Text8 Job Descriptions Hybrid
scrum process Out of dictionary! integrate processes

backlog data
to-be governance

insight existing
readiness reporting

risk create
wider appropriate

disaster creating
sales responsibility

recommendation management
digital graphic designer computer accelerate based

designers admin design
design inductions android

animation commerce electronic
graphics 2003 architect
fashion cad layout
display factory display

processing appointments rendering
art merchandiser designers

designed servicenow role
microsoft azure macintosh architecting knowledge

mac cloud cloud
xbox knowledge windows

windows sex understanding
apg mcp ms

portable discrimination platform
workgroups bi protocols

zaku store mcp
din retail outlook
pc virtual server

Own initiative its merit personal
provided output their

s character character
their flexibility ability
his likes work

support self-manage individual
for call desire

which earth–that’s s
providing prioritise need
creating delivered full
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space such that its structure is reflected in the embedding (Nickel and Kiela, 2017). Due to
the underlying hyperbolic geometry, this allows us to learn parsimonious representations of
symbolic data by simultaneously capturing hierarchy and similarity.

Corpus and training

The corpus is composed of a set with 160 Job Descriptions in the field of IT collected from
the website www.jobs.ie and labeled with 6 classes: Role, Knowledge, Skill, Character,
Responsibility and Talent. The corpus consist of 121293 tokens, and a vocabulary of 5297
unique words. The file format in which the information is stored is double column, saving
the relation of a token in the first column to its assigned class in the second column.

By using the gensim library was possible to train the Poincaré model with the corpus file.
The number of dimensions of the trained model is set to 50 by default and it also needs a
number of iterations which is set to 50 by default. As suggested in (Nickel and Kiela, 2017)
all embeddings were randomly initialized from the uniform distribution U(-0.001, 0.001),
causing embeddings to be initialized close to the origin.

Experiment

The main focus for Poincare embeddings is its capability to embed data that exhibits latent
hierarchical structures. Thus, we conduct the experiment using WordNet dataset. WordNet is
a large lexical database of the English language and it groups nouns, verbs, adjectives and
adverbs into sets of cognitive synonyms (synsets) (Miller, 1995). Once the model is trained
it is possible to find the closest words to a user-specified word through the most_similar
method implementation where the top-N most similar nodes to the given node (word) is
returned in increasing order of distance.

This characteristic is used to get the most similar words for each one of the words
conforming to a key phrase. Between the most similar words are also included classes
belonging to each word. Then the most frequent class in every key phrase is selected,
discarding others that occur just a few times. In Table 6.5 are showed the experiments for
key phrases used in GloVe implementation.

So, for the key phrase Excellent communication the classes Skill and Responsibility are
predicted, however the class Skill occurs more times. That is the reason of selecting the class
Skill as the assigned class to the key phrase which is correct. And the same happens for
every one of the key phrases, showing excellent results as the predicted class is the original
assigned class in the corpus.
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Table 6.5 Poincaré embeddings implementation

Tested Key phrase Original class Predicted classes Most frequent class
Integration developer Role Role Role

Knowledge
Skill
Role
Role

Providing support Responsibility Responsibility Responsibility
Responsibility

Knowledge
Skill
Role

Customer facing Skill Skill Skill
Skill

Knowledge
Role

Talent
Skill

Excellent communication Skill Skill Skill
Responsibility

Skill
Problem solver Skill Skill Skill

Skill
Software development Role Role Role

Responsibility
Skill

Knowledge
Talent
Role
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6.3 Conclusions

Poincaré embeddings are better at capturing latent hierarchical information than traditional
Euclidean embeddings. The results obtained when trying to predict the correct class for
a key phrase outperform the GloVe implementation. As a brief analysis of the methods
studied, Table 6.6 presents the main characteristics of each of the methods for obtaining
word representations.

Thanks to these experiments carried out to know the performance of each model for the
representation of words, we were able to identify the advantages of each one. In general,
we observed that the Poincaré embeddings outperform other models because it works on
hyperbolic space, allowing us to capture the relationships between words efficiently. For that
reason, in the next chapter we will use Poincaré Embeddings to map our set of key phrases
and later use it for key phrase recognition.

However, there are some drawbacks when using Poincaré embeddings. The first drawback
is the time it takes to build a model since to achieve that the computer had to spend two days
on average training the model even though we used eight cores. It represents a high cost
computationally speaking since in our case we generated ten models for each type of word
embeddings. It means that to have the complete experiments of the Poincaré embeddings it
was necessary to wait at least 20 days to have the models ready. On the other hand, training
the models with Word2Vec was easier, as it was only a matter of minutes to obtain a complete
model. Similarly for GloVe, where the models were trained in just a couple of hours. For
that reason, when using Poincaré embeddings needs to be considered that it will take more
time than when using the other word embeddings.

In addition, it must be considered that a data source is required to train a Poincaré
embeddings model, this means that more time must be spent building that data resource. In
our case, we decided to treat a specific type of text (Job Descriptions), for which we had to
first collect Job Descriptions and then manually identify the most representative key concepts
of each document. This whole process to create the training dataset took around two months.
So that represents a disadvantage, because if we want to work with another type of text, then
we would have to look for an existing data resource. But if the resource does not exist then it
would need to be created, and that would take a lot of time. Making this represent another
great drawback to opt for these options.

But in our case we have already created that data resource, there is time available and
we want to obtain better results, so this does not represent a big problem. So we will try to
take advantage of the benefits of Poincaré embeddings and see what their impact is on our
experiments in the next chapter.
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Table 6.6 Comparative table of models used to capture relationships between words.

Word2Vec GloVe Poincaré

Uses deep neural networks
to learn relationships be-
tween words.

Implements aggregated
global word-word co-
occurrence statistics.

Allows learning hierarchi-
cal representations of sym-
bolic data by embedding
them into hyperbolic space.

Converts words into cor-
responding vectors in N-
dimensional space.

Is a new global log-bilinear
regression model that com-
bines the advantages of the
two major model families
in the literature: global ma-
trix factorization and local
context window methods.

Poincaré embeddings
outperform Euclidean
embeddings significantly
on data with latent hier-
archies, both in terms of
representation capacity and
in terms of generalization
ability.

Considers context informa-
tion (retains semantic infor-
mation).

The model efficiently lever-
ages statistical informa-
tion by training only on
the nonzero elements in a
word-word co-occurrence
matrix.

Is an efficient algorithm for
computing the embeddings
based on Riemannian op-
timization, which is easily
parallelizable and scales to
large datasets.

Creates very small word
embedding vectors.

The computational com-
plexity of the model de-
pends on the number of
nonzero elements in the
matrix X.

Poincaré embeddings can
simultaneously learn the
similarity and the hierarchy
of objects.

Continuous Bag of Words
(CBOW) implementation.

Nearest neighbors calcu-
lated through the Euclidean
distance between two word
vectors.

Poincaré embeddings are
successful in predicting
links in graphs where they
outperform Euclidean em-
beddings, especially in low
dimensions.

Skip-gram model imple-
mentation.

Outperforms other models
on word analogy, word sim-
ilarity, and named entity
recognition tasks.

Embeddings trained on
WORDNET provide state-
of-the-art performance for
lexical entailment.





Chapter 7

Poincaré Embeddings for Key Phrases
Recognition

By employing the findings obtained in previous chapters, in this section, we seek to contribute
with a classifier model that performs better than others for recognizing key phrases. This
model considers the POS structures studied in chapter 3, where for each class or category we
obtained the most representative POS structures. So firstly, our classifier looks for these POS
structures in a Job Description, assuming that the possible key phrases belong to the class of
the POS structure with which it is identified. Later, to verify if it really is a key phrase and if
it really belongs to that class, the Poincaré embeddings are used, through which we obtain
the closest words given a starting word. So, for the first word of the possible key phrase, our
model determines if the next word has a close relationship (if together they can refer to some
key concept of the document). If so, the next word is analyzed, and so on successively until
one of them no longer has much meaning with the previous ones.

7.1 Introduction

Recently, the amount of textual information available electronically is incredibly large,
making it difficult to obtain the most relevant information on a specific topic without having
to spend a lot of time reading the texts, and this is due to an overload of information since
every day thousands of new textual contents are generated on the Internet. To deal with
this problem there are information retrieval (IR) systems, which search for information
in a collection of documents and retrieve the most relevant resources based on a specific
information need. To achieve this some techniques are required such as the recognition of
named entities through which a text document can be represented, reducing the information
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overload. In this sense NER is a sub-task of Information Extraction (IE) where the information
we are looking for is known beforehand. Is through these tasks that ”the discovery of new,
previously unknown information, by automatically extracting information from different
resources” can be achieved. In this chapter, we describe the NER classifier developed in this
research work to find the most valuable key phrases for Job Descriptions in IT field by using
Poincaré Embeddings.

7.2 Proposed Classifier Workflow

By making use of Poincaré Embeddings our classifier intends to improve the recognition
of key phrases or named entities which represent Job Description documents with the most
relevant information and thus facilitate some tasks such as the classification of texts and
retrieval information. We have manually tagged a Gold Standard from Job Description
documents in the IT field and stored it into a graph structure. The stored key phrases are
grouped into 6 categories: Role, Knowledge, Skill, Character, Responsibility and Talent.

The classifier works considering some features found in chapter 4 when n-grams and
part-of-speech were studied over the Gold Standard.

Selected Features

In chapter 4 we found that most of the classes are conformed by unigrams, bigrams and
trigrams, being cuatrigrams also present in good percentage. N-grams with five or more
elements are unusual, that is why when finding key phrases we consider a window size of 4
words in order to find a relation between the current word and the next 4 words.

When studying the representative part of speech structures for each class, some patterns
were found. However the most interesting structure was found for the ROLE class where
key phrases are normally proper nouns in singular form (NNS), and that is something
very characteristic of that class. Figure 7.1 shows a diagram of the workflow operation
implemented on the classifier developed. The process consists of 3 stages for the recognition
of key phrases.

Classifier Design

• Match Gold Standard Key Phrases in test dataset (Stage 1). From the original set
of key phrases in training dataset, if they exist in the test dataset then they are tagged.
In other words, it consists in searching the entire list of training key phrases in the test
set and assign them the corresponding tags.
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Fig. 7.1 Workflow diagram implemented on the classifier

• Search POS structures (Stage 2). In stage 2, first an analysis of the key phrases
of each class is performed, thus determining the number of most used n-grams in
each class, as well as their POS structures. Thus, only those structures with the most
occurrences for each class will be considered, as seen in Figure 7.2. Once these most
representative features of each class have been selected, they will be searched in the
test dataset, and then there will be possible key phrases to be tagged.

• Use Poincaré Embeddings and most frequent n-gram sizes (Stage 3). By employ-
ing Poincaré Embedding models, with the most frequent n-gram sizes it is verified if
the words in that windows size have the same tag as one of the 5 closest neighbors.
If all of the words on the window size have the same tag, then they are tagged and
considered as a key phrase. A more detailed explanation of how this stage works is
shown in Figure 7.3.

In second stage possible key phrases are found considering features of each class, but is
in stage 3 that these key phrases are tagged or discarded.

In stage 3, for each of the words that make up a possible key phrase, its closest neighbor
is obtained, and if the closest neighbor for any of these words is one of the classes used in the
corpus, then this word is tagged with that class and becomes a seed word or root word. Then
a window of 4 words on the left and 4 on the right is used, and the 5 closest neighbors are
obtained for each of those words and if the same class as the root word is found within the
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Fig. 7.2 The most representative POS structures for each class considering its key phrase
length (n-grams).

closest neighbors, then this word is added to the root word, and so on until the words inside
the window are finished. At the end, a key phrase is obtained with the words that share the
same tag within the range of the window.

7.2.1 Algorithm based on Poincaré embeddings

For our research case, we want to learn key phrase embeddings using hyperbolic space. In
hyperbolic space, the circumference of the circle and disc area grows exponentially with
the radius, while in Euclidean space they only grow quadratic and linearly. This makes
the hyperbolic space-efficient for embedding hierarchical structures such as trees, where
the number of nodes grows exponentially with depth. Thus simultaneously capturing the
similarity between words and their hierarchy.

The Poincaré ball model has been used to represent this hyperbolic space because multiple
hierarchies can co-exist in datasets such as text corpora, which is not always possible to
model in two dimensions. Another reason is that it allows more degrees of freedom during
an optimization process in order to find a better embedding. The Poincaré ball model (β d)
consists of points within the unit ball β d , in which the distance between two points u,v ∈ β d

is:

d(u,v) = cosh−1(1+2
∥u− v∥2

(1−∥u∥2)(1−∥v∥2)
) (7.1)

So while ∥u∥ approaches 1, its distance to almost all other points will increase expo-
nentially, so the other points (leaf nodes) will be placed on the edges of the Poincaré ball.
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However, an efficient representation of our data set will place the root nodes near the origin
and the leaf nodes near the edges of the Poincaré ball, to ensure that the root nodes are
relatively close to all points, while the leaf nodes are relatively distant from most other leaf
nodes.

Based on this definition, below we explain how we use Poincaré embeddings to obtain
the closest words in the embedding space for a given word. For this, we will take a piece
of text and apply the algorithm that our classifier model executes to label key phrases. As
mentioned in chapter 6, before training the Poincaré embeddings, the dataset was converted to
the Stanford format (structured in double column) being the first column for tokens or words
and the second column for the class assigned to each token (one of the 6 classes previously
mentioned) or 0 if the token does not have a class assigned. Then, a second conversion was
applied to the corpus, passing everything to one line, and each token separated for just a
blank space. It allows to know if a for a given word there is a class or category near.

Suppose the following text fragment:
"our client is looking for a Junior .NET developer to work as part of their cork based

software team"
and its corresponding POS tagging:
"PRP$ NN VBZ VBG IN DT JJ NNP NN TO VB IN NN IN PRP$ NN VBN NN NN"
In stage 1, the classifier detects ".NET" as Knowledge", since it was previously labeled

as knowledge that companies request from people in order to take a position within the
company. On the other hand, the classifier also labels "developer" as Role since this term
was previously labeled as a Role within the training set. So these words are momentarily
labeled with those assigned values.

In stage 2, the classifier searches for the most representative POS structures of each class.
In this example, our classifier identifies the pattern "NNP NN" as a possible key phrase of the
class Role. This means that ".NET developer" is a possible key phrase, but we do not know if
the words that precede or come from it can also be part of the key phrase to be identified. For
this, if we remember the distribution of N-grams observed in chapter 3, we can visualize it in
Figure 3.1 that the class Role is composed mainly of bigrams and trigrams, so it would be
very likely that ".NET developer" is complete or missing a word. To discover this, it is time
to make use of the Poincaré embeddings to obtain the closest words in the embedding space
to each of them.

So in stage 3, for the word ".NET" we get its 5 closest words in the embedding space,
as well as for the 4 words that precede it. And for the word "developer" we get its 5 closest
words in the embedding space, as well as for the 4 words that come from it. This experiment
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is shown in Table 7.1, where we can clearly see that "Junior", ".NET" and "developer" have
the tag Role in common.

Table 7.1 Poincaré embeddings for closest words

Root word Closest words
closest w1 closest w2 closest w3 closest w4 closest w5

looking 0 Useful institution look personable
for 0 Talent fair sheets introducing
a 0 sole maintains career targeted

Junior Role Front-end full-stack consultant mid-level
.NET Knowledge Role JDBI architecture Jboss

developer Role mid-level Studies Background Front-end
to 0 sites Ballymount detail thus

work 0 Responsibility seeking multi-site timescales
as 0 viewed Transformation estimating smarter

part 0 negotiate hour failures colleague

It is possible to observe that for the word ".NET" its closest neighbor is Knowledge
because .NET is a framework, and this is categorized as the knowledge that a person acquires
to develop code. So ".NET" by itself is knowledge. However, when it is part of this context
we see that "Junior .NET developer" collectively refers to a Role or position within a
company. So the Role tag has more impact than the Knowledge tag in this case. It is also
observed that "Junior" and "developer" are closely related since they share 3 words out of 5
and both have Role in the first place. So ".NET" could not be referring to something else by
itself but is part of "Junior" and "developer". So to ".NET", the label is reassigned, and now
it becomes Role, like "Junior" and "developer", obtaining their final value together. With the
rest of the words, it is possible to observe that none is related to this key phrase, since they
all have the label "0" as their closest neighbor, and they do not share words in common. So
these words are discarded, and so we get a final key phrase.

7.3 Classifier Performance Using Different Features

The use of features improves the performance of the proposed classifier thanks to the fact that
these characteristics allow key phrases to be identified more accurately. To demonstrate the
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Fig. 7.3 Representation of how Poincaré Models are used to predict key phrases.

usefulness of these features, we present a series of experiments, where the first experiment
only considers the first stage of the diagram, the second experiment considers the first and
second stages of the diagram, and the third experiment considers all the stages of the diagram.
V-fold cross validation method was used to measure the classifier’s performance considering
different features presented on the diagram, and the obtained results are presented in Table 7.2
as Precision, Recall and F-1.

7.3.1 Experiments and Results

Table 7.2 Performance of classifier when using different stages of the workflow process.

Execution Stage Class Measures
Precision Recall F-1

1 S1 Character 0.6627 0.4710 0.5507
Knowledge 0.6243 0.4371 0.5142

Responsibility 0.3958 0.0810 0.1345
Role 0.4743 0.3333 0.3915
Skill 0.5894 0.3477 0.4374

Continued on next page



84 Poincaré Embeddings for Key Phrases Recognition

Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Talent 0.7575 0.3048 0.4347
S1 & S2 Character 0.625 0.5462 0.5829

Knowledge 0.6051 0.6164 0.6107
Responsibility 0.3614 0.2842 0.3182

Role 0.3851 0.7572 0.5106
Skill 0.6159 0.4461 0.5174

Talent 0.7631 0.3766 0.5043
S1, S2, & S3 Character 0.8907 0.6794 0.7709

Knowledge 0.8822 0.7132 0.7887
Responsibility 0.5600 0.3686 0.4446

Role 0.4927 0.8055 0.6114
Skill 0.8806 0.5711 0.6928

Talent 0.9230 0.4285 0.5853
2 S1 Character 0.7153 0.6078 0.6572

Knowledge 0.7321 0.4327 0.5439
Responsibility 0.5285 0.1332 0.2128

Role 0.5734 0.3445 0.4304
Skill 0.7275 0.3555 0.4776

Talent 0.7555 0.2635 0.3908
S1 & S2 Character 0.6666 0.6622 0.6644

Knowledge 0.6136 0.6253 0.6194
Responsibility 0.4341 0.3004 0.3551

Role 0.4910 0.7454 0.5920
Skill 0.7189 0.4916 0.5839

Talent 0.7454 0.3306 0.4581
S1, S2 & S3 Character 0.8378 0.7948 0.8157

Knowledge 0.7968 0.6751 0.7309
Responsibility 0.6870 0.4035 0.5084

Role 0.6904 0.8079 0.7445
Skill 0.9060 0.6113 0.7300

Talent 0.9180 0.4179 0.5743
3 S1 Character 0.7481 0.5260 0.6177

Knowledge 0.6111 0.4247 0.5011
Continued on next page
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Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Responsibility 0.5869 0.0898 0.1557
Role 0.6371 0.3272 0.4324
Skill 0.7973 0.3848 0.5191

Talent 0.66 0.2682 0.3815
S1 & S2 Character 0.7666 0.6084 0.6784

Knowledge 0.5649 0.5878 0.5761
Responsibility 0.4222 0.2149 0.2848

Role 0.4666 0.6596 0.5466
Skill 0.7172 0.4551 0.5569

Talent 0.6129 0.3333 0.4318
S1, S2 & S3 Character 0.8944 0.7705 0.8279

Knowledge 0.8569 0.7209 0.7830
Responsibility 0.6551 0.3336 0.4421

Role 0.5584 0.7381 0.6358
Skill 0.8854 0.5578 0.6845

Talent 0.8 0.4341 0.5628
4 S1 Character 0.6808 0.6713 0.6760

Knowledge 0.6448 0.3232 0.4306
Responsibility 0.6462 0.1096 0.1875

Role 0.6991 0.3910 0.5015
Skill 0.6845 0.4909 0.5718

Talent 0.7727 0.4303 0.5528
S1 & S2 Character 0.6329 0.6993 0.6644

Knowledge 0.6028 0.4780 0.5332
Responsibility 0.4300 0.3066 0.3580

Role 0.4107 0.7323 0.5263
Skill 0.6214 0.5586 0.5883

Talent 0.6909 0.4810 0.5671
S1, S2 & S3 Character 0.8555 0.77 0.8105

Knowledge 0.8632 0.6467 0.7394
Responsibility 0.5775 0.3787 0.4574

Role 0.4859 0.7723 0.5965
Skill 0.8560 0.6497 0.7387

Continued on next page
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Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Talent 0.7636 0.5060 0.6086
5 S1 Character 0.6846 0.5894 0.6334

Knowledge 0.5810 0.4319 0.4955
Responsibility 0.6330 0.0975 0.1691

Role 0.7115 0.3378 0.4582
Skill 0.7759 0.5132 0.6178

Talent 0.8125 0.3577 0.4968
S1 & S2 Character 0.6474 0.6778 0.6622

Knowledge 0.5316 0.6045 0.5657
Responsibility 0.4090 0.2873 0.3375

Role 0.4607 0.6459 0.5378
Skill 0.7044 0.5944 0.6447

Talent 0.7924 0.4038 0.5350
S1, S2 & S3 Character 0.8172 0.7676 0.7916

Knowledge 0.8251 0.7454 0.7832
Responsibility 0.5575 0.375 0.4484

Role 0.5287 0.7352 0.6151
Skill 0.8579 0.6570 0.7441

Talent 0.9344 0.4830 0.6368
6 S1 Character 0.7573 0.7202 0.7383

Knowledge 0.7586 0.4649 0.5765
Responsibility 0.5687 0.1243 0.2040

Role 0.6347 0.3333 0.4371
Skill 0.7457 0.3689 0.4936

Talent 0.7333 0.2619 0.3859
S1 & S2 Character 0.7133 0.7887 0.7491

Knowledge 0.6793 0.6112 0.6435
Responsibility 0.4781 0.3067 0.3737

Role 0.4242 0.6146 0.5019
Skill 0.6358 0.4681 0.5392

Talent 0.7241 0.3387 0.4615
S1, S2 & S3 Character 0.8333 0.8474 0.8403

Knowledge 0.8794 0.7344 0.8004
Continued on next page



7.3 Classifier Performance Using Different Features 87

Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Responsibility 0.6673 0.4002 0.5004
Role 0.5833 0.7085 0.6398
Skill 0.8248 0.5499 0.6598

Talent 0.8125 0.4 0.5360
7 S1 Character 0.7 0.5796 0.6341

Knowledge 0.5877 0.4136 0.4855
Responsibility 0.5222 0.0542 0.0983

Role 0.6875 0.2796 0.3975
Skill 0.6784 0.3764 0.4842

Talent 0.6363 0.1764 0.2763
S1 & S2 Character 0.6322 0.6577 0.6447

Knowledge 0.5662 0.6031 0.5840
Responsibility 0.3874 0.2279 0.2870

Role 0.5138 0.6491 0.5736
Skill 0.5691 0.4368 0.4943

Talent 0.6046 0.2280 0.3312
S1, S2 & S3 Character 0.8097 0.7641 0.7862

Knowledge 0.8546 0.7444 0.7957
Responsibility 0.5929 0.3471 0.4378

Role 0.6759 0.7519 0.7119
Skill 0.8181 0.5777 0.6772

Talent 0.8775 0.3467 0.4971
8 S1 Character 0.7325 0.4809 0.5806

Knowledge 0.5232 0.4649 0.4924
Responsibility 0.6041 0.0855 0.1498

Role 0.7394 0.4069 0.525
Skill 0.6708 0.375 0.4810

Talent 0.6571 0.2446 0.3565
S1 & S2 Character 0.7378 0.608 0.6666

Knowledge 0.4896 0.6450 0.5567
Responsibility 0.3925 0.2584 0.3116

Role 0.4856 0.7072 0.5758
Skill 0.6258 0.4790 0.5426

Continued on next page
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Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Talent 0.6341 0.2857 0.3939
S1, S2 & S3 Character 0.8531 0.7393 0.7922

Knowledge 0.8354 0.7696 0.8012
Responsibility 0.5723 0.3522 0.4360

Role 0.5757 0.76 0.6551
Skill 0.8607 0.5811 0.6938

Talent 0.8571 0.3529 0.5
9 S1 Character 0.7051 0.6508 0.6769

Knowledge 0.6775 0.3992 0.5024
Responsibility 0.5919 0.1607 0.2528

Role 0.6810 0.3726 0.4817
Skill 0.6620 0.4155 0.5106

Talent 0.6760 0.3809 0.4873
S1 & S2 Character 0.7011 0.7393 0.7197

Knowledge 0.5436 0.5502 0.5469
Responsibility 0.4126 0.2792 0.3330

Role 0.4691 0.685 0.5569
Skill 0.6463 0.5033 0.5659

Talent 0.6463 0.4380 0.5221
S1, S2 & S3 Character 0.8472 0.8037 0.8249

Knowledge 0.7659 0.6941 0.7282
Responsibility 0.6342 0.4061 0.4951

Role 0.6112 0.7863 0.6878
Skill 0.8918 0.6168 0.7292

Talent 0.7674 0.5 0.6055
10 S1 Character 0.7031 0.5487 0.6164

Knowledge 0.6105 0.4157 0.4946
Responsibility 0.7698 0.1121 0.1957

Role 0.5029 0.3021 0.3775
Skill 0.6579 0.3710 0.4745

Talent 0.7021 0.3437 0.4615
S1 & S2 Character 0.7103 0.6477 0.6776

Knowledge 0.5766 0.5522 0.5641
Continued on next page
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Table 7.2 – Continued from previous page
Execution Stage Class Precision Recall F-1

Responsibility 0.4583 0.2128 0.2906
Role 0.4743 0.6801 0.5589
Skill 0.5833 0.4686 0.5197

Talent 0.6666 0.3870 0.4897
S1, S2 & S3 Character 0.8693 0.7355 0.7968

Knowledge 0.8302 0.6509 0.7297
Responsibility 0.6035 0.3078 0.4077

Role 0.5747 0.7616 0.6551
Skill 0.8453 0.5909 0.6956

Talent 0.8305 0.4851 0.6125

It is observed in Table 7.2 that the performance in recognizing key phrases is always
higher when using the three stages than when using only stage 1 and stage 2. In addition,
the table shows that in most of the executions the Recall is high for the Character class,
which is easily explained as the key phrases in this class are primarily made up of unigrams
and bigrams. The Role class also stands out, with a high recall. The explanation for this
is that more than 50% of the key phrases that make up this class are bigrams, and they
have the POS-tag NNP (proper noun in singular form) same which facilitates their correct
identification. On the other hand, the Talent class tends to have a high Precision over the
others in most of the executions the This is because most of the key phrases that make up
the class are bigrams and trigrams, which have the POS-tag NN (singular noun). Also, the
Character class is the second to show better Precision. Finally, the Character class has a
higher F1 measure than the other classes, this is because it was the only class with a High
Precision and Recall.

Although in Table 7.2 we can observe the obtained results of each class in each execution
for its Precision, Recall, and F1, it is hard to recognize the performance in general for each
category or class in each of the experiments using the different stages. For that reason, we
have averaged the performance of each class in each stage, and the results are shown in Table
Table 7.3.

Table 7.3 shows that Stage 3 plays an important role in recognizing key phrases. The
main reason for having a notable improvement here is the fact of using poincaré embeddings,
since in stages one and two the most common and highly secure key phrases have been
tagged, so in stage 3 the amount of untagged information it has decreased considerably and
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Table 7.3 Performance of classes when using different stages of the workflow process

Classifier Model
Class Measure Stage 1 Stage 1 & 2 Stage 1 & 2 & 3
Character Precision 0.7089 0.6833 0.8508

Recall 0.5846 0.6635 0.7672
F-1 0.6381 0.6710 0.8057

Knowledge Precision 0.6351 0.5773 0.8390
Recall 0.4208 0.5874 0.7095

F-1 0.5037 0.5800 0.7681
Responsibility Precision 0.5847 0.4186 0.6107

Recall 0.1048 0.2678 0.3673
F-1 0.1760 0.3250 0.4578

Role Precision 0.6341 0.4581 0.5777
Recall 0.3428 0.6876 0.7627

F-1 0.4433 0.5480 0.6553
Skill Precision 0.6990 0.6438 0.8627

Recall 0.3999 0.4902 0.5963
F-1 0.5068 0.5553 0.7046

Talent Precision 0.7163 0.6880 0.8484
Recall 0.3032 0.3603 0.4354

F-1 0.4224 0.4695 0.5719
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thus it is easier to analyze the remaining data and determine through the closest words to a
root word potentially identified as belonging to a category or class. To further simplify the
reading of the classifier’s performance, we have graphed the results in Figure 7.4.

Figure 7.4 shows a comparison of the model performance when implementing different
stages of the classifier for every class.

Fig. 7.4 Classifier performance when using only the first stage of the diagram

In stage one all those key phrases that exist in the training corpus are tagged, that is
why the recognition level is not so high, in addition to that the Precision in this stage is
generally high as observed in Table 7.3. However, the second stage allows POS structures
to be recognized based on the POS structures of each class in the training corpus, thus
increasing the Recall level and decreasing Precision. Finally, the third stage allows to create
a better balance between Precision and Recall, when using the Poincare Embeddings since
they establish a relationship between a root word with an assigned class and allows to know
which words around it belong to the same class and therefore to the same key phrase.

7.4 Conclusions

Now it is time to compare the results of the proposed classifier using the complete process (3
stages) against the classifiers previously trained in the previous chapters (Stanford, CRF ++,
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MITIE, and our proposed graph structure). We carry out a comparison contrasting the results
by class and by classifier, making use of the three performance measures (Precision, Recall,
and F-1). This comparison is clearly shown in Table 7.4, where the best results obtained by
class and by measure are highlighted in bold letters.

Table 7.4 Final results by classifier and by class of the entire experiment

Model Class Measures
Precision Recall F-1

Stanford Character 0.8772 0.5221 0.6513
Knowledge 0.7132 0.5832 0.6490

Responsibility 0.5038 0.3359 0.3882
Role 0.8072 0.6232 0.6883
Skill 0.7254 0.4334 0.5400

Talent 0.6672 0.2357 0.3494
CRF++ Character 0.9343 0.2962 0.4447

Knowledge 0.7603 0.3349 0.4631
Responsibility 0.6055 0.1340 0.2185

Role 0.8717 0.3530 0.4953
Skill 0.8438 0.2633 0.3992

Talent 0.9127 0.0992 0.1763
MITIE Character 0.6585 0.4002 0.4962

Knowledge 0.6298 0.4850 0.5469
Responsibility 0.4506 0.2171 0.2911

Role 0.7484 0.5825 0.6511
Skill 0.5784 0.3636 0.4430

Talent 0.4801 0.1343 0.2081
Graph Structure Character 0.6094 0.3889 0.4724

Knowledge 0.7311 0.3458 0.4686
Responsibility 0.3881 0.0482 0.0855

Role 0.5695 0.3835 0.4553
Skill 0.6620 0.2388 0.3497

Talent 0.5363 0.1900 0.2772
Poincaré Embeddings Classifier Character 0.8508 0.7672 0.8057

Knowledge 0.8390 0.7095 0.7681
Responsibility 0.6107 0.3673 0.4578

Continued on next page
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Table 7.4 – Continued from previous page
Model Class Precision Recall F-1

Role 0.5777 0.7627 0.6553
Skill 0.8627 0.5963 0.7046

Talent 0.8484 0.4354 0.5719

The results in Table 7.4 show that the CRF++ classifier achieves a higher Precision than
the other classifiers in almost all classes. With the exception of the Knowledge, Responsibility
and Skill classes, where our classifier obtained the best results, placing us in second place of
Precision. It means that our model is correct about 76.4% of the time when predicting a class
or category for a key phrase. Which implies that it produces few false positives.

Regarding the Recall measure, our proposed classifier model manages to obtain the best
performance in each of the classes or categories, placing us in first place with 60% on average
and thus surpassing the Stanford classifier that had shown the best performance over the
other classifiers in previous experiments. It means that of all the key phrases tagged with any
of the 6 classes, our classifier manages to correctly identify about 60

Finally, we can see that our classifier outperforms the other classifiers in general with
a higher F-1 measure in each of the classes, except for the Role class, where the Stanford
classifier achieves the best performance. This poor performance in the Role class by our
classifier could be because this particular class is 51% composed of bigrams. And since the
Skill class is 53% made up of bigrams, our classifier could get confused when considering a
key phrase as Skill when it was actually Role.

However, we can observe a remarkable performance, demonstrating the advantage of
using the Poincaré Embeddings for the representation of words. And at the same time
its features of obtaining the closest words given a root word, considering its semantic
relationship.

We achieved the implementation in our classifier of the features observed in chapter 3,
about the POS structures and the N-grams that make up each class of our dataset. Because of
that, we were able to identify possible key phrases in new Job Descriptions. To make sure
that these were really key phrases, we employed the Poincaré embeddings, which managed
to encode the key phrases of our Gold Standard efficiently. Our proposed model showed a
higher performance than Stanford, CRF ++, MITIE and, our Graph Structure proposed in
chapter 5.





Chapter 8

Conclusions

In this chapter, we summarize the findings obtained during this research project. We discuss
the hypotheses that guided this work. In addition, we also briefly explain what we did to find
an answer to these starting points. So we generally address the steps that were necessary to
answer and direct the investigation until its completion. We also mention the possible paths
that the work carried out during the research could take.

8.1 Research Work Overview

Our research work was born from the necessity to classify textual information through key
phrases that distinguish one text from another. In this sense, it becomes complicated when
we want to know if two texts or more address the same topic, even without containing exactly
the same key phrases syntactically speaking. It means that two texts could be addressing the
same topic using similar concepts. For that reason, we have considered analyzing the texts
through their key phrases and at the same time finding some degree of similarity in the key
phrases. As a result of this, we formulated the following hypotheses that guided our research
work:

• Hypotheses 1: The classification of texts can be done by identifying their most relevant
concepts or key phrases. It implies refining the recognition of key phrases, considering
that two key phrases can be semantically similar even if they do not use the same terms.

• Hypotheses 2: Using word embeddings to capture the semantic relationships between
words can improve the identification of key phrases.

To answer these hypotheses, we had to carry out a series of tasks that allowed us to find
the best way to conduct this research. The tasks we perform are listed below:
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• We carry out an in-depth study on the state of the art in text classification and key
phrase extraction.

• We investigate methods for the recognition of named entities, and in this way, we deal
with these proposals for the recognition of key phrases.

• We collect text documents from the page https://www.jobs.ie/ which are Job Descrip-
tions in the Information Technology area.

• We developed a web system with which we could manually tag the key phrases of the
set of documents that we collected previously. And in this way reliably extract the key
phrases that made up our Gold Standard or training set. These key phrases were tagged
using the following classes: Role, Knowledge, Skill, Character, Responsibility, and
Talent.

• We performed experiments on our Gold Standard using the NER classifiers: Stanford,
CRF ++, and MITIE.

• We treated key phrases as N-grams so that we were able to determine how many
words each class’s key phrases are typically made of. This helped improve key phrase
recognition with a lower margin of error.

• We applied a POS tagging to each of the key phrases and analyzed the features of the
key phrases for each class. With this, it was possible to determine some rules for the
identification of key phrases from a specific class.

• For each of the words that make up our Gold Standard, we obtained their synonyms
through a Thesaurus, and with these synonyms, we generated new key phrases from
the original ones.

• To make sure that the new key phrases were reliable (phrases that are actually used in
texts over the Internet) we performed a search for each of them on the Internet with the
Google results API. So we only keep those key phrases that have the greatest use on
electronic texts on the Internet.

• Although the new key phrases that we generated through the use of synonyms could
exist on the Internet, we employed a second selection filter that consists of using the
Wu&Palmer semantic similarity measure. In this way, we discarded key phrases that
are not closely related to the initial concept of the original key phrase.
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• Based on the analysis obtained with the use of POS tagging, we applied these charac-
teristics observed in the original set as rules to preserve key phrases from the new set
created.

• A final selection filter was applied on the resulting set, which was manually discarding
those key phrases that had some syntactic error. Thus we obtained the real set of new
key phrases similar to the original set.

• To measure the quality of the new set of key phrases created, we trained a classifier
containing the new key phrases and compared its performance with that of the classifier
that only contains the set of the Gold Standard. We explained the results obtained from
this experiment through the use of the Jaccard Similarity Coefficient.

• We proposed a graph-based enriched data structure for key phrase storage and recog-
nition. We explained the construction process of this graph structure with our Gold
Standard.

• We used our graph structure to recognize named entities and compared the results
obtained against the classifiers: Stanford, CRF ++, and MITIE.

• We studied the use of models for word representations such as Word2Vec, Glove, and
Poincaré Embeddings.

• We ran experiments on our Gold Standard to discern the performance of each of these
models for word representations.

• We found that Poincaré embeddings are better at capturing semantic relationships
between words as they employ a hyperbolic space. For this reason, we discarded
the implementation of Word2Vec and Glove since being Euclidian embeddings, the
relationships between words are not captured so well in these models.

• We utilized the Poincaré Embeddings to improve the key phrase recognition of our
proposed graph structure. Through the mapping of the closest words given a root word
with the Word Embeddings, the analyzed POS characteristics, and the study of the
N-grams, we improved the recognition of key phrases in text documents.

Our work starts from the Web tagging system that we developed to extract the key phrases
that were necessary to generate our Gold Standard as explained in Appendix A and thus be
able to carry out the first experiments. Subsequently, an analysis was carried out on the set
of key phrases of our Gold Standard. So we were able to observe specific characteristics
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for each of the categories or classes. This was achieved by representing key phrases with
N-grams and POS tagging. These characteristics or features later served us to use them as
rules in our classifier proposal, since they served as filters to discard or identify key phrases
more precisely. In addition, we used the characteristics of the Poincaré Embeddings to refine
the recognition of the key phrases that our classifier recognized.

Multiple experiments were conducted to determine which models are better than others
and to determine which features were useful to us. Thus, we realized that the results varied
between each class, and this is partly because some classes, such as Knowledge, Character,
and Role, have more incidents in the texts that we tagged. But mainly it is because the
key phrases of these classes are composed of few words (unigrams, bigrams, trigrams) and
also because their POS tagging usually has a specific pattern (NN, JJ NN, NNP NNP), so
that is easier to recognize them. In addition, it was possible to determine that the Poincaré
Embeddings offered us better results than Word2Vec or GloVe when obtaining the closest
words to a specific word. And so we can validate new key phrases when analyzing them
word by word, identifying if the set of words that make it up are close to the words or terms
of the key phrases of the Gold Standard set. The results obtained in our experiments were
shown to have superior performance than the Stanford, CRF ++, and MITIE classifiers.

Our research work was carried out on text documents of the Job Descriptions type, which
were specific to the Information Technology area. So our classifier performs well in this type
of document, but in the same way, it can be extended to another type of Job Descriptions
using the logic and techniques that we detail. Although it would be necessary to have a
specific Gold Standard for the type of documents to be treated, our work also proposed a
web-based tagger system if no tagged corpus already exists for a specific case or problem to
be solved. This would be a possible limitation, as it would take a long time to manually tag a
specific set of documents, just as it happened in our case. If more time were available, the
Gold Standard could be extended further and thus improve the performance of our classifier
method.

There is an interesting path this research work could take in the future. If we consider
that our classifier works very well in recognizing key phrases for Job Descriptions, then big
companies that offer thousands of jobs annually could save a lot of time in finding the right
workers for those jobs. So it would only be enough to train the classifier on a specific set
of Job Descriptions provided by the company, and the search would be carried out in the
Résumés of the professional profiles that best meet those characteristics that the company
needs. In this way, a lot of time would be saved in the interview and selection processes by
the Human Resources staff in charge of hiring the employees for each job position.
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Appendix A

Web-based Tagger System

The proposed collaborative tagging system help users in the task of highlighting important
information in plain text files. Additionally, it allows converting tagged texts into a structured
format. The web-based system is proposed in order to exploit the relevant content information
provided by tagger users, since actual collaborative tagging systems suffer from issues such
as tag scarcity or ambiguous labeling. Approaches such as the proposed here can facilitate to
obtain better quality in tags and in any domain, allowing to achieve significant improvements
in information extraction through named entities extraction, avoiding the noise of information
overload.

Since most of the textual data exist in an unstructured form it is important to produce
structured data ready for post-processing, which is crucial to many applications of text mining
such as text categorization, entity extraction, learning relations between named entities, etc.
That is why the proposed web-based tool aims to help users in the task of highlighting the
relevant information in plain text files and then by producing a structured version of the data
ready to be used as corpora in the training of some models such as NER classifiers. There
are so many reasons to have the tool tagger based on the web because it allows access to
information at any device with internet connection. Also, it facilitates a huge number of
users who can tag different text files simultaneously, increasing the number of tagged texts to
be used as training data.

System architecture

Workflow

1. User first need to authenticate
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2. If the authenticated user is an administrator, then the user is able to create, modify and
delete as many users and labels as necessary; and also he can assign permissions of
which labels can use every user depending on the domain they will be working.

3. If the user is authenticated as a tagger, then the user can upload plain text files in
his account, as well as search and open a specific plain text file to start tagging the
keywords in that document.

4. After that, the user is able to download the tagged plain text files in 3 different formats:
InlineXML, Stanford highlighted (tab-separated columns) and a special format where
the file includes the words preceding and proceeding the keywords tagged, so it can
help to understand the context in which the keywords are taking place.

Fig. A.1 System Architecture
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User authentication

As there is a huge number of people tagging text files, it is necessary to authenticate the user
session to know what plain text files and classes are allowed to use for a specific user. On the
other hand, it facilitates access from any device, it means, once a text file was uploaded, the
user can use it at any time, in any place and any device.

Tagger user

Taggers are main generators of high quality tagged data, since they have a good understanding
in finding key concepts in textual data, differentiating from one and another context.

Once they are logged in the system, they are allowed to: upload, search and select
specific plain text files, tag keywords or concepts in the text and then download tagged files.
Alternatively, tagged files are available to download in three formats:

1. InlineXML format: It is a conversion of the original text into an XML representation
where the output file contains the complete original text, but where each previously
tagged concept appears between tags (similar to the HTML style) where the tag is the
same that was assigned by the tagger user.

Fig. A.2 InlineXML format of named entities in web-based tagger

2. Stanford format (tab-separated columns): The original text is converted into a struc-
tured format established by the NLP Group, where the first column contains the tokens
of the plain text file and the second column contains the belonging to each token. The
first thing that the web-based tool makes is tokenizing the whole text into words and
punctuation. After each token is stored in the first column of the output file, in this
way if the token is part of a tagged concept then the second column will store the class
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assigned to that concept, in another way the token will have the value of 0 as the class
in the second column.

Fig. A.3 Stanford format

3. The context of Keyword: This format is similar to the tab-separated columns format,
however, only the tagged concepts are exported. In this format, the first column
contains the class and the second column contains the tagged concept as well as the
words that proceed and precede to that concept. It is because the meaning of the
concept can be different depending on the context in which it is identified.

Fig. A.4 Special format to know the context

Administrator user

An administrator is allowed to create, modify and delete users, as well as administrate and
assign classes (kind of labels) to each tagger. The administrator has an important role because
he allows users to have access only to certain classes, and he can create as many as classes
are required for users, allowing to get tagged texts with high quality in tags through human
feedback. Additionally, the administrator is allowed to view the plain text files and is allowed
to change the user tagger password if the tagger asks for that. In Figure A.5 the administration
panel for classes is shown. When a new class is created it needs five features to be considered:

1. Name: It denotes the name of the class and will be used to format the output files in
each one of the three available.



109

Fig. A.5 Administration panel for classes

2. Short identifier: It can be a little contraction to represent the class when the original
name is too long.

3. Color: The color is used to highlight the tagged concepts by the tagger user in the text
(displayed in section seven). It facilitates the reading to the users.

4. Description: A short description needs to be provided in order to guide users to
understand the meaning of the class, since sometimes some classes can be similar, e.g.
skill and aptitude.

5. Examples: In order to facilitate help for taggers, some examples should be included.

In Figure A.6 the interface corresponding to the administrator user is shown. In this
screen, an administrator can assign permissions of classes to every tagger. This is because
not all users will be working in the same domains, so they can request the creation and
assignment of new classes to expand and improve the accuracy of the labeling for each text.

Web-based tagger interface

1. The first section (denoted by the circle with the number 1 inside) indicates if the
selected plain text file is available to be tagged by other users since every owner
decides if he allows each one of his files to be tagged collaboratively. If the owner
does not allow his files to be tagged collaboratively, then each of his files will only be
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Fig. A.6 Panel to assign tagging permissions for users

Fig. A.7 Web-based tagger interface
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visible in reading mode to other users, however, any user can download the generated
formats of any file, because it can be used as training data.

2. Section two contains a search field in order to help the users in finding a specific plain
text file.

3. Section three contains the classes (as buttons) allowed to each user in the task of
tagging plain text files, however, if the user selects a plain text file that belongs to other
user and it is not enabled to be tagged collaboratively, then the user will not have active
buttons to tag this plain text file.

4. Section four allows the users to upload plain text files in order to be tagged. Every
tagger user can upload files as needed.

5. Section five is one of the most important sections since it offers the possibility to
download the formatted plain text files in each one of the three available formats. This
section also displays the information of the current plain text file selected, such as
the name, the owner and the possibility to delete the file in case that the owner is the
current user.

6. Section six have been integrated in order to provide help to each user at the time of
highlighting the most important concepts in the text. When a user selects one keyword
or concept in the text, he can omit part of the complete real concept so in that case,
the web-tool offers an alternative to the highlighted text, such as in Figure A.7, where
the user selected arch’ and the web-tool offers the correct alternative for this case:
architects.

7. Section seven is the most important of all since it displays the content of the selected
plain text file to be tagged. Additionally, when the user has tagged a key concept then
it is highlighted in the text with font bold and with the color assigned to the class with
which the concept was tagged. This special feature helps to improve the reading of the
text.

8. In section eight, a list with the tagged key concepts as well as the class assigned to each
one are shown. Additionally, the user can delete one or more of the tagged concepts
with the possibility of reassigning it to other class.





Appendix B

Detailed Results from Experiments

Due to the large number of results obtained from the experiments, we show tables with the
results in detail in this section. These tables are the complete version of those displayed in
the chapters, which are merely illustrative with graphics.

Table from chapter 4

Original dataset VS Expanded dataset

To know how accurately the original model versus the expanded model is, the V-fold cross-
validation technique is be used. For this work, the 70descriptions were taken to train the
first classifier and the remaining 30performance. These steps were executed 10 times by
randomly taking 70using the remaining 30process was used but using the expanded set. The
results for the experiments are measured in terms of Precision, Recall and F-1 score

Table from chapter 5

Graph Structure VS Stanford NER, CRF++, and MITIE

Performance comparison between our proposed Graph Structure against Stanford NER,
CRF++, and MITIE classifiers.
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Table B.1 Results obtained in 10 executions for each model

Execution Model Precision Recall F-1
1 Original dataset 0.4705 0.3264 0.3854

Expanded dataset 0.4602 0.3314 0.3853
2 Original dataset 0.5069 0.3807 0.4348

Expanded dataset 0.4883 0.3760 0.4248
3 Original dataset 0.5035 0.3227 0.3933

Expanded dataset 0.4997 0.3210 0.3909
4 Original dataset 0.5026 0.3480 0.4113

Expanded dataset 0.4907 0.3498 0.4084
5 Original dataset 0.4952 0.3409 0.4038

Expanded dataset 0.4938 0.3596 0.4161
6 Original dataset 0.5349 0.3620 0.4318

Expanded dataset 0.5217 0.3611 0.4268
7 Original dataset 0.4877 0.3278 0.3921

Expanded dataset 0.4846 0.3420 0.4010
8 Original dataset 0.4249 0.3473 0.3822

Expanded dataset 0.4149 0.3451 0.3768
9 Original dataset 0.5006 0.3611 0.4196

Expanded dataset 0.4893 0.3684 0.4204
10 Original dataset 0.4835 0.3274 0.3904

Expanded dataset 0.4688 0.3295 0.3870

Table B.2 Results of the different classifiers using the V-fold Cross Validation method to
obtain the Precision, Recall and F1 measures.

Execution Model Class Measures
Precision Recall F-1

1 Stanford Character 0.8275 0.4137 0.5517
Knowledge 0.5517 0.5708 0.6538

Responsibility 0.4276 0.4276 0.3216
Role 0.7836 0.7836 0.6767
Skill 0.7835 0.3948 0.5250

Talent 0.5250 0.2 0.3333
CRF++ Character 0.9444 0.1428 0.2481

Knowledge 0.7257 0.3167 0.4409
Responsibility 0.5104 0.0963 0.1620

Role 0.7105 0.3347 0.4550
Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Skill 0.9130 0.2530 0.3962
Talent 1 0.0740 0.1379

MITIE Character 0.6111 0.3793 0.4680
Knowledge 0.6592 0.5006 0.5690

Responsibility 0.4488 0.2517 0.3225
Role 0.7325 0.5675 0.6395
Skill 0.5309 0.3743 0.4390

Talent 0.3684 0.0909 0.1458
Graph Structure Character 0.5769 0.375 0.4545

Knowledge 0.7445 0.3886 0.5107
Responsibility 0.3488 0.0413 0.0739

Role 0.5508 0.3982 0.4623
Skill 0.6666 0.2254 0.3369

Talent 0.5 0.2098 0.2956
2 Stanford Character 0.8988 0.5517 0.6837

Knowledge 0.7447 0.6441 0.6908
Responsibility 0.4357 0.3081 0.3609

Role 0.7973 0.7573 0.7768
Skill 0.7105 0.4106 0.5204

Talent 0.7222 0.3145 0.4382
CRF++ Character 0.9591 0.3154 0.4747

Knowledge 0.7428 0.3704 0.4943
Responsibility 0.6233 0.1668 0.2632

Role 0.8333 0.5882 0.6896
Skill 0.9005 0.2687 0.4139

Talent 1 0.0781 0.1449
MITIE Character 0.7037 0.3931 0.5044

Knowledge 0.6270 0.5270 0.5726
Responsibility 0.4662 0.2430 0.3194

Role 0.6991 0.7205 0.7096
Skill 0.6727 0.3544 0.4642

Talent 0.5405 0.1709 0.2597
Graph Structure Character 0.5772 0.4701 0.5182

Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Knowledge 0.7479 0.3626 0.4884
Responsibility 0.3106 0.0382 0.0681

Role 0.5242 0.4556 0.4875
Skill 0.6951 0.2321 0.3480

Talent 0.5227 0.1782 0.2658
3 Stanford Character 0.8712 0.4916 0.6285

Knowledge 0.7336 0.5603 0.6354
Responsibility 0.6049 0.3361 0.4321

Role 0.8053 0.5555 0.6575
Skill 0.7674 0.3908 0.5179

Talent 0.7037 0.1743 0.2794
CRF++ Character 0.9318 0.2192 0.3549

Knowledge 0.7711 0.3137 0.4460
Responsibility 0.5947 0.1396 0.2261

Role 0.8421 0.2735 0.4129
Skill 0.8395 0.2488 0.3838

Talent 0.7857 0.0866 0.1560
MITIE Character 0.7473 0.3796 0.5035

Knowledge 0.6746 0.5084 0.5798
Responsibility 0.4587 0.2058 0.2842

Role 0.7437 0.5509 0.6329
Skill 0.6203 0.3075 0.4112

Talent 0.4285 0.1111 0.1764
Graph Structure Character 0.6931 0.3210 0.4388

Knowledge 0.7409 0.3405 0.4666
Responsibility 0.5161 0.0513 0.0934

Role 0.5957 0.3906 0.4719
Skill 0.6926 0.2381 0.3544

Talent 0.5128 0.1587 0.2424
4 Stanford Character 0.8571 0.6131 0.7148

Knowledge 0.7377 0.5250 0.6135
Responsibility 0.5544 0.3030 0.3918

Role 0.7894 0.6 0.6818
Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Skill 0.7526 0.5207 0.6156
Talent 0.7272 0.3243 0.4485

CRF++ Character 0.86 0.3028 0.4479
Knowledge 0.8099 0.2606 0.3943

Responsibility 0.7891 0.1274 0.2194
Role 0.9029 0.4407 0.5923
Skill 0.8235 0.3218 0.4628

Talent 0.9444 0.2151 0.3505
MITIE Character 0.6144 0.3642 0.4573

Knowledge 0.6322 0.4447 0.5221
Responsibility 0.4427 0.1666 0.2421

Role 0.7861 0.6097 0.6868
Skill 0.5612 0.3429 0.4257

Talent 0.3225 0.1282 0.1834
Graph Structure Character 0.6708 0.3758 0.4818

Knowledge 0.7188 0.3044 0.4277
Responsibility 0.3888 0.0551 0.0966

Role 0.5342 0.3714 0.4382
Skill 0.6344 0.2776 0.3862

Talent 0.4347 0.2597 0.3252
5 Stanford Character 0.8901 0.5510 0.6806

Knowledge 0.7213 0.5802 0.6431
Responsibility 0.5873 0.3306 0.4230

Role 0.8449 0.4866 0.6175
Skill 0.7110 0.4338 0.5389

Talent 0.7058 0.2424 0.3609
CRF++ Character 0.9122 0.3513 0.5073

Knowledge 0.7435 0.3459 0.4721
Responsibility 0.6590 0.1161 0.1975

Role 0.8356 0.2629 0.4
Skill 0.8861 0.2416 0.3797

Talent 0.9375 0.1401 0.2439
MITIE Character 0.6847 0.4468 0.5407

Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Knowledge 0.6148 0.4984 0.5505
Responsibility 0.4735 0.2390 0.3177

Role 0.7070 0.5138 0.5951
Skill 0.5664 0.3922 0.4635

Talent 0.4857 0.1634 0.2446
Graph Structure Character 0.6111 0.4429 0.5136

Knowledge 0.7327 0.3730 0.4944
Responsibility 0.4328 0.04 0.0732

Role 0.6142 0.3739 0.4648
Skill 0.7671 0.2522 0.3796

Talent 0.5769 0.1388 0.2238
6 Stanford Character 0.9158 0.6901 0.7871

Knowledge 0.7733 0.5764 0.6605
Responsibility 0.5503 0.3549 0.4315

Role 0.7760 0.6592 0.7129
Skill 0.7436 0.3933 0.5145

Talent 0.75 0.2105 0.3287
CRF++ Character 0.9677 0.4195 0.5853

Knowledge 0.7926 0.3637 0.4986
Responsibility 0.6682 0.1805 0.2842

Role 0.9058 0.3377 0.4920
Skill 0.9245 0.2080 0.3396

Talent 0.8181 0.0725 0.1333
MITIE Character 0.5929 0.4718 0.5254

Knowledge 0.6727 0.4829 0.5622
Responsibility 0.5205 0.2418 0.3302

Role 0.7454 0.5347 0.6227
Skill 0.6696 0.3340 0.4457

Talent 0.6111 0.0973 0.1679
Graph Structure Character 0.6021 0.4028 0.4827

Knowledge 0.7950 0.3355 0.4718
Responsibility 0.4571 0.0633 0.1112

Role 0.5365 0.3981 0.4571
Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Skill 0.6690 0.1979 0.3054
Talent 0.625 0.2 0.3030

7 Stanford Character 0.9142 0.4238 0.5791
Knowledge 0.7356 0.6113 0.6677

Responsibility 0.4781 0.2909 0.3617
Role 0.7754 0.5894 0.6697
Skill 0.7610 0.3755 0.5029

Talent 0.7692 0.1785 0.2898
CRF++ Character 0.9302 0.2547 0.4

Knowledge 0.7920 0.3571 0.4923
Responsibility 0.5279 0.1131 0.1863

Role 0.9487 0.2879 0.4417
Skill 0.8275 0.2390 0.3709

Talent 0.8888 0.0645 0.1203
MITIE Character 0.6666 0.3624 0.4695

Knowledge 0.6190 0.4026 0.4879
Responsibility 0.4898 0.1627 0.2443

Role 0.7840 0.5542 0.6494
Skill 0.6240 0.3340 0.4351

Talent 0.3703 0.0925 0.1481
Graph Structure Character 0.6571 0.4480 0.5328

Knowledge 0.7530 0.3621 0.4891
Responsibility 0.3660 0.0460 0.0818

Role 0.5827 0.3292 0.4207
Skill 0.6474 0.2003 0.3060

Talent 0.5862 0.1452 0.2328
8 Stanford Character 0.8108 0.4838 0.6060

Knowledge 0.6577 0.6344 0.6459
Responsibility 0.3559 0.3492 0.3525

Role 0.8546 0.5547 0.6727
Skill 0.6575 0.4567 0.5390

Talent 0.4516 0.1772 0.2545
CRF++ Character 0.9487 0.2936 0.4484

Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Knowledge 0.7159 0.3835 0.4994
Responsibility 0.4475 0.0902 0.1502

Role 0.9705 0.3535 0.5183
Skill 0.7437 0.2952 0.4227

Talent 1 0.0736 0.1372
MITIE Character 0.5454 0.3333 0.4137

Knowledge 0.5662 0.4704 0.5139
Responsibility 0.3970 0.2385 0.2980

Role 0.8536 0.5 0.6306
Skill 0.5034 0.3887 0.4387

Talent 0.4827 0.1555 0.2352
Graph Structure Character 0.625 0.3906 0.4807

Knowledge 0.6587 0.3603 0.4658
Responsibility 0.2845 0.0510 0.0865

Role 0.5445 0.3900 0.4545
Skill 0.5873 0.2681 0.3681

Talent 0.4166 0.1530 0.2238
9 Stanford Character 0.8834 0.5449 0.6740

Knowledge 0.7407 0.5912 0.6576
Responsibility 0.5388 0.3349 0.4130

Role 0.7976 0.6359 0.7076
Skill 0.6959 0.4947 0.5783

Talent 0.7454 0.3203 0.4480
CRF++ Character 0.9454 0.3495 0.5104

Knowledge 0.7619 0.3625 0.4913
Responsibility 0.5579 0.1356 0.2182

Role 0.9222 0.3610 0.5189
Skill 0.8175 0.2679 0.4036

Talent 0.8518 0.0974 0.1749
MITIE Character 0.7307 0.4634 0.5671

Knowledge 0.6072 0.5452 0.5745
Responsibility 0.3527 0.1639 0.2239

Role 0.7061 0.6962 0.7011
Continued on next page
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Table B.2 – Continued from previous page
Execution Model Class Precision Recall F-1

Skill 0.4970 0.4166 0.4533
Talent 0.7241 0.1826 0.2916

Graph Structure Character 0.5384 0.3414 0.4179
Knowledge 0.7060 0.3453 0.4637

Responsibility 0.3921 0.0480 0.0856
Role 0.5521 0.4225 0.4787
Skill 0.6453 0.2450 0.3552

Talent 0.6382 0.2272 0.3351
10 Stanford Character 0.9024 0.4567 0.6065

Knowledge 0.7350 0.5381 0.6214
Responsibility 0.5042 0.3228 0.3936

Role 0.8472 0.6099 0.7092
Skill 0.6700 0.4627 0.5474

Talent 0.5714 0.2150 0.3125
CRF++ Character 0.9433 0.3125 0.4694

Knowledge 0.7476 0.2743 0.4013
Responsibility 0.6762 0.1742 0.2770

Role 0.8446 0.29 0.4317
Skill 0.7613 0.2881 0.4180

Talent 0.9 0.09 0.1636
MITIE Character 0.6881 0.4076 0.512

Knowledge 0.6252 0.4690 0.5360
Responsibility 0.4554 0.2571 0.3286

Role 0.7256 0.5774 0.6431
Skill 0.5382 0.3912 0.4530

Talent 0.4666 0.1505 0.2276
Graph Structure Character 0.5416 0.3209 0.4031

Knowledge 0.7130 0.2852 0.4074
Responsibility 0.3839 0.0470 0.0839

Role 0.6594 0.3053 0.4174
Skill 0.6145 0.2510 0.3564

Talent 0.55 0.2291 0.3235
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