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ABSTRACT 

Members of the TNF superfamily play important roles in the development and maintenance of an 

effective immune response.  One such member of this superfamily, LIGHT, can act as a ligand for 

three receptors, HVEM, LTβR and DcR3.  The engagement of LIGHT and HVEM, an important 

secondary signal for the full activation of T cells, results in a strong Th1 type response with 

increased production of cytokines such as INF-γ.  The LIGHT-LTβR pathway plays a role in the 

recruitment of immune cells to sites of inflammation and can induce apoptosis in certain cells.  

DcR3, a soluble receptor, is speculated to function in modulating LIGHT’s activity by preventing it 

from binding with HVEM and LTβR.  Two studies published in 2001 highlighted the in vivo effects 

of constitutive expression of LIGHT on T cells in transgenic mice.  The phenotype observed in 

these mice indicated that there was a loss of self-tolerance leading to systemic autoimmunity as 

characterised by the presence of multiple autoantibodies and inflammation of numerous organs.   

 

The aim of this thesis is to investigate the expression of LIGHT and associated receptors in 

systemic lupus erythematosus (SLE) and coeliac disease (CD).  Based on the disease manifestations 

seen in LIGHT transgenic mice we speculated that patients with these conditions would have 

altered mRNA expression patterns of LIGHT or possibly its receptors.  To achieve our aim, 

quantitative Real-time PCR was to be employed to perform a gene expression study using a control 

group of healthy volunteers as well as cohorts of CD and SLE patients.  A cohort of Wegener’s 

granulomatosis (WG) patients was also included in this study.   

 

Real-time PCR has emerged as a powerful technique for quantifying the expression of genes.  

However, before embarking on a logistically complex and expensive gene expression study it was 

felt that gaining hands-on experience in developing Real-time PCR assays for simpler studies, 

where the end results could be predetermined, would yield benefits in the long-term.  To this end, 

we chose two models to study various aspects of Real-time PCR assay design. 
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Cystic fibrosis is the most common lethal recessive genetic disease in Caucasian populations and 

thus serves as a good model for developing a Real-time PCR assay for mutation detection.  After 

identifying insufficiencies with how mutation detection is traditionally performed, we developed a 

novel approach on the LightCycler instrument by combining ARMS PCR with melting curve 

analysis.  This approach allowed better design of hybridisation probes and facilitated more than one 

mutation to be detected per fluorescent colour channel on the LightCycler.  Our optimised assays 

allow the detection of the five most common mutations, accounting for 90% of mutant alleles, in 

approximately 35 mins, which is significantly quicker than other traditional techniques.   

 

As a model for examining the capabilities of quantitative Real-time PCR, we examined the gene 

dosage of peripheral myelin protein 22 (PMP22).  Alterations in gene copy number of PMP22 can 

result in two distinct neurological diseases Charcot-Marie-Tooth disease type 1A (CMT1A) and 

hereditary neuropathy with liability to pressure palsies (HNPP), respectively caused by a gain or 

loss of a copy of the PMP22 gene.  In this study, we successfully developed a quantitative multiplex 

Real-time PCR that can diagnose CMT1A and HNPP patients with altered PMP22 gene copy 

numbers.  Our assay provides a rapid alternative to traditional techniques used for gene dosage 

quantification and could be adapted for use in the diagnosis of many genetic diseases. 

 

Having gained knowledge in the use of Real-time PCR we proceeded to performing the gene 

expression study.  During this study we have provided strong evidence that LIGHT and its 

associated receptors may play an important role in the pathogenesis of both SLE and CD and less so 

in WG.  Our results demonstrated that LIGHT is elevated in both peripheral blood and the small 

intestine of patients with active CD.  In SLE, there is a more profound dysregulation of LIGHT and 

associated receptors.  Elevated levels of LIGHT and its three receptors, HVEM, LTβR and DcR3, 

were identified in the peripheral blood of our SLE patients.  The WG and control cohorts showed 

similar levels of expression for LIGHT and its receptor indicating that these signalling pathways are 

not involved in its pathogenesis. 
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Studies we performed using P/I activated Jurkat cells demonstrated that there is good correlation 

between LIGHT mRNA upregulation and the appearance of soluble LIGHT protein in tissue culture 

supernatants.  The analysis of soluble LIGHT levels using ELISA demonstrated that there was a 

significant elevation of soluble LIGHT in the SLE cohort also a large percentage of the CD patients 

were strongly positive.  The WG patients showed a significant reduction in soluble LIGHT 

compared to the controls, which provides further proof that it is not involved in its pathogenesis. 

 

Overall, our research shows that LIGHT is upregulated in both CD and SLE and given its function 

in promoting a strong Th1 response it is likely to contribute in the pathogenesis of both diseases.  

We speculate that increased LIGHT activity in SLE may promote the development of 

glomerulonephritis one of the more serious clinical manifestations of the disease, which can 

ultimately lead to renal failure and death.  CD patients have a high incidence of developing 

secondary autoimmune disease.  We hypothesize that in addition to its immediate effects in CD 

pathogenesis, sustained levels of soluble LIGHT may also contribute to a breakdown of self-

tolerance and lead to autoimmune disease development.  Further research into the expression and 

function of LIGHT will lead to a better understanding of the mechanisms causing these diseases.  In 

the future, this should lead to the development of new therapies for these and related diseases. 
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1.1.1  Activation and co-stimulation of T cells 

 

Naïve T cells are initially stimulated via T cell receptor (TCR) engagement with a MHC-

peptide complex made available by antigen presenting cells (APC).  This primary signal, 

while it is essential, is not on it’s own enough to induce a fully committed immune 

response.  A secondary co-stimulatory signal is required and this signal determines the fate 

of the T cell.  The two main groups of co-stimulatory receptors present on T cells are the 

immunoglobulin superfamily such as CD28 and inducible co-stimulator (ICOS) and the 

tumour necrosis factor receptor (TNFR) superfamily that includes CD27, CD30, OX40, 

41BB and HVEM among others (Croft, 2003).  CD28 is probably one of the best-

characterised co-stimulatory receptors, which ligates with B7 present on APCs.  CTLA-4 

can also bind B7 to transduce inhibitory signals into T cells.  The balance between 

stimulatory and inhibitory secondary signals helps to maintain T cell self-tolerance and 

prevents the induction of autoimmunity.  Many members of the TNFR superfamily 

transduce positive co-stimulatory signals, however some members can induce apoptosis in 

T cells thereby regulating T cell responses by cellular elimination (Locksley, 2001).      

 

 

1.1.1.1  Tumour Necrosis Factor receptor superfamily 

 

The TNFR superfamily are all type I transmembrane proteins (C-terminus is exposed to the 

cytosol) (Kashii, 1999) and are characterised by the presence of 3-6 cysteine rich domains 

(30-40 aa) in their extracellular portion (Kwon, 1997).  The cytoplasmic tails of these 

receptors are generally short and share very little sequence homology, as would be 

expected, to allow for their diverse cellular signalling.  TNFR superfamily members 
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mediate their signals in T cells via the TNFR associated factor (TRAF) family (Chung, 

2002).  Ultimately the signalling cascade leads to the activation of transcription factors such 

as NF-κB and AP-1 and upregulation of survival and proinflammatory genes (Beg, 1996).  

Members of the TNFR superfamily that can induce apoptosis such as TNFR1 and Fas have 

a sequence in their cytoplasmic tails called the “death domain”.  Docking proteins such as 

TRADD (TNF receptor associated death domain) and FADD (Fas associated death domain) 

can bind to this domain leading to caspase activation and cell death by apoptosis (Dempsey, 

2003).   

 

 

1.1.1.2  TNF superfamily 

 

Ligands for the TNFR superfamily have been categorised into the ever-growing TNF 

superfamily.  Members of the TNF superfamily play important roles in cell activation, 

proliferation, differentiation, apoptosis, immunoglobulin class switching, immune evasion 

and immune suppression (Zhia, 1998).  The majority of TNF superfamily members are 

clustered within the MHC  on chromosome (Chr) 6 and paralogous regions on Chr 1, 9 and 

19 (Collette, 2003).  These ligands, with the exception of LTα, are all type II 

transmembrane proteins (N-terminus is exposed to the cytosol) that can also exist as soluble 

cytokines following cleavage by membrane metalloproteases (Chen, 2000).  Most of these 

molecules have an intracellular N terminus, a single transmembrane-spanning domain and 

an extracellular C terminus.  The extracellular domain folds into a β-pleated sheet “jellyroll 

sandwich” structure that trimerises, usually as a homotrimer (Locksley, 2001).  LTα only 

consists of the C terminus domain and is therefore directly secreted as a homotrimer or can 

be membrane bound when anchored with LTβ as a heterotrimer (Kashii, 1999). 
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1.1.2  LIGHT 

 

LIGHT (homologous to Lymphotoxins, exhibits Inducible expression, and competes with 

Glycoprotein D for HVEM, a receptor expressed on T lymphocytes) also called HVEM-L 

or TNFSF14, is a member of the TNF superfamily (Mauri, 1998; Zhai, 1998; Harrop, 

1998).  LIGHT binds to three members of the TNFR superfamily (Fig 1.01), herpes virus 

entry mediator (HVEM), Lymphotoxin beta receptor (LTβR) (Mauri, 1998; Zhai, 1998; 

Harrop, 1998) and decoy receptor 3 (DcR3/TR6) (Yu, 1999) each of which will be 

discussed in more detail later in sections 1.1.3, 1.1.4 and 1.1.5 respectively.  

 

 

1.1.2.1  Gene location and genomic organisation 

 

The gene for LIGHT was initially located to Chr 16 using fluorescent in situ hybridisation 

(FISH) (Zhai, 1998), however, this was proved not to be the case, and it was subsequently 

shown to be located at Chr 19p13.3 (Granger, 2001).  This positions LIGHT within a large 

genetic region paralogous to the MHC on Chr 6.  The LIGHT gene is closely linked with 

the genes for C3, CD27L (TNFSF7) and 4-1BBL (TNFSF9).  Interestingly, both CD27L 

and 4-1BBL play a role in T cell co-stimulation, placing the LIGHT gene within a T cell 

co-stimulatory locus (Granger, 2001). 

 

The LIGHT gene spans 5.1 Kb and is comprised of four exons.  The cytoplasmic tail, 

transmembrane domain and beginning of the extracellular stalk region are encoded by exon 

1.  The second and third exons, encode the remainder of the stalk region and the beginning 

of the trimerisation domain.  Exon 4 encodes the rest of the trimerisation domain and the 
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receptor-binding domain and at Asp102 there is a site for N-linked glycosylation (Granger, 

2001).  

 

In 2002, Castellano and colleagues cloned the 2.1 Kb 5’ region upstream from the LIGHT 

gene.  Deletion analysis using reporter constructs showed that the – 441 bp flanking the 

gene was sufficient for substantial activity.  Within this putative promoter region, they 

identified several recognition sequences for transcription factors such as NFATc/NFATp (T 

cell specific isoforms), which play a role in inducing LIGHT expression in activated T cell 

through Ca++ signalling pathways (Castellano, 2002).  They also showed that the LIGHT 

promoter region contained both NF-κB and AP-1 binding motifs. 

 

 

1.1.2.2  LIGHT messenger RNA (mRNA) expression 

 

The mRNA transcript of LIGHT was proposed to be 2.5 (Zhai, 1998; Mauri, 1998) – 2.7 

Kb (Harrop, 1998) and is found abundantly in spleen and lymph nodes with lower 

expression detected in peripheral blood lymphocytes, colon, small intestine, bone marrow, 

thymus and lung (Harrop, 1998).  Another transcript of LIGHT mRNA (3.5 Kb) was 

detected in the brain (Mauri, 1998) and no mRNA was detected in any tumour cell lines of 

nonhemopoetic/myeloid origin or fetal tissue, though LIGHT is prominently expressed on 

the villi of the placenta (Gill, 2002).  LIGHT is also expressed on activated CD4+ and CD8+ 

T cells as well as immature dendritic cells (Morel, 2000). 
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Fig 1.01 The TNF/TNFR core family (Adapted from Schneider, 2004; Ware, 2003; 

Granger, 2003).  Ligand and receptor interactions are indicated with arrows.  The red 

arrows indicate interaction directly associated with LIGHT.  LTβR signalling can result in 

both NF-κB activation and apoptosis. 
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1.1.2.3  Three functional forms of LIGHT 

 

The full-length LIGHT mRNA transcript codes for a 29 KDa (240 aa) type II 

transmembrane glycoprotein (Mauri, 1998) that is expressed on the surface of activated T 

lymphocytes (Granger, 2001) and immature dendritic cells (Morel, 2001).  There are two 

additional forms of the LIGHT protein, one is produced by alternative splicing (Fig 1.02), 

this results in translation of a 204 amino acid, non-glycosylated protein that lacks a 

transmembrane region and has been named deltaLIGHT (Granger, 2001).  DeltaLIGHT 

could not be detected in cell culture supernatant but was precipitated from cell extracts 

indicating it is not a secreted protein but is held within the cytosol of the cell (Granger, 

2001).  The third form of LIGHT is soluble, approximately 25 KDa in size and is the result 

of LIGHT being cleaved from the cell surface by matrix metalloproteases (Granger, 2001; 

Morel, 2000).  A metalloproteinase cleavage site that is found in FasL is also present in 

LIGHT (aa 81-84).  Many members of the TNF superfamily such as TNF-α (Black, 1997), 

FasL (Kayagaki, 1995) and TRANCE (Lum, 1999) undergo cleavage from the cell surface 

by matrix metalloproteinases and the cleaved fragments retain biological activity.  

Likewise, the soluble form of LIGHT has been shown in several in vitro studies to retain its 

activity (Tamada, 2000; Zhang, 2003; Kim, 2005).  As there are three different forms of 

LIGHT in different compartments (cell surface, intracellular and extracellular), it is thought 

that they may exert different biological functions.  
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Fig 1.02 Alternative splicing of the LIGHT gene (Adapted from Granger, 2001) 

 

 

1.1.2.4  T cell expression of LIGHT 

 

As mentioned previously, LIGHT is transiently expressed on the surface of activated T 

cells (Morel, 2000).  Following stimulation of peripheral blood T cells using PMA and 

ionomycin (P/I) the levels of LIGHT protein increase from low basal levels to peak at 

~24hrs followed by a return to basal levels.  The protein synthesis inhibitor cycloheximide 

(CHX) causes a reduction in the upregulation of cell surface LIGHT.  However, this 

blockade is incomplete indicating that surface expression of LIGHT may be due to both re-

localisation of preformed LIGHT and de novo protein synthesis (Morel, 2000).  Stimulation 

of highly purified CD4+ and CD8+ T cell subsets shows that LIGHT expression is more 

rapidly induced and attains a much higher level of expression in CD8+ T cells (Morel, 

2000). 
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The CD4+ T cell population can be divided into two subsets naïve and memory.  The 

expression of CD45RA defines the naïve subset, which has never been exposed to antigen 

(Ag), and memory CD4+ T cells that have had previous exposure to Ag express CD45RO 

(Dutton, 1998).  CD4+CD45RO+ T cells express much higher levels of LIGHT (~8-10 fold) 

than naïve CD4+ T cells (Cohavy, 2004). 

 

The memory CD4+ T cell population can be further subdivided based on the expression of 

CCR7.  CCR7 is a chemokine receptor that controls homing of T cells and dendritic cells to 

secondary lymphoid organs (Forster, 1999).  Its expression defines two subsets of memory 

CD4+ T cells (Sallusto, 1999).  The CCR7+ “central” memory population can recirculate 

through lymph nodes and can produce IL-2.  The CCR7- “effector” memory population can 

migrate to peripheral sites and can produce effector cytokines such as INF-γ and IL-4.  

Naïve, central and effector memory T cells have different kinetics with regard to the 

appearance of LIGHT on their cell surface, taking approximately 24 hrs, 4 hrs and 2 hrs 

respectively post stimulation (Morel, 2003).  It has been demonstrated that resting CCR7+ 

and CCR7- memory CD4+ T cells have an intracellular pool of LIGHT (Morel, 2003), 

however this study did not state which splice variant of LIGHT they were detecting in their 

system.     

 

 

1.1.2.5  Maturation of dendritic cells by LIGHT 

 

Dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a vital role 

in the initiation of primary immune response (Bayry, 2004).  Immature DCs (iDCs) are 

found in many tissue types where they specialise in the capture and processing of Ags.  
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After Ag capture DCs begin to mature and migrate from peripheral tissues to the T cell 

areas of lymphoid organs.  Maturation of DCs results in reduced Ag uptake/processing 

capabilities and increased ability to stimulate T cells by upregulating the expression of co-

stimulation molecules such as B7 (Banchereau, 1998).  Mature dendritic cells also acquire 

the capacity to secrete IL-12, which promotes a Th1 type response (McDonald, 2001).   

 

LIGHT is expressed at high levels on iDC and during maturation of DCs it is 

downregulated from the cell surface (Tamada, 2000).  LIGHT is cleaved from the surface 

of DCs as they mature and it is speculated that it could play a subsequent role in T cell 

activation as a soluble cytokine (Tamada, 2000).  LIGHT has also been shown to modulate 

iDC maturation in conjunction with CD154 (CD40L) (Morel, 2001).  CD154 is mainly 

expressed on activated CD4+ T cells and signalling through its receptor, CD40, it is well 

known to induce phenotypic and functional maturation of DCs (Van Kooten, 1997).  Cross-

linking CD40 on DCs in vivo replaces the need for CD4+ T cell help for the induction of 

cytotoxic T cell (CTL) responses (Schoenberger, 1998; Bennett, 1998) When iDCs are 

stimulated with LIGHT they also develop a mature phenotype as characterised by the 

expression of CD83 and high levels of HLA class II molecules (Morel, 2001).  However, 

LIGHT and CD154 can act in synergy to induce enhanced DC maturation, which results in 

significantly higher expression of IL-12, IL-6 and TNF-α, than achieved with either CD154 

or LIGHT alone.  In turn these LIGHT and CD154 matured DCs can enhance CTL 

mediated immune responses (Morel, 2001). 

    

 

 

1.1.2.6  Reverse signalling via LIGHT 
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Some members of the TNF superfamily can receive stimuli from their receptors and 

transduce signals into cells.  This process is called “reverse signalling” as the molecule, 

which was once a ligand, now functions as a receptor.  This is a common phenomenon 

among TNF superfamily members with CD40L (Wiley, 1996), TRANCE (Chen, 2001), 

TNF-α (Eissner, 2000), CD30L (Cerutti, 2000) and FasL (Suzuki, 1998) all reported to be 

capable of reverse signalling.  There is growing evidence that reverse signalling is possible 

through LIGHT (Shi, 2002; Wan, 2002).  Wan et. al., concluded from their study that 

reverse signalling using solid-phase DcR3-Fc through LIGHT promotes Th1 but not Th2 

cytokine production, enhances T cell proliferation and CTL development (Wan, 2002).  A 

similar reverse signalling response was obtained using T cells from mice (Shi, 2002).  This 

may indicate that not only can LIGHT+ T cells simulate HVEM+ T cells but they could also 

receive a signal back again. 

 

 

1.1.2.7  Negative selection of thymocytes 

 

Some members of the TNF/TNFR superfamilies, including CD40-CD40L, TNF-α-

TNFRI/II and Fas-FasL (Sebzda, 1999; Kishimoto, 2000), have been identified to play a 

role in the negative selection of thymocytes.  LIGHT has also been demonstrated to have a 

role in negative selection of thymocytes that have high affinity TCR (Wang, 2001; Wang, 

2002).  Constitutive expression of LIGHT on thymocytes leads to apoptosis of double 

positive (CD4+CD8+) cells and atrophy of the thymus (Shaihk, 2001).  Thymocytes can be 

rescued from LIGHT mediated apoptosis by using a blocking soluble receptor (Wang, 

2001).   
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Due to the wide range of effects LIGHT has within the development and maintenance of an 

immune response it is not surprising that great interest is being generated in its potential 

role in immune-mediated diseases.  Studies examining the role of LIGHT in chronic 

inflammatory and autoimmune diseases shall be further discussed in chapter 3.   

 

 

1.1.3  Herpes Virus Entry Mediator 

 

Herpes Virus Entry Mediator (HVEM, TR2, ATAR, HveA) is a member of the TNFR 

superfamily.  HVEM was first identified by its ability to mediate herpes simplex virus 

(HSV) infection into Chinese hamster ovary (CHO) cells (Montgomery, 1996).  The gene 

encoding HVEM was located to Chr 1p36, which puts it into close proximity with several 

other members of the TNFR superfamily, such as CD30, OX-40, 4-1BB and TNFRII 

(Kwon, 1997).  HVEM is a 283 aa, type I transmembrane glycoprotein that contains 3 

cysteine-rich domains (CRDs) and a 50 residue cytoplasmic region that lacks a death 

domain (Kwon, 1997; Morel, 2000).  HVEM is like other members of the TNFR 

superfamily and forms a homotrimeric structure that is mobilised to the surface of cells. 

 

 

1.1.3.1   Expression of HVEM 

 

HVEM is prominently expressed in lymphoid tissues such as the spleen and thymus and is 

moderately expressed in bone marrow and the small intestine (Harrop, 1998).  It is also 
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expressed on various cells including CD4+ and CD8+ T cells, CD19+ B cells, monocytes, 

DCs (Harrop, 1998; Morel, 2001) and neutrophils (Kwon, 2003).   

 

High basal levels of HVEM are expressed by resting naïve and memory T cells.  Following 

T cell activation cell surface levels are rapidly down-regulated, a reciprocal expression 

pattern to that of LIGHT, and activated CD8+ T cells show a more pronounced down-

regulation of HVEM than CD4+ T cells (Morel, 2001).  Many members of the TNFR 

superfamily can undergo cleavage from the cell surface by matrix metalloproteinases 

(MMPs).  Evidence using MMP inhibitors suggests that HVEM is not down-regulated by 

cleavage from the cell surface, indicating that rapid down-regulation is most likely due to 

internalisation of the receptor (Morel, 2001).  Incubation of 48-hr activated T cells with the 

protein synthesis inhibitor CHX prevents the reappearance of HVEM on the cell surface 

suggesting that the receptor is newly synthesised and not recycled (Morel, 2001). 

 

 

1.1.3.2  Ligands for HVEM 

 

HVEM is recognised to bind to two other ligands besides LIGHT, these are LT-α3 (Mauri, 

1998), and glycoprotein D (gD) (Montgomery, 1996).  LT-α3 is a soluble cytokine and has 

an important role in the development of secondary lymphoid organs.  It can act as a ligand 

for TNFR1 and TNFR2 as well as HVEM (Spahn, 2005).  Little is known about the role of 

LT-α binding to HVEM but it is speculated that this interaction is weak (Mauri, 1998; 

Ware, 2005).  Glycoprotein D is a structural protein found in the envelope of herpes 
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simplex virus (HSV).  The interaction of gD with HVEM allows the virus to gain entry into 

the host cell (Montgomery, 1996; Whitbeck, 1997).      

 

 

1.1.3.4  B and T lymphocyte attenuator utilises HVEM as a ligand 

 

B and T lymphocyte attenuator (BTLA) a recently discovered member of the 

immunoglobulin superfamily (Watanabe, 2003) utilises HVEM as a ligand (Sedy, 2005; 

Gonzalez, 2005).  Its ability to bind to HVEM is the first instance of immunoglobulin 

superfamily/TNFR superfamily crosstalk.  BTLA signalling results in co-inhibition and 

suppresses T cell responses.  This was confirmed using BTLA deficient cells, which show 

hyper-reactivity (Watanabe, 2003) and BTLA knockout mice have enhanced in vivo 

immune responses (Han, 2004). 

 

 

1.1.3.5  Ligand and receptor interactions with HVEM 

 

Mutagenesis studies have shown that LIGHT and LT-α3 bind to distinct regions located 

within the CRDs 2 and 3 (Sarrias, 2001; Rooney, 2000).  It has been demonstrated that 

BTLA binds to CRD1 (Sedy, 2005) and HSV gD also binds to CRD1 and can block HVEM 

ligating to both LIGHT (Mauri, 1998) and BTLA (Cheung, 2005).  It has been 

demonstrated that LIGHT and BTLA can occupy their binding sites on HVEM at the same 

time in vitro (Gonzalez, 2005; Cheung, 2005).  It remains to be ascertained whether a 

trimolecular HVEM-LIGHT-BTLA structure can form in vivo.  The hierarchy of HVEM 
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binding to its ligands still needs to be fully elucidated.  However, the binding affinity of the 

LIGHT-HVEM complex is an order of magnitude higher than HVEM-BTLA ligation 

(Cheung, 2005).  As gD can inhibit binding of HVEM to both LIGHT and BTLA it is likely 

to have a higher affinity than LIGHT for HVEM.   

 

 

1.1.3.6  TRAF mediated intracellular signalling 

 

As mentioned previously TNFR superfamily members utilise the TRAF family of proteins 

to mediate signals in the cell.  The TRAFs are a family of six proteins named TRAF1-6, 

which are characterised by a highly conserved region at the C terminus, termed the TRAF 

domain.  They also have an N terminus ring finger domain as well as several zinc finger 

motifs (Dempsey, 2003).  TRAFs bind directly to a TRAF interacting motif (TIM) within 

the cytosolic domains of TNFRs allowing transduction of signals to downstream effectors.  

HVEM is known to interact with TRAFs 2 and 5 (Hsu, 1997) leading to activation of the 

NF-κB and AP-1 pathways resulting in cell survival, cell proliferation and proinflammatory 

cytokine production. 

   

The NF-κB family of transcription factors regulate hundreds of genes involved in the 

development of cells and organs involved in both the innate and adaptive immune response 

(Caamano, 2002; Karin, 2002; Li, 2002).  The NF-κB family comprises five members: 

RelA (p65), RelB, c-Rel, NF-κB1 (p50 and its precursor p105) and NF-κB2 (p52 and its 

precursor p100) (Ware, 2005).  These proteins can form homodimers or a collection of 

heterodimers that can function as transcriptional activator or inhibitors (Ware, 2005).  The 
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NF-κB family are regulated by inhibitory proteins collectively termed I-κB, which retain 

the transcription factors in a latent form by direct association with them (Wallach, 1999).  

Signal transduction pathways that lead to activation of NF-κB must first cause 

phosphorylation of I-κB, resulting in its degradation by the proteosome.  The degradation 

of I-κB releases an active form of NF-κB, which is translocated to the nucleus where it can 

dock with its specific binding site and initiate transcription of its associated genes (Karin, 

2005). 

 

AP-1 (activating protein-1) is a collective term referring to dimeric transcription factors 

composed of Jun and Fos protein families (Karin, 1997).  These proteins associate to form a 

variety of homo- and hetrodimers that bind to a common site (Karin, 1995).  The activation 

of AP-1 is involved in cellular proliferation, apoptosis, differentiation, and carcinogenesis 

(Shaulian, 2002).  AP-1 is known to cooperate with the nuclear factor of activated T cells 

(NFAT) to enhance the expression of various cytokines including IL-2, IL-4, IL-8, GM-

CSF, INF-γ and TNF-α (Hogan, 2003; Rao, 1997). 

 

 

1.1.3.7  HVEM and T cell responses 

 

The importance of HVEM signalling in development of an optimal T cell response was 

highlighted in a study where HVEM was blocked using monoclonal antibodies (Harrop, 

1998).  This resulted in reduced CD4+ T cell proliferation, sub-optimal levels of IL-2, TNF-

α and INF-γ being secreted and limited the expression of several cell surface receptors such 

as CD25 (IL-2Rα), CD71 (proliferation marker) and CD54 (ICAM-1) among others.  

Unexpectedly however, HVEM-/- mice have an enhanced response to various T cell stimuli 
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and these mice were more susceptible to developing autoimmune diseases, indicating that 

HVEM also has the potential to inhibit T cell responses (Wang, 2005).  Depending on 

which molecule HVEM is attached to, it has the ability to act as an on/off switch for T cell 

activation (Fig 1.03).  BTLA-HVEM may act as a constitutive off pathway for T cells as 

both are expressed on resting lymphocytes (Hurchla, 2005).  When T cells are activated, 

HVEM is down-regulated and LIGHT is upregulated.  It has been demonstrated that 

ligation of LIGHT to HVEM is the cause of HVEM down-modulation at both the mRNA 

and protein level (Morel, 2001).  Since LIGHT has a greater binding affinity for HVEM 

than BTLA, LIGHT should preferentially bind when HVEM is present at lower 

concentrations (Cheung, 2005).  This would disrupt the BTLA-HVEM circuit, therefore 

releasing the T cell from this inhibitory pathway and allowing the development of a Th1 

type response.  This indicates that manipulation of the LIGHT-HVEM pathway could be 

very significant for the treatment of Th1 cytokine mediated diseases.  
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Fig 1.03 Proposed mechanism of BTLA co-inhibition (Adapted from Croft, 2005).  A: 

Interaction of BTLA and HVEM results in co-inhibitory signals; B: The interaction of 

LIGHT-HVEM will result in co-stimulation; C: Interaction of both LIGHT and BTLA with 

HVEM will result in a net negative signal into the cell. 
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1.1.4  Lymphotoxin β receptor 

 

Lymphotoxin β receptor (LTβR) is another member of the TNFR superfamily for which 

LIGHT is a ligand (Mauri, 1998; Zhai, 1998; Harrop, 1998).  The LTβR gene spans 10 

exons and is located at Chr 12p13.31.  LTβR is expressed on most cell types including cells 

of the fibroblast, epithelial and myeloid lineage, but it is not expressed on T/B lymphocytes 

(Browning, 1997).  The receptor is a 435 aa type 1 transmembrane protein of 46.7 KDa that 

has four CRD domains (Granger, 2003).  

 

 

1.1.4.1  Ligands for LTββββR 

 

LTα can form a homotrimeric structure that lacks a transmembrane domain and is therefore 

released as a soluble cytokine.  As mentioned previously LTα3 acts as a ligand for TNFRI, 

TNFRII and HVEM.  LTα can also form a heterotrimeric structure with LTβ in either 

LTα1β2 or LTα2β1 conformations (Spahn, 2004).  LTα1β2 is the predominant form of the 

heterotrimer, LTα2β1 is expressed at very low concentrations and its function is not known 

(Ware, 2005).  The association of LTα with LTβ anchors it to the cell membrane where its 

receptor binding properties are altered allowing it to interact with LTβR.  LTα1β2 

hetrotrimer is expressed mainly on activated lymphocytes and a subset of resting B cells 

(Gommerman, 2004).  With the expression of LIGHT and LTα1β2 restricted to 

lymphocyte populations and LTβR expressed on most non-lymphoid cells, this pathway 

may act as a communication link between activated lymphocytes and surrounding cells. 
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1.1.4.2  Intracellular signalling pathways  

 

LTβR has been shown to mediate its cellular signals via TRAF2, TRAF3 and TRAF5 

(Nakano, 1996).  It has been established that two signalling pathways stem from LTβR 

(VanArsdale, 1997).  One pathway using TRAF2/5 leads to NF-κB activation (Nakano, 

1996; Degli-Esposti, 1997) and the other pathway mainly involving TRAF3 can lead to 

apoptosis of certain tumour cells (Browning, 1996; Zhia, 1998; Harrop, 1998; Rooney, 

2000).  

 

The activation of NF-κB by LTβR leads to the up-regulation of genes involved in the 

proinflammatory process.  These include chemokines, such as macrophage inflammatory 

protein 1-β (MIP-1β) and MIP-2, as well as various integrins, such as vascular cell 

adhesion molecule 1 (VCAM-1) (Dejardin, 2002), intracellular adhesion molecule 1 

(ICAM1) (Zhang, 2003) and mucosal addressin cellular adhesion molecule-1 (MAdCAM-

1) (Wang, 2004), which can all play a role in attracting and localising leukocytes to areas of 

inflammation. 

 

LTβR-LIGHT mediated cell death is dependent on TRAF3, as TRAF3 dominant negative 

colon adenocarcinoma cells (HT29.14) are resistant to LIGHT mediated cell death 

(Rooney, 2000).  When LIGHT binds to LTβR, a complex of proteins is formed at the 

cytoplasmic tail of the receptor including TRAF3 and cellular inhibitor of apoptosis 1 

(cIAP1).  cIAP1 is an anti-apoptotic protein that directly interacts with caspases to inhibit 

their activity.  The initial LIGHT-LTβR signalling also triggers the mitochondrial apoptotic 

pathway by an unknown mechanism, this results in the release of a protein called Smac into 

the cytosol which can then bind to cIAP1 (Kuai, 2003).  Smac is a pro-apoptotic protein 
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that prevents cIAP1 from interacting with caspases and therefore releases them to 

eventually cause apoptosis in the cell.  INF-γ may also be required to induce LTβR 

mediated apoptosis (Browning, 1997) to support this INF-γ has been shown to induce de 

novo synthesis of Smac (Yoshikawa, 2001).  However, LTβR use of TRAF3 to mediate 

intracellular signalling is not as clear-cut as this.  LTβR can also activate NF-κB through 

TRAF3.  This opposing function of LTβR-TRAF3 signalling may be explained by the fact 

that there are several splice variants of TRAF3, some of which are known to activate NF-

κB (van Eyndhoven, 1999).  

 

 

1.1.4.3  Secondary lymphoid organogenesis 

 

An effective immune response requires the interaction of multiple cell types.  These cellular 

interactions are facilitated in the secondary lymphoid tissues such as the spleen, lymph 

nodes (LNs) and Peyer’s patches (PPs).  These organs have a specialised micro-architecture 

that positions different cell types within distinct regions; this allows optimal interactions 

between lymphocytes and APCs (Gommerman, 2004).  PPs are specialised lymphoid 

organs found in the small intestinal wall that contain naïve B cells, follicular dendritic cells 

(FDCs) and T cell rich areas (Spahn, 2005).  PPs are associated with specialised epithelial 

cells known as M cells.  The function of M cells is to sample Ag within the lumen of the 

intestine and deliver it directly to APCs within the PPs.   

 

The LTαβ-LTβR pathway is essential for the formation and maintenance of these 

secondary lymphoid organs (Gommerman, 2003; Schneider, 2004).  Knockout mice for 
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LTβR, LTα and LTβ have demonstrated their essential role in secondary lymphoid 

organogenesis as these mice lack LNs and PPs and have altered splenic structure and B cell 

follicles (Banks, 1995; Koni, 1997; Futterer, 1998; Fu, 1999).  LIGHT -/-
 mice develop 

secondary lymphoid organs indicating that it may not be essential for their development.  

However, two studies suggest the LIGHT has a function in secondary lymphoid organ 

development and maintenance.  Double LIGHT-/- and LTβ-/- mice lack mesenteric LNs 

(mLN), which are present in LTβ-/- knockout mice indicating that LIGHT can cooperate 

with LTβ in their formation (Scheu, 2002).  LTα-/- knockout mice that overexpress LIGHT 

have a restored secondary lymphoid structure and function (Wang, 2002).  This indicates 

that increased signalling by LIGHT through LTβR can compensate for the lack of LTα1β2.  

Furthermore, overexpressing LIGHT in LTβR-/- mice failed to restore secondary lymphoid 

organ structure (Wang, 2002).  This shows that restoration of secondary lymphoid structure 

via LIGHT is LTβR dependent. 

 

 

1.1.4.4  Ectopic lymphoid tissues  

 

Ectopic or tertiary lymphoid tissues normally contain very few lymphoid cells but can 

import lymphoid cells during an inflammatory response.  The LIGHT/LT-LTβR pathway 

also participates in the formation of tertiary lymphoid tissues (Hjelmstrom, 2000).  These 

structures have been identified in chronically inflamed tissue and their emergence has been 

correlated with human disease (Gommerman, 2004).  These tissues have been reported in a 

wide range of autoimmune conditions such as rheumatoid arthritis (Takemura, 2001), 
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Sjogren’s syndrome (Salomonsson, 2002), Crohn’s disease (Weyand, 2001) and many 

others. 

  

 

1.1.4.5  IgA production 

 

Immunoglobulin A (IgA) is the first line of defence against microbes entering at mucosal 

surfaces.  This antibody prevents pathogens from colonising mucosal surface and facilitates 

their phagocytosis.  LTβR expression in the intestine is required for the production of IgA 

as LTβR-/- mice have extremely low levels of serum and fecal IgA (Kang, 2002).  

Transgenic (Tg) mice that overexpress LIGHT (LIGHT Tg) show a dysregulation of IgA 

production (Wang, 2004).  These mice have reduced fecal IgA but elevated levels of serum 

IgA indicating a defect in IgA transportation to the lumen of the intestine, possibly due to 

reduced epithelial cell function (Wang, 2004).  LIGHT Tg mice show an elevated level of 

polymeric IgA (pIgA), the intestinal source of IgA, in their serum.  The ratio of pIgA to 

monomeric IgA (mIgA) was significantly elevated, which suggests that the elevated levels 

of IgA in the Tg mice originated from mucosal tissues (Wang, 2004).  Polymeric IgA can 

very efficiently form large immune complexes (ICs) (>500 KDa) owing to its multivalent 

properties, these complexes can become trapped in the kidneys due to their size and their 

ability to bind to receptors on mesangial cells in the kidneys (Gomez-Guerrero, 1993).  

Deposition of ICs in the kidney results in inflammation and if not controlled leads to 

nephropathy.  In LIGHT Tg/LTβR-/- the elevation of serum IgA disappeared completely 

even in the presence of the LIGHT transgene.  These mice showed no gross abnormalities 

or any significant T cell mediated inflammation of the intestine (Wang, 2004).  This 

indicates that LTβR is required for the resultant inflammation in the gut and hyperserum 
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IgA in LIGHT Tg mice.  This links the LIGHT-LTβR pathway to intestinal inflammation 

and the development of IgA nephropathy, which can occur as a secondary disease in 

inflammatory bowel disease (IBD), coeliac disease and other chronic inflammatory 

diseases (Wang, 2005). 

 

 

1.1.5  Decoy Receptor 3  

 

Decoy receptor 3 (DcR3, TR6, TNFRSF6B, M68) a third receptor for LIGHT was 

identified by searching expressed sequence tag (EST) databases for sequences that showed 

homology to members of the TNFR superfamily (Pitti, 1998).  Through linkage analysis the 

gene was located to Chr 20q13 (Pitti, 1998).  Northern blotting showed that DcR3 mRNA 

(1.2Kb) is expressed at high levels in several normal human tissues such as the stomach, 

spleen, spinal cord, lymph node, lung and colon (Pitti, 1998; Bai, 2000).  Its expression was 

reported to be weak in the thymus and undetectable in PBMCs (Zhang, 2001), however, 

other studies have shown that it is expressed in PBMCs (Otsuki, 2000; Wan, 2003).    

 

The cDNA codes for a protein of 300 aa that is approximately 35 KDa in size and like other 

members of the TNFR superfamily DcR3 forms a homotrimeric tertiary structure.  The 

amino terminus contains a 29-residue leader sequence, which is followed by four CRDs.  

Unlike most other members of the TNFR superfamily, DcR3 lacks a transmembrane 

domain and is therefore secreted rather than associated with the cell membrane (Pitti, 

1998).   
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1.1.5.1  Ligands for DcR3 

 

The binding of DcR3 to LIGHT inhibits the interaction of LIGHT with both HVEM and 

LTβR (Zhang, 2001; Yu, 1999).  This would suggest that DcR3 dampens down co-

stimulation of T cells by inhibiting LIGHT-HVEM signalling and prevents LIGHT induced 

apoptosis of tumour cells via LTβR.   

 

The Fas-FasL stimulated pathway is involved in apoptosis and is important in the 

elimination of virus-infected cells and cancer cells by natural killer (NK) cells and CTLs.  

DcR3 is known to bind to FasL where it interferes with the interaction between Fas and 

FasL.  As a result, FasL induced apoptosis of lymphocytes and tumour cells can be 

repressed by DcR3 (Pitti, 1998). 

 

TL1A is the third member of the TNFSF that binds with DcR3.  TL1A is mainly expressed 

in endothelial cells (Migone, 2002).  Zhai et. al., showed that recombinant TL1A could 

inhibit the growth of colon carcinomas in mice, and they concluded that it functioned as an 

angiogenesis inhibitor (Zhai, 1999).  Death receptor 3 (DR3) is expressed mainly on 

lymphocytes, and its interaction with TL1A can provide a co-stimulatory signal for the 

activation of T cells.  TL1A has been shown to enhance the secretion of INF-γ and GM-

CSF from T cells without affecting the production of IL-2, IL-4, IL-10 or TNF (Migone, 

2002).  This indicates that TL1A can promote a Th1 response and it may play a role in 

diseases mediated by a Th1 immune response.  In fact, TL1A has been shown to be 

upregulated in active Crohn’s disease, a Th1 mediated disease (Bamias, 2003).  DcR3 
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strongly inhibits TL1A responses in T cells and inhibits TL1A triggered apoptosis of 

tumour cells (Migone, 2002). 

 

 

1.1.5.2  Partial proteolytic cleavage of DcR3 

 

There is evidence that DcR3 can be proteolytically cleaved between amino acids R218-

A219 to yield a smaller (1-218) circulating DcR3 fragment.  This smaller 218 amino acid 

fragment of DcR3 retains its ability to bind and inhibit LIGHT but loses its ability to bind 

and modulate FasL mediated apoptosis (Wrobleski, 2003).  This processing of DcR3 may 

help to regulate the different co-stimulatory and apoptotic pathways induced by its ligands. 

 

 

1.1.5.3  DcR3 expression in malignancy 

 

The three ligands for DcR3, FasL (Pitti, 1998; Bai, 2000; Roth, 2001), LIGHT (Yu, 1999; 

Zhang, 2001) and TL1A (Migone, 2002) can all function in the initiation of apoptosis or the 

development of a Th1 mediated immune response.  Therefore, overexpression of DcR3 

could lead to gross inhibition of apoptosis and an ineffective CTL response.  Pitti and 

colleagues speculated that certain tumours could avoid detection by the immune system, 

and thus Fas mediated apoptosis, by over-expressing DcR3 (Pitti, 1998).  Gene 

amplification is a common occurrence in the development of tumours.  It was shown by 

quantitative PCR that in many tumour cell types that DcR3 gene amplification had occurred 

(Pitti, 1998).  Elevated levels of DcR3 mRNA and protein were also identified in these 
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cells.  DcR3 mRNA was localised to infiltrating malignant epithelium, but absent in the 

surrounding stroma, indicating tumour specific expression (Pitti, 1998). 

 

 

1.1.6  The immune system and human disease 

 

The primary function of the immune system is to protect us from the constant barrage of 

bacteria, viruses and other parasites that invade our bodies.  For this the immune system 

needs to be quite flexible so that it can recognise an almost endless array of foreign 

invaders.  However, on occasion the through a number of mechanisms it may turn its 

powerful array of cells, cytokines and proteases against us leading to autoimmune diseases. 

 

As described above LIGHT plays role in the activation of T cell and maturation of DC.  

Over-expression of LIGHT in transgenic mice can cause severe intestinal inflammation 

(see chapter 3) and symptoms of systemic autoimmunity (Wang, 2001; Shaikh, 2001).  One 

of the aims of this thesis is to analyse the gene expression of LIGHT and associated 

receptors in human immune-mediated disease using Real-time PCR.  The diseases chosen 

for this study include coeliac disease, systemic lupus erythematosus and Wegener’s 

granulomatosis, a brief description of each disease follows in sections 1.17, 1.18 and 1.1.9 

respectively. 

  

 

 

 

 



 27 
 

1.1.7  Coeliac disease (CD) 

 

Coeliac disease (CD) is a chronic inflammatory disease of the upper small intestine that is 

the result of gluten ingestion by genetically susceptible individuals.  The disease was once 

thought to be quite rare, but in recent years, it has been reported to have a prevalence of 1 

in 120 to 300 individuals in both Europe and North America (Farrel, 2003).  However, the 

true prevalence of CD is difficult to determine.  Some patients may have atypical symptoms 

and be incorrectly diagnosed or have silent CD, which can remain undiagnosed, as the 

patients show no symptoms (Visakorpi, 1997).  CD is more often associated with a female 

population (2:1 ratio) and presentation with the disease may occur at all ages (Oxentenko, 

2003). 

 

 

1.1.7.1  Diagnosis of CD 

 

Patients with CD present with a wide range of symptoms including diarrhoea, 

malabsorption (anaemia, osteoporosis) abdominal distension, failure to thrive (children), 

weight loss and neuropsychiatric symptoms (anxiety, depression) among many others 

(Collin, 2005; Duggan, 2003) and it is this broad range of symptoms that can make CD 

difficult to diagnose. 
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1.1.7.1.1  Duodenal biopsy 

 

The gold standard for CD diagnosis is a duodenal biopsy, which is used to look for the 

characteristic lesion in the gut including: villous atrophy, crypt hyperplasia and elevated 

levels of intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs).  The 

lesion is graded according to the Marsh classification system (Fig 1.04) (Marsh, 1992).  

Type 0 is not seen that often in CD but more so in the related gluten induced condition 

called dermatitis herpetiformis (DH).  It has been demonstrated that these patients have IgA 

and IgM anti-gliadin antibodies in their intestinal secretions (O’Mahony, 1990).  A Marsh 

Type I (infiltrative) lesion shows normal villous structure with lymphocyte infiltration into 

the villous epithelial layer.  It is generally accepted that more than 30-40 lymphocytes per 

100 enterocytes is a significant increase (Marsh, 1992).  A Marsh II (hyperplastic) lesion in 

conjunction to lymphocyte infiltration there is also evidence of crypt hyperplasia.  The 

villous height /crypt depth ratio is generally below the normal value of 3-5.  Villous 

atrophy is the hallmark of Marsh class III (destructive) lesions.  This class is further 

subdivided based on the level to which the villous is damaged.  Class IIIA show partial 

villous atrophy with villous height /crypt depth ratio of less than one.  Class IIIB describes 

subtotal villous destruction where individual villi are still recognisable.  Marsh Class IIIC 

biopsies show total destruction of the villi.  Type IV (hypoplastic) lesions are rare and 

specific to CD.  These are characterised by chronic unresponsiveness to the removal of 

gluten from the diet, resulting in irreversible destruction of the mucosal surface.   
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Fig 1.04 Marsh classification of the coeliac lesion (Adapted from Marsh, 1992).  Villous 

epithelial layer (VEL); Lamina propria (LP); Intraepithelial lymphocyte (IEL). 

 

 

1.1.7.1.2  Serological testing in CD 

 

Serological tests for CD are now commonly used to assist in diagnosis and monitoring the 

adherence to a gluten free diet (GFD) by the patient.  These serological assays include 

testing for endomysial antibodies (EMA), anti-gliadin antibodies (AGA) and anti-tissue 

transglutaminase (tTG) antibodies.  The presence of antibodies against endomysium is 

nearly 100% specific in the diagnosis of CD (Hill, 2005; Farrel, 2002; Feighery, 1998).  

Detection of anti-tTG autoantibodies in CD stems from the discovery that tTG is the main 

antigen to which anti-EMA are directed (Dieterich, 1997).  These serology tests usually 

detect IgA autoantibodies.  As selective IgA deficiency occurs in 1.7 – 2.6 % of CD 

patients (Cataldo, 1998) serology results may be falsely negative; therefore, a total serum 

IgA test is also performed in conjunction with the other Ab tests.  In cases where IgA 

deficiency is diagnosed it is necessary to test for IgG antibodies to EMA, AGA and tTG. 
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1.1.7.2  Treatment for CD 

 

The treatment for CD is the life-long removal of gluten from the diet including all sources 

of wheat, barley and rye.  This can be a challenge for the patient, as many processed foods 

contain gluten, so close consultation with a dietician is important in the management of the 

disease.  Oats have been reported to be non-toxic to CD patients (Janatuinen, 2002; 

Kilmartin, 2003).  Patients may also require replenishment of vitamins and minerals with 

supplements as deficiencies in iron, folate, calcium and vitamin D are found in untreated 

CD patients (Farrel, 2002).  Once gluten is removed from the diet, the majority of patients 

show a clinical improvement within a few weeks.  Histological improvement in the small 

intestine can take longer, from months to years (Feighery, 1999).  Some patients fail to 

respond to a GFD or initially respond and then relapse again; these patients can be 

diagnosed with refractory CD.  Patients with refractory CD may require 

immunosuppressive treatments with corticosteroids azathioprine or cyclosporine (Rolny, 

1999; Vaidya, 1999). 

 

 

1.1.7.3  Conditions associated with CD 

 

Many conditions have been associated with the presence of CD (Collin, 1994).  It is likely 

that some of these associations are due to the malnourished status endemic in the CD 

population and should improve with a GFD.  However, more complex disease associations 

such as malignancy and autoimmunity could be due to dysregulation of common immune 

effector pathways.  Nevertheless, as the true prevalence of CD is not known, there is also 

the possibility that some of these associations are coincidental (Feighery, 1999). 
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 1.1.7.3.1  Dermatitis herpetiformis (DH) 

 

DH affects 10-20% of CD patients (Reunula, 2001; Fry, 2002) and presents as a pruritic 

bullous rash, classically on the extensor surfaces of the body, which may leave 

pigmentation and scarring (Oxentenko, 2003).  As in CD, DH patients suffer from gluten 

sensitivity and are seropositive for AGA and anti-tTG antibodies, although at lower levels 

(Porter, 1999).  Gastrointestinal symptoms are usually absent and this may be explained by 

the fact that there are generally only mild histological changes in the small intestine.  

Diagnosis is normally made by finding granular deposits of IgA in the papillary dermis, 

with increased numbers of activated T cells.  The disease may occur due to molecular 

mimicry between tissue transglutaminase found in the gut and epidermal transglutaminase 

(TG3) found in the skin (Sardy, 2002).  Treatment for the disease includes adherence to a 

GFD and the rash can be treated with a suppressive medication such as dapsone 

(diaminodiphenylsulfone).  Dapsone suppresses the inflammation in the skin but has no 

effect on the intestinal abnormality (Zone, 2005).  As there are usually no severe 

gastrointestinal symptoms associated with DH, many patients neglect a GFD choosing to 

contain the rash with medication instead.  

 

 
 
 
 
 

1.1.7.3.2  Malignancy and CD 

 

CD has been linked to development of malignancies such as small bowel adenocarcinoma, 

oesophageal and oropharyngeal squamous carcinoma and non-Hodgkin lymphoma (NHL) 

(Catassi, 2002).  The incidence of small bowel adenocarcinoma in CD is ~80 fold higher 
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than in the general population (Green, 2001).  Enteropathy associated T cell lymphoma 

(EATL), a rare high grade T cell NHL of the upper small intestine, is specific to CD 

(O’Farrelly, 1986).  Some investigators have suggested that EATL is the last stage of 

refractory CD (Catassi, 2005).  EATL does not respond well to chemotherapy and the 

patients health often rapidly declines (Green, 2005).   

 

 

1.1.7.3.3  Autoimmune diseases and CD 

 

Autoimmune disorders are ten times more frequent in CD patients than the general 

population (Green, 2003).  Associated autoimmune conditions include type 1 diabetes 

(Cronin, 1997; Lampasona, 1999), autoimmune thyroid disorders (Mainardi, 2002), 

autoimmune myocarditis (Frustaci, 2002), autoimmune hepatitis (Volta, 1998), rheumatoid 

arthritis, systemic lupus erythematosus (Collin, 1994) and Sjogren’s syndrome (Iltanen, 

1999).  Some reports indicate that autoimmune disease association with CD is dependent 

on the length of gluten exposure, as children diagnosed under the age of two have no 

increased risk of developing a secondary autoimmune disease (Ventura, 1999).  There is 

also a strong association with both IgA nephropathy (Farrel, 2002) and IgA deficiency 

(Duggan, 2004) and CD. 

 

 

1.1.7.3.4  Osteoporosis and CD 

 

Osteoporosis is another associated complication with CD (Walters, 1995), probably 

because of malabsorption of minerals, circulating inflammatory cytokines and failure to 
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attain maximum bone density during childhood (Green, 2003).  Adherence to a GFD results 

in mineral bone density improving but it may not return to within a normal range (Meyer, 

2001).  

 

 

1.1.7.3.5  Other conditions associated with CD 

 

CD has also been statistically associated with many other medical conditions such as 

Down’s syndrome (Gale, 1997), cystic fibrosis (Farrel, 2002), male/female infertility (Sher, 

1994) and depression (Holmes, 1996).  Very little is known about how these conditions are 

associated with CD.  

 

 

1.1.7.4  Intraepithelial lymphocytes (IELs) in CD 

 

Two distinct populations of IELs are expanded in CD, TCRαβ+CD8+ and TCRγδ+CD8-

CD4- (Cerf-Bensussan, 1997).  It has been shown that when patients are put on a GFD the 

TCRαβ+ CD8+ cells return to normal levels but the TCRγδ+CD8–CD4– population remains 

expanded (Spencer, 1991; Kutlu, 1993).  Activated IELs produce several cytokines 

including INF-γ, IL-2, IL-8 and TNF-α (Lundqvist, 1996).  A percentage of IELs are also 

positive for granzyme B and TiA indicating that they have a cytotoxic T cell phenotype 

(Oberhuber, 1996). 
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Refractory CD patients have a large proportion of IELs with an abnormal phenotype of 

TCR–, CD4–, CD8– and CD3– (Patey-Mariaud, 2000; De Serre, 2000).  These IELs have 

also been demonstrated to have a monoclonal TCRγ gene rearrangement (Cellier, 1998). 

 

 

1.1.7.5  Lamina propria lymphocytes (LPLs) in CD 

 

There is a significant infiltration of CD4+TCRαβ+ T cells in to the lamina propria during 

active disease (Sollid, 2000).  Most of these T cells have a memory phenotype as 

characterised by the expression of CD45RO+ (Halastensen, 1990).  There is also a 

significant percentage of T cells positive for CD25 (IL-2Rα), indicating that they have an 

activated phenotype.  These cells however fail to express the proliferation marker Ki-67 

(Halastensen, 1993), indicating gluten induces non-proliferative activation of CD4+ lamina 

propria T cells.  Studies examining mRNA levels of cytokines expressed by active CD4+ T 

cells show that there is a significant increase in INF-γ in untreated CD (Nilsen, 1998).  

There is also a smaller increase in the levels of IL-2, IL-4, IL-6 and TNF-α (Nilsen, 1998). 

 

Plasma cells also increased in number during active CD and these cells decline in number 

when the patient undertakes a GFD (Scott, 1984).  These plasma cells produce IgA, IgM 

and IgG antibodies that are directed towards gliadin (Falchuk, 1974) and endomysium 

(Picarelli, 1996).  
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1.1.7.6  Genetics of CD 

 

There is a strong genetic association with CD with the risk of disease occurrence in first-

degree relatives 20-30 times higher than the general population and the concordance rate 

between monozygotic twins is 75% (Greco, 2002).   

 

1.1.7.6.1  HLA genes in CD 

 

CD is primarily associated with specific HLA class II molecules, DQ (α1*0501, β*02) 

known as DQ2 and DQ (α1*03, β*0302) which can be abbreviated to DQ8.  HLA DQ2 is 

found in the majority of CD patients (95%) and DQ8 in the remainder (Alaedini, 2005).  

DQ2 is present in the general population at approximately 20-30% (Sollid, 1993).  The 

genetic contribution of HLA genes in CD has been estimated at approximately 40%, 

(Bevan, 1999) indicating that non-HLA genes have a major role in determining 

susceptibility to CD.   

 

1.1.7.6.2  Non-HLA genes in CD 

 

A non-HLA locus that has been reproducibly shown to be associated with CD is the CTLA-

4/CD28 gene region on chr 2q33, which has been separately demonstrated in Swedish 

(Naluai, 2000), Finnish (Holopainen, 1999), French (Dijilali-Saiah, 1998) and UK (King, 

2002) populations.  CTLA-4 has an important role in maintaining tolerance to self-antigens; 

studies have shown that CTLA-4 knockout mice develop severe autoimmune disease 

(Waterhouse, 1995). 
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Several genome wide studies have been performed using CD patients in order to identify 

non-HLA risk factors.  There is however very little consensus between these studies which 

may indicate that each non-HLA gene has only a small impact on the disease (Sollid, 

2002).  Some of the chromosomal regions where there is evidence of association with CD 

include 5q (Greco, 2001; Naluai, 2001), 11q (Holopainen, 2001; Naluai, 2001), 6q21-23 

and 19p13.1 (Van Belzen, 2003).  These regions contain many possible candidate genes 

some of which have been implicated in other immune-mediated diseases.  Interestingly, the 

19p13.1-19p13.3 region is a paralog of the MHC found on Chr 6, and is one of four 

locations thought to have arisen by chromosomal duplication, along with Chr 1q21-

q25/p11-p32 and Chr 9q33-q34 (Kasahara, 1999; Abi Rached, 1999).  The LIGHT gene is 

situated in this region along with CD27L and 4-1BBL within a T cell co-stimulatory locus 

(Granger, 2001). 

 

1.1.7.7  Pathogenesis of CD 

 

The mechanisms behind the development of CD have not been fully elucidated.  However, 

the most popular hypothesis is based on a T cell driven intolerance to gluten in genetically 

susceptible individuals.  

 

1.1.7.7.1  The environmental trigger 

 

Wheat gluten is a mixture of a number of different proteins that have been grouped into the 

gliadin and glutenin fractions according to their solubility.  Gliadins are alcohol soluble and 

have unusually high content of proline (15%) and glutamine (35%) residues (Dewar, 2003).  

Based on their amino acid sequence gliadins can be subdivided into α, γ and ω gliadins.  Of 
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these, the subtypes α and γ-gliadins are partially resistant to digestion by pancreatic and 

brush-border proteases (Hausch, 2002; Shan, 2002).  This gives rise to a number of 

antigenic peptides that may cross into the lamina propria via the paracellular or 

transcellular routes.  Movement by the paracellular route is facilitated by the increased 

permeability of tight junctions within the epithelial layer.  This is the result of an elevation 

in zonulin (controls tight junctions in the small intestine) expression within the coeliac 

lesion in response to gliadin (Fasano, 2000; Clemente, 2003).  The gliadin peptides can 

move via the transcellular route using enterocytic vesicles where they can then gain access 

to the lamina propria (Zimmer, 1998).  These antigenic peptides have been proposed to 

activate both an innate (Schuppan, 2003) and the adaptive immune response (Schuppan, 

2000). 

 

1.1.7.7.2  Innate Immune response 

 

Little is known about how gliadin derived peptides initiate a response from the innate arm 

of the immune system.  Interleukin-15 (IL-15) a cytokine typical of the innate immune 

system (Fehniger, 2001) has been proposed to play a major role in causing damage to the 

intestinal mucosa in CD (Maiuri, 2001; Maiuri, 2000).  Specific toxic gliadin peptides have 

been shown to induce the expression of IL-15, cyclo-oxygenase-2 (COX-2) and activation 

markers (CD25 and CD83) by lamina propria mononuclear cells (LPMCs) whilst, not 

causing activation of CD4+ T cells (Maiuri, 2003).  Intestinal epithelial cells can also 

produce IL-15 (Reinecker, 1996), which is a potent stimulator of IELs (Ebert, 1998).  

Epithelial cells in conditions of stress or inflammation increase their expression of 

molecules such as MICA and the MHC class I molecule HLA-E.  Gliadin can directly 

cause overexpression of MICA on enterocytes in CD (Martin-Pagola, 2004).  Both MICA 
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and HLA-E are recognised by natural killer (NK) receptors, NKGD2 and CD94, present on 

IELs (Braud, 1998; Jabri, 2000).  The expression of these NK receptors can be regulated by 

IL-15 (Robert, 2001).  Enterocytes that express MICA and HLA-E can be targeted by NK 

receptor expressing IELs, whereupon the enterocyte is killed by apoptosis.  Therefore, 

gliadin peptides can directly (MICA upregulation) and indirectly (IL-15 upregulation) 

cause IELs to induce the apoptosis of enterocytes.  Uncontrolled activation of these 

pathways could lead to extensive enterocyte damage and villous atrophy.  

 

1.1.7.7.3  Adaptive Immune response   

 

Tissue transglutaminase (tTG) is a Ca++ dependent enzyme that can perform two types of 

reactions in vivo, transamidation and deamidation.  The transamidation reaction facilitates 

the cross-linking of proteins through the amino acids glutamine and lysine.  Deamidation 

involves the conversion of glutamine to glutamic acid in the presence of H2O.  At pH 7.3, 

the transamidation reaction takes preference, however a drop in pH switches the balance in 

favour of the deamidation reaction.  The enzyme is ubiquitously expressed in the body; in 

the small intestine, it is expressed just below the epithelial layer (Molberg, 1998).  The 

enzyme can be present intracellularly or extracellularly.  As an extracellular enzyme it 

functions in extracellular matrix assembly, cell adhesion and wound healing (Aeschlimann, 

1994).   
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The deamidation activity of tTG is significant in the development of an adaptive immune 

response in CD.  The peptide-binding grooves of the MHC class II molecules DQ2 and 

DQ8 prefer negatively charged amino acids at key anchor positions (Sollid, 2000).  Optimal 

binding of gliadin-derived peptides to these MHC molecules is facilitated by tTG 

converting key glutamine residues within the peptides to glutamic acid (negative charge) 

(Quarsten, 1999; Molberg, 2001).  The binding affinity of deamidated gliadin peptides to 

DQ2 is 25 times higher than the native gliadin peptide (Kim, 2004). 

 

Once the toxic peptides gain entry into the lamina propria, they can be deamidated by tTG, 

taken up by APC and when presented in the context of DQ2/DQ8 to CD4+ T cells it 

initiates their activation.  Gluten specific CD4+ T cells isolated from the small intestine of 

patients with active CD produce large quantities of INF-γ (Nilsen, 1995; Nilsen, 1998).  

INF-γ can have a wide range of potent effects on various cells within the lamina propria 

and on the enterocytes themselves.  INF-γ can induce macrophages to produce TNF-α.  

These two cytokines can work synergistically to have a direct cytotoxic effect on intestinal 

epithelial cells (Deem, 1991).  IFN-γ sensitises enterocytes to apoptosis via FAS by 

upregulating its expression on these cells (Martin, 2002; Ruemmele, 1999).  INF-γ can also 

induce fibroblasts and other cells in the lamina propria to release matrix metalloproteinases 

(MMPs) which when not controlled can cause death to surrounding cells and destruction of 

the mucosal matrix (Pender, 1997).  In particular, MMP1 and MMP3 are overexpressed in 

the coeliac lesion (Daum, 1999).   
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Fig 1.05 The role of the adaptive immune response in the pathogenesis of CD (adapted 

from Ciccocioppo, 2005; Kagnoff, 2005).  tTG, tissue transglutaminase; APC, antigen 

presenting cell; Ab, antibody; MMP, matrix metalloproteinases; IEL, intraepithelial 

lymphocyte, EMA endomysial antibody; INF, interferon; G, granzyme. 
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The expression of tTG is also elevated in the small intestine of active CD patients 

(Molberg, 1998; Bruce, 1985), which would serve to deamidate further gliadin molecules 

and thus sustain the inflammatory process (Fig 1.05).  The situation is made more complex 

by the fact that CD patients have autoantibodies to tTG, which is now recognised as the 

major autoantigen for the disease (Dieterich, 1997).  How these antibodies occur may be 

explained by the fact that as part of its normal function tTG can cross-link proteins through 

its transamidation reaction.  It is thought that it may be possible for tTG to cross-link itself 

to gliadin-derived peptides by autocatalysis (Molberg, 1998).  This new tTG-gliadin 

complex could then be internalised by B cells via specific surface immunoglobulins.  

Portions of the gliadin fragments may then be presented by DQ2 or DQ8 to gliadin-specific 

T cells, which would in turn then provide help for B cell maturation, isotype switching and 

antibody production.  This model is supported by the fact that anti-tTG antibodies 

disappear once a patient complies with a GFD, as the T cell help needed for antibody 

production is eliminated (Sulkanen, 1998).   

 

It is not known to date whether the tTG-autoantibodies contribute to the development of gut 

lesion.  However, anti-tTG antibodies have also been characterised from patients, which 

inhibit the bioactivity of tTG in the coeliac intestine (Esposito, 2002).  One of the many 

functions that tTG can perform is the activation of transforming growth factor (TGF) –β 

(Nunes, 1997).  TGF-β can effect the differentiation of intestinal epithelium, stimulate 

extracellular matrix formation and regulate many immune cells within the gut (Halttunen, 

1996; Dignass, 1996).  Therefore, anti-tTG antibodies could have an indirect effect on 

TGF-β activation and in doing so contribute to the formation of the lesion. 
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1.1.8  Systemic Lupus Erythematosus (SLE) 

 

SLE is an autoimmune disease of unknown aetiology, which is characterised by the 

production of various autoantibodies, directed against several cytoplasmic, nuclear and cell 

surface molecules and immune complex (IC) formation.  Deposition of ICs in tissues can 

lead to inflammation and cause damage to multiple organs.  SLE patients can suffer from a 

wide range of symptoms including glomerulonephritis, dermatitis, thrombosis, vasculitis, 

seizures and arthritis (Hochberg, 1997).  The prevalence rate has been reported to be 40 and 

200 per 100000 in Caucasian and Afro-Caribbean populations respectively (Johnson, 

1995).  The disease predominantly affects women, with a female to male ratio of 8:1 (Tsao, 

2003).   

 

 

1.1.8.1  Diagnosis of SLE 

 

Diagnosis of SLE is made when a patient fulfils at least four of the eleven, American 

college of rheumatology (ACR) criteria, which were revised in 1997 (Table 1.01) (Tan, 

1982; Hochberg, 1997). 
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Symptoms leading to positive diagnosis of SLE 
    

  
   1 Malar rash 
   2 Discoid rash 
   3 Photosensitivity 
   4 Oral ulcers 
   5 Arthritis: (non-erosive) 
   6 Serositis: Pleurisy/pericarditis 
   7 Renal: proteinuria >0.5g/24 hours 
   8 Neurological: seizures or psychosis 
   9 Haematological: haemolysis/leucopenia/lymphopenia/thrombocytopenia 
  10 Immunological: anti-DNA/anti-Sm/antiphopholipid antibodies 
  11 Positive ANA 

 
Four or more criteria: 96% sensitive; 96% specific for SLE 

    

 

Table 1.01 American college of Rheumatology (ACR) classification criteria for SLE. 

(Modified from Maddison, 2002). 

 

 

1.1.8.2  Treatment of SLE 

 

Treatment for SLE involves the use of immunosuppressive drugs such as 

cyclophosphamide and corticosteroids, these cause non-specific immune suppression and 

are used in high doses during acute phases of the disease.  Due to cyclophosphamide’s 

many side effects such as cytopenia, infections and the possibility of malignancy (Eiser, 

1994), new therapies are being investigated including mycophenolate mofetil (T and B cell 

suppressor) (Karim, 2002), B cell depletion using Rituximab, (monoclonal CD20 antibody) 

(Anolik, 2003), autologous stem cell transplantation (Jayne, 2004) and blocking co-

stimulatory molecules such as CD40-CD40L (Quezada, 2003).  With effective intervention, 
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the prognosis for patients with SLE has significantly improved, with a ten-year survival rate 

of approximately 90% (Goldblatt, 2005). 

 

 

1.1.8.3  Autoantibodies in SLE 

 

SLE patients have a set of characteristic antibodies directed against several components of 

cells.  Recently it has been shown that these autoantibodies may be present for several years 

preceding the onset of clinical symptoms (Arbuckle, 2003).  Antinuclear antibodies (ANA) 

are present in 98% of SLE patients (Maddison, 2003).  Nonetheless, ANA antibodies are 

not specific for SLE as they are found in a wide range of systemic rheumatic diseases such 

as 80% of Sjogren’s syndrome patients, and organ specific autoimmune diseases including 

70% of autoimmune hepatitis cases (Maddison, 2003).  Anti-double stranded DNA 

(dsDNA) antibodies are present in 70% of SLE patients (Mok, 2003).  Anti-DNA antibody 

titres tend to fluctuate over time and with disease activity and are associated with the 

development of glomerulonephritis in SLE (Mok, 2003).  Antibodies against four groups of 

RNA-binding proteins (Sm, UIRNP, Ro and La) are also commonly found in SLE 

(Reichlin, 1988).  Anti-Sm antibodies are the most specific to SLE and they react to the 

core protein group of small nuclear ribonucleoproteins (snRNPs).  There is however a wide 

ethnic variation in the presence of anti-Sm antibodies, they are found more commonly in 

Afro-American and Afro-Caribbean than Caucasian populations (Arnett, 1988)  
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1.1.8.4  Hormonal factor involved in SLE 

 

The strong association of the disease with the female population would suggest that there is 

a hormonal influence on the development of SLE.  In animal model studies, using lupus 

prone mice (MLR-lpr/lpr mice) oestrogen can act to accelerate disease progression 

(Carlsten, 1990).  There is also evidence from mouse models that androgens may have a 

protective role and this hypothesis has been tested in human trials for the treatment of SLE 

(Chang, 2002). 

 

 

1.1.8.5  Genetics factors involved in SLE 

 

SLE shows a strong familial association and the concordance rate between monozygotic 

twins is approximately 25-58% and drops to 5% for dizygotic twins (Piesesky, 1997).  SLE 

is seen as a polygenetic disease with many genetic loci identified as being associated with 

disease susceptibility.  Murine studies have shown that more than 40 genes can induce 

lupus-like syndrome (Raman, 2003).  Despite this rather large number of genes most can be 

classified into one of three functional groups: molecules that effect the clearance of 

apoptotic cells, molecules involved in the apoptosis of lymphocytes and molecules that can 

amplify or modulate lymphocyte signalling and expansion (Raman, 2003). 
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1.1.8.5.1 Complement deficiency in SLE 

 

In the majority of SLE patients, multiple susceptibility genes are required with estimates of 

up to four susceptibility genes required for the development of this complex disease (Schur, 

1995).  However, in a small proportion of SLE patients (<5%) a single gene may be 

involved (Mok, 2003).  These include homozygous deficiency in the early complement 

proteins C1 (C1q, C1r and C1s), C2 and C4 (Carrol, 2004; Nath, 2004).  Deficiency in C1q 

is a particularly strong susceptibility gene as greater than 90% of these patients develop 

SLE (Tsao, 2003).  The complement system has an important role to play in the uptake and 

clearance of apoptotic blebs.  It has been proposed that defects in this pathway could lead to 

open presentation of self-antigens, which subsequently leads to the development of high 

affinity IgG autoantibodies (Botto, 1998).  However, there is a concern with this hypothesis 

as individuals deficient in the complement protein C3 have a reduced risk of developing 

SLE (Carrol, 2004).  Another hypothesis suggests that the early complement proteins have 

a role in inducing B cell tolerance.  Complement coated self-antigens are bound to 

developing B cells through the complement receptor 1 (CR1) and CR2 and this enhances 

negative selection.  The loss of early complement components would result in defective 

elimination of autoreactive B cells (Carrol, 2004).  
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1.1.8.5.2 HLA genes 

 
Population studies have extensively looked at the contribution of major histocompatibility 

complex (MHC) genes to human autoimmune disease.  The HLA-DR2 and HLA-DR3 class 

II genes have been consistently associated with SLE in several studies using Caucasian 

populations with a two-fold relative risk conferred by each allele (Tsao, 2002).  Conversely, 

there is less consistent evidence for HLA association in non-Caucasian populations.   

 

 

1.1.8.5.3 Non-HLA genes 

 

Linkage analysis studies using SLE families have also located several other susceptibility 

regions outside of the MHC region.  Chromosomal regions that show significant linkage to 

SLE include 1q23 (Moser, 1998; Edberg, 2002), 1q41-42 (Edberg, 2002; Shai, 1999; Tsao, 

1997), 2q35-37 (Lindqvist, 2000), 4p16-15.2 (Gray-Mcguire, 2000) and 16q12 (Gaffney, 

2000; Nath, 2004).  Each of these chromosome regions contains many possible SLE 

susceptibility genes (Table 1.02). 

   

A study involving just Caucasian subjects showed linkage between Chr 19p13.2 (Lindqvist, 

2000) and SLE.  In a separate study, stratification of patients based on their major 

manifestations of SLE showed that the development of anti-DNA antibodies was linked to 

this chromosomal region (Namjou, 2002).  This region is in close proximity to the LIGHT 

co-stimulation locus (Granger, 2001). 
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Candidate genes for SLE 

        

    

Gene Chromosome region Associated allele Reference 

    

FCγRIIa 1q22-23 R131 Salmon, 1996 

FCγRIIIa 1q22-23 F176 Wu, 1997 

IL-10 1q31-32 Multiple alleles Mehrain, 1998 
CTLA-4 2q33 +49G Ahmed, 2001 

PDCD-1 2q37 PD-1.3A Prokunia, 2002 

TNF-α 6p21 TNF2 Wilson, 1994 
LTα 6p21 ------ Kim, 1996 

MBL 10q11.2-q21 230A Davies, 1995 

FasL 1q23 -844C Wu, 2003 

Fas 10q24 297C/416G Horiuchi, 1999 

Bcl-2 18q21 Multiple alleles Mehrain, 1998 

        

    
Table 1.02 SLE candidate genes (Adapted from Nath, 2004). 

 

 

1.1.8.6  Environmental factors in SLE 

 

The concordance rate between monozygotic twins would indicate that environmental 

factors might play an important role in the development of SLE.  UV light, particularly 

UVB, has been shown to be an important trigger for the disease (Mok, 2003).  UV light can 

induce apoptosis in keratinocytes, resulting in the formation of apoptotic blebs on the 

surface of the dying cell that contain nuclear and cytoplasmic antigens (Casciola-Rosen, 

1996), thus exposing them to the immune system which can provoke autoimmunity.  

Exposure to environmental oestrogens such as those used in hormone replacement therapy 
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(HRT) (Sanchez-Guerrero, 1995; Meier, 1998) and oral contraception (Sanchez-Guerrero, 

1997) also have been shown to cause a small increase in the risk of SLE development.  

Dietary factors such as the ingestion of L-canavanine, found in alfalfa sprouts, has been 

reported to cause lupus-like symptoms in some individuals (Prete, 1985). 

 

 

1.1.8.7  Pathogenesis of SLE 

 

SLE is seen predominantly as an overactive B cell disorder due to the presence of 

pathogenic antibodies (Lipsky, 2001).  Nonetheless, the development and survival of these 

pathogenic B cells is dependent upon T cell help (Manson, 2003).  ANA producing B cells 

show evidence of having undergone T cell driven Ig class switching and affinity 

maturation, as the autoantibodies are of the IgG isotype (Hoffman, 2004).   

 

 

1.1.8.7.1 Defects in apoptosis 

 

Central tolerance removes self-reactive lymphocytes from the immune repertoire, however, 

this process is incomplete and low affinity self-reactive B and T cells can escape and 

become part of the normal peripheral immune system (Shlomchik, 2001).  Autoantigens 

may be presented to low affinity self-reactive T cells in the periphery.  In normal 

individuals, tolerance to these self-antigens is induced or the T cell is eliminated via 

activation induced cell death (AICD).  AICD is a process whereby lymphocytes are deleted 

after encountering soluble antigen or after persistent activation and proliferation (von 
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Herrath, 2003).  T cells from SLE patients show defects in AICD, these cells resist anergy 

or AICD by upregulating and sustaining cyclooxygenase-2 (COX-2) expression (Lu, 2004).   

In SLE, excessive self-antigens are made available due to abnormal apoptosis of cells and 

the subsequent failure to remove these apoptotic bodies by phagocytosis.  Prolonged 

exposure to apoptotic cells could be an important factor for breaking T cell tolerance in 

genetically susceptible individuals.  All autoantigen targets in SLE can be identified within 

apoptotic blebs found on the surface of dying cells (Cascicola-Rosen, 1994).  Clearance of 

apoptotic cells by macrophages is facilitated by several receptors including complement 

receptors, scavenger receptors and LPS receptors (CD14) (Berden, 2003).  As mentioned 

earlier, defects in complement receptors or early complement proteins C1, C2 and C4 are 

particularly strong SLE susceptibility genes. 

 

 

1.1.8.7.2 T cell activation responses in SLE 

 

T cells isolated from SLE patients have an elevated and greatly extended intracellular Ca++ 

flux compared to control T cells when stimulated in vitro (Vassilopoulos, 1995).  The 

sustained increase in intracellular Ca++ maintains enzymes such as calcineurin and protein 

kinase C (PKC) in an activated state and they in turn can activate a wide range of 

transcription factors such as NFAT, AP1 and NF-κB.  As mentioned previously, activation 

of these transcription factors promotes cell survival and upregulation of proinflammatory 

cytokines.  It has also been reported that there is a reduction in the level of mRNA and 

enzyme activity of PKA isoenzymes in SLE T cells (Laxminarayana, 1999).  PKA 

isoenzymes mediate negative regulatory effects on signalling events and defects within this 

pathway could lead to abnormally high T cell responses (Tsokos, 2000). 
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Regulatory T cells (CD4+CD25+) are reduced in the periphery of SLE patients during times 

of disease activity and during remission the numbers of these cells return to that of normal 

individuals (Crispin, 2004; Liu, 2004).  There is also impairment in CD8+ suppressor 

function in human SLE, which can strongly inhibit B cell maturation (Filaci, 2001).  

Natural killer T (NKT) cells, which express the NK receptor and invariant TCR, are also 

reduced in number in active SLE patients (Oishi, 2001).  NK T cells have been reported to 

inhibit autoreactive B cells (Singh, 2004).  Activation of NK T cells using α-

galactosylceramide in murine models of SLE, suppresses lupus dermatitis (Yang, 2003) and 

lupus nephritis (Singh, 2004), whereas the loss of NK T cells exacerbates the symptoms of 

lupus in these animal models. 
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Fig 1.06 Development of autoimmunity in SLE.  (Adapted from Shlomchik, 2001).  In 

normal individuals, tolerance is induced in T cell when presented with self-antigen.  Due to 

many genetic and environmental factors, peripheral tolerance is lost in SLE patients, which 

subsequently leads to the development of pathogenic antibodies and organ damage. 

 

 

1.1.8.7.3  B cell tolerance and maturation 

 

The early complement proteins such as C1q are speculated to have a role in the generation 

of B cell tolerance (Carrol, 2004).  Failure to induce tolerance in these low affinity self-

reactive B cells, in SLE patients, means that they are now available to mature in a T cell 

dependent manner.  Elevated levels of B lymphocyte stimulator (BlyS) a member of the 

TNFSF has been reported in active human lupus (Zhang, 2001).  Continued stimulation of 
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B cells by BlyS leads to the generation of plasma cells in a T cell dependent manner 

(Schiemann, 2001), which can then produce large quantities of autoantibodies.  Animal 

studies have also shown that there is excessive co-stimulation between T cell-B cell-APC 

via the CD40-CD40L and CD28-B7 pathways in SLE (Hoffman, 2004). 

 

The maturation process leads to the generation of high affinity B cells from the low affinity 

precursors (Sholmchik, 2001).  The resulting pathogenic autoantibodies can form ICs with 

soluble antigen.  Links between polymorphisms in the FCγRIIa (CD32) and FCγRIIIa 

(CD16) genes and increased risk of developing SLE have also been made (Salmon, 1996; 

Edberg, 2002).  These receptors are involved in the phagocytosis of IgG2 and IgG3, the 

main IgG isotypes found in IC deposits.  The FCγRIIa allele R131 (Salmon, 1996) and 

FCγRIIIa allele (F176) (Wu, 1997) can cause a decrease in the receptors binding affinity for 

IgG2 or IgG3 antibodies.  The defective clearance of ICs, allows them to deposit within 

various organs such as the kidneys where they can induce local inflammation and tissue 

damage.  This organ damage results in further self-antigens being released to the immune 

system, thereby sustaining the inflammatory process.  T cells themselves may also cause 

tissue damage due to the release of potent cytokines such as TNF-α and INF-γ (Hoffman, 

2004). 

 

 

1.1.8.7.4  Glomerulonephritis in SLE 

 

The kidney is particularly at risk of being damaged in SLE as the autoantibody-antigen ICs 

are targeted to the glomerular basement membrane (GBM).  The GBM is naturally anionic, 
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due to the presence of large amounts of heparan sulphate and components of the major 

autoantigens in SLE are strongly cationic, this combination facilitates their attachment to 

the GBM (Berden, 2003).  The IC deposition triggers the infiltration of immune cells 

resulting in local inflammation (Ravetch, 2001).  Th1-type cytokines, including INF-γ, play 

a pivotal role in the resulting glomerular inflammation (Calvani, 2005).  Sustained lupus 

nephritis can result in glomerulosclerosis or renal fibrosis followed by end-stage renal 

disease and death (Singh, 2005). 
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1.1.9  Wegener’s granulomatosis (WG) 

 

Wegener’s granulomatosis (WG) is a systemic autoimmune disease that is characterised by 

necrotising granulomatous inflammation of the upper and lower respiratory tract and 

vasculitis of small and medium sized blood vessels (Langford, 1999).  The disease is also 

associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) in patient 

sera and the development of glomerulonephritis (van der Woude, 1985; Fauci, 1983).  WG 

is a rare disease, 2-3 cases per 100000 (Mahr, 2004), that has a higher prevalence in 

Caucasian populations, with a male to female ratio of 1:1 (Cotch, 1996).  As a disease, WG 

can be divided into two categories: localised disease and generalised/systemic disease.  

Localised WG starts in the upper respiratory tract with granuloma formation.  This can 

precede generalised WG, characterised by the presence of systemic vasculitis, for a long 

period of time (Mueller, 2000). 

 

 

1.1.9.1  Treatment of WG 

 

The prognosis for WG is quite poor, with a median survival time of five months if left 

untreated (Langford, 1999).  Combination immunosuppressive therapy using 

cyclophosphamide and glucocorticoid is the most effective treatment for active disease.  

With this treatment, 75% of patients achieve remission (Yi, 2001) and the 5-year survival 

rate is 80% (Savage, 1997).  However, the use of this aggressive immunotherapy can lead 

to other complications such as malignancy (carcinoma of the bladder) and infection (Talar-

Williams, 1996). 
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1.1.9.2  Anti-neutrophil cytoplasm antibodies (ANCAs)  

 

ANCAs are circulating antibodies directed mainly towards components of neutrophil 

granules and monocyte lysosomes (van der Woude, 1985).  ANCAs are associated with a 

heterogeneous group of diseases called the primary systemic vasculitides (PSV) (Falk, 

1988).  WG, microscopic polyangiitis (MPA) and Churg-Strauss syndrome (CSS) are the 

most common ANCA-associated PSV.  ANCAs are pathogenic and correlate well with 

disease activity (Pall, 1994).  ANCAs are divided into two groups based on their 

immunofluorescent staining pattern.  Cytoplasmic staining patterns are designated c-ANCA 

and peri-nuclear staining patterns are named p-ANCA.  The major antigens of p-ANCA and 

c-ANCA are myeloperoxidase (MPO) (Falk, 1988) and proteinase-3 (PR3, PRTN3) (Jenne, 

1990) respectively.  MPO is located exclusively in the azuorophil granules, but PR3 is 

located in the secretory vesicles as well as the granules.  PR3 is a member of the serine 

protease family and is an antibiotic protein.  The presence of c-ANCA is associated with 

WG and is found in ~80% of patients with active disease, p-ANCA antibodies are found in 

a minority (~15%) of WG patients (Wiik, 2000).   

 

 

1.1.9.3  Development of ANCA 

 

Although the development of ANCA antibodies in WG is not completely understood, two 

main hypotheses have emerged: the microbial superantigen hypothesis and the defective 

apoptosis regulation hypothesis (Reumaux, 2004).   
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1.1.9.3.1 Microbial Superantigens 

 

Superantigens (SAgs) are components of bacteria, viruses etc. that can act as powerful 

stimulators of the immune system.  T cell SAgs bind to MHC class II molecules outside of 

the peptide-binding groove and to conserved regions of specific families of T cell receptor 

V-beta chains (TCR Vβ), regardless of the Ag specificity of the T cell.  This allows SAgs 

to stimulate the non-specific proliferation of all T cells that express TCR Vβ.  

Staphylococcal protein A (SpA), a cell wall component found in most clinical strains of 

Staphylococcus aureus, has been identified as a B cell SAg (Sasso, 1989).  SpA can bind to 

membrane immunoglobulin heavy chains encoded by the VH3 family genes and induce a 

polyclonal antibody response (Popa, 2002).  Therefore, SAgs have the potential to activate 

autoreactive B cells in a T cell dependent and independent manner.  

 

Evidence to support the possible role of SAgs in ANCA development in WG patients 

comes from the finding that 60-70% are chronic nasal carriers of Staphylococcus aureus 

(Reumaux, 2004) and carriers experience relapse nearly 8 times more frequently than non-

carriers (Stegeman, 1994).  A higher risk of relapse was associated with the staphylococcal 

SAg, toxic-shock-syndrome toxin 1 (TSST-1) (Popa, 2002).  It has also been reported that 

in WG there is a skewing of the TCR Vβ repertoire in peripheral T cells (Giscombe, 1995).  

It has also been reported that WG patients have ANCA antibodies with a VH3 encoded 

heavy chain, which indicates that they have a potential to bind SpA (Sibilia, 1997). 
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1.1.9.3.2 Defective apoptosis regulation 

 

Defects in apoptosis or the clearance of apoptotic cells may lead to the exposure of self-

antigens that are normally sequestered from the immune system leading to a response.  

Apoptosis of neutrophils is an important mechanism in maintaining control of the early 

inflammatory response and limits tissue damage (Reumaux, 2003).  Furthermore, ANCA 

have been identified to interact with components on the surface of apoptotic neutrophils 

(Gilligan, 1996).  The proteolytic events that take place during apoptosis may modify self-

antigens to reveal novel epitopes that by-pass normal tolerance, or they could become 

complexed to macromolecules from infectious agents to produce novel epitopes that elicit a 

sustained immune response (Utz, 1998). 

 

 

1.1.9.4  Genetic factors in WG 

 

There have been reports of WG developing in members of the same family (Harper, 2000; 

Huang, 2001) and there seems to be a Caucasian population bias for development of the 

disease (Hoffman, 1992).  This would indicate that there are genetic factors that predispose 

to the development of WG.  WG is likely to be a complex genetic disease with many loci 

involved to give rise to disease susceptibility.   
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1.1.9.4.1 HLA genes 

 

In a recent study using 202 microsatellite markers in more than 150 WG patients, a 

significant increase was seen in the frequency of the HLA DPB1*0401 allele and a 

decrease in DPB1*0301 allele (Jagiello, 2004).  Other studies have shown associations with 

other HLA alleles such as DR1-DQw1 (Papiha, 1992), DR2 (Elkon, 1983) and B50 (Cotch, 

1995).  Nevertheless, there is no consistent associations identified with particular HLA 

alleles and this may indicate that they make only a small contribution to the development of 

WG. 

 

 

1.1.9.4.2 Non-HLA genes 

 

The constitutive expression of PR3 on resting neutrophils in circulation is genetically 

determined (Schreiber, 2003).  Higher constitutive expression of PR3 on neutrophils is a 

risk factor for WG (Witko-Sarsat, 1999).  The (A-564G) polymorphism in the PR3 

promoter region that is located within a putative Sp-1 transcription-factor binding site 

shows association with WG (Gencik, 2000).  This polymorphism potentially leads to 

increased PR3 expression (Jagiello, 2005).  Alpha 1-antitrypsin (α1-AT) is a natural 

inhibitor of PR3, and decreased levels of functional α1-AT have been found in WG patients 

(Esnault, 1997).  A deficiency in α1-AT in WG has been associated with a poor prognosis, 

greater organ involvement and increased mortality (Spegalmark, 1995). 

 

Polymorphisms within Fc receptor (FcγR) genes also seem to play a role in the 

manifestation of WG (Dijstelbloem, 1999).  There are three subgroups of these receptors: 
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FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16).  Neutrophils typically express FcγRIIa 

and FcγRIIIb whereas monocytes/macrophages express FcγRIa, FcγRII and FcγRIIIa.  

These receptors bind the Fc portion of antibodies.  They have a wide range of functions and 

are involved in leukocyte degranulation, cytokine and chemokine production, generation of 

oxidative burst, activation of complement receptor-mediated phagocytosis and antibody-

dependent cellular cytotoxicity (ADCC) (Huang, 2001).  One particular polymorphism in 

the FcγRIIa gene, R131H, alters the ability of the receptor to bind IgG2 (Salmon, 1992; 

Parren, 1992).  Analysis of WG patients showed that those homozygous for the R131H 

polymorphism had a greater incidence of disease relapse (Edberg, 1997).  Two common 

allelic forms of FcγRIIIb exist, NA1 and NA2.  It has been reported that these have quite 

different effects on cell activation; NA1 induces a greater FcγR-mediated phagocytic 

response (Salmon, 1995).  The NA1 allele has been found at a higher frequency in WG 

patients that also suffered from kidney disease. 

 

TNF-α, LT-α, IL1-α, IL1-β and INF-γ are well-characterised proinflammatory cytokines 

and have been demonstrated to be critical in granuloma formation (Huang, 2001).  

Polymorphism within the TNF-α promoter region (-238G/A allele) and the INF-γ intron 1 

polymorphism (+874 T/T allele) have also been linked with susceptibility to WG 

(Spriewald, 2005).  The -238G/A allele in the TNF-α promoter has been associated with 

the production of higher levels of the cytokine (Reich, 2002).  The INF-γ T/T allele is 

linked with a high expressor phenotype (Pravica, 2000). 

 

Other genes that have polymorphisms associated with WG are IL-10 (Zhou, 2000), CTLA-

4 (Giscombe, 2002) and IL-1β (Huang, 2000). 
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1.1.9.5  Pathogenesis of WG  

 

WG is a complex disease requiring environmental factors as well as a genetically 

susceptible background for it to develop.  Many cell types from both the innate and 

adaptive immune response are involved in the development of WG.  

   

 

1.1.9.5.1 The role of T cells in WG 

 

Infiltrates of activated CD4+ and CD8+ T cells are found in granulomatous lesions and the 

periphery of WG patients (Schlesier, 1995; Mueller, 2000).  T cells (CD4+, HLA DR+) 

isolated from active WG patients show increase proliferation, TNF-α and INF-γ production 

in response to non-specific stimulation (anti-CD3) when compared with healthy controls 

(Ludviksson, 1998).  This and other studies (Mueller, 2000) support the fact that Th1 

cytokines are dominant in WG.  INF-γ causes endothelial cells (EC) to increase expression 

of MHC class II molecules and causes the upregulation of adhesion molecules such as 

ICAM-1 and VCAM-1 (Huang, 2001).  This upregulation of adhesion molecules allows for 

further accumulation of immune cells within vasculitic lesions.    

 

T cells isolated from the peripheral blood of WG patients show responsiveness to isolated 

PR3 (Van der Woude, 1990; Brouwer, 1994).  Antigen-specific T cells can provide help to 

B cells and induce affinity maturation and the production of high affinity antibodies.  In 

WG, there is evidence that ANCAs are high affinity antibodies of the IgG subclass 

indicating that both affinity maturation and Ig class switching have taken place (Jayne, 

1991; Mulder, 1994).  Antigen-specific T cells have also been found to remain present in 
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the periphery of patients during remission (King, 1998).  These T cells may have an 

important role in the tendency of patients to suffer from disease relapse.   

 

 

1.1.9.5.2  Neutrophil activation 

 

TNF-α released from activated T cells and macrophages can stimulate the translocation of 

PR3 from the cytosol to the surface of neutrophils (Fig 1.07).  Subsequently, ANCA-IgG 

binds with the Fab regions to PR3 and the Fc region can bind with FcγR either on the same 

cell, known as the Kurlander phenomenon, or on neighbouring neutrophils (Reumaux, 

2004).  This in turn, enhances the activation of the neutrophil and causes the release of 

reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hypochlorous acid 

(HOCl) and hydroxyl radicals (OH).  PR3, MPO and elastase are also released.  All of these 

molecules are capable of causing apoptosis in endothelial cells (Varani, 1989; Yang, 1996).  

In addition, due to PR3 and MPO cationic nature these enzymes can non-covalently bind to 

the anionic surface of endothelial cells (EC).  This facilitates the binding of ANCA and the 

triggering of EC damage through ADCC (Savage, 1993; Varagunam, 1992).  Activated 

neutrophils also release cytokines and chemokines that attract more cells to infiltrate the 

site of inflammation, thereby sustaining the disease process. 

 

In normal circumstances following activation of neutrophils, they undergo apoptosis and 

are cleared by macrophages (Zimmerman, 1992; Savill, 1992).  In WG, there is evidence of 

dysregulated and accelerated apoptosis of neutrophils that are initially primed with TNF-α 

and then incubated with ANCAs (Harper, 2000).  These apoptotic neutrophils show no 

expression of surface phosphatidylserine, an important ‘eat-me’ signal to scavenging 
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phagocytes.  Failure to clear these apoptotic neutrophils may lead to secondary necrosis and 

further tissue damage.  Apoptotic neutrophils that are opsonised by IgG stimulate the 

production of TNF-α by phagocytosing macrophages (Manfredi, 1998).  As PR3 is 

expressed on the surface of neutrophils (Csernok, 1994), the opsonisation of these cells by 

ANCA may increase the production of proinflammatory cytokines to be released from 

macrophages, thus producing further tissue damage.   
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Fig 1.07 The role of ANCA in the pathogenesis of WG (Adapted from Reumaux, 2004; 

Langford, 1999).  (1) Local infection can cause the release of cytokines from T cells 

allowing activation of endothelial cells (EC) and priming of circulating neutrophils.  (2) 

TNF-α has a potent effect on neutrophils causing relocalisation of MPO and PR3 from 

intracellular stores to the cell surface and the upregulation of integrins.  (3) Individuals who 

may have a polyclonal T and B cell response to SAgs or defects in apoptotic cell clearance 

may be susceptible to the production of ANCA.  (4) Binding of ANCAs to neutrophils 

causes further activation and results in degranulation and the release of PR3, MPO and 

ROS.  Following release PR3 may bind to the surface of EC, causing ANCA to also bind to 

the surface of ECs leading to enhanced adhesion molecule and cytokine expression 

resulting in increased neutrophil recruitment.  The culmination of these processes is the 

development of a self-propagating immune response that damages to the ECs. 
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1.2.1  Polymerase chain reaction (PCR) 

 

The idea of producing millions of copies of a specific DNA sequence was first proposed in 

1971 (Kleppe, 1971).  However, it took until 1985 (Saiki, 1985) for the first polymerase 

chain reaction (PCR) to be developed for β-globin.  At this time, there were no 

thermostable DNA polymerases available; therefore, fresh enzyme needed to be added 

before each extension step.  Water baths were used to cycle through the different reaction 

temperatures, as automated thermocyclers were not available.  In 1988, the first use of a 

thermostable DNA polymerase in PCR was reported (Saiki, 1988), and soon thereafter 

automated thermocyclers were developed.  Both of these innovations had a major impact on 

the practicality and cost of performing PCR 

 

The most recent advance in PCR technology was the development of Real-time PCR or 

kinetic PCR (Higuchi, 1992; Higuchi, 1993).  Work carried out by Higuchi et al laid the 

foundations for Real-time PCR, however it is only in recent years that this technology has 

become mainstream.  Real-time PCR is the monitoring of amplicon accumulation during 

the exponential phase of PCR using a fluorescent reporter.  Detection of a fluorescent 

signal, the point at which fluorescence starts to rise above the background noise is called 

the crossing point (Cp) and can often be referred to as the cycle threshold (Ct).  The Cp is 

proportional to the initial starting copy number of the target sequence (Higuchi, 1993).  Due 

to this relationship between the Cp and initial starting concentration Real-time PCR can be 

used to accurately quantify target sequences, which has a wide range of applications.  

Advantages of using Real-time PCR include rapid cycling times (~30 mins for 35 cycles), 

low risk of cross-contamination because of a closed tube system, no post-PCR 
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manipulation, high sensitivity (~3 pg genomic DNA (gDNA)), amplicon detection across a 

wide range (10-1010 copies) and accurate quantification (Logan, 2004).  Some of the 

current disadvantages are the high cost of equipment, a high level of technical skill is 

necessary and there is limited capacity for performing multiplex PCR (Logan, 2004). 

 

 

1.2.2  Real-time PCR platforms 

 

In the late 1990’s, the first commercial Real-time PCR machines became available.  The 

first of these was the ABI Prism 7700 sequence detection system (Applied Biosystems), 

which was closely followed by the LightCycler (Roche Diagnostics) (Wittwer, 1997).  Both 

companies have released newer, improved versions of these machines and several other 

companies have entered into the Real-time PCR market with their own instruments such as 

the Mx4000 (Stratagene), iCycler (BioRad) and the DNA engine opticon2 (MJ Research) 

among others.  While there are some major differences in how each machine operates, they 

all consist of a thermocycler, optics for fluorescence excitation and emission acquisition 

and a computer with software for data analysis. 

 

 

1.2.2.1  The LightCycler 

 

The LightCycler instrument was the first machine to allow ultra-rapid thermocycling 

(Wittwer, 1997).  This was achieved through two methods.  Firstly, the LightCycler system 

dispensed with the use of a thermal heating block to cycle through temperatures during 
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PCR, instead the machine uses air to heat and cool the PCR reaction components.  The air 

is warmed by passing it through a heating coil in a thermal chamber, which allows for very 

rapid temperature transitions rates of up to 20oC/second (Fig 1.08).  Secondly, the PCR 

occurs in a specially designed borosilicate glass capillary that has a maximum volume of 20 

µl.  The capillaries provide a large surface-to-volume ratio that allows rapid equilibrium 

between the air in the thermal chamber and the PCR components.  The combination of 

these two innovations allows for a 30-40 cycle PCR to be performed in 20-30 mins.  The 

LightCycler also has an inbuilt optical unit comprising of a light emitting diode (LED) and 

3 photodetection diodes.  The photodetection diodes are set to 3 different wavelengths: 530 

nm (F1 channel), 640 nm (F2 channel) and 710 nm (F3 channel).  These different 

wavelength channels can be used to detect fluorescence from different fluorescent dyes 

used during Real-time PCR.  The LightCycler is compatible with all the major fluorescent 

chemistries used to detect amplicon accumulation during Real-time PCR as discussed 

below. 
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Fig 1.08 Schematic diagram of the LightCycler Real-time PCR thermocycler 

(LightCycler brochure, 2001). 
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1.2.3  Amplicon detection 

 

As mentioned previously Real-time PCR is based on the ability to monitor the 

amplification of PCR product as it is being generated by the polymerase enzyme.  To do 

this a fluorescent reporter system is incorporated into the PCR reaction.  There are many 

different reporter systems on the market, nonetheless they all fall into one of two 

categories, non-specific double stranded (ds) DNA binding dyes or fluorescent-labelled 

sequence specific probes (Lee, 2004). 

 

 

1.2.3.1  Non-specific dsDNA binding dyes 

 

Ethidium bromide (EtBr) is the most common nucleic acid binding dye used in molecular 

biology, with its conventional use being to stain agarose gels used during traditional PCR 

product analysis.  In 1992, Higuchi et al reported the use of EtBr to monitor the 

amplification of PCR product in a closed tube format (Higuchi, 1992).  In 1993, Higuchi et 

al coined the term “kinetic PCR” after they demonstrated that fluorescence intensity during 

thermocycling was proportional to the starting copy numbers of the target sequence 

(Higuchi, 1993).  In recent years, the minor groove binding dye SYBR Green 1 (Morrison, 

1997) has clearly become the favourite of the non-specific dsDNA binding dyes with many 

publications reporting its use (Vandenbroucke, 2001; Gundry, 2002).  The SYBR dyes 

typically increase in fluorescence by 20 to 100 fold when bound to dsDNA and have a 

similar emission spectrum to that of fluorescein (approx 520 nm) (Lee, 2004).  

Fluorescence is usually monitored at the end of the extension phase in a typical SYBR 
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Green 1 Real-time PCR experiment, as it is at this point that there is the maximum amount 

of dsDNA present for that cycle number (Fig 1.09). 

 

The use of non-specific binding dyes can be favoured by many researchers as they are 

widely available, cheap and very little optimisation is required to transfer an efficient 

traditional PCR over to a Real-time format.  Whilst generic dyes can be used for 

quantitative Real-time PCR, there are some limitations due to their non-specific DNA 

binding action.  Any PCR artefact formed, such as primer-dimers, when performing Sybr 

Green 1 quantitative Real-time PCR will also be detected due to the non-specific nature of 

the dye.  This could lead to misinterpretation of the data.  However, there are further 

optimisation strategies that can be employed to help avoid this, such as performing a 

touchdown PCR, which will help reduce the production of non-specific amplicons in the 

early stages of the PCR.  Another method to improve the use of SYBR Green 1 for 

quantification is to establish the Tm of both the specific amplicon and PCR artefacts using 

melting-curve analysis.  If the Tm of the artefact is significantly lower than that of the 

specific amplicon then fluorescence readings can be acquired at a temperature above that of 

the Tm for the artefact.  Therefore, any increase in fluorescence is now specific to the 

amplicon of interest (Ball, 2003; Morrison, 1998).  Multiplexed quantification is not 

possible as there is no way to differentiate the two products from each other, as 

fluorescence from both will be detected in the same channel. 
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Fig 1.09 SYBR Green 1 detection.  SYBR Green 1 cannot bind to ssDNA (A) but as Taq 

polymerase extends the primer, SYBR Green 1 can bind to the minor groove of the duplex 

and its fluorescence emission is enhanced (B). 

 

 

1.2.3.2 Specific DNA binding probes 

 

There are many different probe chemistries available on the market today, each with a 

slight variation of a common theme: an oligo-nucleotide that is coupled to a fluorophore.  

When the probe/probes bind to their complementary target sequence a fluorescent event can 

be monitored which is directly related to the amount of amplicon present at that cycle.  

There are three commonly used probe types; hydrolysis probes (Fig1.10), molecular 

beacons (Fig 1.11) and dual hybridisation probes (Fig1.12).  As probes are sequence 

specific they avoid the problems of non-specific detection of PCR artefacts associated with 
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the use of Sybr Green 1.  Nevertheless, the use of probes increases the cost of each test and 

each probe must be carefully designed otherwise it may not work efficiently. 

 

 

1.2.3.3  Fluorescence Resonance Energy Transfer (FRET) 

 

Fluorescence resonance energy transfer (FRET) is a spectroscopic process where energy is 

passed between two molecules up to 10-100 Å apart which have overlapping emission and 

absorption spectra (Clegg, 1992).  The mode of action of the commonly used probes is 

based on the principles of FRET.  For some probe types such as the 5’ hydrolysis probes 

and molecular beacons, FRET occurs between a fluorogenic label and a dark or ‘black-

hole’ non-fluorescent quencher, which dissipates the energy as heat rather than 

fluorescence (Ginzinger, 2002).  Other probes, such as hybridisation probes, use FRET to 

transfer the energy from one fluorogenic dye to another which then releases a longer 

wavelength of light that is then detected by the instrument (Wittwer, 1997). 

 

 

1.2.3.4  Hydrolysis probes 

 

The hydrolysis probes are often more commonly named TaqMan probes, and while they 

work with many Real-time platforms, these probes seem to have found their home on the 

ABI Prism 7700 sequence detection system (Applied Biosystems).  These probes utilise the 

fact that Taq (or several other polymerase enzymes) have 5’� 3’ exonuclease activity 

(Gelfand, 1989).  The 5’ end of the probe is labelled with a reporter dye (FAM, TET, JOE, 
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HEX or VIC) and the 3’ end has a covalently linked quencher (TAMRA, DABCYL).  The 

proximity of both molecules to each other when attached to the probe allows FRET to 

occur, however the energy is dissipated as heat rather than fluorescence by the quencher.  

When the probe binds to the target sequence at the annealing phase, Taq can now cleave the 

5’ reporter dye from the probe, which now releases it from the effects of the quencher and 

fluorescence, can be emitted and recorded by the instrument (Fig 1.10).  A drawback when 

using this type of probe is that in order for the probe to remain annealed to its specific 

sequence the extension temperature must be adjusted.  Therefore it is common to have a 

combined annealing and extension step at 60-62°C, this ensures that the probe remains 

hybridised so it can be cleaved by the 5’-3’ exonuclease activity of Taq and Tth 

polymerases.  However, the sub-optimal extension temperature affects the enzymes 

processivity and is therefore not suitable for longer amplicons (Bustin, 2000).  These 

probes have been used for a wide range of applications such as gene copy number 

quantification (Aarskog, 2000), virus quantification (Quinlivan, 2005; Kawai, 1999), 

quantification of cytokine mRNA expressed in Hodgkin’s lymphoma (Malec, 2004) and 

analysis of DNA and RNA extracted from archival material (Lehmann, 2001; Godfrey 

2000) to name but a few. 
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Fig 1.10 Hydrolysis probe detection.  When the probe is intact the fluorphore is quenched 

(A), the 5’-3’ exonuclease activity of Taq cleaves the probe releasing the reporter dye into 

solution where it is no longer quenched (B). 

 

 

1.2.3.5  Molecular beacons 

 

The molecular beacons (Livak, 1995) mode of action is based on a conformational change, 

from hairpin loop to linear structure, when it is bound to its specific sequence.  The 

linearisation of the probe causes a reporter and quencher dye to be separated from each 

other so that fluorescence can be emitted from the reporter (Tyagi, 1996) (Fig 1.11).  The 

major drawback in using molecular beacons is that the probes are complex to design.  If the 

stem region is not optimal, the probe may form alternative conformations, which may not 

place the fluorophore and quencher in close proximity to each other.  This can result in a 

proportion of the free probe not being quenched, which leads to a high background signal 
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(Bustin, 2000).  If the stem region has too high of a binding affinity then this may interfere 

with hybridisation of the probe to its target sequence resulting in inefficient detection of the 

amplicon. 

 
 
 

 

 

Fig 1.11 Molecular beacon detection. When the probe is not hybridised to its specific 

sequence it forms a stem-loop conformation that causes the fluorophore to be quenched 

(A), binding of the probe causes a conformational change that separates the fluorophore and 

quencher and allows emission of fluorescence (B). 
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1.2.3.6  Dual hybridisation probes 

 

This method utilises two independent probes, which maximises the assays specificity 

(Wittwer, 1997).  One probe is labelled on its 3’ end with a donor dye (anchor probe), and 

the second probe is labelled with an acceptor dye at its 5’ end (detector probe) (Fig 1.12).  

Using this arrangement, as the anchor and detector probes anneal to their specific sequence 

the two dyes are brought into close proximity to each other allowing FRET to occur.  The 

detector probes 3’ end is usually blocked with a phosphate group to prevent it from being 

extended by Taq polymerase (Landt, 2001).  These probes have few draw backs as they are 

easy to design, relatively easy to multiplex and as the probe is not hydrolysed they can be 

used for melt curve analysis, which is particularly applicable to mutation detection.  

However, one of the drawbacks of using these probes is that amplicons must be bigger than 

if only a single probe system is used.  This can limit their use in applications that involves 

fragmented nucleic acids, such as that which has been extracted from archival tissue 

samples, as shorter amplicons work much more efficiently in these circumstances 

(Lehmann, 2001). 
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Fig 1.12 Hybridisation probe detection.  When both probes are free in solution FRET 

cannot occur as the two dyes are apart (A), when both probes hybridise to there target 

sequence the dyes are brought into close proximity that allows FRET to occur (B). 

 

 

1.2.4  Mutation detection by Real-Time PCR 

 

Mutations can be large rearrangements of genetic material such as gene insertions/deletions 

or small variations such as small insertions/deletions (a couple of base pairs (bp) or point 

mutations.  Small genetic variations are usually referred to as single nucleotide 

polymorphisms (SNPs) and are the most common type of mutation, occurring 

approximately every 1000 nucleotides (Sachidanandam, 2001; Venter, 2001).  The majority 

of these are found in the non-coding regions of the genome and are thought to be of no 

significance, but can be used as genomic markers in population genetics.  A SNP in the 
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coding region of a gene may results in an altered protein and detection of these is important 

in many monogenetic diseases such as cystic fibrosis (Kerem, 1989).   

 

DNA sequencing will remain the gold standard for characterisation of unknown 

sequences/mutations however its use for rapid mutation detection is quite poor.  Since the 

development of PCR (Mullis, 1987; Saiki, 1985), many variations such as restriction 

fragment length polymorphism (RFLP) PCR and amplification refractory mutation system 

(ARMS) PCR (Newton, 1989) have been developed for use in mutation detection.  The 

majority of these techniques are laborious, slow and expensive.  Real-time PCR provides an 

improvement on all of the conventional techniques in terms of throughput, flexibility and 

ease of analysis. 

 

The LightCycler when used in conjunction with hybridisation probes allows for mutation 

detection by performing melting curve analysis directly after the amplification step 

(Wittwer, 1997).  During melting curve analysis fluorescence is continuously monitored as 

the temperature is slowly increased (0.1 ºC/sec).  At a specific temperature, the detector 

probe will begin to dissociate (“melt”) from its target sequence.  The melt temperature 

(Tm) is the temperature at which 50% of the probe is dissociated from the target sequence.  

As the temperature approaches the Tm of the detector probe a decrease in the level of 

FRET will be observed as a melting curve.  When a mutation occurs in the target sequence, 

this has a destabilising effect on the detector probe and it has a lower Tm than that of the 

perfectly matched probe (Fig 1.13 A, B).  The LightCycler software displays the melting 

curves as melting peaks by plotting the negative derivative of fluorescence (-dF) against the 
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negative derivative of temperature (-dT) (Fig 1.13 C) and this allows easy discrimination of 

wildtype, mutant and heterozygote genotypes (Lay, 1997). 

 

 

1.2.4.1  Dual hybridisation probe design 

 

The detector probe is designed to span the site of the possible mutation and is typically 15-

30 bases in length.  The anchor probe should have a Tm 5-10oC higher than the detector 

probe this ensures that the detector probe “melts” first (Landt, 2001).  Consequently, the 

drop in FRET is due to the detector probe, which allows the presence or absence of a 

mutation to be determined.  If the detector probe is designed so that the mutation is 

approximately at the centre of the probe this has the greatest destabilising effect on the 

probe than if it is at either end (Landt, 2001).  A larger destabilising effect on the probes 

Tm means the melting curve peaks are further apart, allowing the identification of wildtype 

and mutant genotypes to be made easier (Bernard, 2001). 
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Fig 1.13 Mutation detection using dual hybridisation probes.  Absence of a point 

mutation allows for perfect hybridisation of the detector probe (A), presence of a mutation 

causes incomplete hybridisation of the detector probe (B).  The matched probe (A:T) 

requires a higher melting temperature than mismatched (A:G) probe (C). Negative 

derivative of fluorescence (-dF), Negative derivative of temperature (-dT). 
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1.2.4.2  Multiplex mutation detection on the LightCycler 

 

Multiplex PCR is the process of generating more than one amplicon at a time.  This 

increases the information obtained from a single PCR and helps to reduce the cost of 

analysis.  Multiplex mutation detection can be performed on the LightCycler by using two 

of the instruments detection channels.  The F2 and F3 channels can be used to detect 

fluorescence from the LCRed640 and LCRed705 dyes respectively.  Using two different set 

of hybridisation probes each specific for a single mutation and labelled with one of the two 

LightCycler dyes it is possible to type at least two different mutations per sample 

(Aslanidis, 1999; Bernard, 1998). 

 

 

1.2.4.3  Other detection formats for mutation detection 

 

The other common detection systems can all be used for mutation analysis.  Mutation 

detection can be performed using Sybr Green 1 (Wittwer, 1997; Ririe, 1997).  However the 

use of Sybr green 1 is a low-resolution method, as a single bp change will have only a small 

impact on the Tm of amplicon that maybe a couple of hundred bp in length.  A newer dye 

called LCGreen 1 has been specifically developed for use in mutation detection (Wittwer, 

2003).  The one advantage of using the intercalating dyes is that any mutation within the 

amplicon can be detected and therefore used for mutation scanning (Wittwer, 2003).  By 

using high-resolution melting techniques with customised equipment, it is possible to detect 

single-base heterozygotes in products up to 1000 base pairs in length (Wittwer, 2004). 
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Hydrolysis probes, because of their mode of action, cannot be used to perform melting 

curve analysis as the probe is consumed during the amplification stages.  Therefore, to use 

this system for mutation detection it is necessary to design two probes, one that will bind to 

the wildtype and another for the mutated sequence, each of which is labelled with a 

different reporter dye (Edwards, 2004).  Mismatches between the probe and target sequence 

reduce the efficiency of binding and as a result Taq does not cleave the probe and no 

reporter dye is released.  Genotypes can be assessed based on which reporter dye is released 

during amplification.  Molecular beacons have also been adapted to SNP detection assays 

(Tyagi, 1998). 

 

 

1.2.5  Quantitative Real-Time PCR 

 

Quantification of nucleic acids has many applications such as in monitoring gene 

amplification in tumours, viral quantification and gene expression analysis between normal 

and disease states.  Since its inception PCR would seem to have been the best method for 

quantitative analysis as it has a sensitivity 5 orders of magnitude greater than the best 

blotting techniques (Rasmussen, 2001).  However, the exponential amplification of the 

target sequence is not ideally suited to quantification, as small differences in amplification 

efficiency from sample to sample can result in huge differences after 35-40 PCR cycles.  

Additionally, reagent limitations or the production of pyrophosphate molecules leads to a 

decrease in amplicon synthesis and the PCR enters the “plateau phase” (Fig 1.14).  In the 

plateau phase, the PCR is no longer generating product at an exponential rate, and some 
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reactions will enter this stage earlier than others and therefore generate less amplicon.  It is 

this reason, which makes end-point quantification so unreliable (Ginzinger, 2002). 

 

Since Higuchi et al (1992) showed that it was possible to measure the kinetics of a PCR by 

monitoring product accumulation from cycle to cycle in Real-time, allowing truly 

quantitative PCR to be performed.  From the simple addition of ethidium bromide to a PCR 

mix to the use of more complex and specific probe technologies Real-time quantitative 

PCR has become a fast growing field with many applications in biotechnology and 

molecular medicine. 

 

 

 

 

Fig 1.14 Quantitative Real-time PCR amplification curve.  During amplification there is 

an initial lag phase (A) followed by the exponential phase (B) and lastly the plateau phase 

(C). 
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1.2.5.1  Dynamic range of Real-time PCR 

 

The dynamic range of a Real-time quantitative PCR is between 10 and 1010 copies of initial 

template (Saunders, 2004).  The upper limit is set by the need to establish a base-line level 

of fluorescence before amplicon accumulation is detected, since after this point it is not 

possible to accurately determine the Cp (Saunders, 2004).  The lower limit for accurate 

quantification is determined by the sensitivity of the PCR, which is often influenced by the 

reaction components, so careful optimisation can enhance the sensitivity of the PCR.  Pre-

amplification of the target sequence using external primers, nested PCR, has been used by 

some investigators to enhance the sensitivity of the assay (Brechtbuehl, 2001).  However, 

the use of nested PCR cancels out many of the benefits of Real-time particularly the 

avoidance of possible cross-contamination, as PCR tubes must be opened. 

 

 

1.2.5.2  Real-time PCR efficiency 

 

One of the most crucial factors in carrying out quantification is that the efficiency of the 

reaction is similar between control/standards and the actual test samples.  The efficiency of 

PCR can be estimated from the slope of the Cp plotted against log of concentration.  The 

slope reflects the number of cycles it takes to increase the amplicon number by 1 log value 

(Saunders, 2004).  This relationship should be linear with a slope of approximately -3.33.  

Efficiency can be calculated from the following equation: E = 10-1/slope (Rasmussen, 2001).  

A reaction that is 100% efficient (perfect doubling of amplicon per cycle) will give a value 

of 2 from this equation (Bernard, 2002).  Therefore, values less than 2 indicate that the 
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reaction is not operating at 100% efficiency.  Efficiency can be improved by careful 

optimisation of the PCR parameters such as primer concentration, annealing temperature, 

amplicon length and so on.  PCRs with low efficiency (E = 1.5) can be used for 

quantification, however, this can have an effect on the dynamic range of detection and 

samples with low copy numbers may be missed (Saunders, 2004). 

 

 

1.2.5.3  Gene expression analysis by Real-time PCR 

 

The messenger RNA (mRNA) content of a cell is a good indicator of the genes that a cell is 

expressing at that particular time.  In response to environmental changes, a cell may adjust 

the mRNA copy numbers as part of a complex regulation mechanism.  This has particular 

significance with many different diseases, as they are often associated with changes at the 

mRNA level.  There are five common methods for detecting and quantifying mRNA 

transcripts: northern blotting, in situ hybridisation, RNAse protection assay (Hod, 1992), 

micro-array analysis and reverse transcription (RT) PCR (Simpson, 1988; Vrieling, 1988).  

The first three methods are quite labour intensive and have a comparatively low sensitivity.  

Micro-array analysis is still prohibitively expensive for routine gene expression analysis 

such as in monitoring a patient’s response to chemotherapy.  RT-PCR is the most sensitive 

and flexible of the quantification methods (Wang, 1999) and is suitable for routine analysis.  

As RNA cannot directly act as a template for PCR, it is first necessary to generate a cDNA 

copy of the RNA that can then be amplified using PCR.  Until the arrival of Real-time 

PCR, there has been a problem with the quantification of mRNA transcripts, as end-point 

PCR does not reflect the initial starting copy number of the target sequence.  A real-time 
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approach to RT-PCR avoids many of the problems associated with conventional 

quantitative protocols and its sensitivity, specificity and wide dynamic range has made it 

the method of choice when quantifying steady-state mRNA levels (Bustin, 2000). 

 

 

1.2.5.4  Relative quantification 

 

Relative quantification determines the changes in steady-state mRNA levels of a gene in 

comparison to an internal control/reference RNA (Fink, 1998).  The reference is usually 

described to as a housekeeping gene.  Housekeeping genes are genes that should remain at 

a constant level within a cell regardless of environmental/experimental factors.  

Amplification of the housekeeping gene can occur in the same reaction as the target 

sequence (multiplex) or in a separate tube, either way all samples are expressed as an X-

fold difference relative to the housekeeping gene.  This form of quantification is 

independent of RNA/DNA concentration added to the RT-PCR/PCR.  Nonetheless, there 

are some problems associated with this type of quantification.  The major problem is due to 

the difficulty in finding a suitable reference gene whose expression remains constant under 

experimental conditions (Bustin, 2004).  It has been recommended that the expression of at 

least 10 reference genes should be analysed along with target gene mRNA in order to get 

accurate relative quantification data (Vandesompele, 2002).  If cohort samples sizes are 

even of a modest size this then becomes quite a large and demanding task.  Some common 

reference genes are glyceraldehyde 3-phosphate dehydrogenase (GAPDH), TATA-box 

binding protein (TBP), hypoxyxanthine-guanine phosphoribosyltransferase (HPRT), β-2 

microglobulin (β2M), phorphobilogen deaminase (PBGD), and 18S/28S ribosomal RNAs 
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to name but a few.  Incidentally, while GAPDH has been a widely used reference gene for 

many years, its suitability as a reference gene is questionable.  There is an overwhelming 

amount of evidence indicating that GAPDH is an unsuitable reference gene.  GAPDH 

mRNA concentrations can vary, between individuals (up to 5 orders of magnitude) (Bustin, 

1999), during pregnancy (Cale, 1997), during the cell cycle (Mansur, 1993) and it is 

upregulated in certain cancers (Ripple, 1995).  GAPDH transcription can also be induced 

by hypoxia (Zhong, 1999), calcium ionophore A23187 (Chao, 1990), insulin (Barroso, 

1999) and apoptosis (Ishitani, 1997).  Therefore the use of GAPDH as an internal control 

for Real-time quantitative should be discouraged (Bustin, 2000). 

 

 

1.2.5.5  Absolute quantification 

 

The other option for Real-time quantification is absolute quantification, which involves the 

determination of the exact copy number of target sequences within a quantity of sample.  It 

provides a more accurate and reliable, albeit more labour intensive method for 

quantification of nucleic acids (Ke, 2000).  A series of standards are generated and a plot of 

Cp verses log concentration allows the Cp of the unknown samples to be compared to the 

standards.  Standard curves can be generated in a number of ways.  Purified PCR product or 

synthetic oligonucleotides can be used to generate standard curves.  Sometimes there can be 

problems with reamplification and this approach may only be suitable for the quantification 

of short amplicons (Pfaffl, 2005).  Recombinant DNA can also be used to generate standard 

curves; these are very stable and produce very reproducible results (Pfaffl, 2001).  The one 

drawback is, when used for mRNA quantification this type of standard is not subjected to 



 88 
 

the RT phase of the assay, therefore differences in RT efficiency will not be reflected in the 

standard curve.  A third method for generating standards is to use recombinant RNA; these 

standards will reflect all stages of an RT-PCR reaction.  Nevertheless they are difficult to 

produce and purify, are very labile and the resulting PCR is less efficient (Pfaffl, 2001).  

The results are usually then expressed as copy number per denominator, which could be per 

mg tissue or per µg total RNA and so on. 

 

Real-time PCR is an adaptable, sensitive and rapid technique for the quantification of 

nucleic acids.  It also provides a platform for rapid SNP detection using post-PCR melting 

curve analysis.  In the last couple of years the technology has become an integral part of 

many diagnostic and research laboratories, which should serve to drive the technology 

forward, by improving the instruments, the detection chemistries and reduce the cost of 

analysis. 
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2.1.1  INTRODUCTION 

 

2.1.1.1  Cystic Fibrosis (CF) 

 

Cystic fibrosis (CF) is the most common recessively inherited lethal genetic disease of 

Caucasians, with a prevalence of 1 in 2500 (Collins, 1992; Mateu, 2002).  The disease also 

has an astounding carrier frequency of 1 in 25 (worldwide) (Hutchison, 2001) and in 

Ireland, the carrier frequency has been reported to be as high as 1 in 19 (McQuaid, 2000).    

 

 

2.1.1.2  Diagnosis of CF 

 

 
In 1953, it was demonstrated that children with CF had excessive salt in their sweat 

(DiSant’Agnese, 1953).  This led to the measuring of sodium (Na+) and chloride (Cl-) levels 

in the sweat as a diagnostic standard for the disease (Gibson, 1959).  The normal levels of 

NaCl in sweat is approximately 15-40 mM, people with CF may have NaCl levels >100 

mM (Wine, 2001).  With the advent of molecular techniques and the identification of the 

gene (CFTR) involved in CF, the combination of two CFTR mutations and an abnormal 

concentration of sweat electrolytes is generally accepted as sufficient for diagnosis (Stern, 

1997) 
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2.1.1.3  Clinical features of CF 

 

The main pathological hallmark of CF is the build up of thick viscous mucus in the airways 

(Wine, 1995), which is very significant, as the usual cause (>90%) of death in CF is 

respiratory failure (Davies, 1998).  The build up of the mucus in the lungs helps to initiate a 

cycle of chronic infection and inflammation.  The lungs become infected in early childhood 

and eventually become damaged and scarred.  Colonisation of the lungs generally follows a 

similar pattern, beginning with Staphylococcus aureus and Haemophilus influenzae in early 

childhood and ends with Pseudomonas aeruginosa in adolescence (Hutchison, 1999).  

Pseudomonas aeroginosa can be isolated from 80-90% of adult CF lungs (Hutchison, 

1999).  Individuals that have avoided colonisation, with the opportunistic pathogen, have 

survival rate twice that of patients who have been colonised (Hutchison, 1999).  The main 

cause of damage occurs when recruited neutrophils, whose number may be a million fold 

higher than in normal lungs, die and release a protease called elastase (Bradbury, 2001).  

The elastase destroys elastic fibres in the lung, which over time reduces the lungs air 

capacity ultimately leading to respiratory failure. 

 

The gastrointestinal tract is also involved in most patients; approximately 85% (Collins, 

1992) show pancreatic insufficiency caused by obstructed pancreatic ducts resulting in 

destruction of the pancreas.  Nearly 10% of newborns with CF suffer with intestinal 

obstruction (meconium ileus), which can be fatal if left untreated (Rowe, 2005).  Men with 

CF are often infertile due to obstruction of the vas deferens in utero leading to a condition 

known as congenital bilateral absence of the vas deferens (CBAVD).  There is also a 

significant increase in the incidence of liver disease and overt cirrhosis in patients with CF 
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who also carry a homozygous or compound heterozygous mutation in the protein mannose-

binding lectin (Gabolde, 2001).  An increased risk of digestive tract cancers has also been 

reported in CF patients (Neglia, 1995).  

  

 

2.1.1.4  Treatment of CF 

 

The treatment of CF includes chest percussion to help clear mucus build-up in the lungs, 

antibiotics to control bacterial infection, pancreatic enzyme supplements to compensate for 

the damage caused to the pancreas and dietary supplements to help patients meet their 

nutritional requirements.  This combination of therapy has greatly improved the life 

expectancy of an individual diagnosed with CF from approximately 1 year in 1930 to 30-32 

years today (Geddes, 1998; Bradbury, 2001).  Lung transplantation is also now becoming a 

common treatment for suitable patients with severe damage to the airways.  Other 

experimental treatments include delivery of elastase inhibitors (either recombinant or 

synthetic forms) to the lungs, which may help to reduce damage caused to the lungs during 

inflammation (Bradbury, 2001).  

 

 

2.1.1.5  Cystic fibrosis transmembrane conductance regulator (CFTR) 

 

In 1989 the CF gene was identified, it was first mapped to chromosome 7q31 using linkage 

analysis (Riordan, 1989).  Then by using chromosome-walking techniques, a candidate 

gene was identified (Rommens, 1989).  The CF gene itself is quite large at 250,000 bp 
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(Kerem, 1989) and contains 27 exons.  The CF gene’s protein product was named the cystic 

fibrosis transmembrane conductance regulator (CFTR) (Riordan, 1989).  The CFTR is an 

integral membrane protein, 1480 amino acids in length that contains a glycosylation site.  

The CFTR is a member of the ABC (ATP-Binding Cassette) superfamily of transporters 

that transports chloride ions (Cl-) across the plasma membrane (Riordan, 1989).  As the 

movement of water is linked osmotically to the transport of ions, Cl- secretions maybe one 

method of hydrating the mucosal surface of the respiratory and intestinal tracts (Geddes, 

1998). 

 

The CFTR protein has two hydrophobic domains that incorporate themselves into the 

plasma membrane.  Each of the domains has six loops that span the plasma membrane.  

There are also two nucleotide-binding domains called NBD1 and NBD2.  The regulatory 

domain controls the status of the channel.  The CFTR is regulated by protein kinase A 

(PKA) and ATP (Collins, 1992).  Activation of the channel first involves a rise in the cells 

cyclic AMP (adenosine 3’5’-monophosphate) concentration, which in turn activates protein 

kinase A (PKA).  Once activated, PKA phosphorylates four serine residues in the 

regulatory domain (Collins, 1992).  This causes a conformational change in the CFTR 

structure and ATP can now bind to the two NBDs.  Cleavage of the ATP at NBD1 causes 

the channel to open and Cl- ions can pass through.  Binding of ATP to NBF2 is thought to 

stabilise the open conformation of the protein.  When NBD2 hydrolyses the ATP the 

channel closes and requires another ATP to bind to open again (Jenstch, 1996).  

Deactivation of the channel is carried out by protein phosphatases (Akabas, 2000), mainly 

protein phosphatase 2C, which has been shown to be closely associated with CFTR through 

immunoprecipitation studies (Zhu, 1999). 
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Fig 2.1 Structure of the CFTR.  The protein has 5 distinct domains consisting of: 2 

membrane spanning domains which form the channel across the plasma membrane, 2 

nucleotide binding domains (NBD) and a regulatory domain (Adapted from Riordan, 1989; 

Rowe, 2005). 

 

 
2.1.1.6  Mutations in the CFTR 
 

To date more than 1000 mutations have been described in this gene, however the majority 

of these are rare (Tsui, 2003).  CFTR mutations can be classified into groups (I-VI) based 

on how they are believed to cause CF.  Class I mutations result in no protein being 

synthesised, class II mutations block correct processing of the protein, class III mutations 

result in disordered regulation of the protein, class IV mutations result in altered 

conductance through the channel, class V mutations cause a reduced number of CFTR 

transcripts due to promoter or splicing abnormalities and class VI mutation result in an 
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accelerated turnover of the protein from the cell surface (Rowe, 2005). Classes I-III tend to 

cause a severe CF phenotype and classes IV-VI resulting in a milder phenotype. 

 

 By focusing on five common mutations it is possible to detect the disease causing mutation 

in approximately 90% of Irish patients (Scotet, 2003) and ~71% in the worldwide 

population (Tsui, 2003).  The five mutations are delF508 (77.4%, 66.0%), G551D (7.1%, 

1.6%), R117H (2.7%, 0.3%), 621+1 G>T (1.4%, 0.7%) and G542X (0.5%, 2.4%) figures 

are for the Irish population (Scotet, 2003) and worldwide (Tsui, 2003) respectively.  

 

The delF508 mutation is a class II mutation, which is found in exon 10 of the CF gene that 

codes for the NBD1 domain (Naruse, 1999).  It involves a 3 bp (CTT) deletion, which 

results in the loss of a phenylalanine (F) at codon 508.  The delF508 mutation results in a 

protein-processing defect, which traps the delF508 CFTR in the endoplasmic reticulum 

(Devidas, 1997) and prevents it from being transported to the apical plasma membrane.  Of 

the other mutations G542X is a class I mutation (Rowe, 2005) it is found in exon 11 

(Karem, 1990) and results in the introduction of a premature stop codon.  G551D is a class 

3 mutation (Rowe, 2005) also found in exon 11 (Cutting, 1990).  The protein is processed 

and targeted correctly to the plasma membrane but lack responsiveness to stimulation by 

cAMP.  The 621+1G�T is a class V mutation is located in intron 4 and results in the 

mRNA being incorrectly spliced.  R117H is class IV mutation and results in altered 

conductance through the CFTR channel (Sheppard, 1993). 
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2.1.1.7  Pathogenesis of CF 

 

How lung disease develops in the CF lung has been a difficult problem to explain.  Healthy 

lungs are sterile below the first bronchial division (Wine, 1999) despite a constant influx of 

bacteria and viruses from the air we breathe.  Lung sterility is maintained by a wide range 

of methods, such as mucocillary clearance, which cleans the airways mechanically.  The 

airway surface liquid (ASL), which is thin film of liquid that coats the surface of the lungs, 

contains a wide range of proteases, antimicrobial peptides and antibodies that inactivate or 

destroy pathogens without causing collateral damage to the cells of the lungs.    

 

There are currently two proposed hypotheses of how disease is initiated.  These are the high 

salt hypothesis (Smith, 1996; Zabner, 1998) and the low volume hypothesis (Matsui, 1998).  

The high salt model is based mainly on the CFTR function as an anion channel.  Non-

functional CFTR results in reduced transepithelial Cl- transport, the resulting elevated 

levels of NaCl in the ASL would be enough to inactivate antimicrobial peptides an 

therefore predispose patients to colonisation by opportunistic pathogens such as 

Pseudomonas aeruginosa.   

 

The low volume model is based on CFTR ability to regulate other channels particularly 

epithelium sodium channels (ENaC) (Reddy, 1999).  The absence of CFTR leads to over 

activity of Na+ absorption through the ENaC, it is thought then that the transepithelial 

imbalance in Na+ and Cl- ions leads to the absorption of Cl- via other non-CFTR channels.  

The result of this is there is an increase in absorption of Na+, Cl- and water causing the 

dehydration of the airway surfaces and defective mucocillary clearance. 
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Explanations for the cause of pulmonary defects in CF are unlikely to explain the damage 

sustained to other organs.  In the pancreas there is no evidence of overactive Na+ 

absorption, also in the intestine there is no evidence of increased susceptibility to infection 

by altered immune responses as occurs in the lung (Rowe, 2005).  However, in glandular 

tissues of CF patients there is a defect in Cl- and fluid secretions.  When secretin binds its 

receptor on pancreatic duct cells, resulting in elevated intracellular levels of cAMP normal 

CFTR function is initiated.  In the pancreas, this results in the efflux of Cl-, Na+ and water 

into the lumen of the pancreatic ducts (Naruse, 1999).  In the absence of functional CFTR, 

the deficiencies in fluid secretions results in the blockage of ducts leading to organ damage.  

Similar mechanisms are proposed to cause damage to the vas deferens, liver and other 

glands in cystic fibrosis. 

 

 

2.1.1.8  Detection of CF mutations 

 

Many mutation detection systems have been utilised to detect common CF mutations, 

including single stranded conformation polymorphism (SSCP) (Ravik-Glavac, 1994), 

restriction fragment length polymorphism (RFLP) (Shrimpton, 1991), Amplification 

Refractory Mutation System (ARMS) PCR (Ferrie, 1992) and reverse dot-blot (Cuppens, 

1992).  These techniques rely on PCR amplification of the target region, which is then 

followed by extensive post-amplification analysis.  In recent years improvements in 

technologies has led emergence of homogeneous methods, where both the amplification 

and detection occur in a single “closed-tube” reaction (Foy, 2001).  Current homogeneous 

techniques include Real-time PCR (Wittwer, 1997), ligase chain reaction (LCR) (Austina, 
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1997) and strand displacement amplification (Little, 1999).  The advantage of closed-tube 

systems is the reduced risk of cross contamination and improved speed with no post-

amplification processing.   

 

 

2.1.1.9  Amplification Refractory Mutation System (ARMS) PCR 

 

ARMS PCR is a technique that allows a specific allele to be PCR amplified (Newton, 1989; 

Wu, 1989; Sommer, 1989; Okayama, 1989).  It is also referred to as allele specific 

amplification (ASA).  The technique makes use of the fact that DNA polymerase enzymes 

such as Taq polymerase require the ultimate 3’ end base of the primer to be complementary 

to the template sequence for amplification to occur.  If the 3’ end base matches with the 

base on the target DNA, then amplification takes place.  However, if a mismatch occurs, 

the 3’ end will not be fully hybridised and Taq polymerase will be unable to initiate 

amplification (Fig 2.2).  Thus, by designing primers complementary to the wildtype and 

mutant sequences and using them in two separate PCRs, both homozygous and 

heterozygous samples can be genotyped.  For ARMS to work it is important that a DNA 

polymerase without proof-reading capabilities is used, as a proof-reading enzyme could 

correct the mismatch and discrimination between alleles would be lost (McPherson, 2000).  

The amplicons are separated on agarose gels, and presence or absence of a particular band 

implies the genotype of the sample.  Extensive optimisation of the amplification conditions 

is generally essential for proper ARMS analysis (Kwok, 1990; Sommer, 1992). 
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Fig 2.2 Amplification refractory mutation system (ARMS) PCR.  The normal ARMS 

primer (3’ A) will successfully bind to the normal allele and allow the initiation of PCR 

amplification.  The normal ARMS primer will not allow amplification of the mutant allele 

due to the 3’ mismatch.  The mutant ARMS primer (3’ C) will only match with the mutant 

allele and will not amplify the normal allele. 
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2.1.1.10 Aim of this chapter 

 

The aim of this chapter is examine the use of Real-time PCR for mutation detection in 

cystic fibrosis.  Current methods for carrying out mutation detection do not make full use of 

melting curve analysis, meaning that at most two mutations can be looked at in a single 

PCR (1 per colour channel).  The work outlined here seeks to make an improvement on this 

by combining ARMS and Real-time PCR for use in the diagnosis of cystic fibrosis with 

particular emphasis put on mutations pertinent to the Irish population. 
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2.1.2  MATERIALS AND METHODS 

 

2.1.2.1  Patient DNA samples 

 

Both control DNA samples for protocol optimisation and 21 test DNA samples used in the 

blinded study were obtained from Dr David Barton at the National Centre for Medical 

Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12. 

 

 

2.1.2.2  DNA isolation 

 

Where DNA needed to be extracted, EDTA blood was used with the following protocol: 

firstly red blood cells (RBCs) were lysed by incubating 3 ml of whole blood in 9 ml of 

RBC lysis solution (155 mM Ammonium chloride, 10 mM Potassium hydrogen carbonate, 

1 mM EDTA) at room temperature for 10 mins.  Followed by a centrifugation step at 3000 

rpm for 10 mins.  After decanting the supernatant the resulting white blood cell (WBC) 

pellet was suspended in 3 ml of WBC lysis solution (25 mM EDTA, 2% SDS).  Then 1 ml 

of protein precipitation solution (10 M ammonium acetate) was added, followed by a 10 

second vortex.  The resulting solution was centrifuged at 3000 rpm for 10 mins.  The 

supernatant was then subjected to an isopropanol (0.5 ml) precipitation step, followed by 

centrifugation at 3000 rpm for 5 mins the resulting DNA pellet was washed in 1ml of ice 

cold 70% ethanol and then resupended in Tris-EDTA at pH 8.0. 
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2.1.2.3  Primers 

 

The sizing primers for detection of the delF508 mutation are CF10-B (GTTTTCCTGGAT 

TATGCCTGGGCAC) and CF10-D (GTTGGCATGCTTTGATGACGCTTC). 

 

The ARMS PCR primers used in this study were previously published primer sets (Ferrie, 

1992), the name and sequence of each primer and the concentration used in the final 

reaction is outlined in Table 2.1.  All primers were synthesised by Proligo, France.    

 

2.1.2.4  Preparation of 10% Acrylamide gel for analysis of the sizing 

PCR products 

See appendix 1 

 

2.1.2.5  Real-time PCR detection of the delF508 mutation 

 

Real-time PCR detection of the delF508 mutation was performed using previously 

published primer and hybridisation probes (Gundry, 2001).  Primers used were CF-245F 

(GGAGGCAAGTGAATCCTGAG) and CF-500R  (CCTCTTCTAGTTGGCATGCT).  

The hybridisation probe sequences were as follows delF508 ANCHOR 

(TTTTCCTGGATTATGCCTGGCACCTTAA-F) and delF508 DETECTOR (705-

GAAAATATCATCTTTGGTGTTTC-P).  Primers and hybridisation probes were 

synthesised by Proligo, France.  Real-time PCR was performed on a LightCycler 

instrument (Roche Diagnostics).  The total reaction volume was 10µL, containing: 1µL of 

10X LightCycler DNA Master Hybridisation enzyme mix (Roche Diagnostics), 4 mM 
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MgCl2, 0.1µM hybridisation probes and 0.5 µM primers.  PCR conditions were 95ºC for 6 

mins, followed by 40 cycles at 95ºC for 0 secs, 60ºC for 10 secs and 72ºC for 10 secs.  

Melting curve analysis was performed directly post PCR and the condition were 95ºC for 0 

secs, 40ºC for 10 secs followed by heating back to 70ºC while continuously monitoring the 

fluorescence in each capillary. 

 

 

2.1.2.6  Hybridisation probe design for Real-time ARMS PCR 

 

Using sequences downloaded from the National Centre of Biotechnology Information 

(NCBI) website hybridisation probes were design as per the usual guidelines for primer 

design.  The sequences used were CFTR exon 4 (Genbank accession no.M55109.1), CFTR 

exon 10 (Genbank accession no.M55115.1) and CFTR exon 11 (Genbank accession no.  

M55116.1).  Once suitable locations were identified for the probe sets within these 

sequences the predicted melt-temperatures of the detector probes were calculated using 

MeltCalc software (www.meltcalc.com).  The probes were modified to give the most 

suitable Tm to give the best melt-curve profile.  The name, sequence, concentration used in 

the final reaction and Tm of the probes as well as the mutation they can be used to detect is 

outline in Table 2.2.  All probes were synthesised by Proligo, France.  
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2.1.2.7  Multiplex set-up 

 

Two multiplex PCR reactions were optimised using previously published ARMS primers 

(Ferrie, 1992).  The first reaction detects the G551D, R117H and F508del mutations.  The 

F508del ARMS primers (CF-DFjN and CF-DFwM) are specific for this mutation and are 

not influenced by the benign I506V and F508C.  As the CF-DFwM primer is 

complementary to the sequence distal to the delF508, the presence of the delI507 mutation 

is not recognised (Ferrie, 1992).  The second reaction detects the 621+1 G�T and G542X 

mutations.  A PCR product should be formed in both the A and B ARMS reactions 

regardless of the sample genotype. 

 

 

2.1.2.8  Real-time PCR  

 

Real-time ARMS PCR was carried out on a LightCycler (Roche Diagnostics).  The total 

reaction volume was 10µL, containing: 1µL of 10X LightCycler DNA Master 

Hybridisation enzyme mix (Roche Diagnostics), 3 mM MgCl2, 0.1µM hybridisation probes 

and ARMS primers concentrations as outlined in Table 2.1.  ARMS PCR and subsequent 

melting curve analysis was carried out as follows: Initial denaturation was 7.5 min at 95°C 

followed by 40 cycles of 95°C for 1s, 64°C for 20s and 72°C for 20s.  A touchdown PCR 

was carried out with the annealing temperature starting at 70°C and dropping to 64°C at 

1°C/cycle.  Fluorescence was measured at the end of the annealing step.  The PCR stage 

was followed by a melting curve analysis, 95°C for 10s, 40°C for 30s and heating back up 

to 70°C at 0.1°C/sec with continuous monitoring of fluorescence.  The touchdown PCR 
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conditions used allowed specific amplification of wildtype or mutated sequences as 

detected by standard agarose electrophoresis and melting curve analysis. 

 

 

2.1.2.9 Agarose Gel electrophoresis 

 

Agarose gel electrophoresis was carried on samples tested using the Real-time ARMS PCR 

to confirm the presence of the bands.  In order to retrieve the PCR mix back from the 

LightCycler capillary the cap was removed and inverted into a 0.5 ml eppendorf and 

centrifuged at 3000 rpm for 5-10 secs.  ARMS PCR products where then separated on a 

2.5% agarose gel run at 100 V for 1 hour. 
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ARMS primer name and seq (5’ to 3’)
*
 Multiplex 

rxn 

Primer 

conc 

      

   

delF508   
DF-C: ACTTCACTTCTAATGATGATTATGGGAGA 1A/B 100 ng 

DF-j-N: TATCTATATTCATCATAGGAAACACCACA 1A 100 ng 

DF-w-M: TATCTATATTCATCATAGGAAACACCATT 1B 100 ng 

G551D   
11-C: TAAAATCAGCAATGTTGTTTTTGACCT 1A/B 150 ng 

GD-j-N: GCTAAAGAAATTCTTGCTCGTTGCC 1B 150 ng 

GD-j-M: AGCTAAAGAAATTCTTGCTCGTTGCT 1A 150 ng 

R117H   
RH-C: CACATATGGTATGACCCTCTACATAAACTC 1A/B 120 ng 

RH-d-N: CCTCTGCCTAGATAAATCGCGATAGAAC 1A 120 ng 

RH-d-M: CCTCTGCCTAGATAAATCGCGATAGAAT 1B 120 ng 

621+1 G����T   
621-C: TCACATATGGTATGACCCTCTATATAAACT 2A/B 200 ng 

621-j-N: TGCCATGGGGCCTGTGCAAGGAAGTATTCC 2A 200 ng 

621-j-M: TGCCATGGGGCCTGTGCAAGGAAGTATTCC 2B 200 ng 

G542X   
11-C: TAAAATCAGCAATGTTGTTTTTGACCT 2A/B 40 ng 

GX-e-N: ACTCAGTGTGATTCCACCTTCTAC 2B 40 ng 

GX-e-M: CACTCAGTGTGATTCCACCTTCTCA 2A 40 ng 

      

 

Table 2.01 Sequence and concentrations of CF ARMS primers.  Primer with a “C” in 

their name indicates that it is a common primer and is present in both the wildtype and 

mutant reactions.  The names of the wildtype specific primers end in a “N” and mutant 

specific primer names end in a “M”.  *ARMS primer sequence taken from Ferrie, 1992. 
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Real-time PCR probe seq (5’ to 3’) Conc Tm 
      

 
   

Detection of wildtype and mutant R117H and 621+1 G>T   
   

CF4ARMS-A: CCTTTTGTAGGAAGTCACCAAAGCAGTAC-f 0.1µM  
CF4ARMS-D: 640-GCCTCTCTTACTGGGAAGAATCA-p 0.1µM 62°C 

 
   

Detection of wildtype and mutant delF508   
   
CF10ARMS-A: GCACAGTGGAAGAATTTCATTCTGTTCTCAG–f 0.1µM  
CF10ARMS-D: 640-TTCCTTGGATTATGCCT-p 0.1µM 51°C 

 
   

Detection of wildtype and mutant G542X and G551D   
   
CF11ARMSA: TATGATTACATTAGAAGGAAGATGTGCCTTT-f 0.1µM  
CF11ARMS-D: 705-AATTCAGATTGAGCATACT-p 0.1µM 55°C 

      

 

Table 2.02 Sequence of Real-time PCR probes sets used to detect ARMS products in a 

melt-curve analysis.  Anchor probe (A), Detector probe (D), (Fluorescein (f), Phosphate 

(p), LC Red 640 dye (640, detected in the F2 channel), LC Red 705 dye (705, detected in 

the F3 channel). 
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2.1.3  RESULTS 

 

2.1.3.1  Comparison of Real-time and traditional PCR for the detection 

of delF508 mutation 

 

In the first part of this study, we compared the detection of the delF508 mutation in CF by 

Real-time PCR and two other traditional PCR based methods.  The two traditional 

approaches were a sizing PCR and ARMS PCR.  The sizing PCR is based on the fact the 

delF508 mutation is the result of a 3 bp deletion.  Primers amplify a region, which includes 

the possible mutation site, the PCR products are then analysed using a 10% acrylamide gel.  

In a wildtype sample the resultant PCR product will be 97 base pairs (bp) in length, an 

individual who is homozygous mutant will have a PCR amplicon of 94 bp and a 

heterozygote will display a band at the two different product sizes (Fig 2.3, Panel A).  The 

ARMS PCR analysis for the delF508 was performed using the ARMS primers detailed in 

Table 2.1.  In ARMS PCR each sample is tested in two separate PCRs, one specific for the 

wildtype allele and the other for the mutant allele.  An internal control set of primers was 

also included in both PCR to ensure that a PCR product is formed in each reaction as a 

quality control step.  The PCR products were then separated on a 2% agarose gel and 

diagnosis can be made on the resulting band patterns observed (Fig 2.3, Panel B).  These 

two techniques were compared to a set of published primers and hybridisation probes, 

which were used to perform Real-time melting curve analysis for the detection of the 

delF508 mutation.  During melting curve analysis, a temperature will be reached which 

causes FRET activity to decrease as the detector probe is disassociated from its 

complementary sequence adjacent to the anchor probe.  The first derivative of the melting 
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curve is determined by the LightCycler analysis software (Roche) that allows the drop in 

fluorescence to be seen as a peak.  If there is no mutation present, the probe requires more 

energy (higher temperature) to destabilise it, in this case resulting in a melt curve peak at 

61oC (Fig 2.3, Panel C, blue line).  If the mutation is present then the detector probe will 

become destabilised at a lower temperature, in this case 51oC (Fig 2.3, Panel C, red line).  

A heterozygote will show a peak at both temperatures (Fig 2.3, Panel C, green line).  When 

all three protocols were successfully optimised in our hands, we performed a small, blinded 

study using a mix of samples that were wildtype, heterozygous and homozygous mutant for 

the delF508 mutation using each of the three methods.  All samples were correctly 

identified using the three different PCR based methods.  However, the time required to 

perform the Real-time PCR based method was considerably shorter (35 mins) than the 

other two techniques (ARMS, 5 hrs; sizing PCR, 6 hrs). 
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Fig 2.3 Three methods for detection of the delF508 mutation.  Panel A: Standard sizing 

PCR; Lane 197 bp band (normal), Lane 2 97 and 94 bp band (heterozygote) Lane 3 94 bp 

band (homozygous mutant).  Panel B: ARMS PCR; 100 bp sizing ladder (L), normal 

ARMS (N), mutant ARMS (M).  An internal control is present in each reaction to ensure 

that the PCR is working.  Sample 1 Wildtype, Sample 2 heterozygote, Sample 3 

homozygous mutant.  Panel C: Real-time PCR melting curve analysis; Blue curve (normal), 

Green curve (heterozygote), Red curve (homozygous mutant). 
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2.1.3.2  Real-time multiplex PCR for detection of delF508 and R117H 

mutations 

 

After we had shown that Real-time PCR was a suitable method for mutation detection, we 

set about designing a multiplex PCR to detect more than one mutation at a time.  This 

would have the advantage of saving time and cutting cost of performing the test.  The 

LightCycler has two colour channels that can be used to detect fluorescence from two 

different reporter dyes (LCRed640, F2 channel; LCRed705, F3 channel).  We aimed to 

develop a multiplex Real-time PCR that would allow two mutations to be detected per 

colour channel ie four mutations in total.  We firstly designed a set of primers and 

hybridisation probes that would be detected in the same channel as the delF508 

hybridisation probes from the previous experiment.  However, despite careful design of the 

R117H hybridisation probes, under melting curve analysis the R117H and delF508 

wildtype peaks merged with each other (Fig 2.4) not allowing the genotype to be clearly 

identified.  Therefore, we realised that if we were to detect more than one mutation per 

colour channel on the LightCycler, we would need to take a novel approach to designing 

hybridisation probes for mutation detection on the LightCycler instrument.  
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Fig 2.4 Multiplex melting curve analysis for delF508 and R117H mutations.  Green and 

red melting curves are of wildtype samples for both mutations.  The delF508 peak is at 

61oC and the R117H peak is at 65oC, however peaks are not clearly distinguishable from 

each other. 
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2.1.3.3  Real-time ARMS PCR 

 

Traditionally during the design of hybridisation probes for mutation detection, the detector 

probe is positioned over the site of the mutation (Fig 2.5, Panel A).  Preferably, with the 

possible mutation site as close to the centre of the probe to cause the biggest destabilisation 

effect when a mutant allele is present.  However, we showed in the previous experiment 

that even with careful design of the detector probe, it is difficult to be sure of the Tm at 

which it will disassociate during melting curve analysis.  Hence we took an approach that 

allowed us to design hybridisation probes that would melt at the temperature which we 

desired, and which could be positioned anywhere along the length to the amplicon.  For this 

we combined traditional ARMS PCR with Real-time PCR.  The ARMS primers will detect 

the genotype of the sample and a set of hybridisation probes that will have a predefined Tm 

will be used to detect the presence or absence of a PCR product.  With this approach the 

hybridisation probes can be placed anywhere along the length of the amplicon (Fig 2.5, 

Panel B).  One of the advantages of this is it allows us to design better working 

hybridisation probes.  The ARMS primers used were previously published primer sets 

(Ferrie, 1992) and are outlined in Table 2.1 (Methods).  Using a combination of the 

LightCycler hybridisation probe design software version 1.1 (Roche) and the melt-calc 

software package (Schütz, 1999), hybridisation probes were designed to detect the PCR 

amplicons produced by the ARMS primers (Table 2.2, Methods) 
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The CF4ARMS-A/D probes detect both the R117H and 621+1 G�T mutations and 

produce a peak at 62°C during a melting curve analysis.  CF10ARMS-A/D probes detect 

the delF508 mutation and melt at 51°C.  CF11ARMS-A/D produces a Tm peak at 55°C and 

detects both the G551D and G542X mutations.  

 

 

 

 

Fig 2.5 Orientation of hybridisation probes for Real-time ARMS PCR.  Panel A: shows 

the traditional position that Hybridisation would be located with respect to the possible site 

of the mutation.  Panel B: shows the position of the hybridisation probes in our system with 

respect to the mutation site.  AP, Anchor probe (AP), Detector probe (DP), Forward primer 

(FP), Reverse primer (RP), Common primer (CP), Normal ARMS primer (N), Mutant 

ARMS primer (M). 
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The optimisation of the ARMS Real-time PCR reactions was performed in the usually 

manner, magnesium ions were titrated, primer concentrations varied and adjustment of the 

annealing temperature were all carried out until a reproducible assay was developed.  

Following the optimisation procedure, samples with a variety of mutation combinations 

were tested with the assay, some examples of the resulting melting curve profiles are 

outlined in Fig 2.06, Fig 2.07 and Fig 2.08.  As can be seen peaks are now clearly 

distinguishable from each other and the genotype of each sample can be clearly identified.  

This protocol was very rapid taking approximately 45 mins.   
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Fig 2.06 Melting curve profiles of a delF508 heterozygote.  The A reaction (red line) 

detects wildtype delF508 and R117H (F2 channel) and mutant G551D (F3 channel), the B 

reaction (grey line) detects mutant delF508 and R117H and wildtype G551D.  As can be 

seen from the upper graph a product is detected in both the wildtype and mutant reactions 

for the delF508 indicating the carrier status of this sample.  The agarose gel (inset) also 

shows the presence of two bands for delF508 in this sample. 
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Fig 2.07 Melting curve profiles of a R117H/G551D compound heterozygote.  The A 

reaction (red line) detects wildtype delF508 and R117H (F2 channel) and mutant G551D 

(F3 channel), the B reaction (black line) detects mutant delF508 and R117H and wildtype 

G551D. As can be seen from the upper graph (F2) a product is detected in both the 

wildtype and mutant reactions for the R117H.  The lower graph (F3) also shows 2 peaks for 

G551D indicating that the sample is a compound heterozygote and would be affected with 

CF.   The agarose gel (inset) confirms the genotype of the sample. 
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Fig 2.08 Melting curve profiles of a G542X heterozygote.  The A reaction (red line) 

detects wildtype 621+1 G>T (F2 channel) and mutant G542X (F3 channel), the B reaction 

(black line) detects mutant 621+1 G>T and wildtype G542X.  As can be seen from the 

lower graph (F3) a product is detected in both the wildtype and mutant reactions for the 

G542X indicating the carrier status of this sample.  The agarose gel (inset) confirms the 

presence of two bands for G542X in this sample. 
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2.1.3.4  Blinded Trial 

 

Using the optimised protocol as outlined in the methods, a panel of patient samples 

containing combinations of the five mutations (delF508, G551D, R117H, G542X and 

621+1G�T) were tested blind.  All of the patient samples provided were correctly 

identified and correlated with previous genotyping carried out in the National Centre for 

Medical Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12.  The results 

are presented in Table 2.3. 
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Sample No delF508 R117H G551D 621+1 G542X Genotype 

              

Sample 1 W C C W W R117H/G551D 

Sample 2 C W W C W delF508/621+1 

Sample 3 C W C W W delF508/G551D 

Sample 4 C W C W W delF508/G551D 

Sample 5 C W W W W delF508/N 

Sample 6 C W W W W delF508/N 

Sample 7 C W W C W delF508/621+1 

Sample 8 C W W W W delF508/N 

Sample 9 W W C W W G551D/N 

Sample 10 W W W W W N/N 

Sample 11 M W W W W delF508/delF508 

Sample 12 W W W W W N/N 

Sample 13 W W W W W N/N 

Sample 14 C W W W W delF508/N 

Sample 15 C W W W W delF508/N 

Sample 16 W M W W W R117H/R117H 

Sample 17 M W W W W delF508/delF508 

Sample 18 W W W W W N/N 

Sample 19 C W W W W delF508/N 

Sample 20 W W W C W 621+1/N 

Sample 21 C W C W W delF508/G551D 

              

 
 
Table 2.03 Blinded trial results using optimised Real-time ARMS multiplex PCR.  

Wildtype, W; Heterozygote, C; homozygous mutant, M. 
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2.1.4  DISCUSSION 

 

Cystic fibrosis is the most common genetic disease in people of a European descent 

(Mateu, 2002).  The disease is monogenic disorder caused by insufficiencies in the CFTR 

protein.  In the last 10-20 years, a better understanding of the mechanisms behind the 

development of CF has led to better clinical management of the disease and ultimately 

improved the life span of patients.  However, the first step in treatment of a disease is a 

definitive diagnosis. 

 

Real-time PCR has provided a dynamic platform for the molecular diagnosis of hereditary 

diseases.  Many of the detection chemistries used for Real-time PCR and melting curve 

analysis have already been applied to the diagnosis of CF, such as Sybr Green 1, (Kleinle, 

2002; Wittwer, 2003) scorpion probe (Thelwell, 2000) and dual hybridisation probe 

(Burggraf, 2002; Gundry, 1999) based detection systems.  Each detection system has its 

advantages and disadvantages.  Sybr Green 1 is a non-specific dye and by this very fact, it 

is cheap and quick to develop a real-time PCR assay.  However, it has the downfall of 

detecting non-specific products making it difficult to perform multiplex PCR.  Scorpion 

probes have the benefit of incorporating a forward primer and detector probe in one 

oligonucleotide, but are expensive and complex to design.  Hybridisation probes offer the 

highest specificity of all the detection chemistries (Wittwer, 1997).  Nevertheless, due to 

their dual probe system, they are required to be longer than the other probe types and the 

design of an efficient probe pair can be limited by the nature of the sequence around the site 

of a mutation. 
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The work in this chapter aimed to improve multiplexing capabilities of Real-time PCR in 

its use for mutation detection.  In the first part of the study, we demonstrated that Real-time 

PCR was a feasible approach to mutation detection in CF by comparing it to two other 

traditional methods for detecting the delF508 mutation (Fig 2.3).  The Real-time PCR 

technique proved to be as accurate in genotyping the patient samples as the two traditional 

methods (sizing PCR and ARMS PCR).  Melting curve peaks for wildtype and mutant 

alleles were clearly distinguishable from each other (Fig 2.3, Panel C) and the test was very 

rapid (~ 35 mins).    

 

The next stage was to start multiplexing the most common mutations in Ireland (Scotet, 

2003) into one Real-time PCR assay.  To begin with, a set of primers and probes were 

designed for the R117H mutation, and would be detected in the same colour channel as the 

delF508 primers and probes.  However, it was soon realised that this approach would prove 

to be very difficult.  When the hybridisation probes were designed for the R117H mutation 

we tried to generate a detector probe that would have a Tm above that of the delF508 

detector probe ie greater than 61oC (Fig 2.3C).  This was to ensure that melting curve 

analysis peaks would be distinguishable from each other therefore making genotyping of 

the sample a straightforward process.  Despite trying to keep the peaks separated from one 

another, during melting curve analysis the wildtype peaks for both delF508 and R117H 

merged with each other, not allowing a clear genotype to be identified (Fig 2.4).  The 

problem arose from the use of a traditional approach to hybridisation probe design, where 

the detector probe is positioned over the site of the mutation (Bernard, 1998; Bernard, 

2001).  This places limits on designing effective hybridisation probe pairs.  The DNA 

sequence around the mutation site may not always be the best suited for the task.  The DNA 
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sequence may have a very high G:C content, which would result in a very stable detector 

probe even when a mutation is present.  This would cause the wildtype peak and mutant 

peak to be poorly differentiated from each other.  Another problem with this approach is 

that it is very difficult to determine how much a particular mutation will destabilise the 

detector probe during a melting curve analysis.  In the case of the delF508 mutation, 3 bp 

are deleted which has a large destabilisation effect on the detector probe, hence the 10oC 

different between the Tm of the wildtype peak and mutant peak (Fig 2.3).  However, with 

single bp substitutions as in the case of the R117H mutation the destabilisation effect will 

be much smaller.  Therefore, it was decided to take a novel approach to performing 

multiplex mutation detection on the LightCycler instrument.  We would need a technique 

that would allow us more freedom to design effective hybridisation probes by not  being 

restricted to placing the hybridisation probe over the mutation site. 

 

To this end, Amplification Refractory Mutation System (ARMS) PCR primers were used to 

selectively amplify the wildtype or mutant alleles in separate reactions.  Subsequent 

detection of PCR products is carried out using a common set of hybridisation probes.  The 

advantage of this system is it increases the flexibility of the hybridisation probe design 

allowing probes with precise Tms to be generated.  In this way, melting curve peaks can be 

at a predetermined Tm for a particular PCR product, which allows for easier multiplexing 

of Real-time PCR.  Similar ARMS based techniques have been developed for the ABI 

prism 7700 sequence detector from PE Applied Biosystems using TaqMan® probes (Glaab, 

1999).  These protocols depend on the detection of an amplification curve and are limited to 

the detection of one mutation per colour channel.  Our protocol detects melting curve 

peaks, post amplification and allows multiple mutations to be detected per colour channel. 
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Optimisation of the annealing temperature was particularly crucial, as at the incorrect 

annealing temperature a certain amount of mispriming occurred, the mutant primers were 

producing a product in a wildtype sample.  This problem occurred mainly due to the 

sensitivity of the LightCycler instrument, often when a misprimed peak occurred the band 

was very faint on the corresponding agarose gel.  The problem of the mispriming was 

solved by careful optimisation of the annealing conditions, primer concentrations and the 

addition of a “touch-down” segment to the start of the amplification stage.  The “touch-

down” PCR provides more stringent annealing conditions in the initial cycles of the 

amplification process and in doing so eliminated the mispriming event. 

 

The main advantage of the LightCycler system is its speed; the optimised protocol takes 

approximately 45 minutes to complete, which is a significant improvement over standard 

ARMS followed by gel electrophoresis, which can take approximately 5 hours to perform.  

Genotyping on the LightCycler system, using standard multiplex hybridisation probes that 

overlie the mutation site can be technically challenging and have some limitations.  Even 

with careful design of the hybridisation probes, wildtype and mutant alleles may not 

necessarily be discriminated from each other (Bernard, 1998).  Our system allows 

hybridisation probes to bind to any region of the amplicon therefore providing scope for 

better probe design.  The number of mutations that can be detected in a single reaction is 

dependent on the number of melting peaks that can be clearly differentiated from each other 

(Von Ahsen, 1999).  This usually leads to development of multiplex reactions where a 

single mutation is detected per colour channel (Gundry, 2001, Bestmann, 2002).  Here we 

have demonstrated a method, which makes it quite possible to detect more than one 

mutation in a single channel.  Using the nearest neighbour formula in the MeltCalc 
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software package (Schütz, 1999), detector probes can be carefully designed that produce a 

peak within 1-2°C of the predicted Tm.  This allows Tm peaks, which indicate the presence 

or absence of a PCR product, to be strategically placed within the normal melting curve 

range of 45-70°C for hybridisation probes.  Over this melting curve range, we feel it should 

be possible to clearly distinguish three peaks in a single channel.  This potentially makes it 

possible to multiplex six mutations into two capillaries when using both fluorescent 

channels.  This enhances the capabilities of the LightCycler for mutation detection; similar 

strategies could also be employed for other Real-time systems. 

 

To conclude, the results presented here demonstrate the ability to carry out multiplex 

mutation detection using a combination of ARMS PCR and Real-time melting curve 

analysis.  This method provides an improvement over current techniques for performing 

multiplex mutation detection on the LightCycler instrument.  Any laboratory currently 

using ARMS PCR in a diagnostic setting can quite easily convert their standard ARMS 

PCR to a Real-time ARMS PCR.  This will have a significant advantage in time saving, 

prevent any possible of cross contamination and reduce the handling of the potential 

carcinogen ethidium bromide. 
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QUANTIFICATION OF THE DOSAGE 

SENSITIVE PMP22 GENE IN HEREDITARY 
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2.2.1  INTRODUCTION 

 

2.2.1.1  Charcot-Marie-Tooth (CMT) disease 

 

In 1886 Drs Charcot and Marie in France and Dr Tooth in England separately described 

patients suffering from an inherited form of peroneal muscular atrophy (Charcot and Marie, 

1886; Tooth, 1886).  Charcot-Marie-Tooth (CMT) disease is now used to describe a 

clinically and genetically heterogeneous group of disorders that can be characterised by a 

chronic motor and sensory polyneuropathy.  CMT is the most common inherited disease of 

the peripheral nervous system (PNS) with a prevalence rate of 1 in 2500 (Boerkoel, 2002). 

 

   

2.2.1.2  CMT classification 

 

CMT can be subdivided into five major groups: CMT1, CMT2, CMT3 (usually referred to 

as Dejerine-Sottas syndrome, DSS), CMT4 and CMTX and there are several subtypes 

within each group (Vance, 2000).  Groupings are based on mode of inheritance (autosomal 

dominant (CMT1 and CMT2), autosomal recessive (CMT4), X-linked (CMTX)) and the 

chromosomal locus involved.  The autosomal dominant forms are divided based on nerve 

conduction velocities (NCVs).  Normal NCVs are typically >40-45 meters/second (m/s), 

and patients with CMT1 have significantly reduced NCVs usually between 10-30 m/s 

(Hoogendijk, 1994; Birouk, 1997; Thomas, 1997; Krawjewski, 2000).  In CMT2 NCVs are 

usually within the normal range though they can fall within the low normal or mildly 

abnormal range (35-50 m/s) (Dyck, 1993; Saito, 1997).  CMT1 is the most common type 
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(Kamholz, 2000) and has been further divided into 4 subtypes (Table 2.04).  CMT1 

subtypes are clinically indistinguishable from each other and identification is based on the 

chromosomal locus involved (Bird, 2004). 

 

        

    

CMT1 subtype Genetic mechanism  Locus % of cases 

        

    

CMT 1A Duplication of PMP22 17p11 70-80% 

 Point mutations in PMP22   

    

CMT 1B Point mutations in MPZ (P0) 1q22-q23 5-15% 

    

CMT 1C ? 16q* 10-15% 

    

CMT 1D Point mutation in EGR2 10q21 <5% 

        

 
 

Table 2.04 Breakdown of CMT 1 subtypes.  PMP22, peripheral myelin protein 22; MPZ, 

myelin protein zero (P0); EGR2, early growth response 2.  * No gene has been identified 

for CMT1C however using linkage analysis it has been mapped to Chr 16q (Street, 2002). 
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2.2.1.3  Clinical features of CMT1 

 

The clinical symptoms of CMT1 usually appear in patients during the first or second 

decades of life (Carter, 1995; Garcia, 1999).  The disease is characterised by slowly 

progressive atrophy of the distal muscles, predominantly those innervated by the peroneal 

nerve (Dyck, 1992; Lupski, 1991).  Patients usually present with muscle weakness in the 

legs and feet, 20-30% of these experience pain particularly in the feet (Carter, 1998).  Pes 

cavus (highly arched foot) is not seen during the early stages of disease but generally 

develops as the patient gets older, and results from imbalances between the extrinsic and 

intrinsic muscles of the feet (Garcia, 1999).  Other symptoms that develop with age are 

claw-hands, stork-leg appearance (due to atrophy of the leg muscles), enlarged nerves (the 

greater auricular nerve may be visible at the surface of the neck) and 40% of patients 

develop hand tremor by their mid-30s (Caradoso, 1993).  Histological findings in CMT1 

are segmental demyelination and Schwann cell proliferation forming concentric arrays, 

often referred to as “onion bulb” formations, around demyelinated or partially 

remyelinating axons (Dyck, 1993; Ionasescu, 1995). 

 

 

2.2.1.4  CMT type 1A 

 

CMT1A accounts for 70-80% of CMT1 patients and has an estimated prevalence of 

1:10000 (Nelis, 1996).  In 1989, CMT1A was linked to the short arm of chromosome 17 

(Raeymaekers, 1989; Vance, 1989).  During 1991, two independent reports described a 

large segmental duplication (~ 1.5 Mb of DNA) to associate with CMT1A patients within 
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band 17p11.2 (Lupski, 1991; Raeymaekers, 1991).  This duplicated region was 

subsequently shown to contain the gene for peripheral myelin protein 22 (PMP22) 

(Matsunami, 1992; Patel, 1992; Timmerman, 1992; Valentijn, 1992a).  A gene dosage 

effect was hypothesised to be the molecular pathogenic cause of the disease; further 

evidence to support this was shown when a patient who had 4 copies of the PMP22 gene 

had a more severe phenotype (Lupski, 1992).  The dosage hypothesis was given even more 

strength by the generation of transgenic mice and rats that carried additional copies of the 

PMP22 gene (Huxley, 1996; Huxley, 1998; Magyar, 1996; Sereda, 1996; Vallat, 1996; 

Perea, 2001).  Point mutations within the PMP22 gene have also been identified in CMT1A 

patients where a duplication could not be found (Fabrizi, 1999; Roa, 1993; Valentijn, 

1992b).  CMT1A due to point mutations in the PMP22 gene often presents as a more severe 

disease phenotype than duplication positive patients (Tyson, 1997). 

 

 

2.2.1.5  Hereditary neuropathy with liability to pressure palsies (HNPP) 

 

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant 

disorder, that is characterised by recurrent peripheral motor/sensory nerve palsies which 

occur due to minor compression trauma (Verhagen, 1993).  NCVs are significantly reduced 

at compression sites within the peripheral nerves (Verhagen, 1993).  The disease is 

sometimes referred to as “tomaculous neuropathy” due to the presence of sausage shaped 

swellings in the myelin sheath (Latin: sausage = tomaculum).  These tomaculum can occur 

in both the sensory and motor neurons (Oda, 1990).  Patients also have variable degrees of 

segmental demyelination and axonal loss (Lenssen, 1998). 
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The underlying genetic defect in 84% (Sutton, 2004) of HNPP families is a 1.5-Mb deletion 

on chromosome 17p11.2, which contains the gene for PMP22 (Chance, 1993).  However, 

in a minority of HNPP families no deletion could be detected (Marimam, 1994; Harding, 

1995).  Point mutations within the PMP22 gene have also been associated with HNPP 

(Lenssen, 1998; Bort, 1997; Young, 1997). 

 

 

2.2.1.5  Peripheral myelin protein 22 (PMP22) 

 

PMP22 is an 18 KDa polypeptide that undergoes post-translational modification to form a 

mature 22 KDa glycoprotein.  The protein is 160 aa in length and has 4 distinct 

hydrophobic domains and 2 extracellular domains (D’Urso, 1997) that are highly conserved 

among different species (Agostoni, 1999; Wulf, 1999).  The cDNA for PMP22 was first 

identified by screening for genes that were repressed in peripheral nerves following nerve 

damage (Welcher, 1991).  The gene for PMP22 was mapped to 17p11.2-p12 using 

Southern analysis of somatic cell hybrids (Patel, 1992) and by fluorescent in situ 

hybridisation (FISH) (Takahashi, 1992).  Cloned Human PMP22 was shown to have 87% 

and 86% homology to rat and mouse PMP22 respectively (Patel, 1992).  The PMP22 gene 

has 2 promoter regions that regulate the expression of 2 alternatively utilised 5’ noncoding 

exons, termed exons 1a and 1b (Suter, 1994).   

 

The protein is highly expressed in myelinating Schwann cells, mRNA transcripts where 

found to be upregulated 200-fold during myelination (Snipes, 1992) and at lower levels in 

several non-neural tissues (Spreyer, 1991; Welcher, 1991; Baechner, 1995).  PMP22 is 
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mainly localised within the compact portion of the myelin sheath it is not found in non-

compact myelin (Snipes, 1992; Haney 1996) and is estimated to comprise 2-5% of total 

myelin protein (Pareek, 1993).  

 

PMP22 like any other integral membrane protein is processed through the secretory 

pathway, involving synthesis in the rough endoplasmic reticulum (RER), maturation in the 

Golgi and targeting to the plasma membrane.  It has been shown that the majority of newly 

synthesised PMP22 is retained in the ER and degraded (Pareek, 1993; Pareek 1997; 

Notterpek, 1999).  The small percentage of PMP22 that leaves the ER for the Golgi and 

undergoes glycosylation making it more stable (Pareek, 1997). 

 

The function of PMP22 is not fully characterised but seems to have an important role in the 

formation and maintenance of myelin (Snipes, 1992; Li, 2004).  PMP22 has also been 

implicated in the formation of the intracellular junction of epithelial cells (Notterpek, 2001) 

as well as the regulation of cell proliferation and apoptosis (Fabbretti, 1995; Karlsson, 

1999; Zoidl, 1995; Zoidl, 1997). 
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2.2.1.6  Schwann cell maturation 

 

During development of the PNS, Schwann cell precursors arise from the neural crest; these 

precursors then migrate and make contact with developing peripheral axons (Le Douarin, 

1993).  These immature Schwann cells then invade and ensheath bundles of axons, where 

they then differentiate further into non-myelinating or pro-myelinating Schwann cells 

(Webster, 1993).  Pro-myelinating cells develop a one to one association with an axon; 

these cells can then differentiate into mature myelinating Schwann cells.  Mature 

myelinating Schwann cells turn on genes that code for the major myelin proteins and turn 

off previously expressed genes (Scherer, 1997).  The mRNA for PMP22, MPZ, myelin 

basic protein (MBP), and myelin-associated glycoprotein (MAG) are rapidly upregulated.  

Once myelination of the axon is complete, maintenance of the sheath depends on continued 

Schwann cell-axon interactions (Kamholtz, 2000). 

 

 

2.2.1.7  Unequal recombination at chromosome 17p11.2-12 

 

The CMT1A and HNPP disease phenotypes seem to result from gene dosage sensitivity 

(Lupski, 1992; Chance, 1993), which Gabriel and colleagues provided more evidence for, 

through immunohistochemistry on CMT1A and HNPP nerve biopsy samples (Gabriel, 

1997).  Mapping of the 1.5 Mb segment that can be duplicated or deleted showed that 

located on either side of the region are two almost identical (>98%) 24 Kb repeats, that 

have been termed CMT1A-REPs (Pentao, 1992; Chance, 1994; Kiyosawa, 1995).  The 

unequal recombination event occurs between a flanking proximal CMT1A-REP on one 
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homolog and a misaligned distal CMT1A-REP on the other homolog (Han, 2000).  It has 

been shown that recombination events do not happen equally across the entire 24 Kbs of 

the repeats.  There is a 3.2 Kb “hot-spot” region most (75-80%) recombination events can 

be located to (Lopes, 1998; Reiter, 1997) and a further 9.2 Kb region that contains the 

majority of the remaining rearrangements (Kiyosawa, 1995; Lopes, 1998).  Most de novo 

cases of CMT1A and HNPP are of paternal origin (Bort, 1997; Palau, 1993; Lopes, 1997) 

arising from interchromosomal recombination during spermatogenesis.  Duplication and 

deletions that are of maternal origin seem to be the result of an intrachromosomal process, 

either unequal sister chromatid exchange (Lopes, 1998) or, in the case of deletions, by 

excision of an intrachromatidial loop (LeGuern, 1996). 

 

 

 

 

Fig 2.9 Unequal crossing over between distal and proximal CMT1A repeats (adapted 

from Lopes, 1999). 
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2.2.1.8  Aim of the chapter 

 

The aim of this study is to successfully develop a quantitative Real-time multiplex PCR 

that will be capable of detecting changes in PMP22 gene copy number.  This will push 

Real-time PCR to the limits of it capabilities, as any changes in PMP22 gene copy number 

will be very subtle.  Multiplexing both the reference and target gene into the same reaction 

and detecting them using different coloured hybridisation probes is an important aspect of 

this study.  By having both amplicons form in the same PCR, under the same conditions, 

this should help to reduce variability in the assay.  β-globin will be used as a reference 

gene and the final results will be presented as a relative ratio of PMP22 to β-globin gene 

copy numbers. 
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2.2.2  MATERIALS AND METHODS 

 

2.2.2.1  Patient samples  

 

CMT1A and HNPP samples used in this study were kindly provided by Dr David Barton, 

from the National Centre for Medical Genetics.  Normal control samples were obtained 

from within the Department of Biological Sciences, Dublin Institute of Technology, these 

samples would have consisted of staff and student volunteers who had given informed 

consent. 

 

 

2.2.2.2  DNA isolation 

 

DNA was isolated as previously described (Materials and methods chapter 2.1.2.2). 

 

 

2.2.2.3  Primer and hybridisation probe design 

 

Primers and hybridisation probes were designed for β-globin (NCBI accession no: 

NG_000007.3) and the exon 1a portion of the PMP22 gene (NCBI accession no: U08049) 

with the aid of the LightCycler probe design software version 1.0.  The name and sequence 

of each primer and hybridisation probe is outlined in Table 2.05 as well as the 

concentration used in the final reaction. 
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2.2.2.4  DNA quantification 

 

DNA was quantified using Hoechst quantification reagent (Molecular probes).  The assay 

was carried out as per the manufacturer’s instructions and measurements were taken on a 

VersaFluor™ Fluorimeter (BioRad).  The DNA concentration of each sample was 

quantified in this manner and then samples were diluted in nuclease free water to a working 

concentration of 25 ng/µl, which was determined to be sufficient for Real-time PCR 

analysis. 

 

 

2.2.2.5  Real-time PCR  

 

Real-time quantitative PCR was carried out on a LightCycler instrument (Roche 

Diagnostics).  The total reaction volume was 10 µl, containing: 1 µl of 10X LightCycler 

DNA master hybridisation enzyme mix (Roche Diagnostics), 4 mM MgCl2, 0.1 µM 

hybridisation probes and primer concentrations were at 1 µM.  PCR conditions were carried 

out as follows: initial denaturation was 5 min at 95°C followed by 40 cycles of 95°C for 0s, 

55°C for 20s and 72°C for 20s.  A touchdown PCR was carried out with the annealing 

temperature starting at 55°C and dropping to 50°C at 1°C/cycle.  Fluorescence was 

measured at the end of each annealing step.  Data analysis was carried out using the second 

derivative maximum analysis method in the LightCycler software version 3.5. 
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2.2.2.6  Relative quantification 

 

Relative quantification was performed with the aid of the LightCycler relative 

quantification software version 1.1 (Roche).  To carry out relative quantification, efficiency 

correction files were generated by analysing a dilution series of control DNA with the 

optimised β-globin/PMP22 multiplex.  Standard curve files were exported from the 

LightCycler software into the relative quantification software so that an efficiency 

correction file could be generated.  This is an important step as it compensates for any 

difference in the amplification efficiency between β-globin and PMP22 amplicons.  Not 

correcting for efficiency could result in an over/under-estimation of PMP22 copies relative 

to β-globin copies and thus giving a false positive or negative result.  Sample data was then 

analysed using the relative quantification (Roche) software as per the manufacturers 

instructions.  
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Primer/hybridisation probe seq (5’ to 3’) Conc 

    

  
ββββ-globin primer  

  
bGCMTF: CATTTGCTTCTGACACAACT 1.0 µM 
bGCMTR: CTGGGTCCAAGGGTAG 1.0 µM 
  

ββββ-Globin hybridisation probes  
  
bGCMT-p1: GAAGTCTGCCGTTACTGCCC-f 0.2 µM 
bGCMT-p2: 640-TGGGGCAAGGTGAACGT-p 0.2 µM 
  

PMP22Ex1a primers  
  
PMP22Ex1aF: GGGCCTCTTGGGATTAT 1.0 µM 
PMP22Ex1aR: GCTCCCCGAGATGTTC 1.0 µM 
  

PMP22Ex1a hybridisation probes  
  
PMP22-p1: CCAGCATTGGACCAGCCC-f 0.2 µM 
PMP22-p2: 705-GAATAAACTGGAAAGACGCCTGG-p 0.2 µM 

    

 
 

Table 2.05 Sequence of primers and hybridisation probes used for PMP22 dosage 

analysis.  Fluorescein (f), Phosphate (p), LC Red 640 dye (640, detected in the F2 

channel), LC Red 705 dye (705, detected in the F3 channel).  The final concentration (conc) 

of each primer/probe in the multiplex PCR is also indicated. 
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2.2.3  RESULTS 

 

2.2.3.1  Standard curve reproducibility and PCR efficiency 

 

The exponential nature of PCR amplification and the small quantities of target molecules 

used at the start, mean that even small variations in the reaction component can affect the 

reproducibility of PCR (Wu, 1991).  The first part of this study involved careful design of 

both PCR primers and hybridisation probes for both PMP22 and β-globin.  β-globin will 

act as a reference gene to which PMP22 gene copy numbers will be represented as a ratio 

of.  Extensive optimisation was then required to ensure the multiplex was reproducible and 

that each amplicon had a similar efficiency.   

 

When we had successfully optimised the multiplex PCR, we tested both genomic DNA 

standards and patient samples to show that the results were reproducible from assay to 

assay.  The Cps were reproducible for the quantitative multiplex when using the same set 

of prepared genomic DNA standards in consecutive PCRs (Fig 2.10) as indicated by the 

low coefficient of variation (CV) (Table 2.06).  Crossing points for test samples were also 

reproducible, 3 samples tested over 4 separate PCRs and showed very little variation in Cp 

values (Fig 2.11) the CV was also low (Table 2.07).   

 

It is also important that the efficiency of each amplicon in the multiplex is similar.  If the 

efficiency for one amplicon varied much from the other amplicon within the multiplex 

PCR this could lead to over/under estimation of the copy number, potentially leading to 

misdiagnosis of the sample.  The efficiency is calculated from the slope of Cp against log 
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concentration using the following equation: Efficiency (E) = 10-1/slope (Rasmussen, 2001).  

As mentioned previously a slope of –3.33, indicates that the PCR is 100% efficient.  When 

we calculated the efficiency for amplification of both PMP22 and β-globin amplicons were 

109% and 108% respectively (Table 2.08).  This shows that there is only a marginal 

difference in efficiency between amplification of PMP22 and β-globin in our optimised 

multiplex PCR. 

 

 

 

Fig 2.10 Standard curves for PMP22 and ββββ-globin quantification for 3 consecutive 

PCRs. 
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Cp reproducibility for genomic DNA standards 

          

     

  Genomic DNA standards 

     

PMP22  

40 ng/ul 20 ng/ul 10 ng/ul 

   

 
Mean Cp 22.09 22.93 23.94 

 
Range (22.01-22.22) (22.80-23.02) (23.84-24.01) 

 
Std dev 0.112 0.114 0.142 

 
CV % 0.50 0.49 0.59 

     

ββββ-globin     

 
Mean Cp 22.17 23.05 23.91 

 
Range (22.13-22.21) (23.02-23.06) (23.74-24.01) 

 
Std dev 0.04 0.023 0.146 

 
CV % 0.18 0.10 0.60 

      

 

Table 2.06 Reproducibility of PMP22/ββββ-globin quantitative multiplex PCR using 

genomic DNA standards. 
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Fig 2.11 Crossing points for 3 samples in 4 consecutive PCRs.  Sample 1 (S1) is a 

CMT1A positive sample hence the lower Cps in the PMP22 graph when compared with 

the β-globin graph. 
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Cp reproducibility for patient samples 

          

     

  Sample 1 Sample 2 Sample 3 

PMP22     

 
Mean Cp 23.25 24.01 23.95 

 
Range (23.07-23.46) (23.87-24.12) (23.65-24.07) 

 
Std dev 0.163 0.134 0.198 

 
CV % 0.70 0.56 0.83 

     

ββββ-globin     

 
Mean Cp 24.04 24.06 24.16 

 
Range (23.92-24.19) (23.95-24.20) (24.02-24.29) 

 
Std dev 0.121 0.126 0.141 

 
CV % 0.51 0.52 0.59 

      

 

Table 2.07 Reproducibility of PMP22/ββββ-globin quantitative multiplex PCR using 

patient samples.  Efficiency (E), Standard deviation (Std dev), coefficient of variation 

(CV). 
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PCR efficiency calculations 
         

     

  Slope E = 10
-1/slope

 % E  

PMP22     

 Mean -2.943 2.187 109.34 

 Std dev 0.171 0.11 5.25 

 CV % 5.8 4.8 4.8 

     

ββββ-globin     

 Mean -2.985 2.163 108.14 

 Std dev 0.135 0.07 3.93 

 CV % 4.5 3.6 3.6 
          

 

Table 2.08 Efficiency of both PMP22 and ββββ-globin amplification.  Efficiency (E), 

Standard deviation (Std dev), coefficient of variation (CV). 
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2.2.3.2  Relative quantification of PMP22 gene copy numbers 

 

Relative quantification involves expressing the target amplicon as a ratio of a control 

amplicon that should remain constant in a test sample.  A separate relative quantification 

software package is available for the LightCycler instrument that determines the relative 

concentration of an unknown sample by normalising it to a calibrator sample.  In this 

study, the calibrator is a genomic DNA sample that is known to have neither a 

duplication/deletion of the PMP22 gene.  This calibrator sample is included in each run 

and it is used by the software to establish a normal ratio.  The software calculates a relative 

ratio based on the comparative threshold cycle method (Livak, 1997).  Firstly, the 

deltadeltaCp (∆∆Cp) is calculated as follow:  

 

∆∆∆∆∆∆∆∆Cp = [∆∆∆∆Cp ββββ-globin (calibrator sample) - ∆∆∆∆Cp PMP22 (calibrator sample)] - 

[∆∆∆∆Cp ββββ-globin (patient sample) - ∆∆∆∆Cp PMP22 (patient sample)].   

 

After the ∆∆Cp is calculated the relative gene copy number of unknown to calibrator 

sample can be calculated using the expression: 2-∆∆Cp.  Using this method, the expected 

results for a normal individual would be a ratio of ~ 1:1, 1.5:1 for CMT1A and 0.5:1 for 

HNPP.  Use of the LightCycler relative quantification software avoids the need to 

manually calculate ratio values.  The software also allows efficiency correction files to be 

generated, which can be used to normalise ratio values if there is a difference in efficiency 

between the calibrator and target amplification. 
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Following optimisation of the PMP22/β-globin quantitative multiplex, we tested a number 

of samples for PMP22 duplication or deletions.  A typical example of an amplification 

curve for a normal sample is seen in Fig 2.12.  As we can see, the difference between the 

Cps for the calibrator and test sample is similar for both β-globin (Fig 2.12, Panel A) and 

PMP22 (Fig 2.12, Panel B).  A CMT1A sample shows a larger difference between the Cps 

of the calibrator and test sample for β-globin than for PMP22 (Fig 2.13).  This indicates 

that in that sample there are more copies of the PMP22 gene than β-globin.  The reverse is 

seen when a HNPP sample is tested (Fig 2.14). 

 

The relative ratios of PMP22 to β-globin gene copy numbers of all samples tested are 

shown in Fig 2.15.  The mean ratio of PMP22 to β-globin for the control, CMT1A and 

HNPP groups were 1.03 (range: 0.83-1.2; standard deviation: 0.110; CV: 10.7%), 1.70 

(range: 1.47-2.2; standard deviation: 0.281; CV: 16.5%) and 0.44 respectively.  These 

figures are within the expected theoretical values for the different relative ratios.  From 

these results we can see that a ratio of >1.4 is indicative of CMT1A.  The diagnosis of 

HNPP can be made with samples that have a relative ratio of <0.55.  There was no overlap 

of copy number between the CMT1A or HNPP patients and the controls. 
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Fig 2.12 Relative quantification of PMP22 gene copy number in a normal sample.  The 

calibrator is labelled in green, the unknown sample in blue and the negative control in red.  

As can be seen there is no major difference between the delta Cp for the calibrator and test 

sample for either β-globin (panel A) or PMP22 (panel B). 
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Fig 2.13 Relative quantification of PMP22 gene copy number in a CMT1A patient.  

The calibrator is labelled in green, the sample is in blue and the negative control is in red.  

As can be seen in this example the delta Cp between the calibrator and sample for β-globin 

(panel A) is greater than the delta Cp between the calibrator and sample for PMP22 (panel 

B) indicating that there is an increased amount of PMP22 genes in this sample.   
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Fig 2.14 Relative quantification of PMP22 gene copy number in a HNPP sample.  The 

calibrator is labelled in green, the sample is in orange and the negative control is in red.  As 

can be seen in this example the delta Cp between the calibrator and sample for β-globin 

(panel A) is smaller than the delta Cp between the calibrator and sample for PMP22 (panel 

B) indicating that there is a decreased amount of PMP22 genes in this sample.  
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Fig 2.15 Distribution of normal, CMT1A and HNPP samples.  The number of samples 

in each group is indicated in brackets.  Samples falling on or between the green lines are 

within the normal range (0.8-1.2).  Samples above the blue line indicate that duplication is 

present and are therefore CMT1A positive.  A sample below the red line indicates that there 

is a loss of a copy of the PMP22 gene and are therefore HNPP positive. 
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2.2.4  DISCUSSION 

 

The major cause of CMT1A is the duplication of a 1.5Mb region on chromosome 17p11.2 

(Lpski, 1991; Raeymaekers; 1991), which was shown to contain the gene for peripheral 

myelin protein 22 (PMP22) (Matsunami 1992; Patel, 1992; Timmerman, 1992; Valentijn, 

1992).  Hereditary neuropathy with liability to pressure palsies (HNPP) has been 

associated with a reciprocal deletion of the same 1.5 Mb region (Chance, 1993).  A gene 

dosage effect was hypothesised to be the molecular pathogenic cause of the diseases 

(Lupski, 1992).  Overexpression of PMP22 leads to the CMT1A disease phenotype and 

underexpression of PMP22 leads to the HNPP phenotype.  This hypothesis has been lent 

more weight with the use of transgenic mouse models for both diseases (Huxley, 1996; 

Huxley, 1998; Magyar, 1996; Sereda, 1996; Vallat, 1996; Perea, 2001). 

 

 Many molecular techniques have been applied to the diagnosis of these two neuropathies.  

Southern blotting was used in conjunction with densitometric measurements to detect 

differences in gene dosage (Lupski, 1991).  Pulsed field gel electrophoresis (PFGE) has 

been used to detect recombination specific junction fragments (Chance, 1994).  Interphase 

fluorescence in situ hybridisation (FISH) methodologies have also been developed to 

detect the gain or loss of the PMP22 gene (Shaffer, 1997; Kaskork, 1999).  Other 

techniques include repeat-PCR (REP-PCR) (Stronach, 1999), short tandem repeat (STR) 

PCR (Haupt, 1997; Badano, 2001) and endpoint quantitative PCR (Poroppat, 1998; Young, 

1998).  However, many of these techniques have several drawbacks.  The hybridisation 

techniques are very time consuming and large amounts of high-grade DNA are required.  

Endpoint PCR is only semi-quantitative at best due to PCR reaching a plateau in latter 
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cycles and requires a considerable amount of post-PCR processing followed by 

densitometric analysis. 

 

Real-time PCR a recent advancement of the PCR technology has led to development of a 

truly quantitative technique.  Quantification is based on the principle that the Cp is 

proportional to the starting copy number of the target sequence (Higuchi, 1993).  One of the 

advantages of using Real-time PCR for the diagnosis of hereditary diseases is that the 

detection systems used are very sensitive, requiring only small amounts of DNA making 

them suitable for neo-natal screening.  

 

In this chapter, we aimed to determine how sensitive Real-time PCR is for quantification of 

subtle changes in gene copy number.  It is clear that Real-time PCR can easily detect log 

fold changes in the target amplicon but would it be able to measure changes as small as a 

1.5 fold increase?  To achieve this we developed a Real-time multiplex PCR to quantify the 

duplication or deletion of the gene for PMP22.  Recently other groups have taken Real-time 

PCR approaches for gene dosage analysis in CMT1A.  These have included a competitive 

gene dosage assay, where the area under a melting curve peak for an intronic polymorphic 

markers are compared between a PCR competitor and a test sample (Ruiz-Ponte, 2000).  

Other approaches have included Sybr Green 1 based relative quantification of PMP22 gene 

dosage using either β-globin (Choi, 2005) or albumin (Kim, 2003) as a reference gene.  The 

inability to perform multiplex PCR is a major disadvantage of using Sybr Green 1 for 

quantification, this means both the target and the reference gene have to be amplified in 

separate reactions.  Any pipetting errors made when loading the test sample into 2 separate 

PCRs could result in a false positive/negative result.  The optimum approach is to develop a 
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multiplex reaction whereby both the target and a reference gene are amplified in the same 

reaction.  In this system, any sample loading variations will not alter the result.  Other 

advantages include the saving of time and reagents, as only a single PCR is needed to 

assess both amplicons.  This approach to the quantification of PMP22 gene dosage was 

taken by a group using TaqMan probes and albumin was used as a reference gene (Thiel, 

2003).  

 

We used the multiplex PCR approach to co-amplify portions of exon 1a of the PMP22 gene 

and β-globin gene simultaneously.  Using hybridisation probes labelled with different dyes 

meant that each amplicon could be detected in a different colour channel on the 

LightCycler.  A relative quantification strategy was employed, meaning that PMP22 copy 

number would be expressed as a ratio of β-globin copy number.  Careful optimisation of 

the PCR parameters was required, as the efficiency at which both amplicons were being 

produced had to be similar.  PCR efficiency calculations were made by running serial 

dilutions of a standard, in this case a commercial preparation of gDNA at a known 

concentration, in the multiplex.  The slope of the resulting standard curves could then be 

put into the following equation: E = 10-1/slope, the average efficiency of both reactions was 

very similar differing by only 1% (Table 2.08).  Calculation of the Cp values for both the 

calibrator and test samples was performed using the second derivative maximum algorithm 

in the LightCycler data analysis software.  This approach was taken, as it is a more 

automated way of obtaining Cp data.  Cp values were reproducible from day to day for both 

standards (Table 2.06 and Fig 2.10) and patient samples (Table 2.07 and Fig 2.11).   
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Relative quantification was performed by exporting the Cp data for each sample into the 

LightCycler relative quantification software.  Use of this software serves two purposes, 

firstly coefficiency files can be generated from the standards, this allows for correction of 

efficiency if differences occur between the two amplicons.  Secondly, it is a more 

automated way of obtaining ratio values.  Automation of any aspect of a diagnostic test can 

eliminate/reduce human error when interpreting the results.  

 

The mean ratio of PMP22 to β-globin for the different groups, controls, CMT1A and HNPP 

are 1.03, 1.70 and 0.44 respectively, which is similar to previously published data (Choi, 

2005; Aarskog, 2001; Ruiz-Ponte, 2000; Thiel, 2003).  There is a clear gap between the 

gene copy number ratios between each group (Fig 2.15) with no overlapping results.  The 

control and CMT1A cohort numbers are similar or better than other studies.  The single 

HNPP sample is a limitation of this study, nonetheless, it is clearly discernible from the 

normal cohort and falls within the ratio range of other studies (Choi, 2005; Aarskog, 2001).  

 

To conclude, the Real-time multiplex PCR assay that we have developed allows the rapid 

differentiation of gene deletions and duplications and allows for the diagnosis of CMT1A 

and HNPP patients.  The assay is quick (~ 45 mins), requires very little DNA (~25 ng/µl) 

and data interpretation is automated which facilitates high-throughput.  As this work has 

also shown that Real-time PCR techniques are sensitive enough to detect subtle changes in 

gene copy numbers, similar approaches could be employed for a wide range of genetic 

diseases such as Down’s syndrome caused by trisomy 21 (Zimmermann, 2000).  Many 

cancer cells undergo amplification of certain genes that help them avoid the immune 

system resulting in a more aggressive tumour such as decoy receptor 3 in gastrointestinal 
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tumours (Pitti, 1998; Bai, 2000) and Her2/neu in breast cancer (Slamon, 1987).  These 

events could also be monitored with an approach similar to the one used in this study. 
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3.1 INTRODUCTION 

3.1.1 Autoimmune diseases 

  

Autoimmune diseases are individually rare but when taken together they affect 

approximately 5 % of the population in the western world with a disproportionately skewed 

effect on women (McKay, 2004; O’Shea, 2001).  The consensus is that these diseases occur 

due to abnormal lymphocyte activation, however, other cells types can make a significant 

contribution to disease pathogenesis, particularly APCs such as DCs (Bayry, 2004).  The 

development of autoimmune conditions is a complex process involving genetic 

predisposition as well as environmental triggers such as pathogen exposure and diet (Rioux, 

2005).     

 

Autoimmune diseases are often categorised into organ/tissue-specific as in the case of 

insulin dependent diabetes mellitus (IDDM), multiple sclerosis (MS) and thyroiditis or 

systemic diseases such as rheumatoid arthritis (RA) and SLE in which multiple organs can 

be affected.  Despite these differences, there are many common elements between the 

various clinical diseases.  Genome-wide linkage analysis shows that many autoimmune 

diseases share common susceptibility loci (Maas, 2002).  Different clinical diseases may 

also over-lap within families or individuals.  This would possibly indicate that common 

groups of genes could contribute to the development of different autoimmune diseases.   
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3.1.2 LIGHT and immune-mediated diseases 

 

As mentioned previously, LIGHT plays important roles in a variety of different aspects of 

the immune system including T cell co-stimulation (Harrop, 1998; Tamada, 2000), DC 

maturation (Morel, 2001), mLN organogenesis (Wang, 2002) and negative selection of 

thymocytes (Wang, 2002; Wang 2001).  With such a diverse effect on the immune system, 

LIGHT is a good candidate gene to have a role in the development of immune-mediated 

diseases.   

 

In 2001, two papers were published that identified the in vivo effects of T cells 

overexpressing LIGHT using transgenic mice (Shiakh, 2001; Wang, 2001).  Both groups 

constitutively overexpressed LIGHT on T lymphocytes using lineage specific promoters.  

These LIGHT-Tg mice developed a lymphoproliferative disorder with gross enlargement of 

the spleen and LNs caused by the expansion of the T cell compartments.  Haematoxylin and 

Eosin (H&E) staining of the small intestine showed signs of chronic inflammation with 

substantial infiltration of mononuclear cells, loss of goblet cells, distortion and hyperplasia 

of the crypts and villus atrophy (Shiakh, 2001).  Following in vitro activation of T cells 

there was a significantly increased number of INF-γ, IL-4 and Granulocyte-monocyte 

colony stimulating factor (GM-CSF) producing cells in LIGHT-Tg mice than in the WT 

mice (Wang, 2001).  GM-CSF leads to the preferential increase in GM lineages and 

activation of mature macrophages and granulocytes.  Granulocytes and 

monocytes/macrophages are major effector cells of the immune response; elevated levels of 

these cells in conjunction with high levels of activated T cells may cause the destruction of 

peripheral tissue and ultimately lead to autoimmunity.   
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In addition to severe intestinal inflammation, the LIGHT-Tg mice also developed 

glomerulonephritis, involving 80% of the glomeruli and strong IgG deposits were observed 

in the glomeruli of Tg mice (Wang, 2001).  These manifestaions resemble those seen in 

MRL-lpr/lpr mice, which is an established mouse model for SLE.  The LIGHT-Tg mice 

were also shown to have an 8-fold increase in anti-DNA autoantibodies, with there being 

only a slight increase in total IgG levels when compared with WT mice (Wang, 2001). 

 

These studies showed that while LIGHT could trigger symptoms of systemic 

autoimmunity, overexpression of LIGHT had a particularly profound effect on the intestine.  

Only memory and activated T cells have the ability to effectively migrate to peripheral 

tissues (Masopust, 2001), while naïve T cells migrate to secondary lymphoid organs 

(Butcher, 1999; von Andrian, 2001).  Migration of T cells to effector sites such as the 

lamina propria is facilitated by interaction with tissue-specific integrins and chemokine 

gradients.  Mucosal addressin cell adhesion molecule 1 (MAdCAM-1), which is expressed 

at constitutively low levels in the intestine specifically promotes α4β7 integrin bearing T 

cells to migrate to intestinal effector sites (Berlin, 1993).  LIGHT-Tg mice showed 

increased in vivo expression of MAdCAM-1 on endothelial cells (Wang, 2004) and 

recombinant LIGHT has been demonstrated to increase the expression of MAdCAM-1 

(Wang, 2005).  Peyer’s patches (PP) derived DC have the ability to induce high expression 

of α4β7 integrin on T cells, as LIGHT plays a role in DC maturation, excessive LIGHT 

could lead to increased PP DC maturation ultimately leading to increased numbers of T 

cells with a predilection for the gut.  Activation of LTβR on LP stromal cells by LIGHT 

expressed on activated T cells leads to the creation of microenvironments that are 

conducive to increased recruitment of cells to the LP (Fig 3.01) (Chin, 2003). 
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To further prove that LIGHT-expressing T cells preferentially home to the gut an adoptive 

transfer study was performed.  The mLN cells were transferred from LIGHT-Tg mice into 

recombination activating gene-1 knockout (RAG-1-/-) mice (Wang, 2005).  The LIGHT-Tg 

mLN cells caused severe intestinal inflammation in the recipient, whereas the transfer of 

wildtype mLN cells into the RAG-1-/- model did not cause intestinal inflammation. 

 

LIGHT knockout (LIGHT-/-) mice have also been generated, and their T cells show 

decreased proliferation and release of cytokines in response to in vitro stimulation (Scheu, 

2002).  This indicates the importance of LIGHT signalling via HVEM to allow full 

activation of T cells.  CD 8+ T cell responses in particular are sub-optimal in these LIGHT 

knockout animals.  Blocking LIGHT binding to its receptors using either HVEM-Ig or 

LTβR-Ig recombinant fusion proteins has been shown to alleviate T cell-mediated 

autoimmune diseases.  Insulin dependent diabetes mellitus (IDDM) is an autoimmune 

disease caused by T cell-mediated destruction of insulin producing β cells of the pancreatic 

islets of Langerhans (Bach, 1994).  The non-obese diabetic (NOD) mouse, a well-

established model for IDDM was used to test the role of LIGHT in T cell-mediated disease.  

Treatment of the mice with HVEM-Ig significantly reduced the development of IDDM by 

blocking LIGHT-signalling pathways (Wang, 2001).    

 

LIGHT expression by T cells has been linked to a wide range of immune-mediated diseases 

such as rheumatoid arthritis (Kim, 2005), Crohn’s disease (Wang, 2005; Cohavy, 2005), 

ulcerative colitis (UC) (Mao-Mao, 2005) atherosclerosis (Lee, 2004) chronic heart disease 

(Yndestad, 2002) autoimmune hepatitis (Anand, 2006) as well as graft verses host disease 

(GVHD) (Tamada, 2000).  The evidence overall, from both animal and human studies 
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suggests that the overproliferation and hyperactivation of T cells caused by T cell derived 

LIGHT can lead to the breakdown of self-tolerance.  This implies that dysregulation of 

LIGHT expression could be an important factor in the induction of both T and B cell 

autoimmunity and in the pathogenesis of autoimmune diseases. 
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Fig 3.01 The role of LIGHT-LTββββR interactions in promoting chronic intestinal 

inflammation (Adapted from Chin, 2003).  Activated autoreactive T cells can migrate to 

the lamina propria via upregulation of the integrin α4β7 which can bind to MAdCAM-1 

which is constitutively expressed in the intestine.  Activation of LTβR on LP stroma by 

LIGHT on autoreactive T cells leads to increased expression of adhesion molecules, 

chemokines and proinflammatory cytokines.  This leads to increased migration of 

inflammatory cells to the LP in a positive feedback loop, leading to chronic inflammation 

and tissue destruction.  TCR, T cell receptor; MHC, major histocompatibility complex; 

APC, antigen presenting cell.  
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3.1.3 Mitogen activation of T cells 

 

The first stage in the activation of T cells is the engagement of the T cell receptor (TCR) 

with a MHC-peptide complex.  Intracellular signalling through the TCR results in the 

recruitment of a large number of proteins to its cytoplasmic domain and the activation of 

enzymes such as phospholipase C (PLC).  PLC can convert phophatidyinositol 4, 5 

phosphate (PIP2) to inositol 1, 4, 5 triphosphate (IP3) and diacylglycerol (DAG) two 

important second messengers within cells.  Increases in intracellular levels of IP3, result in 

the generation of a Ca++ flux within cells and the activation of Ca++ dependent phosphatases 

such as calcineurin.  This in turn can cause the activation and translocation of transcription 

factors such as NF-AT and AP-1 to the nucleus.  DAG has a role in the activation of protein 

kinase C (PKC).  To date there have been nine isoenzymes of PKC identified, some are 

ubiquitously expressed while others are tissue-specific.  PKC isoenzymes generally require 

both an increase in Ca++ and DAG to become activated.  However, PKCθ a T cell, 

monocyte and platelet specific isoform can be activated by DAG alone (Newton, 1997).  

PKCθ is rapidly recruited to the site of TCR clustering upon stimulation (Monks, 1997) and 

deletion of the gene in knockout mice results in defective T cell activation (Sun, 2000).   

 

Activation of T cells via the TCR can be mimicked in a number of ways; by using 

monoclonal anti-CD3 antibodies, by the use of T cell specific lectins such as Concavalin A 

(ConA) or Phytohaemaglutinin (PHA) or by using a combination of a phorbol ester such as 

phorbol 12-myristate 13-acetate (PMA) and a calcium ionophore such as ionomycin.  PMA 

is an analog of DAG and thus it can directly bind and activate PKC isoenzymes.  

Ionomycin is a polyether antibiotic produced by Streptomyces conglobatus (Liu, 1978).  
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Ionomycin is capable of binding to divalent ions such as Ca++ and Mg++ in a 1:1 

stoichiometry (Lui, 1978).  The calcium salt of ionomycin is a very effective mobile carrier 

of Ca++, leading to a flux of Ca++ within cells.  In T cells, this results in the expression of 

activation markers such as CD7 (Ware, 1991), or the hydrolysis of phosphoinositides and 

the activation of PKC (Chatila, 1989).  PMA and ionomycin can work in synergy to bypass 

the TCR signalling and directly activate down-stream signal transduction pathways that 

ultimately lead to activation of the T cell. 

 

 

3.1.4 Jurkat T cells 

 

The Jurkat T cell line was originally derived from peripheral blood of a 14-year-old boy 

suffering from acute lymphoblastic leukaemia (ALL) (Schneider, 1977).  The original line 

was designated JM, but was heavily infected with mycoplasma.  A bid to clear the cell line 

of the infection yielded the Jurkat E6-1 clone, which has become the standard Jurkat cell 

line used today (Abraham, 2004).  The Jurkat cell has been used over the last 25 years by T 

cell immunologists to identify many of the events following on from TCR simulation that 

leads to activation of the cell and the initiation of an immune response (Abraham, 2004).  

Incubation of Jurkat cells in the prescence of PMA and ionomycin induces a strong 

activation response, as measured by the increased expression of IL-2 (Abraham, 2004).   
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3.1.5 Interferon–gamma (INF-γγγγ) 

 

The outcomes of an antigen driven T cell response is tightly regulated by cytokines, which 

play a key role in dictating which T helper (Th) cell pathway is induced.  The Th1 pathway 

or cell-mediated immune response is characterised by the presence of IL-12, IL-2 and INF-

γ, whereas the Th2 pathway or humoral response is defined primarily by the production of 

IL-4 and IL-10 (Mossman, 1989).  These two pathways tend to be antagonistic of each 

other, Th1 cytokines downregulate Th2 responses and vice versa.  The majority of 

autoimmune diseases in both human and animal studies that are associated with specific 

MHC class II allotypes have been characterised as being mediated by the Th1 pathway 

(Rosloniec, 2002).  INF-γ is the cytokine that defines Th1 differentiation (O’Shea, 2001) 

and its role in autoimmunity has been extensively investigated.  The INF-γ gene is located 

on Chr 12q14 (Zimonjic, 1995) that codes for a mature protein of 146 amino acids.  It is 

expressed by activated Th1, NK and cytotoxic T cells and it has a wide range of 

proinflammatory effects on various cells of the cell-mediated immune response.  INF-γ has 

been shown to enhance the activity of macrophages, induce proliferating B cells to switch 

to IgG2a antibody production, increasing the expression of both MHC class I and II 

molecules on various cells and inhibiting the proliferation of Th2 cells.  SLE patients have 

been shown to have elevated levels of both INF-γ mRNA and soluble protein in their 

peripheral blood (Csiszár, 2000).  CD patients have also been demonstrated to show 

increased expression of INF-γ in duodenal biopsies (Nilsen, 1998). 
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3.1.6 Analysis of mRNA expression by Real-time PCR 

 

Many cellular decisions such as differentiation, survival and growth are linked to altered 

patterns of gene expression within the cell.  The ability to quantify transcription levels of 

specific genes has become a central part of research into their function and how they may 

be altered during disease processes.  Reverse transcription (RT) PCR remains the most 

sensitive method for the detection of mRNA and coupled to a Real-time quantitative system 

it has become the method of choice when assessing steady state mRNA levels (Bustin, 

2000).  The design of a quantitative RT-PCR has to take into consideration many factors 

that may have an effect on the result. 

 

The first decision is whether to use mRNA or total RNA as a target for the RT-PCR.  The 

use of mRNA has been reported to give better sensitivity (Burchill, 1999).  However, extra 

steps are needed to isolate it from the total RNA, which can result in loss of transcripts and 

not all mRNA molecules have poly A tails (essential for enrichment of mRNA from total 

RNA).  Therefore, for most assays, the use of total RNA is advisable (Bustin, 2004). 

 

The next decision to make is which type of primer will be used to generate cDNA from 

mRNA during the RT phase.  The RT step can be primed using oligo-dT, random 

hexamer/nonomers and target specific primers.  Oligo-dT primers initiate RT by binding to 

the poly A tail of mRNA molecules, therefore it cannot prime RNAs that lack a poly A tail 

eg histone or viral RNAs (Bustin, 2004).  Random primers initiate RT from multiple points 

along the transcript.  They yield the most amount of cDNA and can be useful for transcripts 

that contain large amounts of secondary structure.  Nonetheless, it has been reported that 
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their use can lead to an overestimation of mRNA by ~19 fold when compared to target-

specific primers (Zhang, 1999).  Target specific primers synthesize the most specific cDNA 

and are probably the most sensitive option for quantification (Lekanne, 2002).  A drawback 

of using target specific primers is that separate priming reactions are necessary for each 

individual target that is analysed, whereas the use of random/oligo-dT primers yields a 

stock of cDNA which can be used to amplify multiple targets. 

 

The last major factor to be considered is whether a one-step or two-step RT-PCR will be 

required and the choice of RT enzyme.  A one-step RT-PCR involves both the RT and PCR 

phases being performed in the same reaction tube (Goblet, 1989; Mallet, 1995).  In a two-

step RT-PCR the RT step is performed in a separate reaction and then an aliquot of this is 

added to the PCR for amplification of the specific target sequence.  Each approach has its 

advantages and disadvantages.  The one-step is less time-consuming and the possibility of 

cross-contamination is reduced.  Nevertheless, this requires more RNA than a two-step RT-

PCR when analysing multiple mRNA targets, this only becomes a factor when samples are 

very small and RNA is limited.  The two-step allows multiple target mRNA to be PCR-

amplified from a single RT reaction. 

 

There are several RNA dependent DNA polymerases on the market that can be used for 

RT.  The most common two are avian myeloblastosis virus reverse transcriptase (AMV-

RT) and Moloney murine leukaemia virus reverse transcriptase (MMLV-RT).  AMV-RT is 

a more robust enzyme and has a greater processivity than MMLV-RT (Brooks, 1995).  

Both enzymes work optimally in the region of 37-42oC, which makes them susceptible to 

problems during first strand synthesis if there is a high degree of secondary structure 
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present.  There are enzymes on the market, which to some extent can avoid problems with 

RNA secondary structure such as Tth polymerase.  Tth polymerase is derived from the 

thermostable bacteria Thermus thermophilus (Myers, 1991).  The enzyme in the presence of 

Mn++ ions (Chiocchia, 1997) has both PCR and RT activities allowing a “single-enzyme” 

one-step RT-PCR to be performed.  Unlike AMV-RT and MMLV-RT, Tth polymerase is a 

truly thermostable enzyme allowing the RT reaction to be carried out at a higher 

temperature (61oC).  Only the primer Tm limits the temperature at which the RT reaction 

can be carried out.  Carrying out RT reactions at a higher temperature (61oC instead of 

45oC) has the advantage of relaxing secondary structure within the mRNA, which can 

affect the ability of the RT enzyme to generate transcripts (Bustin, 2000).  The co-

purification of RT-PCR inhibitors during RNA extraction can present as a serious problem 

to accurate and reproducible quantification of mRNA levels (Cone, 1992).  Common PCR 

inhibitors include heavy metals (Wilson, 1997), residual presence of heparin (anti-

coagulant) (Beutler, 1990) and haem compounds like haemoglobin (Akane, 1994) and 

myoglobin (Belec, 1998).  Tth polymerase has been shown to be very resistant to the 

inhibitory effects of K+ and Na+ (Al Soud, 1998) and biological sample contaminants 

(Poddar, 1998).  The sensitivity of target mRNA detection using Tth polymerase has also 

been reported to be very high, with detection of low abundance mRNA from a single cell 

being possible (Chiocchia, 1997).  Therefore, Tth polymerase displays many properties that 

make it suitable for one-step, specifically primed, quantitative RT-PCR. 
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3.1.7 Aim of this chapter 

 

The TNF superfamily is an ever-growing group of powerful immunomodulatory molecules.  

Each member has a complex role to play in the initiation or inhibition of an immune 

response.  As the family grows, the interactions of each of the members and their receptors 

form an even more complex web of interacting effector pathways.  Many lines of evidence 

in both animal model and human studies indicate an association of aberrant LIGHT 

expression with the development and maintenance of immune-mediated diseases.  The aim 

of this chapter is to examine the mRNA expression of LIGHT and its associated receptors 

(HVEM, LTβR and DcR3) in CD and SLE.  CD is characterised by profound inflammation 

in the small intestine and SLE is associated with anti-DNA autoantibodies and 

glomerulonephritis and these manifestations have been clearly identified in LIGHT-Tg 

mice.  We speculate that increase expression of LIGHT may contribute to the strong Th1 

response associated with both conditions.  A cohort of WG patients was also included in 

the study, as the disease is characterised by the presence of autoantibodies and 

glomerulonephritis.   
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3.2 MATERIALS AND METHODS 

 

3.2.1 Jurkat T cell stimulation  

 

Jurkat cells were grown in RPMI 1640 (Sigma) supplemented with 10% fetal calf serum 

(FCS) (Sigma), 2mM glutamine (Sigma) and penicillin/streptomycin solution (Sigma) and 

incubated at 37°C in 5% CO2.  For the stimulation time-course assay, cells were grown in 6 

well tissue culture plates (Greiner) at 1x106 per ml.  At time zero, cells were stimulated 

using a combination of 10 ng/ml PMA (Sigma) and 1 µg/ml ionomycin (Sigma), unless 

otherwise stated.  Cells were harvested for RNA extraction over a period of 48 hrs.  

 

 

3.2.2 Patient Samples 

 

Whole blood samples (3 ml) were collected into sterile EDTA Vacutainer tubes from 35 

healthy controls, 27 CD, 15 WG and 14 SLE patients.  Consent was obtained from all 

patients in accordance with both the Dublin Institute of Technology’s ethics review board 

and St James’s hospital ethics review board. 

 

As samples for medical based research are becoming more difficult to obtain, we decided to 

use existing intestinal tissue that had been collected as part of a wider study investigating 

the molecular mechanisms involved in the destruction of epithelial cells in CD patients.  

For that study the epithelial layer was striped from the duodenal biopsy using an enzymatic 
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digestion protocol, samples were then frozen and transported on dry ice before being 

processed for RNA extraction.  The samples collected included 9 patients with untreated or 

active disease, 2 treated patients that were on a GFD and 4 disease controls.  Intestinal 

biopsies were collected from CD patients undergoing routine diagnosis at St James’s 

hospital and all patients had given informed consent.   

 

 

3.2.3 Total RNA isolation from cultured Jurkat T cell and peripheral 

blood leukocytes  

 

Erythrocytes were lysed in red blood cell (RBC) lysis solution (155mM ammonium acetate, 

10mM Potassium Hydrogen Carbonate, 1mM EDTA).  PBL were pelleted at 3000 rpm for 

5 minutes at room temperature.  The PBL pellet was then briefly washed in RBC lysis 

solution, before being homogenised in 1 ml of Tri reagent (Invitrogen) using a sterile 23g 

needle and syringe.  Tri reagent combines phenol and guanidine thiocynate in a mono-

phase solution to facilitate the immediate and most effective inhibition of RNase activity.  

Total cellular RNA was extracted as per the manufacturer’s instructions; RNA pellets were 

resuspended in RNase free water and samples were stored at –80°C pending further 

analysis.  Cell lines were spun at 3000 rpm for 5 mins to remove cell culture media, RNA 

was then extracted from these in the same manner as WBCs. 
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3.2.4 Total RNA isolation from duodenal biopsies 

 

Biopsy material was transported on dry ice and stored at –80°C before processing for RNA 

isolation.  Three biopsies were used for each patient, firstly the biopsies were teased apart 

in 100µl of Tri reagent (Invitrogen) on a sterile microscope slide which had been pre-

treated with RNAzap (Sigma).  The crudely broken down sample was then transferred to a 

1.5 ml eppendorf where and additional 100 µl of Tri-reagent was added, the sample was 

then further broken down using a motorised pellet pestle (Sigma).  Finally, a further 800 µl 

of tri-reagent was added to the eppendorf and passed through a 23g needle several times.  

This processing ensured full homogenisation of the sample.  Total RNA was then isolated 

as per the manufacturers instructions. 

 

 

3.2.5 Isolation of peripheral blood mononuclear cells (PBMCs) and 

granulocytes 

 

PBMCs were isolated using Histopaque-1077 (Sigma).  Histopaque-1077 is a solution of 

polysucrose and sodiumdiatrizoate, adjusted to a density of 1.077 g/ml.  During 

centrifugation, erythrocytes and granulocytes are aggregated by the polysucrose and rapidly 

sediment.  Lymphocytes and other mononuclear cells remain at the plasma/histopaque-

1077 interface.  PBMC were isolated as per the manufacturer’s instructions.  The resulting 

PBMC pellet was processed for total RNA isolation using Tri-reagent.  The granulocytes 

were retrieved from the sedimented pellet following histopaque-1077 separation from the 
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PBMCs.  The pellet contains a mix of granulocytes and erythrocytes.  Erythrocytes were 

lysed using RBC lysis buffer and following centrifugation the resulting granulocyte pellet 

was processed for total RNA isolation using Tri-reagent. 

 

 

3.2.6 Total RNA quantification 

 

Total RNA from the cell lines, peripheral blood and duodenal biopsies was quantified using 

RiboGreen quantitation reagent (Molecular probes).  Ribogreen is an ultra sensitive 

fluorescent stain for quantifying RNA in solution.  The assay was carried out as per the 

manufacturer’s instructions and measurements were taken on a VersaFluor™ Fluorimeter 

(BioRad).  The total RNA concentration of each sample was quantified in this manner and 

then samples were diluted in nuclease-free water (Gibco) to a working concentration of 50 

ng/µl, which was determined to be sufficient for Real-time PCR analysis. 

 

 

3.2.7 Standard curve preparation for quantitative Real-time 

PCR 

 

In order to carry out absolute quantification a series of standards were produced.  This was 

done by cloning the PCR product of interest into the multiple cloning site of a pCR TOPO 

2.1 vector (Invitrogen) as stated in the manufacturer’s instructions.  White positive 

transformed bacterial colonies were selected and isolation of the recombinant plasmid was 
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carried out using a Wizard® Plus SV miniprep DNA purification system (Promega).  

Purified plasmid was quantified using a Fluorescent DNA quantitation kit (BioRad) and 

fluorescent measurements were taken on a VersaFluor™ Fluorimeter (BioRad).  This 

allowed the exact number of plasmid molecules per µl of plasmid miniprep to be calculated 

as follows (Whelan, 2003): 

 

Weight in Daltons (g/mol) = (bp size of ds product)(330 Daltons X 2nt/bp) 

Hence: (g/mol)/Avogadro’s number = g/molecule = copy number 

 

(Where: bp = base pair, ds = double stranded, nt = nucleotide, Avogadro’s number = 6.023 

X 1023) 

 

Each plasmid contains a single copy of our sequence of interest.  These could then be used 

to generate accurate standards for quantitative Real-time PCR over the range of 1x107 to 

1x102 copies.    

 

 

3.2.8 Real-time quantitative PCR 

 

One-step quantitative RT-PCRs were performed on a LightCycler (Roche) using a 

LightCycler RNA master hybridisation probes RT-PCR kit (Roche).  This kit utilises the 

ability of Tth polymerase to carry out both RT and PCR activities in the presence of Mn++ 

ions.  Primers and hybridisation probes (Table 3.01) used in this study were designed using 

the LightCycler probe design software (Roche).  Primers were designed so they spanned 
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exon-intron boundaries so that they would not amplify sequences from genomic DNA.  In 

the case of quantifying LIGHT and the splice variant deltaLIGHT the same primers are 

used but the LIGHT hybridisation probes bind to the region that is spliced out in the 

alternative transcript and therefore detect only the full-length message (Fig 3.02).  The 

deltaLIGHT hybridisation probes span across the splice site and can therefore only cause 

fluorescent resonance energy transfer (FRET) when bound to the spliced message.  In this 

way, we can track changes in the levels of the two different spliced variants of LIGHT.  

The one-step quantitative RT-PCR thermocycling conditions were as follows 61°C for 20 

mins, 95°C for 2 mins followed by 45 cycles of 95°C for 0s, 55 °C for 12s and 72°C for 

14s.  

 

 

 

Fig 3.02   Placement of hybridisation probes to selectively detect different splice 

variants of LIGHT.  The first set of hybridisation probes (set 1), bind to a sequence 

within the spliced region, which is only present in the full-length mRNA transcript.  The 

second set of hybridisation probes (set2) span the splice junction site and are therefore 

separated in the full-length transcript.  In the alternative transcript, they can bind in close 
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proximity to each other allowing FRET to occur.  The advantage of this system is that only 

one set of primers is used to amplify both transcripts, this will ensure that the efficiency of 

both PCRs will be similar allowing levels to be directly compared. 

 

 

3.2.9 Statistical analysis 

 

A non-parametric Mann-Whitney U-test was performed to compare the median mRNA 

expression of two sample populations for statistical differences.  P values were two-sided 

and statistical significance was considered when P ≤ 0.05.  Correlations between the 

expression of different mRNAs within a sample group were measured using Spearman’s 

rank order correlation coefficient.  Results were deemed to be statistically significant when 

P ≤ 0.05.  A students T test was performed to compare the mean mRNA expression values 

from the different cell populations in the control and SLE patients.  P values were two-

sided and statistical significance was considered when P ≤ 0.05. 
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 Primer/hybridisation probe seq (5’ to 3’) Conc (µM) 
      

   

LIGHT  

Forward GACAGACCGACATCCCATT 1.0 
Reverse TGCTGGGTTGACCTCGT 1.0 
Probe 1 GCTGCACTGGCGTCTAGGAGAGA-f 0.2 
Probe 2 x-CGTCACCCGCCTGCCTGACG-p 0.2 

deltaLIGHT  
Probe 1 ACCGGAGACAGTGGTGCAGTGTGG-f 1.0 
Probe 2 x-CCGGGACGGACCTGCAGG-p 1.0 

HVEM  
Forward ATGTAGTCAAGGTGATCGT 0.2 
Reverse GTATCTCTGGCGTCGG 0.2 
Probe 1 GGTGGCCGTGGAGGAGACAATACCCTCATTCACG-f 0.2 
Probe 2 x-CGAGGAGCCCAAACCACTGACCCA CAGACTCT-p 0.2 

DcR3   
Forward TTTCTGCTTGGAGCAC 1.0 
Reverse CCTCTTGATGGAGATGT 1.0 
Probe 1 CACCTTCTCAGCCAGCAGCTCCAGCTCAG-f 0.2 
Probe 2 x-CAGTGCCAGCCCCACCGCAACT-p 0.2 

LTβR  
Forward GCAAAAATCCATTAGAGC 1.0 
Reverse GGAAGTATGGATGGGC 1.0 
Probe 1 GAAACTGGGATCGCTGCTCAAGAGGC-f 0.2 
Probe 2 x-CCGCAGGGAGAGGGACCC-p 0.2 

INF-γ  
Forward CAAAAGAGTGTGGAGACC 1.0 
Reverse TCGACCTTGAAACAGCA 1.0 
Probe 1 CCAACGCAAAGCAATACATGAACTCATCCAAGTGATG

GC-f 
0.2 

Probe 2 x-CAACTGTCGCCAGCAGCTAAAACAGGGAAGCG-p 0.2 
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Table 3.01 Primers and hybridisation probes used for Real-time quantitative RT-PCR.  

Fluorescein (f); phosphate (p); LCRed 640/705 dye (x). 

3.3 RESULTS 

 

3.3.1 Standard curve generation for absolute quantification 

 

To perform absolute quantitative Real-time PCR a series of standards were produced for 

each of the mRNAs being analysed in this study.  To do this the PCR products generated 

using the primers in Table 3.01 for each of the mRNA species and were cloned into a pCR 

2.1 TOPO vector.  Positive recombinant plasmids could then be grown in bacterial culture 

from which stocks of the plasmids could be purified and the copy number calculated.  Once 

the copy number was calculated, standard curves could be generated by serially diluting the 

recombinant plasmid over the range of 1 X 107 to 1 X 102, an example of a typical result is 

seen in Fig 3.03.  Using this method to generate standard curves, from which unknown 

samples could be measured, proved to be very reproducible from assay to assay (Fig 3.04).  

Using the slope of each standard curve the efficiency of each PCR could be established.  As 

can be seen from Table 3.02 each of the quantitative PCRs has a very high efficiency 

(~100%) indicating that the RT-PCR protocols have been successfully optimised. 
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Fig 3.03 Real-time standard curve for quantifying LIGHT mRNA copy numbers.  This 

curve has a wide dynamic range of 6 orders of magnitude. 

 

 

 

 

Fig 3.04 Reproducibility of crossing point verses starting copy number of LIGHT 

plasmid molecules. 
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Real-time PCR efficiency calculations 
        

    
 Slope E = 10-1/slope % E 

   
LIGHT -3.324 1.999 99.96 

    
deltaLIGHT -3.254 2.029 101.46 

    
HVEM -2.908 2.207 110.37 

    
LTββββR -3.503 1.930 96.48 

    
INF-γγγγ -3.063 2.121 106.03 

    
DcR3 -3.808 1.831 91.53 

    

 

Table 3.02 PCR efficiency for quantitative RT-PCR protocols.  Efficiency (E) is 

calculated for the slope of the standard curve.  E = 2 is equivalent to E = 100%, indicating 

that there is optimal amplification of the amplicon during the PCR phase. 
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3.3.2 Total RNA extraction 

 

The extraction of high quality RNA is essential in any gene expression study.  We used a 

commercial RNA extraction solution called Tri-reagent to perform total RNA isolation 

form the cells and tissue used in this study.  This protocol is quick and allows the extraction 

of high quantity RNA as indicated by a strong 28S and 18S ribosomal bands.  Fig 3.05 

shows 4 total RNA samples as a representative of the high quality RNA isolated using this 

method, each lane contains approximately 1µg of total RNA. 

 

 

 

 

Fig 3.05 Total RNA extracted using Tri-reagent. 
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3.3.3 Effect of PMA concentration on the expression of LIGHT 

 

In order to ensure that we could measure changes in mRNA expression using our RT-PCR 

protocol we used the Jurkat T cell line as an in vitro model.  In the first experiment using 

Jurkat cells, we tested the effect that 24 hr stimulation using PMA and ionomycin (P/I) 

would have on the expression of LIGHT mRNA.  This demonstrated that the stimulation of 

LIGHT message is dependent on PMA, (Fig.3.06) ionomycin alone is insufficient to induce 

expression.  From this experiment it was decided that 10ng/ml PMA and 1µg/ml ionomycin 

was sufficient to induce an upregulation of LIGHT mRNA in Jurkat T cells and these 

concentrations were used in further experiments. 

 

 

 

Fig 3.06 LIGHT mRNA expression is dose dependent on PMA.  1: RPMI control; 2: 

1µg/ml ionomycin; 3: 10ng/ml PMA; 4: 1ng/ml PMA and 1µg/ml ionomycin; 5: 10ng/ml 

PMA and 1µg/ml ionomycin; 6: 100ng/ml PMA and 1µg/ml ionomycin 
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3.3.4 Effect of stimulation on mRNA expression over 48hrs 

 

While the kinetics of LIGHT and HVEM expression have been previously established 

(Granger, 2001) the quantification of their mRNA changes over a 48 hr period would 

provide a good test for our Real-time RT-PCR protocol.  Jurkat cells were cultured for 48 

hrs in the presence or absence of P/I, cells were harvested at various time-points and the 

expression of LIGHT, deltaLIGHT and HVEM mRNA were analysed.  Visible changes in 

the levels of LIGHT mRNA expressed occur after ~ 8 hrs and steadily increased and by 24 

hrs there was approximately an 8-fold increase in LIGHT expression (Fig 3.07) when 

compared with the RPMI control.  By 48 hrs the level of LIGHT mRNA has completely 

diminished back to low basal levels.  The expression of deltaLIGHT shows a similar 

pattern of expression to LIGHT following stimulation, mRNA levels peak at 28 hrs with an 

approximate 7 fold increase in message levels (Fig 3.07).  At the 48 hr time point the 

expression of deltaLIGHT mRNA remains ~ 2.5 fold higher than the RPMI control.  In 

contrast to LIGHT, HVEM mRNA levels undergo a rapid downregulation with changes 

seen as early as 4 hrs.  After 24 hrs there is approximately a 3.5 fold decrease in the total 

amount of HVEM mRNA expressed, and by 48 hrs expression starts to return to normal 

basal levels (Fig 3.08). 
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Fig 3.07 48hr expression pattern of LIGHT and deltaLIGHT mRNA following 

stimulation of Jurkat T cells.  Stimulation was carried out using PMA (10ng/ml) and 

ionomycin (1µg/ml).  The results are expressed as fold change of the RPMI control at each 

time point. 
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Fig 3.08 48hr expression pattern of HVEM mRNA following stimulation of Jurkat T 

cells.  P/I: PMA (10 ng/ml) and ionomycin (1 µg/ml).  The results are expressed as fold 

change of the RPMI control at each time point. 
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3.3.5 Expression of mRNA in peripheral blood of test cohorts 

 

 

Once we established that our Real-time PCR protocol was suitable for detecting changes in 

the level of mRNA using the Jurkat T cells, we proceeded to quantify the levels of mRNA 

expressed in the periphery of a normal control (NC) cohort (35 samples) and of patients 

with CD (27 samples), WG (15 samples) and SLE (14 samples).  The expression of 

LIGHT, deltaLIGHT, HVEM, DcR3, LTβR and INF-γ mRNA were analysed for all the 

groups (Fig 3.09 – 3.14).  When the CD cohort was compared to the control group, no 

statistical differences were seen between the two groups for any of the mRNA species with 

the exception of INF-γ (P = 0.008).  The WG cohort showed lower expression of LIGHT (P 

= <0.0001) and deltaLIGHT (P = 0.002) than the control group.  Whereas the levels of 

HVEM, LTβR, DcR3 and INF-γ mRNA expression in the periphery were not statistically 

different from that of the control cohort.  The SLE patients showed a lower expression of 

LIGHT (P = 0.002), no change was seen in the levels of DcR3 and elevated levels of 

deltaLIGHT (P = 0.05), HVEM (P = <0.0001), INF-γ (P = <0.0001) and LTβR (P = 0.024) 

were seen when compared to the control cohort. 
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Fig 3.09 Expression of LIGHT mRNA in PBL of the patient cohorts.  The number in 

brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  ** Indicates a group that is significantly different from the controls.  

No difference was seen between the controls and the CD patients (P = 0.831).  However, a 

statistically significant lower expression of LIGHT mRNA was seen in the WG (P 

<0.0001) and SLE patients (P = 0.002). 

 

 



 186 
 

 

 

 

Fig 3.10 Expression of deltaLIGHT mRNA in PBL of the patient cohorts.  The number 

in brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  ** Indicates a group that is significantly different from the controls.  

No difference was seen between the controls and the coeliac (CD) patients (P = 0.345).  A 

statistically significant lower expression of deltaLIGHT mRNA was seen in the WG group 

(P <0.0001).  The SLE patients showed a statistically significant higher expression of 

deltaLIGHT mRNA than the normal controls (P = 0.017). 

 

 

 



 187 
 

 

 

 

Fig 3.11 Expression of HVEM mRNA in PBL of the patient cohorts.  The number in 

brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  ** Indicates a group that is significantly different from the controls.  

No difference was seen between the controls and either the CD patients (P = 0.798) or the 

WG patients (P = 0.484).  The SLE patients showed a statistically significant higher 

expression of HVEM mRNA than the control group (P = < 0.0001). 
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Fig 3.12 Expression of DcR3 mRNA in PBL of the patient cohorts.  The number in 

brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  No difference was seen between the controls and either the CD 

patients (P = 0.232), the WG patients (P = 0.596), or the SLE patients (P = 0.521). 
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Fig 3.13 Expression of LTββββR mRNA in PBL of the patient cohorts.  The number in 

brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  ** Indicates a group that is significantly different from the controls.  

No difference was seen between the controls and the CD patients (P = 0.118) or the WG (P 

= 0.275).  A statistically significant higher expression of LTβR mRNA was seen in the SLE 

group (P = 0.024). 
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Fig 3.14 Expression of INF-γγγγ mRNA in the PBL of the patient cohorts.  The number in 

brackets indicates the number of patients within the test group and the yellow line marks 

the mean of the group.  ** Indicates a group that is significantly different from the controls.  

No difference was seen between the controls and the WG patients (P = 0.589).  A 

statistically significant higher expression of INF-γ mRNA was seen in the CD (P = 0.008) 

and SLE (P <0.0001) patient groups.  

 

 

 

 

** 
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3.3.6 Adjustment of mRNA expression based on lymphocytes counts 

 

 

Lymphocyte counts were obtained for all patients included in the study with the exception 

of 2 CD and 1 SLE patient.  Lymphocyte counts were only available for 6 samples of the 

control group at the time that blood was donated for the study.  Re-adjustments were made 

to the Real-time quantitative RT-PCR data based on these lymphocyte counts.  As we had 

speculated the expression of LIGHT in both SLE and WG was no longer significantly 

reduced when the data was analysed in this manner (Fig 3.15).  The mRNA expression of 

deltaLIGHT, DcR3 and INF-γ was identified to be significantly elevated in the SLE cohort 

(P <0.05).  The levels of LIGHT mRNA were identified as being elevated in the CD cohort 

(<0.05).  The WG cohort showed very similar levels of expression for LIGHT, 

deltaLIGHT, DcR3 and INF-γ as the control group.  Correlations between LIGHT or 

deltaLIGHT and DcR3 and INF-γ mRNA expression were made for the SLE cohort (Fig 

3.16).  LIGHT mRNA expression correlates strongly with both DcR3 (Rs =0.643; P < 0.05) 

and INF-γ (Rs = 0.687; P < 0.05) mRNA levels in the SLE patients.  DeltaLIGHT mRNA 

expression also positively correlated with DcR3 (Rs = 0.676; P < 0.05) and INF-γ (Rs = 

0.775; P < 0.05) levels of mRNA.  
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Fig 3.15 Adjustment of LIGHT, deltaLIGHT, DcR3 and INF-γγγγ mRNA expression 

based on lymphocyte counts.  The yellow line indicates the mean of each group, ** 

indicates a cohort that was significantly different form the control group (NC) i.e. P ≤ 0.05. 
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Fig 3.16 Positive correlation of LIGHT/deltaLIGHT with both DcR3 and INF-γγγγ in 

SLE patients.  Correlations were tested using the Spearman’s rank correlation test.  

Spearman’s correlation rank coefficient (Rs) and P value are included with each separate 

graph. 
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3.3.7 Stratification of CD patients based on tTG serology 

 

For further analysis of the CD cohort we divided the samples into 2 groups based on 

whether they were positive or negative for anti-tissue transglutaminase autoantibodies (anti-

tTG) at the time of sample collection (Fig 3.17 A).  Based on this subdivision of the 

samples the anti-tTG positive CD patients show a higher expression of LIGHT mRNA than 

the normal controls (P = 0.018).  The tTG negative CD samples fall in between the positive 

tTG patients and the NC cohort, not being significantly different from either group.  The 

expression of deltaLIGHT mRNA follows a similar trend to that of LIGHT, with the 

highest expression in the tTG positive patients, the negative tTG patients in the middle and 

the NC showing the lowest expression of deltaLIGHT (Fig 3.17 B), however the results 

were not deemed to be statistically significant.  The HVEM mRNA data was also stratified 

based on the tTG serology and these results were reciprocal to that of LIGHT (Fig 3.17 C).  

The highest levels of expression were found in the NC cohort.  The tTG positive patients 

showed a significant reduction in HVEM compared with the NC group (P = 0.025).  The 

tTG negative patients, in a similar manner to LIGHT and deltaLIGHT expression, are 

situated between the NC and tTG positive cohort.  
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Fig 3.17 Gene expression in CD patients stratified on basis of tTG serology.  

** Indicates that groups are significantly different (P<0.05) from the NC group.  
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3.3.8 Upregulation of HVEM mRNA in granulocytes  

 

PBMCs and granulocytes were isolated from two control and two SLE samples to test the 

hypothesis that HVEM was being overexpressed on cells other than lymphocytes.  The 

results of this experiment showed that there was a statistically significant decrease in 

HVEM mRNA expression in PBMCs isolated from SLE samples when compared with 

controls (P = 0.025).  However, there was a very significant increase in HVEM mRNA 

expression in the granulocyte cells isolated from SLE samples when compared with 

controls (P = 0.031).  Both LIGHT and deltaLIGHT mRNAs were significantly increased 

in the PBMC isolated from SLE patients with very little mRNA for both variants being 

detected in the granulocyte cell population (Fig 3.18).  
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Fig 3.18 mRNA expression in PBMCs and granulocytes isolated from normal control 

(NC) and SLE patients.  P values are indicated above each group, P <0.05 was taken to be 

statistically significant. 
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3.3.9 Gene expression within the coeliac intestinal lesion 

 

As LIGHT overexpression has a predilection to cause intestinal inflammation, we analysed 

the expression of LIGHT, deltaLIGHT, HVEM, LTβR and INF-γ in the lamina propria of 

untreated CD (9 samples), treated CD (2 samples) and non-CD (4 samples) patients.  

LIGHT mRNA is significantly increased in untreated CD patients when compared with the 

non-CD group (P = 0.05).  LIGHT mRNA also remained elevated in the treated CD 

patients however statistical significance was not achieved due to the small number of 

samples in this group (Fig 3.19).  The expression of deltaLIGHT did not reach statistical 

significance difference between the untreated CD and control samples, however a general 

expression pattern similar to that of LIGHT was identified (Fig 3.20).  The expression of 

HVEM mRNA in the different groups was reciprocal to that of LIGHT.  The untreated CD 

patients had a significant decrease in mRNA expression when compared with both the non-

CD (P = 0.032) and treated CD (P = 0.0003).  HVEM levels in the treated CD were 

comparable to that of the non-CD cohort (Fig 3.21).  LTβR expression patterns were 

similar in all three tested groups (Fig 3.22).  As to be expected, the expression of INF-γ 

mRNA was significantly elevated in the lamina propria of the untreated CD patients when 

compared with the non-CD patients (P = 0.05).  As was the case with HVEM, the levels of 

INF-γ mRNA in the treated CD were comparable with non-CD patients (Fig 3.23). 

 

In addition to the expression of the above mRNA species, we also examined the levels of 

IL-2, LT-β and BTLA mRNA in the intestinal biopsy samples.  IL-2 a Th1 cytokine that 

promotes the expansion of T cells has been previously reported to be elevated in CD 

(Lahat, 1999).  Therefore, like INF-γ it acts as a positive control as it should be elevated in 
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the untreated CD patients.  As expected, there is a significant difference (P <0.05) between 

the untreated CD and control cohorts (Fig 3.24 A).  As LTα1β2 can also act as a ligand for 

LTβR, the mRNA expression of the LTβ subunit was also quantified.  Our quantitative 

analysis shows that LTβ is not regulated at least at the mRNA level in the CD lesion (Fig 

3.24 B).  BTLA a recently discovered ligand for HVEM (Sedy, 2005; Gonzalez, 2005) can 

suppress T cell responses.  In our cohort of untreated CD patients, there is a significant 

reduction in the level of BTLA expressed in the lamina propria when compared to the 

control group (Fig 3.24 C).  The expression of BTLA in the treated CD patients was similar 

to that of the controls and was significantly higher than the untreated patients (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 200 
 

 

 

 

Fig 3.19 Expression of LIGHT mRNA in intestinal lamina propria.  Controls, green; 

Untreated CD, blue; treated CD, red.  The yellow line indicates the mean of each group.  A 

significant increase in mRNA expression was seen between the control and untreated CD 

groups (P = 0.05).  No statistically significant difference was seen between the control and 

treated (P = 0.111) and the untreated and treated  (P = 0.495) groups. 
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Fig 3.20 Expression of deltaLIGHT mRNA in intestinal lamina propria.  Controls, 

green; Untreated CD, blue; treated CD, red.  The yellow line indicates the mean of each 

group.   
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Fig 3.21 HVEM mRNA expression in intestinal lamina propria.  Controls, green; 

Untreated CD, blue; treated CD, red.  The yellow line indicates the mean of each group.  

No significant change was seen between the control and treated CD groups (P = 0.404).  A 

statisically significant difference was seen between the control and untreated (P = 0.032) 

and the untreated and treated  (P = 0.0003) groups. 
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Fig 3.22  LTββββR mRNA expression in intestinal lamina propria.  Controls, green; 

Untreated CD, blue; treated CD, red.  The yellow line indicates the mean of each group.  

No significant change was seen between the control and treated CD patients (P = 0.283) 

and the untreated cohort (P = 0.722). 
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Fig 3.23  INF-γγγγ mRNA expression in intestinal lamina propria.  Controls, green; 

Untreated CD, blue; treated CD, red.  The yellow line indicates the mean of each group.  

No significant change was seen between the control and treated CD groups (P = 0.991).  A 

statistically significant difference was seen between the controls and untreated (P = 0.034).  

The change seen between the untreated and treated groups did not reach statistical 

significance (P = 0.108). 
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Fig 3.24 Expression of IL-2, LTβ and BTLA in the lamina propria. Controls, green; 

Untreated CD, blue; treated CD, red. **Indicates a groups that is significantly different 

from the control samples (P<0.05) 
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3.4 DISCUSSION 

 

3.4.1 Gene expression analysis using Real-time quantitative PCR 

 

Cells have the ability to alter their mRNA copy numbers; this is a crucial element in the 

regulation of gene expression in response to a wide range of endogenous and exogenous 

stimuli.  Many disease processes are also associated with alterations in gene expression 

patterns within cells.  In recent years, quantitative Real-time RT-PCR has become the gold 

standard technique for quantifying alterations in gene expression (Bustin, 2004).  This 

technique has a wide dynamic range  (10-1010 copies) (Saunders, 2004), is highly sensitive 

and specific for the amplicon of interest when specific probes are used.   

 

In this study, the aim was to develop a quantitative Real-time RT-PCR to measure the 

levels of LIGHT, its splice variant deltaLIGHT and associated receptors (HVEM, LTβR 

and DcR3).  INF-γ was also included in the study as its role in Th1 mediated diseases is 

well documented.  In designing the RT-PCR protocol, we decided on a one-step RT-PCR 

approach, due to the ease of RT-PCR set up, which helps to reduce pipetting steps, and 

hence possible errors.  There is also be a reduced risk of cross-contamination of samples 

with this approach.  Of the various enzymes on the market, Tth polymerase was selected for 

use in this study.  This enzyme, as mentioned previously, is capable of performing both RT 

and PCR stages when Mn++ ions are present.  This allows the use of one enzyme to perform 

both stages rather than having to employ separate RT and PCR compatible enzymes such as 

AMV-RT and Taq polymerase.  Tth also works optimally at a specific concentration of 

Mn++ ions (3.25 mM), thereby reducing the need to optimise this parameter, as would be 
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the case when using Mg++ ions with Taq polymerase.  Tth is also a thermostable enzyme 

and works optimally at 61oC.  This has the advantage of relaxing secondary structure that 

forms within mRNA molecules, which can prevent them from being efficiently reverse 

transcribed (Bustin, 2000).   

 

We initially approached this study with the idea of performing relative quantification by 

expressing our target mRNA as a ratio of a housekeeping gene.  Housekeeping or reference 

genes are those whose expression should remain at a constant level within a cell.  At the 

outset of this study, the levels of six commonly used housekeeping genes (HPRT, ALAS, 

beta-globin, beta-2-microglobulin, G6PDH and PBGD) were measured in 11 normal 

control samples (data not shown).  It was found that the expression varied from sample to 

sample, by up to 2 log fold for some of the genes tested.  These results indicated that none 

of these housekeeping genes were suitable for performing relative quantification.  Hence, 

we switched to performing absolute quantification instead.   

 

Absolute quantification provides a more accurate and reliable, albeit more labour intensive 

method for the quantification of nucleic acids (Ke, 2000).  A series of standards are 

generated and a plot of Cp verses log concentration allows the Cp of the unknown samples 

to be compared to the standards.  Using this method, our standard curves were highly 

reproducible (Fig 3.04) from assay to assay, allowing accurate quantification data to be 

obtained.  Normalisation of the data was done by quantifying the total RNA in each sample 

using Ribogreen fluorescent dye and copy number of each mRNA molecule was expressed 

per 50 ng of total RNA.  The use of Ribogreen is a proven method for normalisation of 

samples for quantitative RT-PCR (Hashimoto, 2004). 
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3.4.2 Gene expression in Jurkat T cells 

 

Once the quantitative Real-time RT-PCR assays were optimised, the next stage was to 

ensure that changes in mRNA copy numbers could be measured with our system.  

Consequently, it was decided to use the Jurkat T cell line stimulated with PMA and 

ionomycin as an in vitro model of T cell activation.  In the first experiment using the Jurkat 

cell line, we showed that the optimal induction of LIGHT mRNA in these cells requires the 

synergistic stimulation by both PMA and ionomycin.  Cells that were incubated with both 

PMA and ionomycin showed a marked increase in LIGHT mRNA expression, which was 

dose-dependent on PMA concentration (Fig 3.06).  This result is similar to previously 

reported findings (Granger, 2001).   

 

Following on from the initial Jurkat results, we performed a time-course experiment to 

show the kinetics of LIGHT mRNA expression over a 48-hour period post stimulation with 

PMA and ionomycin.  From a previous study, it had been demonstrated that there is a 

reciprocal expression of HVEM and LIGHT upon activation of primary T cells (Morel, 

2000).  This study used a combination of FACS analysis and semi-quantitative PCR to 

demonstrate that there was a reciprocal expression pattern of HVEM and LIGHT in 

activated T cells.  Our results from the Jurkat T cell time course experiments also 

demonstrated this.   

 

Resting T cells, in this case Jurkat cells at time zero, express little or no LIGHT mRNA 

whereas HVEM mRNA is at maximum levels.  Following activation, as LIGHT levels 

begin to increase, HVEM mRNA is downregulated as seen in Figs 3.07 and 3.08 
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respectively.  We also demonstrated that deltaLIGHT mRNA transcripts follow a similar 

pattern to that of the full-length variant of LIGHT.  By 48 hrs HVEM mRNA levels are 

starting to return to high basal levels and the level of LIGHT mRNA expressed has been 

downregulated to that of non-stimulated cells.  Conversely, deltaLIGHT mRNA, remained 

approximately 2.5 fold higher than the RPMI control at the 48 hr time-point.  This may 

indicate that either downregulation, post activation, of deltaLIGHT mRNA transcription 

takes longer than that of LIGHT or that once activated, T cells continue to express 

deltaLIGHT transcripts even as the cell returns to a resting state.  Evidence to support the 

latter option comes from a study where memory T cells from the periphery were isolated 

and it was demonstrated that these cells had an intracellular pool of LIGHT (Morel, 2003).  

This study did not identify which variant of LIGHT protein was detected in their system.  

The deltaLIGHT protein is retained in the cytosol as it loses its transmembrane domain as 

part of the splicing process (Granger, 2001).  Therefore it is possible that this intracellular 

store of LIGHT in resting central and effector memory CD4+ T cells is actually 

deltaLIGHT, hence the increased level of expression of deltaLIGHT in our Jurkat cells 

even after LIGHT has returned to low basal levels. 

 

 

3.4.3 Gene expression in peripheral blood leukocytes 

 

Once we had established that we could measure changes in mRNA expression using our 

Real-time RT-PCR protocol we set about collecting patient samples.  The diseases chosen 

to be included in the study were SLE, CD and WG, diseases whose symptoms were related 

to autoimmune manifestations seen in LIGHT-Tg mice (Shiakh, 200; Wang, 2001).  
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LIGHT-Tg mice as mentioned previously, have high levels of autoantibodies such as anti-

DNA antibodies, a hallmark of SLE (Hochberg, 1997), they also have chronic 

inflammation in the small intestine with villous atrophy and crypt hyperplasia which are 

symptoms strongly associated with CD (Marsh, 1992).  WG was included in the study as it 

is also characterised by the production of autoantibodies and glomerulonephritis (van der 

Woude, 1985; Fauci, 1983). 

 

We initially measured the mRNA expressed in PBLs from each of the cohorts.  The mRNA 

copy numbers were expressed per 50 ng of total RNA added to the quantitative RT-PCR.  

This did have some advantages; most notably, it allowed us to see that the HVEM 

expression was possibly elevated in cells other than lymphocytes in the SLE cohort.  

However, by relating the expression back to total RNA we inadvertently skewed the results 

because the SLE and WG had lower lymphocyte counts compared to the other two groups.  

Consequently, the true expression levels of LIGHT, deltaLIGHT, DcR3 and INF-γ mRNA 

were masked due to the presence of RNA from many cells that were not expressing these 

molecules.  We readjusted the way in which mRNA copy numbers were expressed so that 

they were based on lymphocyte counts at the time of blood sampling.  This proved to be 

another advantage of using absolute quantification, as once the mRNA copy numbers are 

obtained the denominator (ie per µg total RNA or cell number etc) can be altered to be 

more reflective of the circumstances. 
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3.4.4 LIGHT, associated receptors and SLE 

 

SLE is a prototypical autoimmune disease that is genetically complex and characterised by 

the presence of many different autoantibodies, formation of immune complexes (ICs) and 

inflammation in multiple organs, including the skin, blood vessels, kidneys and central 

nervous system (Rönnblom, 2002; Bennett, 2003).  The major pathogenic antibodies are 

directed against nuclear components such as dsDNA, nucleosomes and snRNP (Mok, 

2003).  Overexpression of LIGHT in Tg mice induced the development of anti-DNA 

antibodies and lupus-like glomeruolnephritis (Wang, 2001).  This indicated that LIGHT 

might be a good candidate gene to play a contributing role in the pathogenesis of human 

SLE.  

 

When the expression of LIGHT mRNA in PBLs of our control and SLE cohorts were 

analysed (Fig 3.09) a significant reduction in LIGHT mRNA was identified in the SLE 

cohort.  A lymphocytopenia is common in SLE, we speculated that the reduction in LIGHT 

was artifactual, due to the lower number of lymphocytes (the primary cells expressing 

LIGHT) within these samples compared to the controls.  Therefore, as mentioned the 

results were adjusted to reflect the amount of lymphocyte mRNA contained in each sample 

(Fig 3.15).  This showed there was no reduction in LIGHT mRNA expression in SLE, and 

some patients had infact higher amounts of LIGHT mRNA than the controls.  To further 

prove that the actual levels of LIGHT mRNA were been masked PBMCs were isolated 

from SLE patients.  Subsequent Real-time PCR analysis established that the levels of 

LIGHT mRNA in SLE PBMCs was elevated by approximately 6-8 fold over that of normal 

control PBMCs (Fig 3.18).  This is similar to the fold increase in expression that we 
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demonstrated in P/I stimulated Jurkat T cells (Fig 3.07).  A recent genome wide gene 

profiling study on CD4+ T cells from a patient with severe SLE before and after 

chemotherapy showed that LIGHT was upregulated on these cells during active SLE 

(Deng, 2005), thus confirming our data. 

 

The SLE cohort showed elevated levels of deltaLIGHT mRNA when compared to the 

control cohort (Fig 3.10 and Fig 3.15).  PBMCs isolated from SLE patients also 

demonstrated a significant increase in deltaLIGHT mRNA of approximately 6-7 fold (Fig 

3.18).  Little is known about the expression of deltaLIGHT protein in cells other than it is 

held intracellularly (Granger, 2001).  To date there have been no reports indicating the 

function of this splice variant, making it very difficult to speculate as to its role in the 

pathogenesis of SLE.  Nevertheless, it is likely to function in the activation/proliferation of 

T cells, as it is rapidly expressed by Jurkat T cells following stimulation with P/I (Fig 3.07). 

 

Elevated levels of LIGHT in SLE would strongly promote a Th1 response and the release 

of cytokines such as INF-γ (Shiakh, 2001; Wang, 2001; Cohavy, 2004; Brown, 2005).  

INF-γ has been reported to be elevated in both murine models of SLE (Peng, 1997) and in 

human subjects (Csiszár, 2000).  We too in this study have also confirmed that there is 

elevated levels of INF-γ mRNA in the periphery of SLE patients (Fig 3.14).  It has also 

recognised that there is a significant correlation with the amount of INF-γ secreted by 

PBMCs and the severity of SLE (Ferry, 1997; Viallard, 1999).  In particular, elevated levels 

of INF-γ are known to contribute to the development of glomerulonephritis (Uhm, 2003; 

Kikawada, 2003; Masutani, 2001).  In this study, there is significant correlation between 

mRNA levels of INF-γ and both LIGHT and deltaLIGHT in our SLE cohort (Fig 3.16).     
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The SLE patients who participated in this study show a significant increase in HVEM 

mRNA expressed in their PBLs a when compared to the control cohort (Fig 3.11).  This too 

was a surprising result, as we know from the Jurkat experiments that there is a 

downregulation of HVEM in activated T cells (Fig 3.08).  This result indicated that HVEM 

was either not regulated as normal (Morel, 2001) in SLE or that it was upregulated on 

another cell type.  We speculated that in SLE patients that there was aberrant expression of 

HVEM mRNA in cells other than lymphocytes as it is expressed on a wide variety of cells 

(Harrop, 1998; Morel, 2001; Kwon, 2003).  To narrow down the possible cell type that 

HVEM is overexpressed in, PBMCs were separated from granulocytes using standard 

density centrifugation techniques.  This experiment showed that the level of HVEM mRNA 

expression in the PBMC population was actually significantly lower than the control 

samples (Fig 3.18).  This demonstrates that the reciprocal expression of 

LIGHT/deltaLIGHT and HVEM is conserved within the lymphocyte cell population of 

SLE patients.  The majority of HVEM overexpression seems to occur in granulocytic cells 

(Fig 3.19).  Admittedly, the number of samples in this experiment is small.  Nevertheless, 

the result does clearly indicate that HVEM mRNA is overexpressed in SLE and this is most 

likely due to altered expression in cells other than T cells.   

 

HVEM is constitutively expressed by neutrophils (Kwon, 2003; Heo, 2006), which have 

been associated with kidney disease and vasculitis in SLE patients (Hotta 1996; Qasim, 

1996).  A recent report has demonstrated the significance of the LIGHT/HVEM interaction 

on neutrophils (Heo, 2006).  In vitro addition of soluble LIGHT to neutrophils enhances 

their ability to secrete IL-8, TNF-α, nitric oxide (NO) and reactive oxygen species (ROS) 



 214 
 

(Heo, 2006).  IL-8 acts as a strong chemoattractant for neutrophils that has been implicated 

in the pathogenesis of renal inflammation and glomerulonephritis (Rovin, 2002).  NO, 

whilst an important innate defence mechanism (Nathan, 1997), in excessive amounts it can 

promote tissue injury and contribute to the development of several human diseases 

(Abramson, 2001) including SLE (Belmont, 1997).  Administration of inhibitors of NO 

production to the MRL-lpr/lpr murine model of lupus suppresses the development of 

glomerulonephritis (Weinberg, 1994).  The pathogenic anti-DNA antibodies found in SLE 

have a greater capacity to bind DNA that has been modified by ROS (Blount, 1994).  The 

resulting immune complexes deposit in the kidneys resulting in inflammation.  TNF-α has 

also been found deposited in the kidneys of patients with lupus nephritis (Aringer, 2003).  

This would indicate that the dysregulated expression of HVEM in SLE could be a major 

contributing factor to the development of glomerulonephritis.  Whether the overexpression 

of HVEM in granulocytes is constitutive in SLE or is an effect of cell activation would 

need to be addressed.  A recent report examining the expression of HVEM protein on 

granulocytes from peripheral blood and synovial fluid in RA indicated that HVEM 

expression was not upregulated following activation of granulocytes as indicated by 

increased CD11b expression (Kim, 2005).  This may indicate that the increased expression 

of HVEM mRNA in SLE is constitutive.  This finding warrants further investigation.  

 

In a previous study, which used semi-quantitative RT-PCR it was shown that DcR3 mRNA 

levels were elevated in PBMCs from SLE patients (Otsuki, 2000).  This study, which uses a 

better quantification technique, also demonstrates that DcR3 is overexpressed in the 

periphery of our SLE cohort (Fig 3.15).  DcR3 is secreted from activated PBMCs (Wan, 

2003), which is supported by our data as its mRNA levels signifcantly correlate with the 
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expression of both LIGHT and deltaLIGHT (Fig 3.16).  DcR3 as its name suggests 

functions as a decoy receptor that is capable of neutralising both FasL- and LIGHT- (Yu, 

1999) induced apoptosis.  Besides it inhibitory effects, DcR3 has also been reported to play 

a role in modulating DC differentiation and maturation (Hsu, 2002).  DCs incubated with 

recombinant DcR3 show alterations in the surface expression of the B7 family of T cell co-

stimulatory molecules (Hsu, 2002).  DcR3 induces B7.1 (CD80) downregulation with the 

simultaneous upregulation of B7.2 (CD86) (Hsu, 2002).  It has been shown that while both 

B7.1 and B7.2 equivalently stimulate IL-2 and INF-γ production, B7.2 can induce more IL-

4 production than B7.1 (Kuchroo, 1995; Freeman, 1995).  This would indicate that DcR3 

could cause a shift from Th1 to Th2 cytokine production, as IL-4 is an integral cytokine in 

the Th2 pathway.  The cytokine profile in SLE is quite complex, as both Th1 and Th2 

cytokines have been reported to be elevated (Singh, 2005).  

 

SLE patients also showed an elevated levels of LTβR mRNA expressed in peripheral blood 

leukocytes (Fig 3.13).  Increased apoptosis is thought to be an important trigger for the 

development of SLE (Casicicola-Rosen, 1994).  LTβR is also known to induce caspase 

activation and ultimately apoptosis of cells by interacting with LIGHT.  It has been 

reported that INF-γ may sensitise cells to LTβR mediated apoptosis (Browning, 1997).  We 

have shown in this study that SLE patients express elevated mRNA levels for all three 

molecules indicating that this pathway could contribute to the increase in apoptosis seen in 

SLE (Berden, 2003; Tsokos, 2001).   
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3.4.5 LIGHT, associated receptor and CD 

 

Coeliac disease is characterised by chronic inflammation of the small intestine due to an 

abnormal immune response to dietary gluten in genetically susceptible individuals (Sollid, 

2000).  The chronic inflammation results in destruction of the villi in the small intestine 

(Marsh, 1992).  While many aspects of how the disease develops remain to be determined, 

CD is unique from the respect that the environmental trigger (gluten), the major genetic 

susceptibility locus (DQ2) and the autoantigen (tTG) are all known.  While LIGHT-Tg 

mice show symptoms of systemic autoimmunity the main site of inflammation is the gut.  

Following histological analysis villous atrophy, crypt hyperplasia and infiltration of 

immune cells into the lamina propria was identified in these Tg mice (Wang, 2001; Shiakh, 

2001).  These are all features of the gut lesion seen in CD, indicating that LIGHT may play 

a role in its pathogenesis. 

 

It has been previously reported that there is a relationship between cytokine mRNA levels 

expressed in the intestine and peripheral blood of CD (Lahat, 1999).  This indicates that 

there is a continuous recirculation of activated immune cells between the inflamed small 

intestine and the periphery (Lahat, 1999; Nilsen, 1996; Kertula, 1995).  Hence, we initially 

examined the mRNA expression of LIGHT and associated receptors in the peripheral blood 

of a cohort of CD patients.  The initial analysis of mRNA expression in PBL isolated from 

CD patients showed no significant differences from that of the normal control cohort for 

LIGHT (Fig 3.09), deltaLIGHT (Fig 3.10), HVEM (Fig 3.11), DcR3 (Fig 3.12) and LTβR 

(Fig 3.13). 
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When the data was re-examined based on lymphocyte counts, there was a significant 

elevation in LIGHT mRNA in PBLs isolated from coeliac patients (Fig 3.15).  The CD 

patients were then stratified based on their anti-tTG serology results at the time blood 

samples were collected for this study.  Detection of anti-tTG antibodies has become 

standard practice to assit in the diagnosis of CD.  Their levels give an indication to disease 

activity, as they become undectectable during a GFD (Dewar, 2004).  Our results show that 

the expression of LIGHT mRNA is elevated in the periphery of CD patients with positive 

anti-tTG autoantibodies when compared to a control cohort (Fig 3.17 A).  The expression 

of deltaLIGHT mRNA also follows a similar trend to that of LIGHT (Fig 3.17 B).  HVEM 

mRNA levels in PBLs are lower during active CD than in normal control cohort (Fig 3.17 

C).  Indicating, that the reciprocal expression of LIGHT and HVEM mRNA (Morel, 2001) 

is maintained in CD.  This result indicates that active CD patients have higher levels of 

LIGHT-expressing activated T cells in their circulation than normal controls.  The LIGHT-

Tg mice have shown that increased LIGHT on peripheral T cells can lead to the breakdown 

of peripheral tolerance leading to the development of autoimmunity (Wang, 2001).  The 

rate of autoimmune diseases in CD is 10 times that of the general population (Green, 2003).  

Long term exposure to gluten could expand the number of T cells that express LIGHT in 

the periphery and then in a similar manner to the of the LIGHT-Tg mice self-tolerance 

could breakdown and symptoms of autoimmune disease could occur. 

 

As mentioned earlier, LIGHT-Tg mice have profound inflammation in the small intestine 

(Shiakh, 2001; Wang, 2001) and more recently it has been shown that there is increased 

expression of LIGHT in the intestine of patients with active Crohn’s disease (Cohavy, 

2005; Cohavy, 2004, Wang, 2004).  CD4+ T cells within the lamina propria are speculated 
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to play a central role in the pathogenesis of CD (Sollid, 2000).  Using our established Real-

time RT-PCR protocols to measure mRNA expression in PBLs, we aimed to identify if 

there was also dysregulation of LIGHT expression in the small intestine of CD patients.   

 

Duodenal biopsies (15) were collected from 9 untreated CD, 2 treated CD and 4 controls 

that had neither CD or IBD.  Total RNA was extracted and subsequent quantitative Real-

time RT-PCR analysis was performed.  Our results indicate, in a manner similar to that 

seen in Crohn’s disease (Cohavy, 2005, Wang, 2005), that the levels of LIGHT mRNA are 

increased in CD patients with active disease (Fig 3.18).  The expression of HVEM mRNA 

in the coeliac lesion is normally regulated, as during active disease it is downregulated (Fig 

3.20).  Hence, the regulatory mechanisms that control HVEM expression in the periphery 

are conserved within the intestinal compartment. 

 

LIGHT signalling via HVEM is costimulatory and augments proinflammatory cytokine 

expression and T cell proliferation (Harrop, 1998).  CD is characterised by a predominance 

of the Th1 profile and our results are consistent with this as the mRNA copy numbers for 

INF-γ (Fig 3.23) and IL-2 (Fig 3.24 A) are elevated in our untreated patients.  The 

increased expression of LIGHT within the coeliac lesion would allow increased cell 

signalling via HVEM, which has been shown to be an important secondary signalling event 

for the full activation of T cells causing enhanced secretion of Th1 cytokines such as INF-γ, 

IL-2, TNF-α and GM-CSF (Harrop, 1998).  HVEM signalling alone is enough to induce the 

INF-γ production by lamina propria T cells (Cohavy, 2004).  Unlike Crohn’s disease, the 

trigger for CD is known (gluten), and removal of this from the diet seems to cause a 
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reversal, at least in the case of HVEM, INF-γ and BTLA, of mRNA expression patterns to 

that of the control cohort. 

 

The development of a Th1 response in CD does not seem to involve the main Th1 

promoting cytokine, IL-12 (Nilsen, 1998).  Increased levels of IL-18 and IFN-α, both of 

which promote Th1 cell differentiation, have been detected in coeliac tissue (Monteleone 

2001; Salvati 2002).  Interestingly, LIGHT mediation of a Th1 response is independent of 

IL-12 signalling (Brown, 2005).  This may indicate that LIGHT expression could be an 

important factor for the development of a Th1 response in CD in place of IL-12 signalling.  

Cytokine upregulation in the lamina propria in response to gliadin is rapid.  Using in vitro 

small intestine biopsy cultures incubated with gliadin, a significant increase in 

proinflammatory cytokines can be seen as early as 2-6 hours (Nilsen, 1998).  As mentioned 

previously, CD4+ T cells that infiltrate the lamina propria in active CD are of a memory 

phenotype as characterised by the positive expression of CD45RO (Halastensen, 1990).  

LIGHT protein expression at the cell surface is very rapid on memory T cells showing a 

marked increase after 1-2 hours (Cohavy, 2004; Morel, 2003).  Consequently, the rapid 

expression of LIGHT on gut homing T cells may facilitate the rapid increase in 

proinflammatory cytokines in response to gliadin. 

 

BTLA can regulate T cell activation through its interactions with HVEM (Sedy, 2005, 

Gonzalez, 2005).  This study shows that active CD patients, have significantly reduced 

levels of BTLA mRNA when compared to either the control or treated CD cohorts (Fig 

3.24 C).  Naïve T cells are first stimulated by the TCR engaging with a MHC-peptide 

complex on APCs.  The fate of T cells is also dependent on delivery of a secondary signal, 
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which can be costimulatory or coinhibitory.  Costimulatory signals allow clonal expansion 

of T cells and effective immune responses, the coinhibitory signals maintain T cell self-

tolerance and prevent autoimmunity (Gonzalez, 2005).  The balance of these two signals 

will determine the outcome of an immune response.  With increased levels of LIGHT 

mRNA in active CD, along with reduced levels of BTLA, the balance between 

costimulation and coinhibition is greatly skewed in favour of an active T cell response.  

Furthermore, as HVEM levels are also decreased during active disease (Fig 3.21) will 

further facilitate the binding of LIGHT, as it has a higher affinity for it than BTLA, 

(Cheung, 2005).  The sustained costimulation signals from LIGHT with little coinhibitory 

signal for BTLA this would lead to the strong proinflammatory response. 

 

The expression of LTβR is not transcriptionally regulated during inflammation of the small 

intestine in active CD (Fig 3.22).  LTβR can also act as a receptor for the hetrotrimeric 

protein LTα1β2 (Ware, 1995).  To identify if changes small intestine in CD could be 

attributed to increase LTα1β2 expression we measured the expression of LTβ.  This 

demonstrated that LTβ expression is unchanged in the coeliac lesion, as there is no 

difference between the control and untreated cohorts (Fig 3.24 B).  LIGHT and LTα1β2 are 

known to cooperate in lymphoid organogenesis and the development of lymphoid 

structures by signalling through LTβR (Scheu, 2002; Wang, 2002).  As LTβ expression is 

not elevated in untreated CD and that LIGHT is, would suggest that any alterations in 

coeliac lesion are due to additional signalling through LTβR by LIGHT.   
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During active CD, there is recruitment of CD4+ T cells and B cells into the lamina propria 

(Sollid, 2000).  The engagement of LIGHT with LTβR can help to create an environment 

suitable for the recruitment of lymphocytes into the lamina propria by upregulating several 

adhesion molecules and chemokines.  Integrin family members are associated with the 

trafficking of lymphocytes to and maintaining them within immune effector sites.  

MAdCAM-1 specifically promotes α4β7 integrin bearing lymphocytes to migrate to 

intestinal effector sites (Berlin, 1993).  LIGHT-Tg mice showed increased levels of 

MAdCAM-1 as demonstrated by immunohistochemisty (Wang, 2004).  Recombinant 

human LIGHT also stimulates increased expression of MAdCAM-1 (Wang, 2005).  It has 

been recently reported that LIGHT expression in the small intestine is almost exclusively 

found on integrin β7+ T cells (Cohavy, 2004).  Therefore, LIGHT expressing T cells that 

are β7+ can home to the gut, where they can interact with LTβR to further increase the 

expression of MAdCAM-1, which can cause increased levels of T and B lymphocytes to 

infiltrate the lamina propria. 

 

Transgenic mice that overexpress LIGHT show increased apoptosis of intestinal epithelial 

cells (Wang, 2004).  This increase in apoptosis could be mediated directly via LTβR 

(Rooney, 2000) or indirectly via the proapoptotic effect of cytokines secreted (INF-γ, TNF-

α) by various cells in response to HVEM-LIGHT interactions (Harrop, 1998). 

 

 

 

 

 



 222 
 

3.4.6 LIGHT, associated receptor and WG 

 

WG is a rare condition characterised by the presence of autoantibodies (c-ANCA) directed 

towards PR3 an antibiotic protein expressed by activated neutrophils (Van der Woude, 

1985).  The disease seems to have two phases a localised phase where disease activity is 

restricted to the upper respiratory tract and a generalised phase where systemic disease 

occurs.  It is speculated that early WG is characterised by a Th1 type cytokine profile with 

high levels of INF-γ in both granulomatosus lesion and peripheral blood (Mueller, 2001).  

The major autoantibody c-ANCA is not often detected in the early stages of WG 

(Lamprecht, 2005).  After a period of localised disease, generalised c-ANCA positive WG 

usually develops.  At this time, there is a switch from Th1 cytokine expression to increased 

levels of Th2 cytokines such as IL-4 with little expression of INF-γ (Balding, 2001). 

 

As LIGHT has strong Th1 inducing properties, it is tempting to speculate that the very low 

expression of LIGHT mRNA in much of the WG cohort is because of a switch from a Th1 

to a Th2 profile.  The low expression of INF-γ and the positive titres for c-ANCA would 

also indicate that our cohort had generalised disease.  In hindsight it would have been 

worthwhile quantifying the levels of Th2 cytokines, namely IL-4, in these patients to 

identify if there was a negative correlation between them and LIGHT mRNA expression in 

peripheral blood.  There was no altered expression of HVEM (Fig 3.11), LTβR (Fig 3.13) 

or DcR3 (Fig 3.12) between our WG and control cohorts.  This may further indicate that 

these pathways do not significantly contribute to the pathogenesis of WG.  
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3.4.7 Conclusion 

 

In summary, during this study we have gained knowledge about the use of real-time PCR 

for quantitative analysis and effectively applied this to investigating the expression of 

LIGHT and associated receptors in human autoimmune diseases.  In doing so, we have 

provided evidence that increased expression of LIGHT and its associated receptors in SLE 

and CD and thereby confirming our hypothesis, that LIGHT overexpression may be 

involved in the pathogenesis of both diseases.  Elevated levels of LIGHT promote a strong 

Th1 response, particularly INF-γ secretion.  The role of INF-γ in the development of lupus 

nephritis has been well characterised.  Hence, LIGHT could play a critical role in the 

pathogenesis of glomerulonephritis and may serve as a potential target for theraputic 

intervention.  

 

In CD, there are increased levels of LIGHT expressing cells in peripheral circulation and 

the lamina propria of patients with active disease.  Increased LIGHT-HVEM signalling 

would promote Th1-type cytokines that are known to play a role in the pathogenesis of CD.  

Furthermore, increased LIGHT-LTβR signalling would enhance the upregulation of 

adhesion molecules and chemokines and cause immune cells to infiltrate the lamina 

propria, which is a feature of the coeliac mucosal lesion.  Further research into the effects 

of LIGHT expression in the intestine may lead to the development for novel therapies for 

chronic inflammatory diseases. 
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4.1 INTRODUCTION 

 

4.1.1 Soluble LIGHT 

 

Many members of the TNFSF can be cleaved from the cell surface where they can act as 

soluble cytokines.  The release of the soluble form allows modulation of systemic immune 

responses whereas the cell restricted forms will only effect the local environment.  As 

described previously, there are three forms of the mature LIGHT protein; the cell 

membrane and intracellular forms are the products of pre-mRNA splicing (Morel, 2001).  

The third form is identical to the membrane form except it has been cleaved from the cell 

surface and is shorter by approximately 80 aa.  This cleaved version of LIGHT is now free 

to act as a soluble cytokine.   

 

The matrix metalloproteinases (MMPs) are a family of more than 24 enzymes (Pender, 

2004).  They are subdivided based on their primary substrate specificity such as collagen, 

gelatin, elastase and stromolysin.  The natural endogenous inhibitors of MMPs are known 

as the tissue inhibitors of metalloproteinases (TIMPs).  TIMPs form a 1:1 complex with 

MMPs and control the local activity of these enzymes in tissues.  MMPs have been widely 

associated with the turnover, degradation and destruction of the extracellular matrix (ECM) 

(Parks, 2004).  However, they can also function in the cleavage of cell surface ligands to 

release them as soluble cytokines.  LIGHT and FasL show significant amino acid (31%) 

homology in their extracellular domains (Granger, 2001), a MMP cleavage site in FasL is 

also conserved in LIGHT between amino acids 81-84.  The use of MMP inhibitors 

dramatically decreases the release of soluble LIGHT in to tissue culture supernatants 
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(Granger, 2001).  This indicates that release of soluble LIGHT is due to the activity of an 

MMP.  A specific MMP for this role has not yet been identified. 

 

 

4.1.2 In vitro activity of soluble LIGHT 

 

Several in vitro studies have shown that soluble LIGHT retains its biological activity.  

These studies have also demonstrated that LIGHT can modulate the activity of cells in both 

the innate and adaptive immune responses.   

 

The addition of soluble LIGHT to T cells in conjunction with CD3 stimultion enhances T 

cell proliferation through HVEM signalling (Harrop, 1998).  In addition, HVEM 

stimulation by soluble LIGHT enhances the production of proinflammatory cytokines such 

as INF-γ, GM-CSF and IL-2 by T cells (Tamada, 2000).  Dendritic cell maturation is also 

enhanced by soluble LIGHT.  In conjunction with CD40L, soluble LIGHT can costimulate 

the maturation of DC and significantly increase their ability to secrete IL-12 (Morel, 2001).  

IL-12 signalling through IL-12R is a critical factor in the induction of a Th1-type response 

(ref). 

 

LTβR signalling can promote upregulation of adhesion molecules including VCAM-1 

(Dejardin, 2002), ICAM-1 (Zhang, 2003) MAdCAM-1 (Wang, 2004).  MAdCAM-1 plays 

an important role in the recruitment of inflammatory cells into the intestine.  Soluble 

LIGHT directly upregulates the expression of MAdCAM-1 by engaging with LTβR (Wang, 

2005). 



 226 
 

A recent report demonstrated that soluble LIGHT enhances the bactericidal activity of 

monocytes and neutrophils (Heo, 2006).  The addition to soluble LIGHT to monocytes and 

neutrophils at concentrations ranging from 1-100 ng/ml increased their ability to kill 

Listeria monocytogenes and Staphylococcus aureus cultures.  This enhanced bactericidal 

activity was attributed to the ability of soluble LIGHT to enhance nitric oxide (NO) and 

reactive oxygen species (ROS) production by monocytes and neutrophils by interacting 

with HVEM.  They also reported that soluble LIGHT could significantly enhance the 

production of the proinflammatory cytokines IL-8 and TNF-α (Heo, 2006).  This was dose-

dependent on soluble LIGHT concentrations and noticeable changes were identified at 

concentrations above 1ng/ml. Kim et. al., reported that there is a synergistic effect between 

INF-γ and soluble LIGHT to enhance the production of TNF-α and MMP-9 by 

macrophages that were isolated from the synovium of RA patients (Kim, 2005).  

Macrophages can also secrete other MMPs such as MMP-1 and –13 as well as TIMPs 1 

and 2 in response to soluble LIGHT (Lee, 2004).  Increased activity of MMPs has been 

reported in many human diseases including CD (Daum, 1999). 

 

Soluble LIGHT also retains its ability to induce apoptosis of cells such as the HT-29 human 

colonic carcinoma cell line (Rooney, 2000).  LIGHT mediated apoptosis is enhanced by 

INF-γ in a dose-dependent manner (Chen, 2000; Zhang, 2005). 
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4.1.3 Enzyme linked immunosorbent assay (ELISA) 

 

ELISA assays have proved very useful for quantifying antigen in biological fluids and 

tissue culture supernatants.  There are several approaches to how ELISA can be performed 

depending on the nature of the analyte (Carpenter, 1997).  For the detection of 

autoantibodies in patient sera, for example, it is useful to coat the surface of the 96-well 

plate with the autoantigen, such as tTG in CD, and then sera from the patient is added to the 

well.  If autoantibodies are present, they will bind to the antigen where they can be 

subsequently detected.  The sandwich ELISA is another variation of the techniques and can 

be used to quantify (Fig 4.01).  During this assay, two antibodies (capture and detection) 

that are specific for the target antigen are used.  The capture antibody is coated on the 

surface of the plate, when test sample is added any specific antigen present will be bound 

by the antibody.  Not all antibodies are suitable for sandwich ELISA as the capture and 

detection antibodies are required to detect different epitopes on the antigen to avoid 

competition for binding.  The detection antibody is commonly labelled with biotin this 

facilitates the binding of avidin to the complex, which in turn can be conjugated to an 

enzyme.  The most commonly used enzymes are horseradish peroxidase (HRP) and 

alkaline phosphatase (AP).  HRP catalyses the oxidation of substrates by hydrogen 

peroxidase and AP catalyses the hydrolysis of phosphate groups from substrate molecules.  

HRP has become the enzyme of choice for most applications due to its superior specific 

activity, stability, low cost and availability of substrates.  Commonly used subtrates for 

HRP included o-phenylenediamine dihydrochloride (OPD) and 3, 3’, 5, 5’-

tetramethylbenzidine (TMB).  TMB is the most commonly used substrate for HRP due to it 

high sensitivity of ~5.5 pg/well.  The activity of HRP on TMB yields a blue colour which 
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when the enzyme reaction is stopped by the addition of sulphuric acid to the well, it is 

converted to a yellow product that can be spectrophotometrically detected at 450 nm.  If 

recombinant proteins are used to generate a standard curve, this allows accurate 

quantification of soluble proteins in serum. 

 

 

 

Fig 4.01 Format of a sandwich ELISA.  Antibody (Ab); horseradish peroxidase (HRP). 
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4.1.4 Aim of this chapter 

 

Many members of the TNF superfamily can be cleaved from the cell surface by proteases.  

These cleaved ligands have been shown to retain biological activity allowing them to ligate 

to their respective receptors.  LIGHT is cleaved from the surface of the cell by members of 

the MMP family.  The aim of this chapter is to identify if serum levels of soluble LIGHT 

are elevated in patients with CD and SLE using ELISA.  As soluble LIGHT has been 

demonstrated to retain its biological activity, elevated levels would promote a strong 

proinflammatory response.  This work will support our findings of our gene expression 

study and provide further evidence that LIGHT is involved in the pathogenesis of these 

diseases. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Patient samples  

 

Serum samples were collected from a control cohort (28), which consisted of people with 

no known autoimmune of inflammatory condition.  Serum samples were also collected 

from patients with SLE (50), WG (30) and CD (32).  Informed consent was obtained from 

all patients in accordance with both the Dublin Institute of Technology’s ethics review 

board and St James’s Hospital ethics review board. 

 

4.2.2 Jurkat T cell stimulation 

 

Jurkat cells were stimulated for the time-course assay as desribed in Methods 3.2.1.  Cell 

culture supernatants were harvested, at timepoints from 0-48 hrs, and stored at –80oC 

pending analysis  

 

4.2.3 ELISA for soluble LIGHT 

 

The detection of soluble LIGHT was performed using a commercially available kit (R&D 

systems), the manufacturer’s instructions were followed.  Briefly,LIGHT capture antibody 

was reconstituted to 720 µg/ml in sterile PBS.  A 96-well plate was coated with 100 µl of 

diluted capture antibody (4 µg/ml) and incubated overnight at RT.  Plates were washed 3 

times using 400 µl of wash buffer (0.05% tween in phosphate buffered saline (PBS) @ pH 

7.2-7.4).  After the last wash, any remaining buffer was removed by blotting on clean paper 



 231 
 

towels.  All non-specific binding sites on the plate were blocked using 300 µl of reagent 

diluent (1% BSA in PBS @ pH 7.2 – 7.4) for a minimum of 1 hr.  Washing procedure was 

repeated as before.  Recombinant human (rh) LIGHT standards were prepared in the range 

of 2000 pg/ml to 32.2 pg/ml in reagent diluent.  Add 100 µl of rhLIGHT standards or 

sample in duplicate and incubate at RT for 2 hours.  Washing procedure was repeated.  

Plates were coated with 100 µl of diluted detection antibody (100ng/ml) and incubated at 

RT for 2 hours.  Washing procedure was repeated.  Strepavidin-HRP stock was diluted in 

PBS (50 µl + 9950 µl PBS), 100 µl of this was then added to each well the plate was 

covered and incubated at RT for 20 mins.  Avoid placing plate in direct light.  Washing 

procedure was repeated.  The substrate solution was prepared by mixing 5 mls of colour 

reagent A and 5 mls of colour reagent B.  100 µl of the substrate solution was added to each 

well and incubated at RT for 20 mins.  50 µl of stop solution (2N H2SO4) was then added to 

each well, the plate was then gently tapped to ensure adequate mixing.  The optical density 

of each well was immediately determined using a microplate reader set to 450 nm.  

Absorbance mesurments were also taken at 570 nm as recommended by the manufacturer, 

this corrects for any imperfections in the plastic of the plate. 

 

 

4.2.4 Statistical analysis 

 

Statistical analysis of the ELISA data was performed using the non-parametric Mann-

Whitney U-test.  P values were two-sided and significance was considered when P <0.05. 

 

4.3 RESULTS 
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4.3.1 Evaluation of a suitable diluent for the LIGHT standards 

 

During an ELISA, it is important to block all non-specific binding sites on the plastic 

surface of the 96-well plate.  This helps to prevent non-specific binding of proteins during 

subsequent steps in the procedure, which reduces the background noise and improves the 

sensitivity of the assay.   

 

Three different blocking solutions were prepared in PBS: 1% BSA, 20% fetal calf serum 

(FCS) and 1%BSA and 20% FCS.  In addition to acting as a blocking solution, these 

reagents were also used to dilute the rhLIGHT stock to make the standards.  The standard 

curves produced using each of the diluents were almost identical (Fig 4.02) with a linear 

range from 32 pg – 1000 pg per ml.  This allowed accurate quantification of samples within 

this range.  As a 1% BSA solution is the most economical of the three blocking solutions it 

was used for all subsequent experiments. 
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Fig 4.02 LIGHT ELISA standard curve using three different diluents.  Values above 

each data point indicate the concentration of recombinant human LIGHT (rhLIGHT) in 

pg/ml. 
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4.3.2 Determination of the stability of soluble LIGHT  

 

The detection of proteins using ELISA is dependent on the antibody being able to capture 

the protein.  For this the epitope that the antibody recognises must be available.  If any 

degradation of the protein, that may destroy this epitope, occurs during storage of the 

serum, then the data may be misinterpreted.  As there was no information about the stability 

of sLIGHT we analysed 5 serum samples that were stored under two conditions: room 

temperature (~25oC) and refrigeration temp (~6oC).  These two temperatures reflected the 

condition that patient serum samples, that we wished to use in this study, may have been 

subjected to.  Serum samples were collected and an aliquot was immediately stored at –

80oC (fresh frozen) and the remaining serum was left at either room or refrigeration 

temperature for up to 6 days at each time point an aliquot was taken and stored at –80oC.  

Samples were then analysed for levels of soluble LIGHT.  At room temperature no 

significant change was seen at any of the time points when compared to the fresh frozen 

aliquot (Fig 4.03 A).  The same pattern was demonstrated for the samples stored at 

refrigeration temperature (Fig 4.03 B).  This showed that sLIGHT was stable in serum 

samples stored at room temperature for up to six days.     
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Fig 4.03 Stability of soluble LIGHT in serum stored at room and refrigeration 

temperature.  Fresh frozen (FF).  Panel A shows the stability of soluble LIGHT at room 

temperature ; Panel B shows the stability of soluble at 6OC. 
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4.3.4 Intra-assay and inter-assay variation 

 

The level of intra- and inter-assay precision was also measured for both the recombinant 

standards and the sera samples.  The average coefficient of variation (CV) for intra-assay 

analysis for the recombinant standards was 5.1% (range: 2.3-7.1), for inter-assay analysis 

this was 11.6% (range 5.8-17.1).  A similar trend was seen for the sera samples, the CV for 

intra-assay analysis was 8.1% (range 6.1-10.2) and inter-assay 13% (range 11.3-14.9).  

These CVs are within the generally accepted variation for both intra and inter assay 

analysis (Carpenter, 1997).  

 

 

4.3.5 Expression of soluble LIGHT from Jurkat T cells 

 

To identify if LIGHT protein and mRNA levels correlate, we analysed the expression of 

sLIGHT in tissue culture supernatants collected from P/I stimulated Jurkat T cells over a 

period of 48 hrs (Fig 4.04).  The mRNA expression results from the previous chapter are 

overlaid on Fig 4.04 to directly show the mRNA and protein levels in context with each 

other.  The levels of soluble LIGHT were seen to steadily rise from 8 hrs post-stimulation 

up to 32 hrs at which point the increase began to plateau.  After 48 hrs there was an 

approximate 7-fold increase in the level of soluble LIGHT present in the tissue culture 

supernatants.   
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Fig 4.04 Kinetics of soluble LIGHT (sLIGHT) release from stimulated Jurkat T cells. 
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4.3.6 Analysis of patient samples for soluble LIGHT 

 

Once the procedure for the ELISA was established, the analysis of the test sera could begin.  

Along with a control group, sera from SLE, CD and WG patients were also tested.  All 

patients were positive for autoantibodies at the time of obtaining the serum sample.  The 

SLE patients were ANA positive, the WG patients were c-ANCA positive and the CD 

patients were anti-tTG positive.  Positive autoantibody titres were an indication that there 

was disease activity in the selected patients.   

 

The results of the quantitative ELISA were converted from optical density (OD) units to 

pg/ml of soluble protein in the manner specified by the manufacturer (R&D systems).  The 

manufacturer of the soluble LIGHT ELISA (R&D systems) had previously tested 60 

control samples all of which were under 250 pg/ml.  In our control group, the majority are 

clustered below 300 pg/ml, though three samples have levels greater than 1000 pg/ml (Fig 

4.05).  The percentage of samples undetectable in the manufacturers control group is 7% 

compared to our 10.7%.  Therefore, with the exception of three outlying samples our 

controls compare very well to those tested by the manufacturer.     

 

Following statistical analysis of the data, the SLE patients showed significantly higher 

levels of soluble LIGHT in their sera (P = 0.033).  Conversely, the WG patients had 

significantly lower amounts of sLIGHT in their sera (P = 0.012) when compared to the 

control group.  The CD patients were not deemed statistically different from the controls (P 

= 0.172).  However, in this case the P value does not tell the whole story, as a large 

percentage (37.5%) of the CD patients tested had a high level of soluble LIGHT (>1000 
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pg/ml) in their sera compared to only 10 % of the controls (Table 4.01).  This is comparable 

to the 40% of SLE patients that show levels greater than 1000 pg/ml.  A large number of 

the WG patient failed to show expression of soluble LIGHT (43.3%) compared to only 

10.7% of the controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.01 Percentage of patient cohort that had undetectable or strong positive 

soluble LIGHT levels. 

 

 

 

 

 

    

 Samples  Undetectable >1000 pg/ml 

        

 n % % 

 

Controls 28 10.7 10.7 

CD 32 3.1 37.5 

WG 30 43.3 16.7 

SLE 50 6.0 40.0 
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Fig 4.05 Soluble LIGHT levels in different patient groups.  ** Indicates a group that is 

significantly different from the normal control.  Horizontal lines indicate the mean of each 

group. 
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4.4 DISCUSSION 

 

 

There are three forms of the LIGHT protein each is present within a different location, the 

cytosol, the cell membrane or the extracellular space.  The cytosol and cell membrane 

associated forms of LIGHT are produced by alternative splicing (Granger, 2001).  The third 

form of the protein is generated by proteolytic cleavage of the cell surface associated 

protein to release it as soluble LIGHT (Granger, 2001; Morel, 2000).  While it has been 

speculated that this release of soluble LIGHT might be a method of downregulating the 

ligand (Granger, 2001), several studies have shown that it retains biological activity 

(Zhang, 2003; Zhang, 2004; Heo, 2005).   

 

The aim of this study was to measure the levels of soluble LIGHT in the sera of CD, SLE 

and WG patients as well as a control cohort.  Based on our findings that there is increased 

mRNA expression of LIGHT in both CD and SLE (chapter 3), we speculated that there 

would also be increased serum concentrations of soluble LIGHT in these two diseases.  By 

demonstrating that increased mRNA expression is also reflected in elevated protein levels, 

this would provide further evidence that LIGHT may play a role in the pathogenesis of both 

CD and SLE.  To measure the amount of soluble LIGHT present in the test sera a 

commercially available sandwich ELISA (R&D systems) was employed a commonly used 

method for quantifying antigen in biological fluids and cell culture medium.   

 

As there was no information on the stability of soluble LIGHT our initial experiments set-

out to demonstrate that the protein was stable for an extended period at both room and 
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refrigeration temperatures.  These temperatures would reflect possible storage conditions 

that the serum samples may be exposed to.  Five serum samples were tested in this 

experiment.  Each sample showed similar levels of soluble LIGHT whether the aliqout was 

fresh frozen (-70oC at time of collection) or stored for up to 144 hrs at each of the 

temperatures (Fig 4.03).  This ensured that any changes seen in the expression of soluble 

LIGHT would not be due to degradation of the protein, which may affect the epitopes 

recognised by the capture and detection antibodies used in the sandwich ELISA.  

 

Jurkat T cell have been used extensively to elucidate many aspect of T cell activation and 

initiation of an immune response (Abraham, 2004).  In this study, Jurkat T cells were used 

to demonstrate that increases in LIGHT mRNA corresponded with a similar fold increase in 

the release of soluble LIGHT.  As demonstrated in chapter 3, P/I stimulation of Jurkat cells 

induces an 8-fold increase in the expression of LIGHT mRNA.  By collecting the cell 

culture supernatants from these activated cells, it was possible to measure the release of 

soluble LIGHT using ELISA.  The levels of LIGHT mRNA peak at ~ 24 hrs whereas the 

peak of soluble LIGHT protein occurs between 8-24 hrs later (Fig 4.04).  This demonstrates 

that increases in LIGHT mRNA are also reflected in the release of soluble LIGHT from 

activated Jurkat T cells. 
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4.4.1 Soluble LIGHT and CD 

 

CD is characterised by chronic inflammation that leads to severe destruction of the small 

intestine in response to gliadin ingestion by genetically susceptible individuals (Sollid, 

2002).  Activated CD4+ T cells in the lamina propria of the small intestine with a Th1 

phenotype have been proposed to be central to the disease process (Schuppan, 2000).  In 

chapter 3 it was demonstrated that patients with positive anti-tTG antibody titres have 

elevated levels of LIGHT mRNA expressing cells in peripheral circulation (Fig 3.17).  

Therefore, in this study serum samples were only selected if they had positive titres for 

anti-tTG antibodies indicating that there was disease activity, as these antibodies tend to 

disappear following the removal of gluten from the diet (Sulkanen, 1998). 

 

Following soluble LIGHT quantification using the desribed ELISA protocol, a statistically 

significant difference between the control and CD cohorts was not observed (P = 0.172) 

(Fig 4.05).  During in vitro stimulation studies using soluble LIGHT, noticeable changes in 

the levels of proinflammatory cytokines and adhesion molecules can be seen at 

concentrations of >1000 pg/ml (Zhang, 2003; Zhang, 2004; Heo, 2005).  During this study, 

to identify stongly postitive samples a cut-off value of >1000 pg/ml were used.  When 

samples above the cut-off are considered, a large number of the CD cohort (37.5%) have 

high levels of soluble compared with only 10.7 % of the controls (Table 4.01).  This result 

indicates that a considerable proportion of CD patients may have excessive soluble LIGHT 

in their serum, which could have significant implications for those patients. 
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CD has been linked to the development of secondary autoimmune diseases such as IDDM 

(Cronin, 1997), rheumatoid arthritis (Collin, 1994) and autoimmune hepatitis (Volta, 1998) 

to name but a few.  The expression of LIGHT has also been demonstrated to play a role in 

the development of various autoimmune diseases including IDDM (Wang, 2001), RA 

(Kim, 2005) and autoimmune hepatitis (Anand, 2006) among others.  Furthermore, 

chronically elevated levels of LIGHT in mice can cause a breakdown in self-tolerance that 

leads to systemic autoimmunity (Wang, 2001; Shiakh, 2001).  CD patients are 10 times 

more likely to develop an autoimmune disease than the general population (Green, 2003).  

Sustained increases in soluble LIGHT concentrations could be one contributing factor to 

this phenomenon.   

 

 

4.4.2 Soluble LIGHT and SLE 

 

SLE is a prototypical autoimmune disease in which multiple organs can become inflamed 

and damaged.  The major autoantibodies present in these patients are anti-nuclear 

antibodies (ANA) that are directed against various nuclear components including DNA.  

Increased levels of Th1 cytokines have been found in the serum of SLE patients, 

particularly those with renal involvement (Uhm, 2003).  As soluble LIGHT retains its 

ability to induce a Th1 type response (Tamada, 2000), increased serum levels could have a 

major role to play in the pathogenesis of SLE. 
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The SLE patients analysed in this study showed significantly increased levels of soluble 

LIGHT (P = 0.033) in their sera when compared to the control cohort (Fig 4.05) when 

quantified using the aforementioned ELISA protocol.  When the samples with 

concentrations above the cut-off value (>1000pg/ml) are considered, 40% of the SLE 

cohort showed high levels of soluble LIGHT present in their serum.  

 

In vitro stimulation of T cells using soluble LIGHT causes significant increases in INF-γ 

expression with little or no increases in Th2 cytokines (IL-4 or IL-10) (Tamada, 2000).  

INF-γ plays a significant role in the development of lupus nephritis in both human 

(Akahoshi, 1999) and mouse studies (Schwarting, 1998; Haas, 1998).  Anti-INF-γ 

treatment for the lupus prone NZB/NZW mouse prevents renal disease (Ozmen, 1995), 

whereas the administration of INF-γ greatly accelerates its progression (Jacob, 1987).  

Likewise, knocking out the INF-γ gene in two different models (MRL/lpr and NZB/NZW) 

protects them from the development of nephritis (Schwarting, 1998; Haas, 1998).  In 

humans, an increased ratio of Th1/Th2 cytokines (INF-γ/IL-4) is thought to promote lupus 

nephritis (Akahoshi, 1999).  Lupus patients with glomerulonephritis have increased levels 

of Th1 cytokine producing cells present in their kidneys (Uhm, 2003), which correlate with 

histological analysis of disease activity (Masutani, 2001; Kikawada, 2003).  In addition, 

INF-γ levels secreted by PBMCs from SLE patients significantly correlate with disease 

activity scoring systems such as the systemic lupus activity measure (SLAM) (Viallard, 

1999; Sturfelt, 1997).  Transgenic mice that over-express INF-γ have also been 

demonstrated to produce anti-DNA antibodies (Seery, 1997), which are believed to be 

critical for the development of renal disease.  Given the role of the LIGHT-HVEM pathway 

in INF-γ upregulation (Zhai, 1998) it is likely that the elevated levels of soluble LIGHT 

could contribute to the deterioration in the health of these patients.   
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LIGHT and INF-γ can work in synergy to increase TNF-α secretion by monocytes (Kim, 

2005).  The role of TNF-α in the pathogenesis of SLE is debated; some reports indicate that 

it may have a protective role (Dean, 2000; Manson, 2003), while others have shown that 

TNF-α can contribute to the inflammation seen in these individuals (Aringer, 2003).  

Several animal studies would also indicate that TNF-α participates in the development of 

lupus nephritis (Boswell, 1988; Yokohama, 1995; Tsai, 1995).  NZB/NZW mice have high 

levels of TNF-α deposited in their kidneys, once nephritis is established (Brennan, 1989).  

A finding that has also been demonstrated in humans (Herrera-Esparza, 1998; Malide, 

1995; Takemura, 1994).  Furthermore, the level of TNF-α expression correlates with 

histological assessment of renal inflammation (Herrera-Esparza, 1998).   

 

Given the effect that soluble LIGHT has on increasing both INF-γ and TNF-α among other 

proinflammatory molecules it is reasonable to assume that it could very well contribute 

significantly to the development of glomerulonephritis in these patients.  Incidentally, about 

40% of patients with SLE develop nephritis during the course of the disease (Cervera, 

1993) a figure which is strikingly similar to the number of our test cohort that show highly 

elevated levels of soluble LIGHT. 

 

 

4.4.3 Soluble LIGHT and WG 

 

WG is an autoimmune disease characterised by granulomatous and vasculitic lesions.  The 

disease usually presents as localised WG, in which granulomatous lesions are restricted to 

the upper airways, and progresses to generalised WG.  Autoantibodies specific for PR3 are 
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detected in the vast majority of patients with generalised WG (Lamprecht, 2005).  

Granulomatous lesions in localised disease predominantly express Th1-type cytokines 

whereas a shift towards Th2-type cytokine expression is found in generalised disease 

(Mueller, 2000; Balding, 2001).   

 

All WG serum samples included in this study were positive for autoantibodies directed 

against PR3.  The results of this study showed a statistically significant lower expression of 

soluble LIGHT between the WG and control sera (P = 0.012).  Furthermore, the WG cohort 

had a very high proportion (43%) of samples in which no soluble LIGHT could be detected 

(Table 4.01).  This is a significantly higher proportion of samples with no detectable 

soluble LIGHT than either our controls (10.7%) or the controls tested by the manufacturer 

(7%).  This finding provides further evidence that overexpression of LIGHT is not likely to 

participate in the pathogenesis of WG.  The absence of soluble LIGHT in anti-PR3 positive 

WG patients would support the hypothesis of a skewed Th-2 cytokine profile in these 

patients. 
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4.4.4 Conclusion 

 

To conclude, the aim of this chapter was to measure the levels of soluble LIGHT in our 

three test cohorts, which was achieved using a commercially available sandwich ELISA 

specific for soluble human LIGHT.  The data generated in this study shows that soluble 

LIGHT is significantly elevated in the serum of SLE patients.  Soluble LIGHT can induce a 

strong Th1-type response predominantly causing the secretion of large amounts of INF-γ.  

Increased INF-γ levels are well documented to play a role in the development of lupus 

nephritis in both human and murine studies.  Hence, it is reasonable to suggest that 

increased soluble LIGHT levels may be a contributing factor to renal involvement in SLE.   

 

A large proportion of the CD cohort showed elevated levels of soluble LIGHT in their 

serum despite the site of inflammation being localised to the small intestine.  Constitutive 

expression of LIGHT in Tg-mice induces a breakdown of self-tolerance and leads the onset 

of autoimmune disease.  An extremely high incidence of secondary autoimmune disease is 

found in patients diagnosed with CD.  We speculate that patients with chronically elevated 

levels of soluble LIGHT in their serum may be more prone to developing some of the other 

autoimmune conditions that are associated with CD.   

 

The WG patients showed significantly lower levels of soluble LIGHT compared with the 

controls.  This results confirms that at least in our cohort of anti-PR3 autoantibody positive 

WG patients that LIGHT overexpression is not a contributing factor to disease 
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Since its discovery, LIGHT has proved to be an important secondary co-stimulatory 

molecule for the activation of T cells (Harrop, 1998; Tamada 2000).  The co-stimulation 

signal caused by LIGHT-HVEM interactions induces a strong Th1 type reponse (Tamada, 

2001; Wang, 2001).  Additionally, roles in dendritic cell maturation (Morel, 2001), 

negative selection of thymocytes (Wang, 2002; Wang 2001) and secondary lymphoid 

organogenesis (Wang, 2002) have also been attributed to LIGHT.  Evidence that LIGHT 

may play an important role in human disease came from two papers that specifically 

overexpressed LIGHT in T cells of mice (Wang, 2001; Shaihk, 2001).  The mice generated 

in these studies developed profound inflammation of the intestine as well as severe 

glomerulonephritis and autoantibody production.  The small intestinal inflammation seen in 

these transgenic mice resulted in villous atrophy, crypt hyperplasia and the loss of goblet 

cells (Shiahk, 2001).  This destruction of the small intestinal structure, while not specific to 

CD alone, is similar to the gut lesion seen in human subjects with the disease (Marsh, 

1992).  The development of glomerulonephritis and the production of anti-DNA 

autoantibodies in LIGHT-Tg mice resembles manifestations seen in established models for 

SLE (Wang, 2001).  From these two studies we speculated that upregulation of LIGHT may 

play a role in the development of CD or SLE in humans.  Therefore, the overall aim of this 

thesis was to assess the expression of LIGHT and its associated receptors in these two 

immune-mediated diseases.  We also included a cohort of WG patients in this study as it is 

characterised by the presence of multiple autoantibodies, vasculitis and glomerulonephritis 

(Langford, 1999).  In order to obtain data on the expression of LIGHT in these diseases, 

Real-time quantitative RT-PCR methodologies were to be optimised.   
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Real-time PCR has emerged as a powerful technique for quantitative analysis (Bustin, 

2000).  While microarray technology is popular for monitoring the expression of many 

thousands of genes at a time, it is now common practice to validate these results using 

quantitative real-time PCR.  Much of this is to do with the sensitivity, wide dynamic range 

and the adaptability of Real-time PCR technology for quantitative analysis (Logan, 2004).  

Before embarking on a logistically complex and expensive gene expression study it was felt 

that gaining hands-on experience with developing Real-time PCR assays, where the end 

results could be predetermined, would yield beneifits in the long-term.  To this end, two 

disease models were chosen to study various aspects of Real-time PCR assay design.  In 

order to look at SNP detection we used cystic fibrosis as a model as it is a common genetic 

disease and, while over 1000 mutations (Tsui, 2003) have been associated with it 

development, as few as five of these account for ~90% of mutations seen in the Irish 

population (Scotet, 2003).  The model chosen for quantitative analysis was the examination 

of PMP22 gene dosage in relation to two herediatary peripheral neuropathies: CMT1A and 

HNPP.  These are traditionally very difficult conditions to diagnose at the molecular level 

due to the subtle differences between a normal and abnormal genotype.  Therefore, this 

study provided a strong challenge to the capabilities of quantitative Real-time PCR 

analysis.  
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5.1 Review of results 

 

The ultimate aim of chapter 2 was to explore the use of Real-time PCR as a methodology 

and to push its capabilities to the limit.  In chapter 2.1, Real-time PCR was used to develop 

an assay to detect the five most common CFTR mutations in the Irish population.  A 

previous study had compared Real-time PCR to traditional PCR techniques for detecting 

the delF508 mutation in CF, and had shown that it was as accurate and a much more rapid 

technique (Dempsey, 2002).  Hence, we wanted to expand on this to produce a multiplex 

Real-time PCR that could detect the five most common CF mutations in Ireland.  This 

would account for approximately 90% of mutant alleles present in the Irish population 

(Scotet, 2003).  The initial approach was to develop the multiplex in a manner similar to 

other groups (Bestmann, 2002, Gundry, 2001, Bernard, 1998) by placing the hybridisation 

probes at the site of the mutation.  Nonetheless, it was quickly realised that there would be 

significant problems with this technique as it did not allow us to differentiate more than one 

mutation per colour channel during melting curve analysis.  To avoid these problems a 

novel approach to performing multiplex mutation detection on the LightCycler instrument 

was developed (Dempsey, 2004).  This involved combining ARMS PCR (Newton, 1989) 

with Real-time melting curve analysis (Wittwer, 1997).  Our approach proved to be quite 

successful, allowing easy discrimination of melting curve peaks that corresponded to 

particular CFTR genotypes (Figs 2.06-2.08).  This assay also passed a blinded trial carried 

out in conjunction with the National Centre for Medical Genetics, Our Lady's Hospital for 

Sick Children.  The use of Real-time PCR for CF mutation detection allows for a much 

faster turnaround time for genetic analysis.  This is of particular importance for newborns 

that may have the potential for developing the disease.  Newborn infants have healthy 



 252 
 

sterile lungs (Wine, 1999), but they can quickly become colonised with bacteria that are 

pathogenic to CF patients such as Staphylococcus aureus (Hutchison, 1999) and 

Pseudomonas aeruginosa (Emerson, 2002).  Early treatment of these infants can slow 

down the progression of lung colonisation and ultimately the progression of the disease 

(Starner, 2005).  Therefore, it is vital that a diagnosis can be made as rapidly as possible.  

The use of Real-time PCR for mutation detection in newborns also has the advantage of 

requiring only small amounts of starting genomic DNA, as the technique is highly 

sensitive.  If necessary, successful PCR analysis can be performed using only picogram 

quantities of starting template helping to reduce the amount of cells/blood that need to be 

donated for genetic analysis. 

 

In chapter 2.2, Real-time quantitative PCR was used for gene dosage analysis in two 

hereditary peripheral neuropathies, CMT1A and HNPP.  Gene dosage analysis using 

traditional techniques such as southern blotting (Lupski, 1991) can be time-consuming and 

require large amounts of high quality DNA.  Real-time PCR a truly quantitative technique 

is sensitive, rapid and requires only small amounts of DNA (Logan, 2004) making it very 

suitable for gene dosage analysis.  The PMP22 gene is contained within a 1.5 Mb region of 

chromosome 17p11.2. The gene can be duplicated leading to CMT1A (Lupski, 1991; 

Raeymaekers, 1991) or deleted and thus cause HNPP (Chance, 1993).  Consequently, a 

normal individual will possess two copies of the PMP22 gene, CMT1A individuals will 

have three and a HNPP patient will have only a single copy.  The quantification of such 

sutble changes would push Real-time PCR to the limits of its capabilities.  In this study, 

relative quantification was used where β-globin acted as a reference that is present at two 

copies per genome.  PMP22 copy numbers were then expressed as a ratio of β-globin.  The 
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development of a multiplex PCR, that allowed the simultaneous quantification of both β-

globin and PMP22 in the same capillary, was an important aspect of this study.  Otherwise, 

the test sample would have to be added to two separate PCRs, therefore creating the 

potential for error to be introduced into the assay.  However, the generation of both 

amplicons in the same PCR would mean that extensive optimisation was required so that 

the PCR efficiencies were similar.  If this were not so it could potentially lead to over/under 

estimation of the PMP22 ratio.  Once the quantitative multiplex was optimised and shown 

to be reproducible, we tested a number of samples for PMP22 copy numbers.  The results 

generated were similar to the findings of other groups (Thiel, 2003; Choi, 2005).  Normal 

controls had a ratio of PMP22 to β-globin of approximately 1, CMT1A had a ratio of >1.4 

and HNPP had a ratio of <0.55.  All normal control samples tested fell within a range of 0.8 

– 1.2 showing a clear division between normal and pathogenic ratios (Fig 2.15).    

 

During these two studies, model diseases (CF, CMT and HNPP) were used to generate a 

better understanding of how to effectively use Real-time PCR as a tool in molecular 

biology.  A lot of knowledge about was gained about the general design and positioning of 

hybridisation probes for the development of a successful real-time PCR assay.  Steps were 

made to improve the multiplexing capabilities of real-time mutation detection (Dempsey, 

2003).  We also demonstrated that Real-time PCR is a very sensitive technique capable of 

discriminating between samples that differed by as little as 1.5 fold change.  This work 

gave us a good foundation when designing primers and hybridisation probe pairs for the 

gene expression work performed in chapter 3.  It also demonstrated the power of Real-time 

PCR as a quantitative tool for detecting even the subtlest alterations in copy number.  
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The aim of chapter 3 was to utilise real-time PCR to achieve the ultimate aim of the thesis: 

to analyse the expression of LIGHT and its associated receptors in human immune-

mediated diseases.  In this chapter, we successfully developed Real-time RT-PCR protocols 

allowing us to quantify changes in mRNA expression profiles. 

 

The reciprocal expression of LIGHT and HVEM on activated T cells had been previously 

characterised using semi-quantitative RT-PCR (Granger, 2001).  Therefore, we used Jurkat 

cells stimulated in a timecourse with P/I to verify the reciprocal expression of LIGHT and 

HVEM upon T cell activation (Figs 3.07 & 3.08) using our Real-time PCR protocols.  

These results showed that deltaLIGHT follows a similar pattern to that of LIGHT 

upregulation in these cells (Fig 3.07).  To our knowledge, this is the first time this has been 

demonstrated.  The success of these initial studies allowed us to progress to the collection 

of samples from patients.  Over 90 samples were obtained for the first part of this study: to 

characterise the mRNA expression profile of LIGHT and its receptors in PBLs isolated 

from our test cohorts (CD, SLE and WG patients).   

 

Subsequent Real-time RT-PCR analysis revealed that LIGHT mRNA is elevated in CD 

PBLs when compared to healthy controls (Fig 3.17).  It has been previously reported that 

PBLs isolated from active CD express increased levels of mRNA for Th1-cytokines (Lahat, 

1999).  From previous studies on Crohn’s disease, it is highly likely that these LIGHT+ T 

cells have had previous antigen exposure (CD45RO+) and secrete INF-γ (Cohavy, 2005). 

LIGHT-Tg mice have revealed that increased LIGHT on peripheral T cells can lead to the 

breakdown of peripheral tolerance leading to the development of autoimmunity (Wang, 

2001).  The exposure of coeliacs to gluten as indicated by anti-tTG positivity can increase 
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the number of T cells that express LIGHT in the periphery.  In a similar manner, as occurs 

in LIGHT-Tg mice, long-term exposure to gluten could cause a breakdown in self-

tolerance.  The expression of HVEM is normally regulated (reciprocal expression to that of 

LIGHT) in PBLs from CD patients (Fig 3.11).  The mRNA copy numbers for LTβR (Fig 

3.13) and DcR3 (Fig 3.12) did not vary from that of the control cohort. 

 

In chapter 3 it was also demonstrated that LIGHT and its associated receptors may 

contribute in the pathogenesis of SLE.  The expression of LIGHT and deltaLIGHT mRNA 

was elevated in PBMCs isolated from SLE patients (Fig 3.19).  Furthermore, the levels of 

both LIGHT and deltaLIGHT mRNA strongly correlated with the increased levels of INF-γ 

mRNA seen in our patients (Fig 3.16).  The levels of mRNA for LIGHT’s three receptors 

(HVEM, DcR3 and LTβR) were also identified as being significantly elevated in our cohort 

of SLE patients (Figs 3.11 & 3.15), indicating, that there is a profound dyregulation of 

these signalling pathways in SLE.   

 

One of the more interesting results generated in this thesis was the significant elevation of 

HVEM in PBLs isolated from SLE patients.  It was initially thought that this might indicate 

that HVEM mRNA was not regulated as normal in these patients.  However, upon further 

investigation it seems that the reciprocal expression of HVEM and LIGHT is maintained in 

PBMCs and the overexpression of HVEM is within cells of the granulocyte population (Fig 

3.18).  HVEM is expressed by neutrophils, (Kwon, 2003) making it is tempting to speculate 

that the increased expression is on this cell type.  The addition of soluble LIGHT, at 

concentration of >1000 pg/ml, to neutrophils causes the release NO and ROS as well as 

TNF-α and IL-8 (Heo, 2006), all of which have been implicated in the pathogenesis of 
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lupus nephritis (Blount, 1994; Nathan, 1997; Rovin, 2002; Aringer, 2003).  SLE patients 

may express high levels of HVEM on their neutrophils, in conjunction with high levels of 

soluble LIGHT (>1000 pg/ml) in their serum (Fig 4.05), suggesting that the LIGHT-HVEM 

pathway might be of particular importance in the development of glomerulonephritis, one 

of the most serious manifestations of SLE.   

 

Elevated levels of soluble HVEM have been identified in the serum of SLE patients (Jung, 

2003).  However, the authors did not speculate as to the biological significance of increased 

soluble HVEM.  Both LIGHT and BTLA need to be considered when assessing the 

potential role of soluble HVEM in SLE pathogenesis.  LIGHT is capable of reverse 

signalling by interacting with solid phase DcR3-Fc protein (Shi, 2002; Wan, 2002), which 

serves to further enhance Th1 responses.  It might be possible that soluble HVEM could 

also function in this manner by cross-linking LIGHT on the surface of T cells.  

Nevertheless, it could be just as likely that soluble HVEM can block cell membrane bound 

HVEM from interacting with LIGHT or BTLA.  The interaction of HVEM and BTLA 

transmits co-inhibitory signals into T cells (Sedy, 2005; Gonzalez, 2005).  Anergic T cells 

have been reported to express high levels of BTLA (Hurchla, 2005).  If soluble HVEM 

acted as a decoy ligand for BTLA this may have the effect of preventing co-inhibitory 

signals being transduced into T cells and therefore increasing the likelihood of uncontrolled 

T cell activation.  While it can be equally argued that soluble HVEM can block LIGHT co-

stimulation of T cells and maturation of DC, by switching off the BTLA-HVEM circuit 

other co-stimulatory circuits could induce activation of T cells that should by right be 

anergic.  T cells from HVEM knockout mice show hyper-responsiveness during in vitro 
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stimulation (Wang, 2005), which indicates to the importance of the BTLA-HVEM 

interactions in maintaining balance between stimulation and inhibition. 

 

In chapter 3 the expression of DcR3 mRNA was also examined in PBLs isolated from our 

test cohorts.  The gene expression analysis showed that DcR3 expression was unaltered in 

both CD and WG, although a significant increase was identified in the SLE cohort (Fig 

3.15) confirming a previous study (Otsuki, 2000).  The biological role of DcR3 is quite 

complex as it acts as a soluble receptor for LIGHT (Yu, 1999), FasL (Pitti, 1998) and 

TL1A (Migone, 2002).  In addition, it has been speculated that it may have other 

unidentified ligands (Yang, 2005).  DcR3 has been typically associated with anti-apoptotic 

activities by blocking the function of its three ligands (Yu, 1999; Roth, 2001; Migone, 

2002).   

 

The commonly used knockout mice MRLlpr/lpr (Fas) and gld/gld (FasL) spontaneously 

develop a lupus-like disease (Watanabe, 1992; Takahashi, 1994).  In vitro studies have 

shown that Fas-FasL is critical for activation induced cell death (AICD) a mechanism used 

to delete lymphocytes in peripheral circulation at the end of an immune response 

(Ashkenazi, 1999).  T cells from SLE patients have been shown to resist AICD (Lu, 2004).  

A potential mechanism for this resistance could be the increased presence of DcR3, which 

can interfere with the activity of Fas (Roth, 2001).   

 

However, DcR3 can also modulate the activity of many cells.  DcR3 increases monocyte 

adhesion to endothelial cells by upregulating ICAM-1 and VCAM-1 expression (Yang, 

2005).  It can also modulate the maturation of dendritic cells so that they favour the 
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production of Th2 type cytokines (Hsu, 2002).  Furthermore, in vitro DcR3 has been shown 

to induce reverse signalling via LIGHT to enhance the secretion of Th1 cytokines (Wan, 

2002).  DcR3 can be partially cleaved in vivo by proteolysis to produce two functional 

fragments that have different activities against FasL and LIGHT (Wroblewski, 2003).  The 

cleaved fragment of DcR3 (amino acids 1-218) does not bind to FasL but retains its ability 

to bind to LIGHT.  This may explain the wide range of functions that DcR3 seems to 

display.  While the full biological significance of DcR3 expression is still to be elucidated, 

this study shows that further investigation into its altered expression in SLE is warranted, 

particularly into the source and levels of the different DcR3 fragments, their effects on 

AICD and the effects they have on different cytokine profiles secreted by DC and T cells. 

 

Real-time PCR analysis of the WG cohort shows that LIGHT and its associated receptors 

do not show a dysregulated profile.  No significant changes were seen in the levels of 

mRNA for LIGHT, any of its receptors or INF-γ when compared to the control cohort.  All 

patients used in the study were positive for c-ANCA, indicating they may have progressed 

to generalised WG, which seems to be dominated by a Th2-type cytokine profile, (the lack 

of INF-γ mRNA expression would support this). 

 

The second part of this chapter was the examination of mRNA expression in the lamina 

propria of intestinal biopsies collected from patients with active CD.  The results from this 

study showed that LIGHT was elevated in the gut lesion during active CD when compared 

to controls.  These results are similar to those seen in Crohn’s disease, another chronic 

inflammatory disease of the gastrointestinal tract, where LIGHT is elevated in sites of 

inflammation (Cohavy, 2005; Wang, 2005).  The LIGHT-HVEM pathway promotes a 
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strong Th1 response independent of CD-28 of IL-12 signalling (Brown, 2005).  It is well 

recognised that CD is characterised by increases in Th1 cytokines.  Both INF-γ and IL-2 

mRNA and protein have been previously reported to be elevated in CD (Nilsen, 1998; 

Lahat, 1999).  Our data also confirms this as both are significantly elevated in our active 

CD cohort (Fig 3.25). 

 

LTβR also acts as a receptor of LIGHT (Mauri, 1998; Zhai, 1998; Harrop; 1998), it has a 

different expression pattern to that of HVEM (Zhai, 1998) and is thought to function as a 

communication link between T cells and stromal cells (Gommerman, 2003).  Our results 

show that LTβR mRNA is not upregulated during active CD (Fig 3.22).  Besides LIGHT, 

LTβR can also bind LTβ when it forms a heterotrimer with LTα (Ware, 1995).  To identify 

if LTβ could be responsible of some of the dysregulated immune response in CD we 

analysed the levels of its mRNA and showed that it was not upregulated during active CD.  

This suggests that any function LTβR plays in the pathogenesis of CD is mostly like not to 

involve increased signalling via interactions with LTβ.  However, as LIGHT expression is 

increased in the active CD it is highly probable that any increases in LTβR activity is due to 

LIGHT.  T cells that mediate an inflammatory response must first migrate from 

sensitisation areas to sites where they may exert their function.  This migration is dependent 

of the expression of tissue-specific adhesion molecules and chemokine gradients 

(Brandtzaeg, 2001; Butcher, 1996).  Infiltration of the lamina propria by large number of 

immune cells is a feature of the coeliac lesion (Sollid, 2000; Marsh, 1992).  Signalling 

through LTβR by LIGHT would serve to increase the expression of various adhesion 

molecules and chemokines (Dejardin, 2002; Zhang, 2003; Wang, 2004), which would 

direct a large number of cells towards the intestinal mucosa. 
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Increased apoptosis of enterocytes is one contributing factor to the villus atrophy seen in 

CD (Moss, 1996).  Transgenic mice that overexpress LIGHT show increased apoptosis of 

intestinal epithelial cells (Wang, 2004).  LIGHT can directly cause apoptosis via LTβR 

(Rooney, 2000), particularly if the cells have been exposed to INF-γ (Zhang, 2004; Chung, 

2004).  As both LIGHT (Fig 3.19) and INF-γ (Fig 3.23) (Nilsen, 1998; Lahat, 1999) are 

upregulated in active CD, it is feasible that the LIGHT-LTβR pathway could directly 

contribute to apoptosis of enterocytes.  

 

From our quantitative analysis, it seems that BTLA is strongly down-regulated in the 

lamina propria in untreated CD (Fig 3.25).  This molecule functions to attenuate 

lymphocyte activity by acting as a co-inhibitory molecule (Watanabe, 2003) and it has just 

been recently linked to the LIGHT-HVEM pathway (Sedy, 2005; Gonzalez, 2005).  It is 

speculated that if BTLA and LIGHT are expressed on the same cell then the binding of 

HVEM to both results in a cancellation of any positive signals from LIGHT (Croft, 2005).  

As LIGHT is upregulated in active CD, the lack of BTLA expression in the gut lesion 

would allow LIGHT-signalling activity through HVEM to predominate.  This would 

further enhance the activation of T cells, upregulation of Th1 cytokines, immune cell 

infiltration to the lamina propria and result in profound inflammation and damage to the 

surrounding tissue. 

 

In chapter 4, we investigated the levels of soluble LIGHT protein in the serum of patients 

with CD, SLE or WG using ELISA.  Soluble LIGHT is generated from the cleavage of cell 

surface LIGHT to release the extracellular portion (Granger, 2001) and can effectively 
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promote a Th1 type response (Tamada, 2000).  Using P/I stimulated Jurkat T cells as a 

model, it was established that upregulation of LIGHT mRNA correlated with a similar fold 

increase in soluble LIGHT levels in the tissue culture supernatants (Fig 4.04).  Subsequent 

analysis of patient samples provided further proof that LIGHT could be an important factor 

in the pathogenesis of CD and SLE as a large percentage of both cohorts had elevated 

levels of soluble LIGHT in their serum (Fig 4.05 & Table 4.01).   

 

As LIGHT mRNA and INF-γ mRNA levels correlate (Fig 3.16) in SLE, it is also likely that 

the protein levels correlate.  We speculate that increased soluble LIGHT may play a role in 

lupus nephritis by promoting INF-γ upregulation.  This important Th1 cytokine is known to 

function in the development of renal disease in SLE (Akahoshi, 1999; Schwarting, 1998; 

Haas, 1998).  Soluble LIGHT can also induce monocytes and neutrophils to secrete a wide 

range of proinflammatory molecules including TNF-α, IL-8, NO and ROS (Kim, 2005; 

Heo, 2006) all of which can cause renal damage (Blount, 1994; Nathan, 1997; Rovin, 2002; 

Aringer, 2003).  

 

There is a high incidence of secondary autoimmune disease associated with CD (Green, 

2003).  LIGHT-Tg mice, whilst having severe inflammation of the intestine, also develop 

many symptoms of autoimmune diseases (Wang, 2001; Shaikh, 2001).  Many of the 

autoimmune diseases have been associated with LIGHT’s activity, including IDDM (Wang, 

2001), RA (Kim, 2005) and autoimmune hepatitis (Anand, 2006).  Interestingly, many of 

the same autoimmune conditions are associated with CD (Alaedini, 2005).  We speculate 

that chronic exposure to gliadin, the triggering antigen for CD, could serve to keep LIGHT 

at elevated levels and over a period of time this could lead to a breakdown of self-tolerance 
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and result in secondary autoimmune diseases.  However, in order to show this a long term 

study would need to be performed using coeliac patients, which could be a direction for 

future work. 

 

 The WG cohort had a number of patients who expressed lower amounts of soluble LIGHT 

than the controls (Fig 4.05).  The evidence from our study would indicate that LIGHT and 

associated receptors are not involved in the pathogenesis of WG, at least to the point the 

there is not increased levels of soluble LIGHT in their serum or there are no increases in 

circulating cells that express high levels of LIGHT mRNA.  As all of our WG patients were 

positive for ANCA directed against PR3 this suggests that their disease had progressed to 

the generalised form (Lamprecht, 2005).  Generalised WG is characterised by a switch 

from a Th1 to a Th2 cytokine profile (Mueller, 2000; Balding, 2001).  This could be one 

explanation for the low levels of soluble LIGHT in this cohort as it is typically seen as a 

Th1 promoting cytokine.  In hindsight, Th2 cytokine protein levels should have been 

measured in these patients to provide proof of this. 

 

 

5.2 Treatment of human disease by targeting LIGHT 

 

The treatment of CD with a GFD provides a satisfactory therapy for the majority of 

patients.  However, some patients fail to respond to this treatment and are deemed to have 

refractory CD.  It has been reported that refractory CD has a prevalence of 7-8% within the 

CD population (O’Mahony, 1996).  As there is strong evidence of a link between CD and 

malignancies of the gastrointestinal tract (Catassi, 2002; Green, 2001; O’Farrelly, 1986), 
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there is a necessity to provide these patients with alternative treatment.  The use of 

immunosupressants in these refractory patients has had mixed results, with reports of 

patients responding to the treatment but later succumbing to opportunistic infections 

(Vaidya, 1999).   

 

Anti-TNF therapy is commonly used in the treatment of autoimmune conditions such as 

rheumatoid arthritis (Elliott, 1993) and Crohn’s disease (Targan, 1997) and has been used 

to treat refractory CD patients (James, 2005).  The most common TNF-α antagonists used 

are a murine/human chimeric monoclonal antibody (infliximab) and a soluble TNF-α 

receptor fused to the Fc portion of human IgG1 (etanercept).  There are some drawbacks to 

the use of anti-TNF therapy.  A number of reports have shown the treatment with 

infliximab or etanercept can cause new-onset SLE (Mohan, 2002; Hanauer, 2002; Shakoor, 

2002) and neurological disease resembling multiple sclerosis (Mohan, 2001).  Anti-TNF-α 

therapy has been avoided in SLE because of this despite the increase of the cytokine in 

these patients (Aringer, 2002; Gabay, 1997).   

 

The research of others has demonstrated that LIGHT may be useful as an alternative target 

for the treatment of Th1 associated diseases.  Murine models of IBD (Wang, 2005) and 

IDDM (Wang, 2001) have been successfully treated by administering the chimeric LTβR-

Ig protein, an antagonist of the LIGHT- LTβR pathways.  Our research shows that LIGHT 

is upregulated in both CD and SLE.  In addition, a recently published study looking at 

genes expressed by CD4+ T cells in individuals with severe SLE has also demonstrated that 

LIGHT is upregulated during active disease (Deng, 2005).  Although treatment of CD 

patients with anti-LIGHT therapy would be extreme it could prove useful in the treatment 
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of severe refractory disease.  In the case of patients with SLE, where anti-TNF therapy is 

avoided in their treatment, anti-LIGHT therapy could prove to be an effective method of 

downregulating their uncontrolled T cell response.  As INF-γ is strongly associated with 

lupus nephritis, anti-LIGHT therapy could be of particular use in patients with renal 

involvement. 

 

It has been demonstrated that forced expression of LIGHT within tumours causes the influx 

of immune cells and elimination of the tumour (Yu, 2004).  Not only is the local tumour 

destroyed but memory tumour-antigen specific CD8+ T cells were generated that cleared 

tumours at other sites in the body.  This is another exciting facet of LIGHT’s function as a 

therapeutic agent.  However, it does warn that manipulation of LIGHT could also have 

some serious side effects such as the development of malignancy.  Specific targeting of 

HVEM and/or LTβR with monoclonal antibodies may be a better route for potential 

therapies rather than completely blocking LIGHT altogether with chimeric recombinant 

proteins.  As LIGHT has diverse roles to play in both the adaptive and innate immune 

response, completely switching it off could result in opportunistic infections and possibly 

malignancy in the long term.  By specifically targeting either HVEM or LTβR, this would 

allow for the fine-tuning of the activity of LIGHT in the treatment of disease.  

Nevertheless, a much greater understanding of how LIGHT functions within different 

environments of the body is needed before the step to treating humans with anti-LIGHT 

therapy can be made. 
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5.3 Future work 

 

As the scope of this thesis has been quite broad and from the results generated there are a 

number of possible avenues for further research.  Our results have demonstrated that 

LIGHT mRNA expression is elevated in the lamina propria of patients with active CD.  

Therefore, analysing protein levels would provide further evidence as to the potential 

involvement of LIGHT in the pathogenesis of CD.  This could be done using 

immunohistochemistry, a technique that can be used to quantify as well as localise antigen 

in tissue sections.  It is also possible to culture duodenal biopsies for up to 48 hrs in an 

organ culture system (Nilsen, 1998).  The addition of gliadin to biopsies from treated CD 

patients induces rapid changes in the expression of proinflammatory cytokines (Nilsen, 

1998).  Using a combination of quantitative Real-time PCR, immunohistochemistry and 

ELISA it would then be possible to analyse the expression of LIGHT in these biopsies in 

response to gliadin.  Mouse models of IBD have been treated using a soluble LTβR-Fc 

chimeric protein (Wang, 2005; An, 2005).  A study in which biopsies from treated CD 

patients were incubated with gliadin and where LIGHT’s expression was blocked, using 

LTβR-Fc/HVEM-Fc, would allow cytokine profiles and any morphological changes that 

are a function of LIGHT expression to be identified.  This study would further define the 

role of LIGHT in the pathogenesis of CD. 

 

Elevated levels of LIGHT have also been identified in IBD, particularly Crohn’s disease 

(Cohavy, 2004).  Interestingly a susceptibility locus of IBD (Rioux, 2000) overlaps with the 

region of Chr 19 in which the gene for LIGHT is located (Granger, 2001).  Similarly, 

susceptibility loci for SLE (Lindqvist, 2000) and CD (van Belzen, 2003) have been 
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localised to this area.  While the promoter region of LIGHT has been characterised, no 

study to date has been performed to identify polymorphisms that may effect its expression.  

Polymorphisms have been characterised for several cytokines, including TNF-α (Wilson, 

1992; D’Alfonso, 1994), which effects the expression of their mRNA and can contribute to 

the development of autoimmune diseases (Nath, 2004; Dean, 2000).  Therefore, it is a 

possibility that LIGHT mRNA expression could be altered due to the presence of SNPs 

within the promoter region.  Particular genotypes may lead to higher or longer sustained 

peak levels of LIGHT, which could be a risk factor for a wide range of human diseases.  

Further characterisation of the promoter region and identification of possible SNPs leading 

to altered expression would be useful in the assessment of LIGHT’s role in the 

development of autoimmunity. 

 

We have revealed that deltaLIGHT is upregulated, with similar kinetics to that of LIGHT, 

in activated Jurkat T cells (Fig 3.07).  Little is known about deltaLIGHT other than it is 

held intracellularly (Morel, 2001).  Our results demonstrate that it is upregulated in SLE 

(Figs 3.10 & 3.15) therefore it may play a role in the development of autoimmunity.  The 

commonly used method to elucidate the function of a gene is to create a knockout model 

and examine the phenotype of the animal.  However, small interfering RNAs (siRNAs) 

have emerged as a useful technology for knocking out specific mRNAs (Shi, 2003; 

Dykxhoorn, 2003).  The use of siRNAs would have the advantage of allowing the 

expression of specific splice variants of an mRNA to be eliminated and thereby allowing its 

specific function to be elucidated.  Separately targeting LIGHT and deltaLIGHT using 

siRNAs would determine the function of each during the activation and proliferation of T 

cells.  
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Our initial finding of lower expression levels of BTLA mRNA in the lamina propria of CD 

patients warrants further investigation.  The discovery that BTLA is linked to the LIGHT-

HVEM pathway is a very recent discovery (Sedy, 2005; Gonzalez, 2005).  As a result, we 

did not get to thoroughly investigate its expression patterns during this thesis.  BTLA has 

been demonstrated to be highly polymorphic in mice (Hurchla, 2005).  Given the 

importance of BTLA in maintaining a balance between T cell activation and the induction 

of anergy (Watanabe, 2003), any genetic factor that predisposes to its underexpression 

would allow self-reactive T cells to escape anergy, and thereby facilitate the induction of 

autoimmune diseases.  Further investigation into LIGHT-HVEM-BTLA crosstalk would 

yield information as to how these molecules effect T cell activation and the induction of 

anergy. 

 

To formally prove our hypothesis that HVEM mRNA is overexpressed in neutrophils it 

would be necessary to selectively isolate different cell populations in SLE patients and 

analyse their mRNA expression patterns.  It may be possible to investigate if neutrophils 

constitutively express higher amounts of HVEM in SLE or if it is upregulated in response 

to neutrophil activation.  A recent report would suggest that HVEM is not upregulated on 

the surface as neutrophils become activated (Kim, 2005), which may indicate that the 

increased expression of HVEM in SLE patients is constitutive.  PR3 is normally contained 

in the cytosol, but following neutrophil activation, by cytokines such as TNF-α, it is 

translocated to the cell surface (Reumaux, 2004).  It has been reported that constitutive 

expression of PR3 on the surface of resting neutrophils is genetically predetermined 

(Schrieber, 2003) and is a risk factor for WG development.  In a similar manner, surface 

expression of HVEM may be altered due to potential polymorphisms in its promoter 
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region.  If HVEM is constitutively expressed at higher levels on neutrophils in SLE patients 

this would provide further evidence that targeting the LIGHT-HVEM pathway could be a 

potential therapeutic approach. 

 

There are several animal models, including the NZB/NZW and MRL/lpr mice, which show 

similar disease manifestations to that of human SLE.  These mice have been used 

extensively to establish the role of proinflammatory cytokines in SLE (Boswell, 1988; 

Ozmen, 1995; Schwarting, 1998).  To test the hypothesis that LIGHT plays a significant 

role in the development of lupus nephritis, recombinant proteins, such as LTβR-Ig or 

HVEM-Ig, which block LIGHT signalling (Wang, 2001; Wang, 2005; An, 2005) could be 

administered to these mice and disease activity monitored.  If LIGHT plays a significant 

role in the pathogenesis of SLE, particularly lupus nephritis, the administration of blocking 

proteins would at least delay the onset of disease in these animals.  This would be a key 

step in identifying if anti-LIGHT therapy could be used in the treatment of SLE.  
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5.4 Conclusion 

 

In summary, the aim of this thesis was to characterise the expression of LIGHT and it’s 

associated receptors in human immune-mediated diseases.  Using a combination of Real-

time RT-PCR and sandwich ELISA methodologies we have successfully achieved this 

goal.  The work of this thesis has provided strong evidence that LIGHT and its associated 

receptors may play an important role in the pathogenesis of both SLE and CD and less so in 

WG.  LIGHT mRNA expression is elevated in both the peripheral blood and lamina propria 

of active CD patients.  A large number of our CD cohort also had high levels of soluble 

LIGHT present in their serum.  LIGHT can enhance the proliferation of Th1 T cells that 

can in turn secrete large amounts of INF-γ and IL-2 among other proinflammatory 

cytokines.  LIGHT can also participate in the maturation of DC, and in doing so, cause 

them to be strong activators of CD8+ CTL responses.  Increased amounts of INF-γ as well 

as high levels of active CTLs can bring about the apoptosis of enterocytes and induce the 

destruction of the villous leading to the formation of the characteristic CD lesion. 

 

In SLE, there is a more profound dysregulation of LIGHT and its associated receptors.  

Increased levels of LIGHT can stimulate secretion of INF-γ, which is well known to 

contribute to the pathogenesis of SLE, particularly renal disease.  A significant elevation in 

the serum levels of soluble LIGHT was also identified in SLE.  Furthermore, elevated 

levels of all three receptors for LIGHT were identified in the peripheral blood of our SLE 

patients.  We have revealed that HVEM is strongly elevated on granulocytes, possibly 

neutrophils, although this still needs to be formally proved.  Triggering of the HVEM-

LIGHT pathway on these cells induces the release of NO and ROS as well as TNF-α and 
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IL-8 all of which are speculated to play a role in lupus nephritis.  Therefore, increased 

levels of LIGHT in SLE patients may contribute to the development of lupus nephritis in a 

number of ways. 

 

Targeting of LIGHT effector pathways could be a potential treatment for both SLE and 

refractory CD.  Further research into LIGHT will lead to a better understanding of the 

development of Th1 mediated diseases and it should lead to the development of new 

therapies for chronic inflammatory and systemic autoimmune diseases.   
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Appendix I 

 

Preparation of 10% Acrylamide gel for analysis of the sizing PCR products 

 

Clean glass plate with 70% ethanol solution.  Arrange the rubber gasket around the ridge of 

one plate and place the flat plate on top of it.  Arrange the gasket as necessary to give a 

watertight seal.  Use bulldog clips to hold the plates together.  Pour distilled water in 

between the plates to check for leaks.  If there are no leaks, empty out the water and leave 

on tissue to drain.   

Prepare 10 mls of 10% Acrylamide solution as follows: 

40% acylamide (19:1)  2.5 ml 
TBE 10X  1.0 ml 
H2O  6.5 ml 
APS (10%)  200 µl 
TEMED  40 µl 

 

Fresh 10% ammonium persulfate (APS) should be made daily using distilled H2O.  This is 

double the amount of TEMED and APS normally used, but it is necessary for proper well 

formation in the mini ATTO gel system.  Mix well and pour into the gel template, insert the 

comb to make wells for loading sample.  Allow the gel to set for approximately 20 minutes.  

When the gel is set, remove the comb, bulldog clips and the gasket.  Place the gel, which is 

still encased by the glass plates into the electrophoresis box.  The ridged plate should face 

inwards and another plate should be arranged similarly on the other side.  Pour running 

buffer (1X TBE) in between the two plates and allow the wells of the gel to fill up.  Pour 

running buffer in to the chamber outside of the plates, check for air bubbles underneath the 

gels, as these will distort the DNA bands as they move through the gel.  Prepare samples to 

run on gel by adding 5µl of PCR, 5µl H2O and 2µl 6X loading buffer to a tube.  Spin the 
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contents down in a microfuge and load all 12µl into one of wells.  Place the lid on the box, 

connect to the power supply, run the gel at 150 volts for approximately 3.5 hours (until the 

xylene cyanol has just run off the bottom of the gel).  When the dye front reaches the base 

of the gel, turn off the power supply and disconnect the leads.  Remove the gel plate from 

the tanks and separate the glass plates with the end of a spatula.  With a scalpel carefully 

cut the gel free from the ridged plate and place it in a 10µg/ml ethidium bromide solution 

for 10-20 minutes.  The ethidium bromide will bind to the DNA and can be visualised 

under UV light.  Use a transilluminator to visualise the DNA bands and photograph. 
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