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A B S T R A C T 

Due to its serious health risks, lead (Pb) in rice, specifically its uptake, translocation, and accumulation mechanisms 

and its toxic effects have been studied intensively in recent years. However, it remains unclear about the role of 

phytolith, a siliceous structure in rice plants, in the storage and release kinetics of Pb in rice. This study aims at 

elucidating a possible encapsulation of Pb in the phytolith structure (phytPb), and identifying whether or not phytPb 

provides a source of Pb in soil, when returned to the field with the rice straw or in a related processed product such 

as ash from on-site burning. To date there has not been any specific work targeted at the determination of phytolith-

associated heavy metals in general and phytPb in particular, and therefore this possible source of Pb in soils may have 

been overlooked. Phytoliths were included in a study of rice paddy soil and rice straw to demonstrate accumulation 

of phytolith and its associated phytPb in agricultural soils of the Red River Delta (Vietnam).  The total content of Pb 

in rice straw samples was found to be up to 118 mg kg−1, and this Pb sink can be cycled to serve as a new Pb 

source in soils. The fate of Pb in rice straw might be directly related to open burning activity (a common practice in 

the Red River Delta), in which volatilization or sub-compartmentation in slagged phytolith appeared as controlled 

factors. This is supported by the findings from batch experiments for rice straw ash samples, in which release of Pb 

was low and a portion of Pb in rice straw were found to associate with phytolith structural organic matter. We also 

observed the presence of phytPb in "aged" phytolith fragments which had accumulated in the paddy field soil. 

However this Pb pool was relatively low (from 7.8 to 34 kg ha−1) relative to other soil Pb fractions. As the thermal 

treatments of Pb-tainted rice straw resulted in losses of Pb via volatilization, open-field burning practices for Pb-

contaminated rice straw  is suggested as an environmental  risk 

 
1. Introduction 

 

Contamination of agricultural soils by lead (Pb) is a serious environmental threat, since Pb can enter the food chain and 

cause many serious health problems in humans (Fakhri et al., 2018; Koedrith and Seo, 2011; Nutescu et al., 2016), 

particularly affecting the central nervous system of children (Wasserman et al., 1997). It has been widely reported for 

many agricultural regions that anthropogenic activities e.g. mining or recycling activities have led to excessive 

accumulation of Pb in rice (Oryza sativa L.) (Fu et al., 2008; Li et al., 2014a; Nguyen et al., 2009a; Yu et al., 2016). Pb in 

soil solutions can be assimilated within plants and transported, in a stepwise fashion, from root to stem, stem to leaves 

and leaves to grain (Udousoro et al., 2013). Genotypic variation might be a primary factor for Pb translocation as 

reported by Liu et al. (2013); Zeng et al. (2008), while the structure and properties of the membrane transport system 

are likely to further affect Pb localization within rice plants (Uraguchi et al., 2009). In rice, a so-called phytolith structure, 

formed by precipitation of silicon (Si) throughout inter- and intracellular spaces, has been proposed as a "trap" for 

organic matter (Guo et al., 2015; Li et al., 2013; Nguyen et al., 2014; Song et al., 2015) and nutrients e.g. K, P, Fe (Li et 

al., 2014b; Nguyen et al., 2015; Trinh   et al., 2017). It can, therefore, be hypothesized that this phytolith structure can 

similarly affect translocation of Pb in rice or even trap Pb from transport sap (hereinafter referred to as phytolith-

associated   Pb "phytPb"). The observation that in silicate glasses Pb is inserted into the vitreous structure as Si-O-Pb 

bonds (Angeli et al., 2016), also suggests the possible presence of Pb in the structure of phytoliths. However, there is 

little information available on whether or not Pb is compartmentalized in phytoliths. In rice plants, Si can be attached 

to cell walls along the longitudinal vascular bundles, veins or fibers of the plant (Botha, 2013; Trinh et al., 2017) and as 

a consequence, Si forms a coating layer, covering the internal and external surfaces of the vascular system. Excessive 

precipitation and polymerization of Si is likely to create a high-porosity system with various size holes (Nguyen et al., 
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2014) including micropores (Mohamad Remli et al., 2014), in which organic matter and other substances such as Pb 

can be embedded. However, little information is available on the role of this siliceous phytolith structure in 

encapsulating Pb from transport sap in rice plants and the bioavailability of this Pb pool when rice straw is recycled 

back to the field. 

Accumulation of phytolith in paddy field soils via recycling of rice straw has been reported in a number of recent 

studies (Klotzbücher  et al., 2016; Kögel-Knabner et al., 2010; Nguyen et al., 2016; Wang  et al., 2015). Phytolith in soil 

was intensively studied as a bioavailable source of Si, which is crucial for Si-demanding crops such as rice, wheat, maize 

and sugarcane (Haynes, 2014; Sommer et al., 2013). Yet, there is a lack of information regarding the fate of other 

phytolith-accompanied substances (e.g. encapsulated inorganic ions), except organic carbon in phytolith (phytC), which 

is widely studied because of its importance to carbon sequestration (Parr  and  Sullivan,  2005; Qi  et al., 2017; Ru et 

al., 2018; Song et al., 2015; Song et al., 2016). In general, it can be assumed that the fate of phytolith-accompanied 

substances such as phytC and phytPb, might depend on the destruction of phytolith, particularly through dissolution. 

The dissolution process is supported by a hydrolysis reaction, in which nucleophilic attack of water molecules on the Si 

atoms of the Si-O-Si and Si-OH groups can result in destruction of the phytolith surface (Dove and Crerar, 1990). This 

destruction can lead to release of K and P occluded within the phytolith structure, as reported by Nguyen et al. (2015) 

and Trinh et al. (2017), and suggests that a similar situation is possible for phytPb. 

Until now, phytPb in croplands has not been studied or reported as a sink and source of Pb, which can potentially 

affect soil and crop quality and human health. In this study, physical separation of phytolith using heavy liquid and 

chemical extraction of phytPb for soil samples from paddy fields located near Pb recycling facilities in the Red River 

Delta in Vietnam was conducted to provide evidence for possible accumulation of phytolith and its associated phytPb 

in agricultural soils. Burning is a common practice to deal with rice-straw residues in many rice-based countries. Here 

we also investigated the dissolution properties of phytPb of a Pb-tainted rice-straw sample obtained from thermal 

treatment. This will help to elucidate the fate of Pb in rice paddies, so as to develop new practices for the alleviation 

of the impact of phytPb. To date there have been no reports of the determination of phytolith-associated heavy metals, 

including phytPb, suggesting further work on phytPb is necessary. 

 
2. Materials and methods 

 
2.1. Study site and sample  processing 

 

The soil samples used in this study derive from a paddy field in the vicinity of a handicraft village which locates at 

Dong Mai commune in the central part of the Red River Delta in Viet Nam. This soil, as a result of air-deposition and 

sewage sludge usage, has been contaminated by Pb from lead-acid battery recycling carried out in the village for the 

past few decades (Fujimori et al., 2016). After harvesting, rice straw is either directly incorporated into the soil or 

returned to the soil following burning, and thus the rice straw-derived phytolith pool, as well as Pb in the soil, is 

sustained in the local rice cropping system. Soil samples were collected from 10 small-scale paddy fields surrounding 

the village in October 2017, immediately after harvest time. In each field, the soil was sampled from the 0–20 cm 

surface layer, at 3 different sites and the samples from each field were homogenized and combined. The soil samples 

were then air-dried and passed through a 2.0-mm sieve and the < 2-mm fraction was used for the experiments. In 

another campaign to study pathological evidence of rice plants grown on Pb-polluted areas, Pb-polluted soil from the 

Dong Mai village was used for pot experiments in a greenhouse to avoid ongoing contamination. Rice straw harvested 

from the pot experiments was used to characterize the phytolith and phytPb. 

Since on-site burning is the most typical practice to treat rice-straw residues, and burning is an exothermic process 

depending on ambient conditions and manner of handling, such as scattered on fields or piled up as stacks, we treated 

the straw samples from the pot experiments over a range of temperatures from 400 to 1000 °C in a furnace for 2 h 

and the resultant ash was homogenized to a fine powder (< 1.0-mm). To avoid strong exothermic reactions during 

this ashing process, the weight of each sample was limited to 5 g. 
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2.2. Rice plant analysis 

 
Synchrotron-based X-ray Tomographic Microscopy (SRXTM) was conducted to visualize the structure and the 

vascular bundles of the dried leaf of a rice plant from the pot experiments. The SRXTM were performed at the TOMCAT 

beamline, Swiss Light Source, Paul-Scherrer Institute, Switzerland. Sample density, deduced from a grayscale (1–255) 

of the tomographical data, allows identification of different phases in the phytolith structure. A gray value of 1 

represents very low densities, such as air, while a gray value of 255 is attributed to very dense materials, such as silica-

rich phases. The latter are coloured yellow in the 3D segmentation and visualization process, while intermediate gray 

levels between 50 and 200, which are characteristic of organic matter, are represented in violet. 

Rice straw samples obtained from heat-treatment at 400  °C  to  1000 °C and products were characterized using 

powder X-ray diffraction (Bruker AXS D5005, Germany) and SEM-EDS (FESEM S-4800 Hitachi Co., Tokyo, Japan). The 

reactivity of phytolith is strictly related to changes in surficial properties and, in particular, loss of reactive surface 

sites (Loucaides et al., 2010). Therefore, surface charge, a key electrochemical parameter of the solid-liquid interface 

representing ionization, and ion adsorption of surface functional groups (Walther, 1996), might provide important 

information on dissolution properties of phytolith and phytPb. Surface charge was quantified by polyelectrolyte 

titration in a particle-charge detector (PCD 05, Mütek, Herrsching, Germany). The chemical composition of the straw 

ash was analysed by a Particle-Induced X-Ray Emission system (PIXE), using the proton beam of a Tandem accelerator 

(5SDH-2 Pelletron National Electrostatics Corporation, USA, at the VNU University of Science, Vietnam National 

University, Hanoi). 

The solubility of Pb from straw ash was determined by using four different extraction/digestion systems, including 

deionized (DI) water for free Pb, 30% H2O2 for organically bound Pb, aqua regia (3:1 HCl/ HNO3) for the pseudo-total 

content of Pb (hereby referred to the residual fractions, ISO 11466 (1995) and 1% Na2CO3 for phytPb. The extracted 

amounts are compared with the total Pb content derived from PIXE. Each 50 mg sample of the ash was mixed with 50 

mL of the prepared solvent and then processed as follows. For suspensions in DI water, 1 M HCl was added dropwise 

to adjust the pH to 5, before bringing the total volume to 50 mL. The suspensions were then gently shaken and allowed 

to stand for 24 h at room temperature. The suspensions in H2O2 were shaken and kept in a water bath at 80 °C for 

24 h. The suspensions in aqua regia were prepared in a digestion block and heated over 1 h at 300 °C and allowed to 

cool to room temperature. The 1% Na2CO3 suspensions were treated in a water bath at 85 °C for   3 h. All experiments 

were terminated  by filtration  of the suspension through a cellulose acetate filter with a pore size of 0.45 μm. Soluble 

ions (Si, Pb) were determined using an ICP-OES (PE 7300 V-ICP, Perkin Elmer). All experiments were performed in 

triplicate. 

 

2.3. Soil analysis 
 

Determination of chemical composition:  
Soil samples were examined by the PIXE method so as to determine chemical composition. Other physio-chemical 

properties of the soil samples, such as pH by a pH meter (Toledo, FE20, Switzerland), electro-conductivity (EC) using an 
EC meter (AD3000, ADWA, Szeged, Hungary), texture using sedimentation method, and organic carbon (OC) content 
using K2Cr2O7 wet-oxidation method, were also determined to ascertain how they may relate to phytPb. 

 
Separation of phytoliths from soil and determination of soil phytPb:  
Phytoliths were physically separated from soil samples by using heavy liquid, according to the procedure of 

Alexandre et al. (1997). Since carbonate, organic matter and clays can interfere with the extraction (Meunier et al., 
2014), pre-treatments were conducted as follows. 5 g of soil samples were subsequently treated with 30 mL of 1 M 
HCl to remove carbonates, with 100 mL of 30% H2O2 in a water bath at 80 °C for 10 h to remove organic matter, and 

then with 2 g of sodium dithionite and 10 mL of DI water in a water bath at 80 °C for 8 h to remove Fe oxides. After 
each treatment step, the filtrates were removed by centrifugation and decantation. The clay fraction was removed 
by sedimentation and remaining solids containing silt, sand and phytoliths were then dried at 60 °C for 12 h. Phytolith 

particles were separated from silt and sand fractions using a cadmium iodide solution at a density of 2.35 g cm−3, on 
which they floated after centrifugation. The phytolith particles were dried and then mounted on thin laminated glass 
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for micromorphological analysis and analysis of chemical composition by scanning electron microscopy coupled with 
energy-dispersive X-ray spectrometry (EDS) (FESEM S-4800, Hitachi Co., Tokyo, Japan). PhytPb was extracted from the 
phytoliths by using aqua regia solution (HCl:HNO3) in a digestion block. Dissolved Pb was determined with an ICP-OES 

(PE 7300 V-ICP, Perkin Elmer). 
 
Fractionation of the phytPb pool:  
To date there has been no report of a method targeted at fractionation of the phytPb pool in soil. Therefore, soil 

Pb was fractionated into five fractions, F1-5, by modification of the method of Tessier et al. (1979). Each 2 g of the 
soil sample was placed in a polycarbonate centrifuge tube and the following extractions were performed sequentially. 
F1 (exchangeable Pb) was obtained by extraction with 20 mL of 1 M NH4OAc at pH 7 for 2 h at room temperature. F2 

(specifically sorbed and carbonate-bound Pb) was obtained by extraction of the residue from F1, with 20 mL of 1 M 
NH4OAc at pH 5 for 2 h at room temperature. F3 (Fe or Mn oxide-bound Pb) was obtained by extraction of the residue 

from F2 with 20 mL of 0.04 M NH2OH.HCl in 25% HOAc for 6 h in a water bath at 60 °C. F4 (organically complexed 

Pb) was obtained by extraction of the residue from F3 with 15 mL of 30% H2O2  at pH 2 for 5.5 h in a water bath at 

80 °C. F5 (residual Pb) was obtained after cooling the residue from F4, by extraction with 5 mL of 3.2 M NH4OAc in 

20% HNO3 for 0.5 h. Dissolved Pb obtained from the sequential extraction was quantified using the ICP-OES (PE 7300 

V-ICP, Perkin Elmer). The soil sample was extracted with the sequential extraction described above and, in other 
experiments, with 0.01 M CaCl2 (solid: solution ratio of 1:20 for 2 h) for quantification of bio-available Pb. 

 
Statistical analysis:  
Principal component analysis (PCA) and Pearson’s test, which were executed using Excel with the XLSTAT add- on 

and SPSS 20.0 software respectively, allowing us to evaluate differences in quantitative characteristics and correlations 
between phytPb and other Pb fractions. 
 
3. Results 

 
3.1. Transformation of rice-straw phytolith under thermal treatment 

 
An image of the phytolith structure in a rice leaf, obtained using Synchrotron-based X-ray Tomographic Microscopy 

(SRXTM), is shown in Fig. 1a.  

 

 

Fig.  1.  Images of rice straw where (a) shows a three-dimensional image of a dried leaf obtained from Synchrotron-

based X-ray Tomographic Microscopy (SRXTM)  with the silicified phytolith structure in yellow (appearing in gray in 

black and white) and holes, possibly containing organic matter and Pb, shown in  violet  (appearing in dark gray in 

black and white), (b) and (c) show SEM images of rice straw samples following thermal treatment at 400 °C and 1000 

°C respectively, (d) shows XRD patterns of rice-straw samples treated at different temperatures, and (e) shows score 

plots of PC1 versus PC2 indicating the differentiation of Pb forms and other elements in the ashed samples (For 
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interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.). 

 
Si forms a skeleton structure (shown in yellow) with holes where organic matter (shown in violet) can be embedded. 

It is possible that Pb also locates in the phytolith hole system. However, determination of the presence of Pb is beyond 
the resolution of the tomographic analysis.  By wet digestion with aqua regia, the content of Pb in rice straw were 

found to be up to 118 ± 37 mg kg−1 and more detailed chemical composition of the rice straw is provided in 
Appendix A. 

Thermal treatment of the rice straw resulted in significant changes in morphology and chemical composition as 
shown in Fig. 1b and Appendix B, respectively. With an increase in treatment temperature from 400 °C to 1000 °C, a 
gradual decrease in organic matter content, from 4.93% to 0.38%, was observed. Silica was also slagged and 
transformed, particularly at temperatures > 700 °C, to more stable phases, such as cristobalite and tridymite, as 
revealed by XRD patterns (Fig. 1d), and changes in morphology of silica phases were shown in Fig. 1c. The removal of 
organic matter and changes in crystallinity of the silica phases could be the reason for a decrease in surface charge 
(Nguyen et al., 2014). When the treated temperature increased from 400 °C to 1000 °C, surface charge gradually 

increased from -1.15 to -0.29 μmolc g−1. On heat-treatment, some Pb can be released or volatilized, while the 

remainder may be occluded within the slagged com- pounds, composed of glass and potentially crystallized silica 
phases. This is supported by data obtained from the PIXE method, which shows a change in total Pb content of the ash 

samples from 0.7 to 0.3 g kg−1 (Appendix B) when the treatment temperature increased from 400 °C to 1000 °C. The 
PCA diagram (Fig. 1e) illustrated the differentiation between treatment temperature and chemical composition and 
release of Si and Pb in aqua regia solution. A close relation between OC and aqua regia-released Pb suggests the 
possible association of Pb with organic matter. No obvious correlation between aqua regia-released Pb and Si was 
confirmed. 

 
3.2. Solubility of phytPb in relation to thermal treatment 

 
Dissolution properties of phytolith, obtained from greenhouse- grown rice, in DI water, H2O2, aqua regia and 

Na2CO3 are shown in  Fig. 2.  

 

 
Fig. 2. Dissolution of thermally treated phytolith obtained from greenhouse- grown rice where (a) shows the 

concentration of Si released and (b) shows the concentration of Pb released in DI water, H2O2, aqua regia and 

1% Na2CO3 solvents, as measured by ICP-OES. 
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The soluble Si content in H2O2, DI water and Na2CO3, measured using ICP-OES, decreased from 37.7 to 1.2 

mg g−1, 7.3 to  0.4 mg g−1 and 158.5 to 14.7 mg g−1 respectively when the treatment temperature increased from 400 
°C to 1000 °C. No change was observed for dissolution in aqua regia after thermal treatment over the entire temperature 

range from 400 °C to 1000 °C, and the soluble Si content was maintained in the range from 3.9 to 7.0 mg g−1 (Fig. 2a). 
Different trends were observed for dissolution of Pb and results are presented in Fig. 2b. Soluble Pb content in the 

aqua regia solvent decreased from 0.74 to 0.09 mg g−1, while it was maintained at less than 0.1 mg g−1 in DI water, 
H2O2 and Na2CO3 solution following treatment over the entire temperature range from 400 °C to 1000 °C. At 

temperatures above 500 °C, lower contents of Pb were released when using aqua regia as solvent, which suggests 
that some Pb might be tightly entrapped in the phytolith structure and is not accessible by the aqua regia solvent 
Dissolution of phytolith silica has been reported as a control factor for the release of occluded substances (Nguyen et 
al., 2015; Tran et al., 2018; Trinh et al., 2017). However, no obvious evidence relating the release of Si and Pb was 
confirmed in this work. Among the extractants, aqua regia showed the best response for release of Pb 
compartmentalized in the phytolith structure. 

 
3.3. Soil phytolith and its relation to  phytPb 

 
Fig. 3a presents images of phytoliths separated from the soil sam- ples, while the chemical content, obtained from 

EDS spectra, are shown in Fig. 3b and the correlation of the contents of soil phytolith and phytPb are given in Fig. 3c.  
 

 

 

Fig. 3. Phytolith fragments separated from soil samples where (a) shows the images obtained using microscopy and (b) 

shows the chemical composition using EDS spectra and (c) shows the relationship between soil phytolith and phytPb. 

 
Phytoliths separated from the soil samples showed various morphologies, including sticks and irregularly 

shaped plates, with a range of sizes up to 100 μm (Fig. 3a). "Cellular" shapes were also observed, reflecting the plant 
origin of the phytoliths, and their sizes and smooth edges suggest an aging of the phytoliths (Alexandre et al., 2015; 
Corbineau et al., 2013). EDS spectra revealed the chemical composition of soil-aged phytoliths, in which Si, O, K, Ca and 
Mg are the major elements (Fig. 3b). However, any Pb present in the soil-aged phytoliths was not detectable by the 
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EDS method.  Using aqua regia solution for extraction, it was found that the soil-aged phytoliths contained from 

0.43 to 0.73 mg g−1. The phytPb contents in the soil ranged from 1.8 to 4.9 mg kg−1. We found a positive correlation 

between soil phytolith and phytPb (R2 = 0.929, p < 0.01) by plotting the contents of soil phytolith and phytPb (Fig. 
3c). 
 

3.4. Fractionation  and  principal component analysis 
 

Fig. 4a describes the content of soil phytPb in comparison with other Pb fractions.  
 

 

 
Fig. 4. Principal component analysis where (a) shows box plots representing the contents of Pb in soil-aged 

phytoliths and other fractions of the soil samples, and (b) shows score plots of PC1 versus PC2 indicating the 

differentiation of phytPb and other Pb forms in soil. 

 

Pb was mostly found in the exchangeable fraction (114.4 ± 53.3 mg kg−1), the carbonate-bound fraction (317.0 

± 95.9 mg kg−1) and the Fe or Mn oxide-bound fractions (210.5 ± 60.6 mg kg−1), while a relatively low 

content of Pb was found to be associated with organic matter (0.3 ± 0.2 mg kg−1). The amount of released Pb 
following sequential extraction decreases in the order: carbonate-bound > Fe or Mn oxide-bound > exchangeable 
>> organically-complexed.  

The results after single extractions with 0.01 M CaCl2 showed relatively low levels of Pb released from soil samples 

(0.4–25.3 mg kg−1) which are only ∼1.7% in comparison with "mobile" fractions, such as the exchangeable or carbonate-
bound fractions. Compared to other fractions, the soil phytPb contents are quite similar to the organically-complexed 
Pb and Pb released by CaCl2 extraction, while they are about one or two orders of magnitude lower than carbonate-

bound and Fe or Mn oxide-bound forms. 
Principal Component Analysis (PCA) was performed and PC1 versus PC2 represents the differentiation between 

phytPb and other soil Pb fractions, including exchangeable, Fe or Mn oxide-bound, organically- bound, CaCl2-

extractable and total content (Fig. 4b). The first PC showed negative values for all Pb fractions except the organically- 
complexed form. The second PC was strongly associated with the Fe or Mn oxide-bound form and the total content 
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with a positive effect and the CaCl2-extractable form with a negative effect, while lesser correlations were found for 

exchangeable, phytPb and carbonate-bound forms. According to the ordination of variables in the PCA diagrams, 
phytPb tends to associate with the exchangeable and carbonate-bound fractions rather than other soil Pb fractions. 
Pearson coefficients, that pair the phytPb content with each Pb fraction, are shown in Appendix E, and confirm their 
positive correlations (P  <  0.05). 

 

4. Discussion 
 

4.1. PhytPb in rice 

A content of Pb exceeding 118 mg kg−1 dry matter of rice straw is considered to be indicative of a sink of Pb in the 
rice straw. This sink provides a source of Pb, which may be potentially toxic to humans (Fujimori et al., 2016), since 

it is a common fodder for cows and buffaloes and can enter the food chain.  In the study area ∼12 ton  ha−1 year−1 

straw is annually recycled to soil, and can transfer ∼1.4 kg Pb ha−1. The availability of this Pb source is likely to be 
dependent on various treatment practices, such as thermal treatment of the rice straw, and can affect the phytolith, 
which is a carrier of Pb in soil. Pb absorbed from soil solution can be transported and located in different parts of the 
plant, e.g. root, stem and leaf (Udousoro et al., 2013). From the tomographic image obtained from a dried leaf of a 
rice plant (Fig. 1a), it is likely that most of the Pb locates in the compartmentalized spaces (holes) in the phytolith 
structure. Here, Pb can associate with the organic phase within the holes, or possibly bind to the cellular wall by 
forming Pb-C bonds, in a similar way to Si, which forms Si-C bonds as described by Pan et al. (2017). These processes 
can be affected strongly by thermal treatment such as burning in field conditions. 

The results obtained from PIXE analysis revealed that the total content of Pb in the ash samples remained at 0.7 g 

kg−1, in the temperature range up to 600–700 °C and decreased to 0.3 g kg−1 when the treated temperature 
increased to 1000 °C, indicating marked loss of Pb at higher temperatures. Generally, thermal treatments gradually 
removed the organic phase and resulted in part or complete destruction of the phytolith and formation of new 
crytalline phases (Nguyen et al., 2015). Consequently, some parts of Pb in rice straw could be released.  However, 
observations in the batch experiments showed very low concentrations of water-soluble Pb (0.54 ± 0.19 mg 100 

mg−1) in burned products from treatment at 500–1000 °C (Fig. 2b) and this indicates that most of the Pb was still 
associated with or occluded within the phytolith (phytPb). Another possibility is that some parts of Pb, after release, 
were re-adsorbed onto the surface of the ash solids. The surface charge of the ash phytolith ranged from -0.29 to -

1.15 μmolC g−1 (more details in Appendix B) indicating that the surface can serve as a reactive site for adsorption of 

cations such as Pb2+ (Nguyen et al., 2009b; Sposito et al., 1999). However, loading of Pb onto the phytolith 
surface and its consequent effects on phytolith dissolution was not investigated in this study. Digestion with aqua regia 
solution can partially reveal the phytPb pool and its potential release. A decrease in the concentration of aqua regia-
soluble Pb with an increase in temperature during thermal treatment (Fig. 2b) might result from: 1) less Pb remaining 
in the sample after thermal treatment due to volatilization process and 2) stabilization of Pb by formation of more 
stable phases or encapsulation into the phytolith structure. During thermal treatment, phytPb phases can be 
transformed to PbO, which is a non- volatile form (Wang et al., 2016). The presence of Cl (∼0.32% in original rice 
straw measured by PIXE method and given in Appendix B) may facilitate the formation of PbCl2 which is volatile (Rio 

et al., 2007; Wang et al., 2016; Yoo et al., 2005). Wang et al. (2016) reported that the presence of SiO2 and Al2O3 can 

lower the chlorination and volatilization temperature of Pb. A close relationship between Pb and Cl, confirmed by PCA 
(Fig. 1d), suggests possible co-volatilization. This may, therefore, be another reason for the observed loss of Pb from 
the phytolith structures. 

Along with decreases in the content of phytPb at high temperatures, a remarkable reduction in the solubility of 
phytPb was also observed (Fig. 2b). This may be due to the association of phytPb with other available substances, such 
as Al, leading to formation of PbAl2O4 which can also immobilize the phytPb (Wang et al., 2016; Yu et al., 2013). The 

reduced solubility of phytPb may also relate to the encapsulation of phytPb into silica phases. Increasing the 
treatment temperature (e.g. > 700 °C) can result in slagging (Fig. 1d) and crystallization of amorphous silica to more 
stable forms, such as cristobalite and tridymite, as deduced from XRD patterns, which can affect Pb encapsulation. 
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4.2. PhytPb in soil 

After harvesting rice straw is returned to the field, and in this way an amount of phytolith of ∼0.72 ton ha−1 can 
annually be recycled to soil. Despite the fact that soil samples were taken at the end of cropping season, when the area 
has not been fed from such rice residues, remarkable values for soil phytolith content were still observed. The content 

of soil-aged phytolith found in the 10 fields ranged from 2.6 to 8.7 g kg−1  (7.8 to 26.1 ton ha−1, calculated for the 

top layer of 0 - 20 cm of soil, and bulk density of 1.5 g cm−3).  This is significantly higher than the value for the 
annual recycle phytolith from rice straw, implying that the current phytolith pool is a consequence of long-term 
accumulation. This is in agreement with another observation for paddy soils by Wickramasinghe and Rowell (2006). It 
can be deduced that the accumulation of phytoliths might serve as a new sink of Pb in soil. The phytPb was found to 

range from 0.43 to 0.73 mg g−1 in the soil aged phytolith and from 12.9 to 21.9 kg ha−1 in the study soil. While the 
Si/ Pb ratio of the rice straw is 349, the Si/Pb ratio of the soil-aged phy- tolith range from ∼177 to ∼688. The 
difference in these Si/Pb ratios indicates that Pb and Si might be lost at different rates. Herein we found a positive 
correlation between the contents of soil phytolith and soil phytPb (Fig. 3c), confirming the role of soil phytolith as 
a source of Pb. From the results of soil phytPb relative to other soil Pb fractions (Fig. 4a), it was confirmed that the 
phytPb has a limited contribution to the whole soil Pb pool. This also means that most of the Pb loaded by the rice-
straw phytolith has been lost or transferred to other Pb frac- tions in the soil. In the PCA diagram (Fig. 4b), it is 
revealed that phytPb tends to associate with carbonate-bound and exchange fractions. However, the obtained 
data was not capable of providing detailed in- formation about the association between them. It suggests that 
more work targeting phytPb and its relation to other soil Pb fractions is needed. 

 
Conclusion 

This work is primarily concerned with Pb associated with phytolith in rice straw and its transformation upon 
thermal treatment. A decline in Pb content in the rice straw ash samples along with increasing treatment temperature 
was assigned to loss of Pb via volatilization, which might be a health risk when burning Pb-tainted rice straw. A two-
step procedure, separating phytoliths from the soil and extracting Pb from the separated phytoliths, allowed 
determination of the phytPb pool in the soil. We observed a positive correlation between soil phy- tolith content and 
soil phytPb, suggesting phytPb as an overlooked threathen to the Pb secondary pollution once phytolith was dissolved. 
Our work also suggests a necessity of new incentives to moderate the phytPb pathway transport accompanying the 
phytolith cycle and to seek other advanced recycling techniques for mitigation of phytPb impacts. 
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Appendix A.  A comparison of chemical composition of the rice straw and soil aged phytolith at the 
same sampling site (S1) 

  

Sample Si 

% 

Al 

% 

Ca 

% 

Mg 

% 

P 

% 

S 

% 

Cl 

% 

K 

% 

Na 

% 

Al 

% 

Pb 

pp

m 

LOI 

%  
Rice straw 

 
2.82 

 
0.20 

 
0.22 

 
0.20 

 
0.16 

 
0.84 

 
0.32 

 
1.59 

 
0.87 

 
0.14 

 
81 

 
85.7 Soil aged 

phytolith 
20.9 0.61 1.94 0.94 1.05 1.33 4.41 10.1 2.07 0.61 533 n.a. 

 

LOI: loss of ignition; n.a.: not  analyzed 
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Appendix B. Organic carbon, surface charge, aqua regia-extractable Si and Pb, and chemical 

composition of the ash samples analysed by PIXE method (n = 3, mean values with standard 

deviations in brackets; other data obtained from single analysis) 

 

 
Element Rice straw Ash samples prepared at different temperatures (oC) 

 
 400  50

0 
 60

0 
 70

0 
 80

0 
 90

0 
 100

0 
 

 
Organic carbon and 
surface  charge 

              

OC (%) 38.5 4.93 1.16  0.91  0.9  0.77  0.51  0.38 
 
 

 

  (0.23) (0.2
3) 

 (0.55)  (0.3
9) 

 (0.23)  (0.01)  (0.4
5) 

 

Surface charge 

(μmolc g−1) 

n.a. 1.15 0.99  0.88  0.79  0.57  0.48  0.29  

  (0.1) (0.0
6) 

 (0.07)  (0.0
9) 

 (0.04)  (0.04)  (0.0
8) 

 

Si and Pb extracted by aqua regia solution (g kg−1) 
Si 6.52 6.51 5.26 5.45 3.9 7.03 4.86 7.04 

 (0.38) (0.88) (0.5
5) 

(0.5
1) 

(0.7
9) 

(0.6
2) 

(0.2
9) 

(0.26) 

Pb 0.118 0.739 0.72
8 

0.53
3 

0.33
7 

0.26
2 

0.12
1 

0.09 

 (0.037
) 

(0.04
6) 

(0.0
27) 

(0.0
53) 

(0.0
62) 

(0.0
53) 

(0.0
17) 

(0.022) 

Chemical composition analysed by PIXE method (g kg−1) 

Na 60.7 20.2 24.5 23.4 17.8 13.0 19.5 28.4 

Mg 13.9 25.5 25.6 26.4 28.8 26.4 20.7 18.4 

Al 9.9 15.2 19.4 20.3 20.7 19.5 19.6 17.2 

Si 197.0 254.3 275.
4 

281.
9 

276.
2 

262.
5 

241.
7 

216.6 

P 10.9 21.4 23.1 21.8 21.9 20.0 17.9 16.7 

S 58.6 6.0 10.4 9.6 6.2 3.4 2.9 2.0 

Cl 22.2 1.2 1.6 2.2 1.4 0.3 0.1 0.1 

K 111.4 29.6 39.4 43.0 43.8 46.1 49.8 54.2 

Ca 15.3 31.7 33.9 34.1 35.8 32.2 28.5 28.4 

Mn 4.4 4.2 4.3 4.7 4.6 4.6 4.1 3.6 

Fe 6.3 10.7 14.7 15.9 18.9 12.4 13.8 11.7 

Pb 0.6 0.7 0.7 0.7 0.8 0.5 0.3 0.3 

 

n.a.: not analyzed. 

 



16
9 

 

 

Appendix C. Chemical composition of the soil samples analysed by PIXE method 

 

Element (mg 

kg−1) 

 
Sampl
es 

 

  
S1 

 
S2 

 
S3 

 
S4 

 
S5 

 
S6 

 
S7 

 
S8 

 
S9 

 
S10 

 

 
Na 

 
2225 

 
1403 

 
1949 

 
1849 

 
1931 

 
1906 

 
2364 

 
2170 

 
1862 

 
226
2 

 

Mg 3853 4022 3711 4000 4211 4049 4302 4036 4316 442
1 

 

Al 45766 4823
4 

4836
3 

5178
1 

5335
6 

5048
7 

5252
9 

4986
7 

5199
1 

528
82 

 

Si 11805
3 

1237
87 

1169
34 

1253
58 

1252
80 

1266
81 

1236
32 

1158
44 

1280
89 

129
117 

 

P 132.5 116.2 67.81 48.17 143.2 166.4 207.1 94.25 153.3 40.3
7 

 

S 4362 3409 4805 5531 7564 5816 5062 4811 4335 352
4 

 

Cl 57.46 37.65 48.66 41.02 73.88 126.2 96.74 108.1 74.11 39.6
5 

 

K 9328 9980 1008
6 

1088
0 

1094
3 

1031
9 

1082
8 

1052
0 

1060
8 

107
90 

 

Ca 5854 4727 6073 7280 9578 7475 7148 7019 5998 514
0 

 

Mn 152.8 116.8 19.99 44.56 130.4 71.71 82.58 85.66 156.2 133.
3 

 

Fe 29572 2725
8 

2583
7 

2771
9 

3410
9 

2546
7 

3079
0 

2828
3 

2712
9 

370
41 

 

Pb 1116 921.3 1014 1090 1766 971.5 816.4 827.4 1064 403.
8 
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Appendix D. Contents of aged phytoliths and their phytPb in the soil samples, other soil Pb 

fractions and physio-chemical properties (n = 3, mean values with standard deviations in 

brackets; other data obtained from single analysis) 

  
 Soil 

samples 

 

 
S1 

 
S2 

 
S3 

 
S4 

 
S5 

 
S6 

 
S7 

 
S8 

 
S9 

 
S10 

 

Phytolith (g kg−1) 
 
6.3 

 
7.4 

 
8.7 

 
7.9 

 
7.9 

 
8.2 

 
3.7 

 
5.1 

 
7.4 

 
2.6 

 

 (0.3) (0.3) (0.2) (0.6) (0.2) (1.0) (0.3) (0.2) (0.4) (0.
1) 

 

PhytPb (mg kg−1) 3.0 4.0 4.5 4.3 4.5 4.9 2.4 2.4 4.2 1.8  

 (0.1) (0.5) (0.4) (0.3) (0.7) (0.6) (0.1) (0.2) (0.7) (0.
2) 

 

Other  Pb  fractions  

(mg kg−1) 

           

Exchange 166.9 154.0 180.6 153.4 164.6 87.4 50.7 55.0 101.3 29.
6 

 

Carbonate bound 419.5 337.5 351.1 388.0 481.4 279.8 216.6 259.2 300.8 136
.0 

 

Fe, Mn oxides 
bound 

233.4 178.8 190.5 234.0 353.6 223.3 175.1 198.5 217.1 100
.5 

 

Organically 
complexed 

0.02 0.02 0.02 0.12 0.31 0.02 0.26 0.47 0.08 0.7  

CaCl2  extractable 25.3 11.8 20.2 2.8 2.6 5.5 1.2 0.4 3.6 1.7  

Total content 1116 921 1014 1090 1766 972 816 827 1064 404  

Physio-chemical 
properties 

           

 

pHKCl 3.4 3.59 3.41 3.9 4.14 3.92 4.65 4.59 3.69 5.2 

 (0.01
) 

(0.01
) 

(0.01
) 

(0.01
) 

(0.01
) 

(0.01
) 

(0.02
) 

(0.01
) 

(0.01
) 

(0.0
3) 

OC (%) 2.44 2.24 2.39 2.09 1.89 2.9 2.04 2.12 2.6 1.33 

 (0.02
) 

(0.02
) 

(0.05
) 

(0.02
) 

(0.02
) 

(0.05
) 

(0.02
) 

(0.02
) 

(0.05
) 

(0.0
4) 

EC (μS cm−1) 305.3 339.3 234.3 163.3 178.7 165.2 129.5 156.2 163.5 92.6 

 (5.5) (9.7) (17.7
) 

(2.5) (11.3
) 

(4.1) (4.9) (4.2) (4.2) (2.2) 

Clay  content 
(%) 

5.6 5.0 8.0 7.0 6.7 4.7 5.3 8.0 3.7 6.3 
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Appendix E.  Correlation coefficients (Pearson’s test) of the phytPb content and other soil Pb 
fractions 

  
 PhytP

b 
Exchan
ge 

Carbonate 
bound 

Fe, Mn oxides 
bound 

Organically 
complexed 

CaCl2  
extractable 

Total 
content 

 
PhytPb 

 
1 

0.641
* 

0.662* 
 

0.488 
−0.680* 0.721* 

 
0.514 

Exchange  1 0.897** 0.576 −0.730* 0.665* 0.689* 

Carbonate 
bound 

  1 0.857** −0.587 0.433 0.904*
* 

Fe, Mn oxides 
bound 

   1 −0.339 0.02 0.978*
* 

Organically 
complexed 

    1 −0.616 −0.416 

CaCl2  
extractable 

     1 0.126 

Total content       1 
 

*Correlation is significant at the 0.05 level    (2-tailed). 

**Correlation is significant at the 0.01 level     (2-tailed). 
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