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ABSTRACT. 
As a result of an increasing emphasis on environmental protection, the growth of 

environmental awareness, an ever-increasing complexity of pollutants in the environment 

and the introduction of legislative measures, requirements for environmental testing and 

monitoring are increasingly prevalent. This is particularly true for the aquatic environment, 

where many pollutants end up. While testing programmes for this purpose appear to be 

very worthy causes, there is a huge reliance on in vivo based studies to qualify and/or 

quantify the state of the environment. These studies are typically based on the numbers of 

animals which survive various levels of exposures to tests and control substances. This 

practice is arguably, even less environmentally agreeable than the environmental questions 

which it is meant to address. Consequently, there is considerable focus on the development 

of in vitro based assay systems, particularly cell culture systems, to replace such practices. 

However, questions remain on whether these systems are truly representative of the 

environment they aim to assess.  

The aim of this study was to develop alternative in vitro based systems which can replace 

the morally questionable and expensive in vivo testing practices while also addressing 

current in vitro based systems which tend to suffer from ‘assay drift’ and lack of relevance 

to the environment which it is monitoring. The study developed a number of tissue cultures 

for both vertebrate and invertebrate organisms and highlighted a middle ground whereby 

tissue cultures are used in a ‘holding and treatment’ system rather than establishing these 

cultures in vitro prior to treatment. While this system does not eliminate the use of live 

animals, significant reductions can be made depending on the tissue type investigated. 

Image analysis was adopted in clonogenic studies in this work to identify a bystander effect 

associated with rainbow trout tissue cultures. A number of molecular approaches were 

incorporated into the studies which focused on the activity and integrity of the 

mitochondrial genome following exposure to radiation, the model toxicant in the study. 
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This work highlights the application of gene expression using a convenient real-time PCR 

technique to identify alterations in the mitochondrial genome post-radiation treatment. This 

work provides several alternative approaches to reduce morally, economically and 

scientifically questionable live animal testing and which offers significant alternatives to 

comply with the ever-increasing raft of legislative measures introduced and emerging in 

recent and future years.  
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CHAPTER 1. GENERAL INTRODUCTION 

 
1.1 General Background 

 
There is growing interest in the protection of the environment not only for the 

purposes of maintaining the quality of life but also from the realisation that there are 

costly economic impacts associated with its degradation. Given that more than 70% 

of the earth’s surface is under water, the importance of this resource has received 

significant attention in recent years (1). Aquatic resources are a necessary component 

of life and are exploited recreationally and commercially in a plethora of ways. 

Improvements in information relating to pollution in the aquatic environment have 

generated an informed and exacting society, focussed on the protection and ecological 

relevance of this environment.  

Consequently, this has highlighted the need for the regulation and protection of the 

aquatic environment qualitatively and quantitatively going forward. However, the 

aquatic environment is highly complex with inputs from large areas, diverse habitats, 

industrial conurbations and populous centres. Coupled with these spatial and socio-

economic aspects, the physical nature of the local environment further adds to the 

complexity due to the temporal and physicochemical interplay between the aquatic 

resource and its environment.  

In an effort to provide for this complexity within a test system, most studies relating 

to both natural and anthropogenic pollutants in the aquatic environment incorporate 

various organisms from different genera, families and phyla associated with that 

environment. Organisms typically include members of the micro and macroalgae, 

bacteria, protozoa, invertebrate and vertebrate families (2-4). This ‘battery’ of test 

species aims to mimic the trophic structure existing in the ecosystem being studied. 
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This may justifiably provide a realistic and accurate evaluation of the impact of a 

pollutant within an ecosystem. Given that the test substances / pollutants may be 

chemical, biological or physical in nature (1) and present in combination,  in 

exposures ranging from chronic to acute, and that it is necessary to examine a 

particular ecosystem thoroughly, thousands of such tests are carried out routinely 

each year. While this approach is a good indicator of lethal dose concentrations of 

toxicants in a water body, significant shortcomings persist. Many millions of fish are 

sacrificed annually in laboratory-based experiments. This practice is morally and 

ethically questionable, economically costly and indeed may be difficult to validate 

scientifically. 

Increasingly, many studies focus on the development of in vitro based assay 

approaches which attempt to provide for the diversity and complexity of the aquatic 

environment without the sacrifice of animals. These assays frequently involve the use 

of in vitro based cell cultures associated with representatives from the trophic 

structures of conventional toxicity tests described above (5-7).   

Several in vitro based cultures are already in use (8-9) however, as aquatic 

ecosystems are increasingly endangered, a greater diversity and application of cell 

and tissue culture is required. Results obtained must be indicative of these particular 

ecosystems and their state of pollution. There are numerous and ever growing 

applications of cell and tissue culture. Previously, cell culture was pre-requisite for 

the growth and maintenance of viruses and some bacterial pathogens (10). Currently, 

applications include pathology diagnosis, efficacy studies, environmental monitoring, 

genetic studies, bioactive compound production, biomimetic production and cellular 

and molecular function and response studies (11-14). 
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1.2 Cell and Tissue Culture of Aquatic Organisms 
 

The development of cell culture may be traced back to 1907 when Harrison reported 

growing frog nerve cells using the hanging drop technique (15). Since then, vast 

arrays of taxa have been used to develop cell lines and tissue cultures. Continuous 

cell culture requires the demonstration of reproductive division of immortal cells 

from a single cell origin.  

Primary tissue culture is defined as the outgrowth of relevant cells from tissue 

fragments or suspensions (16, 17). Primary tissue culture involves plating small 

pieces of tissue in culture media, which have been excised directly from the animal. 

Once attached to the flask, cells will migrate from this tissue and spread outwards 

from the explant over a number of days or even months. Such cells never propagate 

themselves. The benefit of using primary explant cultures is that the multi-cell type 

nature of the organ is retained. Conversely, continuous cell cultures are cells, which 

have ‘evolved’ from primary culture. They may be transferred to new flasks and are 

able to propagate and sustain themselves independently, given suitable conditions. 

The term ‘evolved’ must be used carefully. Unlike primary cell cultures, cell lines 

often lose many of the traits, which are associated with the original tissue from which 

they are derived and may include functional structural and metabolic processes (18).  

Little is known about the nutritional requirements of tissue and cell culture of aquatic 

species. Often, commercial mammalian growth media is added to fresh or salt water 

as a starting point (17). Typically, Roswell Park Medical Institute (RPMI) Medium, 

Dulbeccos Modified Eagles Medium (DMEM) or Modified Eagles Medium (MEM) 

are used as a basis for vertebrate media while Leibovitz (L-15) media is the preferred 

choice for the culture of invertebrate cultures (16). Serum, amino acids, vitamins and 

various growth factors may be added to this in varying quantities on a trial and error 
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basis to optimise growth of any particular tissue (17). It is vital however, that the pH 

and osmolarity of the media are adjusted to appropriate levels. This is often 

determined by equilibrating to those levels found in the haemolymph (19). 

1.2.1 Applications of tissue/cell cultures in aquatic toxicology   

Many studies to date have relied on the establishment of tissue and cell cultures prior 

to their inclusion in toxicology studies. The effect of a test substance is then assessed 

by the extent of proliferation or inhibition in the outgrowth or confluency of these 

indicator cultures. Ex vivo tissue cultures are generally considered to be ‘established’ 

when there is cellular outgrowth from the explant. Cell cultures are established when 

there is an even growth of cells over the surface of the flask. Once tissues or cells are 

established in vitro, the system may be used to test a broad range of hypotheses and in 

many different applications. In toxicology studies specifically, these cultures allow 

for a uniform dose exposure to each cell, facilitating accuracy and repetition in 

experimental analyses. Recognition of this has increased the importance of cell 

culture over the past number of years. The literature reports many different uses for in 

vitro cell cultures. Primarily, uses include screening or toxicity ranking for various 

substances, development of structure-activity relationships and replacement of in vivo 

animal testing (7, 20). Others include the maintenance and study of viruses and 

bacterial pathogens, cell function, cell–cell signalling and interaction, and the 

production of pharmaceutical or bioactive compounds (7, 16, 21, 22). 

Due to increasing awareness of the environment and the on-going introduction of ever 

more-stringent environmental legislative measures, methods for assessing the aquatic 

environment are increasingly important and require innovative approaches to meet the 

diverse challenges which pollutants now present. Scientists are challenged to meet the 

needs of those governing authorities, who not only require systems which monitor 
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complex substances but also systems with accurate endpoints, representative of the 

environmental conditions which persist. The toxic effects of chemicals on in vitro cell 

cultures may be assessed using apoptosis, necrosis and expression of proteins 

associated with genotoxic damage (5, 23, 24). Other endpoints used to monitor toxic 

effects include cell morphology, cell attachment, total protein levels, gene regulation 

studies and clonogenics (7). 

Underlying the development of cell and tissue culture in eco-toxicological 

applications are growth, characterisation, validation and utilisation. Once specific 

factors in each of these areas are met, a technology for aquatic toxicology can be 

developed.  

The use of sections of organ excised from the animal and cultured in flasks is a 

questionable approach given that each organ may comprise of several tissue and cell 

types. However, in short term experiments, such practice is particularly useful given 

that these sections remain intact, are associated with a specific function within the 

organism and any increased outgrowth/propagation is easily discernable. 

Furthermore, the sections generally comprise enough cells to yield adequate amounts 

of DNA/RNA for standard genetic analyses, unlike many primary cell cultures. 

1.2.3 Choice of Tissues 

The initial choice of species is an important factor to consider when developing eco-

toxicological assays using tissue cultures. A logical approach to this is to identify 

organisms which fulfil the role of indicator species and live in the environment which 

requires monitoring.  

It may be safe to assume that cells from an organism that can survive in polluted 

waters are ‘conditioned’ and are consequently more likely to withstand similar 

contaminants in vitro. If this is correct, then choosing a species to develop an eco-
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toxicological assay is less complicated. The literature suggests a number of traits, 

which the researcher should consider prior to adapting a species for in vitro eco-

toxicological use. A species indigenous to a wide geographic region means that a 

system, once developed, may be used over greater areas, generating more meaningful 

and comparative data (25). Equally, if the organisms are susceptible to both lethal and 

sub-lethal quantities of a wide range of contaminants in vivo, then comparative 

studies may be carried out with tissue cultures from these animals. It is important that 

tissues are selected that can withstand measurable quantities of the contaminants in 

question (26). The chosen species should be easy to collect so that a ready supply of 

tissue is available (27). Tissue isolated from a variety of faunal classes and feeding 

types may optimise the ability of that tissue to withstand a wider variety and a higher 

concentration of contaminants associated with polluted environments. In addition to 

this, tissue from a species which is commercially important, adds value to the 

significance of the research (28). In the aquatic environment, candidates from 

vertebrate and invertebrate groups should be chosen (29). Finally, the organisms must 

be easy to maintain in the laboratory without compromising the condition of the 

organism (30). 

1.2.4 Vertebrates and Invertebrates  

One of the main limiting factors in developing technologies in aquatic toxicology is 

the dearth of tissue cultures available. While an ever-increasing number of aquatic 

vertebrate tissue cultures are developed, there are few freshwater invertebrate cultures 

and no marine invertebrate cell cultures (31, 32). Several authors report success with 

marine invertebrate cell cultures however, these all are short lived. A typical example 

being the cell line derived from the sea squirt, Ciona intestinalis (33). The sustainable 

culture of marine invertebrates remains elusive to date. Compounding these factors 
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further is the fact that much of the pollution, which requires monitoring, is adsorbed 

to and ‘locked’ in the sediments, often the very environment which invertebrates 

inhabit.  

1.2.5 Vertebrate Cell/Tissue Cultures  

Cultured, immortalised fish cell lines, which include Chinook Salmon Embryo 

(CHSE) cells, Epithelioma papullosum cyprini (EPC) cells, Blue gill sunfish (BF-2) 

cells and Rainbow Trout Gonad (RTG-2) cells, have been used for many years (5, 34 

– 37). Rainbow trout (Oncorhynchus mykiss, Walbaum) is chosen as a general 

investigative model of aquatic species by many researchers. Rainbow trout tend to be 

easy to work with and are easily maintained in laboratory conditions. Organ tissues 

from the Rainbow trout, which have been cultured to date, include skin, gill, spleen, 

gonad, kidney, fin, and gut amongst others. Generally researchers have found varying 

success depending on the choice of tissues, which are cultured. However, the 

literature reveals much success with rainbow trout species overall (1, 38 – 41).  

1.2.6 Invertebrate Cell/Tissue Cultures  

The blue mussel (Mytilus edulis) has been used for over 30 years to monitor 

environmental health conditions by means of the ‘Mussel Watch’ programme (42). 

Their use in toxicology and eco-toxicology has developed rapidly. They are beneficial 

due to the large volume of water they filter and their wide geographical distribution 

(28). Certainly, the development of a mussel cell line would be invaluable in 

furthering the field of eco-toxicology due to the comparative data, which is available.  

Some developments have been made in tissue culture of marine invertebrates cultured 

cells from the larvae of M. edulis galloprovincialis however these cultures survived 
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for just 2 weeks (43). Le Marrec et al. (1995), cultured cells from the heart and gills 

of the scallop, Pecten maximus (44).  

Mulford and Austin (1998), developed primary cultures from the ovary, testes, 

hepatopancreas, haematopoietic tissue, heart, gut, gill, eye-stalk and nerve tissues of 

the Dublin Bay prawn (Nephrops norvegicus) (45). A number of different media 

including Leibovitz medium (L-15), Modified Eagles Medium (MEM) and Medium 

199 (M199) were used with varying levels of supplements. The best results were 

achieved with ovarian tissues, which were maintained in 2x L-15 with 5% foetal 

bovine serum (FBS). One subculture was achieved prior to the collapse of the culture 

(45). Mothersill et al. (2000) outlines that success with cell cultures is closely 

correlated to the use of young actively growing animals (19). Indeed, Hansen (1976) 

developed the first invertebrate cell line from the larvae of Biomphalaria glabrata 

(46). There are many instances of embryonic and larval stages of the life cycle used to 

generate viable tissue cultures (47, 48, 43, 44). Whatever the reason, all of these 

cultures were relatively short-lived. Developing a cell line from a marine invertebrate 

has remained quite elusive to date. This has restricted the development of in vitro 

based toxicology testing, as much of the preliminary work when developing a test 

system focuses on the development of a reliable culture system rather than 

investigating the effects of toxicants on that system.  

In the interests of investigating alternative in vitro tissue based toxicity test systems, γ 

radiation as a model toxicant system was developed. The rationale for using radiation 

is clear. The level of dose is conveyed to all cells uniformly in a reproducible manner 

throughout the tissue explant. This is not achievable with a chemical toxicant 

especially using explants. Additionally, this is a safe experiment to perform and 

reduces the need to handle dangerous chemicals at high concentrations. 
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1.3 General Radiobiology 

Radioactive pollution in the aquatic environment is introduced through both natural 

and anthropogenic channels. Background radiation predominantly arises from the 

presence of potassium-40 (40K) in seawater however there are several other 

radionuclide representatives found naturally in seawater including tritium (3H), 

Rubidium-87 (87Rb, Uranium (234U and 238U) and Polonium-210 (210Po) (1). 

Anthropogenic sources include cooling waters discharged from nuclear power plants, 

reprocessing plants, nuclear powered vessels, and leakage from ocean dumping 

programmes (1).  

1.3.1 Principles of Radioactivity  

Many atoms have isotope forms. These isotopes have the same number of protons in 

the nucleus but the number of neutrons may vary. For example, the stable form of 

potassium (Potassium-39) contains 19 protons and 20 neutrons in the nucleus. 

However, its isotope, Potassium 40 (40K), is unstable having 21 neutrons. Typically, 

this instability is rectified, within unstable isotopes, with a spontaneous change in the 

ratio of protons to neutrons. This process is associated with an emission of particles 

or energy known as radioactivity (1). The unstable isotope forms of atoms are known 

as radioisotopes or radionuclides. Each radioisotope has its characteristic form of 

emission. Alpha (α) radioactivity is characterised by slow moving particles and is 

easily stopped by paper for example. Beta (β) particles occur when a proton 

spontaneously changes into a neutron or vice versa. These particles are slightly more 

penetrating but may be contained using light perspex. Conversely, gamma (γ) 

radiation is deeply penetrating and requires lead or concrete to contain it. While α and 

                                                 
1 Dumping radioactive waste at sea continued from 1946 until 1983 when a ban was introduced 
following the London Dumping Convention (Laws, 2000). 
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β particles may be easily contained, they are nevertheless, intensely ionising if they 

enter living tissues. Ingestion or inhalation can cause severe damage. α particles, if 

ingested, are estimated to be, on average, 20 times more damaging to living tissue 

than β or γ radiation. While γ radiation may be considered less severe, it has the 

added danger of freely penetrating most tissues (1). The International System of Units 

(SI) for measuring radioactivity is the Becquerel (Bq). Becquerel measures the rate at 

which radioactive disintegrations of the nuclei of an isotope take place. One Bq is 

equivalent to one dis-integration per second. Therefore, radioactivity of a substance 

reduces over time. The half-life, or the time it takes for the radioactivity of a 

substance to be halved, may be calculated for each isotope. In biological studies 

however, it is also necessary to have a measure of the amount of radioactivity, which 

a tissue absorbs. The Gray (Gy) is defined as the amount of radiation required for 1 

kilogram (Kg) of tissue to absorb 1 joule (J) of energy. 

1.3.2 Radioactivity in the Aquatic Environment 

The Earth’s environment is naturally radioactive with cosmic radiation emitted from 

space and terrestrial radiation emitted from the earth’s crust. While 40K, may be 

responsible for the vast proportion of background radiation in the marine 

environment, radiation levels in the aquatic environment often exceed these levels 

due to emissions from a variety of anthropogenic sources including power stations, 

reprocessing plants, nuclear powered vessels and hospitals (49). Many radioisotopes, 

particularly those with high atomic mass tend to adsorb onto marine sediments. 

Cobalt-60 (60Co) is one such isotope. 60Co is a γ-emitting radioisotope. It is of 

particular interest in the marine environment due to its relatively long half-life (5.3 

years), its high-energy γ emissions and its tendency to adsorb to sediments in the 
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marine environment. It is monitored in many harbours and dockyards in Britain 

where nuclear vessels are stored and maintained (4).  

The predominant effect of radiation on living organisms ultimately manifests itself in 

DNA damage. Mutations and deletions in the structure of DNA can be lethal or may 

result in sub-lethal deformity or dysfunction in the organism. The mitochondrial 

genome is particularly susceptible to DNA damaging agents due to the absence of a 

protective histone coat, its decreased repair capacity and the lack of recombination 

characteristic of mtDNA (50).  

1.3.3 The Bystander Effect  

The ‘bystander effect’ is a phenomenon where cells never exposed to radiation 

display radiation like damage if in the vicinity of an irradiated cell or exposed to 

growth medium from irradiated cells (51). The schematic in Figure 1 represents the 

effects of direct radiation and indirect radiation on the integrity of the exposed cells 

and their progeny. Direct radiation, in this case, is by exposure to γ radiation while 

indirect effects are the result of exposure of the cells to Irradiated Cell Conditioned 

Medium (ICCM). The process involved in conferring this effect is not yet known. 

However, the transfer of the cytoxic activity within the media used during cell 

irradiation suggest that it may be a signalling factor released by the cells (52). 

Whatever the mechanism, it has implications for aquatic species exposed to ionising 

radiation. Similarly, the bystander effect has implications for aquatic food products 

that are irradiated to remove undesirable microorganisms or to prolong shelf-life. 

Recently, the U.S. Food and Drug Administration (FDA) approved the use of 60Co 

and electron beam γ radiation treatment, to remove Vibrio vulnificus from cultured 

oysters prior to sale (53, 54).  
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Figure 1.1 Schematic representations of the effects on cells of direct radiation and indirect radiation via 
exposure to media used to culture irradiated cells 

1.4 The Mitochondrion. 

The mitochondrion has received renewed interest from molecular and cell biologists 

in recent years due to an ever increasing battery of techniques based on mitochondria 

which have been developed in this period. Not only is this due to its importance in 

energy production in the cell but increasingly due to its association with apoptosis 

and the production of reactive oxygen species (ROS) among other functions. 

Mitochondria are quite sensitive to damage however, while cells containing 

mitochondria with substantially damage mtDNA can often operate without loss of 

overall cell function. 

The mitochondrion is found in cells of all eukaryotic species including plants and 

animals. It is almost entirely maternally inherited being passed in the cytoplasm of the 

oocytes during fertilisation. Several copies are transferred via the sperm however are 

lost during fertilisation or are diluted out shortly afterwards during replication (55, 

56). It is widely accepted now that mitochondria entered the proto-eukaryotic lineage 

in a symbiotic relationship more than 7 billion years ago during the onset of transition 
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towards an aerobic environment. There is also some evidence that mitochondria 

descended from the family of purple bacteria (57, 58).  

1.4.1 Structure of the mitochondrion. 

Structurally, the mitochondrion may be polymorphic but generally is ‘capsule like’ in 

shape. The shape depends on the tissue or cell types in which it resides, and in 

particular is dictated by the degree of energy requirement on that tissue at a given 

moment. It is enclosed by a double membrane. The outer membrane is smooth and 

contains many porin proteins which confer permeability to many molecules in the cell 

cytoplasm, allowing them to move freely across the outer membrane. Conversely, the 

inner mitochondrial membrane (IMM) is selectively permeable and can restrict the 

movement of protons and other ions across it. The sector contained within the inner 

mitochondrial membrane is termed the matrix and contains a host of enzymes, copies 

of the mitochondrial genome, and the machinery responsible for the transcription and 

translation of the mitochondrial genes. This plays an important role in the functioning 

on the oxidative phosphorylation (OXPHOS) process which is embedded in the IMM.  

The IMM is folded into finger like projections called cristae, thus greatly increasing 

the surface area of the inner membrane. An increased level of folding facilitates 

greater energy production and consequently is a determining factor in the shape of the 

entire structure.  

1.4.2 Function of the mitochondrion 

The mitochondrion is generally associated with energy production although, it is 

more recently known to facilitate other processes in the cell including apoptosis 

through the production of pro and anti-apoptotic factors (Bcl-2, AIF, pro-caspase) and 

ROS production and cytochrome c release. 
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Energy is stored in cells by means of high-energy phosphate bonds, formed in 

molecules of adenosine tri phosphate (ATP). ATP is synthesised from adenosine 

diphosphate (ADP) by the addition of a phosphate group. This can occur in the cell 

cytoplasm in a process known as glycolysis or in the IMM of the mitochondria as the 

final product of oxidative phosphorylation.  

Glycolysis is an anaerobic process where glucose is broken down in a series of 

reactions to form pyruvate. Each reaction produces a hydrogen ion, which is used to 

make an ATP molecule. Each molecule of glucose realises 4 molecules of ATP 

following the glycolytic pathway.  

Conversely, the aerobic process of OXPHOS carried out in the mitochondria realises 

up to thirty molecules of ATP from one molecule of glucose, representing a much 

more efficient conversion of the chemical energy harnessed within food stuffs. This is 

the reason why the mitochondrion is sometimes referred to as the ‘powerhouse of the 

cell’. In preparation for OXPHOS, pyruvate produced by glycolysis, and fatty acids, 

stored as triglycerides, are selectively transported from the cytosol into the 

mitochondrial matrix. Pyruvates and triglycerides are converted to an acetyl group by 

pyruvate dehydrogenase complex and the β oxidation pathway respectively. This 

acetyl group enters a series of complex reactions known as the Citric Acid Cycle (also 

known as Krebs Cycle). The 2-carbon acetyl group combines with a 4-carbon 

oxaloacetate molecule to form a 6-carbon citrate group. The reactions within this 

cycle remove four pairs of electrons; three of which are transferred to NAD+ to form 

three NADH and one to FAD to form FADH2.  

NADH and FADH ferry the electrons to the electron transport chain (ETC). The ETC 

is a series of enzyme complexes (Complex I – IV), which are located in the IMM as 

depicted in Figure 1.2. A proton pump is located at each of Complexes I, III and IV, 
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where protons (H+) are pumped across the IMM, creating a proton gradient across the 

membrane. The ETC) along with ATP Synthase (Complex V) constitutes the 

OXPHOS pathway. 

Complex I and II receive electrons (e-) from NADH and FADH respectively. 

Ubiquinone transfers electrons from Complexes I and II to Complex III. Cytochrome 

c transfers electrons from Complex III to Complex IV where they are captured by 

oxygen to form water (½ O2 + e- + H+ => H20 

Thus the chemical energy of glucose is converted by the mitochondria to potential 

energy in the form of a potential difference (typically -34mV across the IMM). The 

dissipation of this proton gradient across the IMM through ATP synthase is coupled 

to the fusion of ADP and inorganic phosphate (Pi) forming the energy rich ATP 

molecules (59 - 62) and thus the potential energy of the proton gradient is converted 

back into chemical energy in a form more readily usable by energy demanding 

processes of the cell.  
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Figure 1.2 Diagram depicting the Electron Transport Chain and the process of oxidative 
phosphorylation.  

(taken from http://www.progressivegardens.com/knowledge_tree/electrontransportchain.jpg) 
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1.4.3 Genetics of the mitochondrion. 
The mitochondrion has its own genome and is able to replicate, transcribe and 

translate its own DNA independent of nuclear DNA (nDNA). Indeed, the 

mitochondrion is the only other location where DNA exists in the cell outside of the 

nucleus. However, mitochondrial and cellular functions are interdependent. The 

mitochondrial genome encodes thirteen of the eighty-seven proteins necessary for the 

oxidative phosphorylation process, though the enzymatic machinery required must be 

imported into the mitochondrion from the cytosol. The sizes of the genomes differ 

depending on the species. To date, sequencing data shows that smaller genomes are 

generally associated with higher organisms although this is somewhat of an 

oversimplification. For example the smallest genome sequenced to date has been that 

of the Mosquito, M. falciparum at 5.6 kilo base pairs (kbp). The human mitochondrial 

genome is 16,569 base pairs (bp) and the genomes of some plants are in the region of 

2000 kbp.  

The mitochondrial genome is highly conserved intra species. An example of this is 

the considerable consensus, which exists between the human mitochondrial genome 

and the Rainbow trout mitochondrial genome. The rainbow trout genome is 16,642bp 

in length and like all mtDNA, is arranged in a circular, double stranded molecule 

containing thirty-seven genes. Thirteen genes code for structural proteins of 

OXPHOS while the remaining twenty-four genes encode for RNAs associated with 

the translation of the mtDNA structural genes. Unlike nDNA, mtDNA has no introns 

and is almost entirely made up of coding regions. Other disparities exist between 

nDNA and mtDNA. A normal cell only contains one copy of nDNA. One 

mitochondrion may contain between two and ten copies of the genome while one cell 

may contain from several to one hundred mitochondria (60). This provides for the 
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existence of up to several thousand copies of the mitochondrial genome in one cell 

(63).  

MtDNA is more prokaryotic in nature than eukaryotic. It is more susceptible to 

mutations for a number of reasons. It employs prokaryote-like codons and has no 

protective histone coat. Given that the mtDNA is almost entirely made up of these 

coding regions, including some overlapping genes, point mutations or deletions 

typically give rise to phenotypic effects. Moreover, the genome is located in close 

proximity to a significant potential source of free radicals, as electrons are passed 

from carrier to carrier on the ETC, which is embedded in the IMM. MtDNA also 

possess limited proofreading abilities. Murphy et al. (2005) suggest that these factors 

are responsible for the anomaly between the mitochondrial genome and the nuclear 

genomes: a ten- to twenty-fold greater mutation rate (64). While the mitochondrial 

genome encompasses a minute fraction of the total genetic material in a cell, any 

damage or alteration to it can still have serious implications for a cell's viability 

and/or survival.  

However, while damage may occur in several copies of the mtDNA, the existence of 

a high total copy number means that not all of the mtDNA genomes in the cell are 

necessarily affected. This means that even within one cell, both normal (wild type) 

and mutant mtDNA are present and indeed are typically of a multi-variant nature. In 

humans, this characteristic is known as heteroplasmy. A cell may survive with 

considerable mutant mtDNA however there is a ‘threshold level’ and once the 

frequency of a mutant mtDNA surpasses this, oxidative phosphorylation may be 

compromised and a phenotypic disorder results (60) although this threshold level is 

very high and for example as much as 70% of the activity of Complex I can be lost 
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before OXPHOS activity is affected and the performance of the cell compromised 

(65) 

Mutations and deletions in mtDNA are common. The diagram of the human 

mitochondrial genome in Figure 1.3 also depicts the common deletion (CD), a 

deletion feature that has derived its name from the frequency of its occurrence (66, 

67). The common deletion has only been studied in human and mouse mtDNA to date 

and results in a 4977 bp sequence being lost from the mitochondrial genome. Several 

genes, essential to the function of the mitochondria are lost during this phenomenon. 

These include four polypeptides for complex I (ND3, ND4, ND4 L & ND5), one for 

complex IV (COIII) and two for complex V (ATP 8 & ATP 6) and five tRNA genes 

(68) 

In recent years, there has been growing interest in the mitochondria and its 

(dys)function (60, 62, 69). It is becoming apparent, that they may be utilised in 

providing a platform for biomarkers to indicate toxic stress. Sweet et al. (1998) 

amongst others, has identified several such potential targets for toxicity in the cell 

(70, 71). These include the susceptibility of the mtDNA to mutagens and the 

association of mitochondria with proteins critical to stress and death responses. 

Nugent et al. (2007) has reported an increase in mitochondrial mass and 

mitochondrial genome number in cells exposed to radiation (72). Typically, hundreds 

or even thousands of copies of mitochondrial genomes can exist in single cells. 

Deletions such as the common deletion are detrimental to the mitochondria. 

Heteroplasmy allows the mitochondria to function until a threshold level of mutation 

is reached. Hayashi et al. (1991) demonstrated that the threshold level for mutant 

DNA is 60% and this is sufficient to inhibit overall mitochondrial function (73). 

However, many cells carry lower levels of the CD without any loss of function. Cells 
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in tissues/organs which, because of their functional requirements, demand greater 

energy levels (e.g. gill in fish) are more likely to have lower threshold levels than cell 

which do not require high levels of energy (e.g. spleen). PCR (Polymerase Chain 

Reaction) may be used to calculate the ratio of mutant to wild type genomes present 

in the organelle. Using this technique, very low frequencies (as low as 1 in 10,000) of 

the CD can be detected. 
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Figure 1.3 Schematic representation of the position of the common deletion found on the human 
mitochondrial genome (mitochondrial genome structure 

(taken from www.columbiamitodiagnostics.org/overview.html)  
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Several stress response proteins and apoptotic protein markers are associated with the 

mitochondrion. In the case of stress response, heat shock proteins, particularly HSP 

60, stabilize unfolded or partially folded protein structures (74). Member of the Heat 

Shock Protein family including HSP 60, are over-expressed in fish in the presence of 

stressors such as heat and confinement (75). Identifying increases in levels of 

expression of this protein can serve as an indicator of toxicity (71). 

The anti-apoptotic Bcl-2 protein is mainly located on the outer mitochondrial 

membrane surface. Cytochrome-c, a highly conserved protein, is typically present in 

the inter-membrane space (76). Their functions are associated with apoptosis 

(programmed cell death). Apoptosis, which is induced by certain agents, may be 

prevented by an overproduction of Bcl-2 within the cell. Conversely, Cytochrome-c is 

required for activation of apoptotic caspases (77). Prior to apoptotic cells appearing, 

cytochrome-c levels increase in the cytosol. Sweet et al. (1998) suggest that 

monitoring Bcl-2 and Cytochrome-c in the mitochondria may be useful markers in the 

early identification of a toxic response in the cell (70). 

1.4.4 Mitochondrial dysfunction  

The process of OXPHOS occurs within the mitochondria of cells and employs a 

series of enzyme complexes (complexes I-V) embedded in the IMM. This series of 

protein complexes carries electrons along the inter-membrane space while pumping 

protons across the membrane to create a proton gradient within the organelle. The 

kinetic efficiency of each of these complexes may be measured. An imbalance or lack 

of activity within these complexes may correlate to increases in toxic stress causing 

mitochondrial dysfunction. 

In some human mitochondrial myopathies, mitochondrial dysfunction manifests itself 

with a proliferation of the organelle (66). Identifying this quantitatively or even 
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qualitatively can therefore identify toxic stress (78). Advances in semi-quantitative 

PCR or real-time PCR techniques may have useful applications to this end.  

Similarly, proteomics is a useful tool in the development of assay systems for 

assessment of aquatic toxicology. Proteomics gives a quantitative picture of the 

protein expression and changes therein following toxic assault (79, 80) identified an 

increase in mitochondrial gene expression following oxidative stress. Up-regulation 

and down-regulation of gene expression are the cornerstones of toxicogenomics. 

Toxicogenomic studies have recently become popular as a method to detect toxic 

stress (81). Changes in gene expression following toxicant exposure are readily 

identifiable markers (80). Furthermore, recent developments of DNA microarrays 

have allowed the possibility of investigating the reaction of hundreds or even 

thousands of genes against a wide range of toxicants (80). In an effort to fully 

understand the potential of the mitochondria in toxicity studies a closer look at the 

structure, function and genetics of this organelle is required. 

 

1.5 Aims of the thesis. 

The aim of this thesis was to further develop in vitro assay systems for application in 

aquatic eco-toxicology monitoring and control. Currently, live whole animal studies 

are used in the assessment of pollution and toxicant exposure in the aquatic 

environment. An in vitro assay system would significantly reduce the number of 

animals required for the generation of similar levels of data. Moreover, the 

development of in vitro assays may be an effective alternative, in terms of cost, time 

and ethics when compared to expensive, time consuming and morally questionable 

live animal experiments.  
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The literature review identifies the mitochondria and their associated cellular 

characteristics, functions and processes as an organelle with increasing significance in 

toxic exposure studies. It offers several features which couple as putative biomarkers, 

including a unique genome, an electron transport chain and two membranes 

containing several proteins of importance in cell defence mechanisms. Test model 

systems investigated here included an explant culture system and a focus on the 

damage and dysfunction of the mitochondrion. This system can be applied across a 

range of species and trophic levels in environmental monitoring studies. 

In terms of aquatic toxicology, the literature review identifies an obvious gap in the 

understanding of radioactivity and radioactive pollution in the aquatic environment. 

While current environmental programmes identify safety levels for humans in the 

aquatic environment, little or no work has been carried out on the effects of 

radioactive pollution on aquatic organisms or the cellular responses of organisms 

exposed to radioactivity. The Radiation and Environmental Science Centre (RESC) 

has significant experience in Radiation Biology and the effects of radiation in the 

environment.  

In light of these permutations, this research study aimed to apply in vitro tissue 

culture systems, based on aquatic species, to the development of novel mitochondrial 

biomarkers using γ radiation as a test model. 

Specifically; 

• To develop further tissue cultures, which are sustainable, reliable, appropriate and 

manageable and apply these cultures in aquatic eco-toxicology, through the 

development of novel assay systems.  

• To examine various tissue types including skin, gill and spleen from vertebrate species 

and gonad, pallial mantle and gill from invertebrate species for tissue culture systems. 
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• To investigate the potential of putative in vitro based technologies as biomarkers using 

γ radiation as a test model of toxic stress 

• To investigate in vitro applications using fish tissue/cell cultures to examine the  

suitability of these cultures as a model system to assess bystander factors 

• To investigate the suitability of tissue culture techniques in the study of mitochondrial 

(dys)function in tissues exposed to radiation in vitro. 

• To investigate the application of mitochondrial gene regulation in the area of 

Radiobiology 
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2.1 Abstract 
 
O’Dowd, C., Olwell, P., Mothersill, C.E., Cairns, M.T., Austin, B., Lyng, F.M. and 

Murphy, J.E.J. The development of in vitro enabling technologies for use in aquatic 

toxicology.  

There is a growing interest in the use of in vitro cultures of aquatic vertebrates and 

invertebrates for use in monitoring the condition of the aquatic environment. This is 

motivated not only by ethical and moral concerns but also by increasing economic 

pressures associated with live animal toxicity testing. 

While there have been significant developments in tissue and cell cultures over the 

past number of years, shortcomings still exist. These mainly centre on the reliability 

and robustness of tissue cultures, the identification and contamination associated with 

initiating cell cultures and the lack of cultures available, in particular, aquatic 

invertebrates and those from the marine environment. 

Here we report on a number of techniques which aim to progress the application of 

cell and tissue culture in eco-toxicology and discuss their merits in that context. In 

particular, we examine the process of culturing cells from fish and shellfish organs 

and larvae and review the use of in vitro tissue culture as a holding and treatment 

facility rather than a culture platform. RNA and DNA extracted from γ irradiated 

cultures were assessed qualitatively and quantitatively for further downstream 

applications in ecotoxicology as a model system. We also show applications of 

molecular biology and immunocytochemistry in Epithelioma papullosum cyprini 

(EPC) cell line characterisation.  

Results show these techniques to be expeditious and reproducible with cultures 

providing total DNA and RNA of a quality suitable for molecular analysis of toxic 

stress. 



 55

2.2 Introduction. 

Due to increasing awareness of the environment and the subsequent environmental 

legislative measures, methods for assessing the aquatic environment are diversifying 

and expanding. Scientists are challenged to meet the needs of those governing 

authorities, who not only require systems which monitor complex substances but also 

systems with accurate endpoints, representative of the environmental conditions 

which persist. With an increasing awareness of ethical concerns relating to live 

animal experiments, focus on in vitro based cell and tissue cultures to deliver 

alternatives in toxicology studies is increasing. 

Unlike primary cell cultures, cell lines often lose traits associated with functional, 

structural and metabolic properties of the organism from which they are derived (1). 

Consequently, questions on the usefulness and representative nature of cell lines used 

in in vitro toxicology studies often arise. This is a limiting factor in identifying 

activated markers representing pollution in the environment.  

Specific markers include cytotoxicity, cellular proliferation, functional inhibition, 

activation of proteins such as HSP (2), genetic damage and alteration in gene 

expression (3, 4). The toxic effects of chemicals on in vitro cell cultures may be 

assessed using apoptosis, necrosis and expression of proteins associated with 

genotoxic damage (2,5,6). Other endpoints used to monitor toxic effects include cell 

morphology, cell attachment, total protein levels and clonogenics (7). 

 

A logical approach when choosing a species for tissue culture development is to 

select for organisms which traditionally fulfill the role of “indicator species” and/or 

live in the environment which requires monitoring.  
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Tissue culture based technologies in aquatic toxicology are typically unreliable with 

the time and effort required to achieve suitable cultures .  

Few established aquatic invertebrate cultures exist to date despite significant effort 

being directed to this area of research. Ironically much of the pollution, which 

requires monitoring, is concentrated in environments associated with various 

invertebrates. In general, the growth of aquatic vertebrate cell cultures is well 

established. These include Chinook Salmon Embryo (CHSE) cells, Epithelioma 

papullosum cyprini (EPC) cells Blue gill sunfish (BF-2) cells and Rainbow Trout 

Gonad (RTG-2) cells.  

In toxicology studies carried out by Ni Suilleabhain et al. 2006, outward migration of 

cells from explants of rainbow trout was shown to indicate different degrees of water 

contamination (8). In this study, the explants had to be attached to the culture flask. 

This is not always achievable and protocols can be laborious. Factors which affect 

attachment include the organ section in question, surface of the flask, age and 

condition of the donor animal and often the time of the year. Generally researchers 

have found varying success depending on the choice of tissue cultured. The literature 

reveals much success with Rainbow Trout (Oncorhynchus mykiss). Tissues from the 

rainbow trout, which have been cultured to date, include skin, gill, spleen, gonad, 

kidney, fin, and gut amongst others (9 – 13). In the marine environment, its relative 

the Atlantic Salmon (Salmo salar) is one of the most commonly cultured fish species. 

However, this species exists in pristine conditions in the wild. Species ideal for eco-

toxicological studies should also frequent poorer conditions. The flounder, 

(Platichthys flesus), is a prime candidate species. While there are no reports of P. 

flesus primary tissue cultures to date, Tong et al. (1997), have reported culturing a 

continuous cell line from the gill of the Japanese flounder, (Paralichthys olivaceus) 
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(14). Flounder is a flat fish, which lives in conditions ranging from freshwater to fully 

saline. It buries itself in the sediment in and around estuaries and ports and other 

sandy/muddy areas. Hence, it would appear that contaminated water does not inhibit 

the movement of flounder significantly in such an area. P. flesus are relatively easy to 

capture along the Irish coast using purse seine nets and are also easy to maintain in 

laboratory conditions. As with many vertebrates, the common tissues cultured from 

flounder are skin, kidney, spleen and gill.  

While the establishment of aquatic vertebrate tissue cultures is generally perceived as 

being difficult, the generation of aquatic invertebrate species has been elusive, with 

the exception of the freshwater snail, Biomphalaria glabrata (15). It is generally 

accepted that aquatic invertebrates may be more suitable for eco-toxicological 

studies, due to their diversity, both in faunal class and feeding type, (i.e. filter and 

suspension feeders) and their proximity to the sediment. 

The blue mussel, Mytilus edulis has been used for over 30 years to monitor 

environmental health conditions by means of the ‘Mussel Watch’ programme. Their 

use in toxicology and eco-toxicology has developed rapidly. They are beneficial due 

to the large volumes of water, which they filter, and their wide geographical 

distribution (16). Certainly, the development of a mussel cell or tissue culture would 

be invaluable in progressing the field of eco-toxicology due to the comparative data, 

which is available.  

Few developments have been made in tissue culture of invertebrates. Takeuchi et al. 

(1994) cultured cells from the larvae of M. edulis galloprovincialis however these 

cultures survived for only 2 weeks (17). Le Marrec et al. (1995), cultured cells from 

the heart and gills of the scallop, Pecten maximus (18). Mulford and Austin (1998), 

developed primary cultures from the ovary, testes, hepatopancreas, haematopoietic 
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tissue, heart, gut, gill, eye-stalk and nerve tissues of the Dublin Bay prawn, Nephrops 

norvegicus (19). A number of different media including L-15, Modified Eagles 

Medium (MEM) and M199 were used with varying levels of supplements. The best 

results were achieved with ovary ovarian tissue, which were maintained in 2x L-15 

with 5% foetal bovine serum (FBS). One subculture was achieved prior to the 

collapse of the culture. 

Mothersill et al. (2000), point out that success with cell culture is closely correlated to 

the use of young actively growing animals. Indeed, the cell line from B. glabrata was 

derived from the larvae (20). There are many instances of embryonic and larval stages 

of the life cycle used to generate viable cultures (17 - 18, 21 – 22). However, for 

various reasons, all of these cultures were relatively short-lived. Developing a cell 

line from a marine invertebrate remains elusive. 

Another impediment to the development of cell and tissue cultures is the difficulty 

associated with developing and maintaining uncontaminated cultures. Although 

mainly associated with cell culture, characterisation of the cell may be a factor to 

consider, particularly in labs where a number of cultures are grown in close proximity 

as is the norm. Characterisation involves confirming that the cells in the culture are 

authentic to the tissue of origin and display key markers for their end use. Generally, 

tissue cultures must retain the characteristics of the cells composing the tissue and 

characterisation of the cultured cells is critical (20). 

Characterisation must confirm that the growing tissue cultures originate from those, 

which were initially seeded onto the plates. Advances in Polymerase Chain Reaction 

(PCR) have revolutionised this area. Primers specific to the target species can quickly 

confirm the origin of tissue cultures. Other techniques used in characterisation include 

morphology, size, ultra structure, cell-growth kinetics, immunohistochemical 
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methods, enzyme activity, antigenicity, histochemistry, isoenzyme analysis and 

chromosome content (23).  

One of the main suggestions for the promotion of applications in tissue culture is the 

possibility of replacing in vivo animal testing with in vitro tissue culture systems. 

While this is a worthy cause, it is important that the replacement in vitro system is as 

reliable and relevant. Validation has been defined as the process by which the 

reliability and relevance of a procedure are established for a specific purpose (24).  

In practice, primary cells and tissue cultures are cultured in vitro and exposed to a 

toxic assault. In our approach, we observe mitochondrial (dys)function following 

toxic assault. The mitochondrion is an organelle of particular interest due to several 

proteins associated with it, the fact that it has its own genome and the ease at which 

mitochondria may be extracted from tissue cultures (25). It is also an organelle which 

may be found highly conserved across species and throughout different trophic levels. 

Here we report on the application of in vitro cultures of fish and shellfish tissues as a 

platform for the development of eco-toxicological assays based on the availability of 

DNA and RNA associated with the mitochondrion and mitochondrial proteins.  

2.3 Materials and Methods. 

Sources of Fish & Shellfish 

Rainbow trout (Oncorhynchus mykiss) of 200 g average weight were sourced at 

Rafford Trout Farm, Athenry, Co. Galway. The fish were transported in water tanks 

and arrived at the laboratory within 4 hours of capture. Flounder were captured with 

the help of Paul Casburn, Taigde Mara Teo., Carna, Co. Galway. Fish approximately 

6cm in length were captured in May and September using the ‘purse seine’ netting 

technique along the coast of Galway but mainly at Ballyloughan Strand, Galway. 

Flounder were maintained in aerated seawater aquaria in the lab.  
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Blue mussels (Mytilus edulis) were sourced at Jasconious Ltd., New Quay, Co. Clare. 

They were maintained in aerated seawater aquaria in the lab scallop larvae were 

sourced at Jasconious Ltd., New Quay, Co. Clare. Following spawning and 

fertilisation, the resulting larvae (at 1st polar body stage) were transported to the lab 

for subsequent preparations. 

Finfish Tissue Culture 

Fish were humanely sacrificed according to guidelines approved by the Dublin 

Institute of Technology Ethics Committee. The number of fish used varied between 

three and five fish per experiment. Tissues were dissected into small sections (1-2 

mm3) in Petri dishes containing chilled RPMI 1640 growth medium and pooled in 

preparation for each experiment. These sections were mounted in triplicate for each 

test group on 25 cm2 tissue culture flasks (NUNC, Roskilde, Denmark) containing 5 

ml RPMI 1640 media supplemented with 12% foetal calf serum, 8% horse serum, 

5000 IU/ml penicillin/streptomycin, 2 mM L-glutamine, 0.05 U insulin, 1 ug/ml 

hydrocortisone, 25 mM HEPES buffer and incubated at 20oC. Each experiment was 

conducted at least three times and typically five times. 

Shellfish Culture 

Shellfish were cleaned and swabbed prior to dissection using 70% alcohol. A sterile 

scalpel was used to prise open the shell and sever the posterior and anterior adductor 

muscles. Tissues from between three and five fish per experiment were dissected and 

placed in an antibiotic solution (10,000 U/ml penicillin/streptomycin, 0.01 mg/l 

kanamycin and 0.04 mg/l gentamycin). Samples were shaken gently for 90 minutes 

and then repeated using fresh antibiotic solution. Tissue was then cut into 1-2 mm3 

pieces in a Petri-dish containing antibiotic solution and left for a further 90 minutes. 

The tissue pieces  were then mounted in triplicate in 25 cm2 tissue culture flasks 
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(NUNC) containing 2x Leibovitz L-15 media (Sigma Aldrich, Dorset, UK) 

supplemented with 10% foetal calf serum, 10,000 U/ml penicillin / streptomycin, 0.01 

mg/l kanamycin, 2 mM glutamine, and incubated at 20oC. Each experiment was 

conducted at least three times and typically five times. 

Larvae Tissue Culture 

Pre-conditioned scallop broodstock were placed in seawater warmed to 

approximately 20oC. Following spawning, the eggs were fertilized using scallop 

sperm. The resulting larvae were washed, sieved using a 30 μm mesh and placed in 

fresh seawater at a concentration of approximately 50 larvae / ml. Eighty ml of 

‘homogenous’ solution was removed and sieved/decanted using a 30 μm sieve. 

Larvae were washed from the sieve into 20 ml sterile seawater (SSW) and allowed to 

grow for 20 hours at 20oC. 1.5 ml of this (now trochophore larvae) larval stock was 

removed and  briefly centrifuged up to 1000 g. Supernatant was removed and trypsin 

(0.05%), pronase (0.15%) and collagenase (0.1%) solutions and an equal mix 

(cocktail) of these solutions were added to the larvae. In control samples, the enzymes 

were substituted for SSW. Samples were left for 10 mins to dissociate larval cells. 

Meanwhile, another set of samples were mechanically dissociated by aspirating 

vigorously through a 1000 μl pipette tip for 1 min.  

All samples were briefly centrifuged up to 1000 g to remove excess dissociation 

fluids. This was repeated twice using SSW to arrest digestion. Finally, the pellet was 

re-suspended in 1.5 ml of L-15 growth medium. Samples were plated into 2 5cm2 

flasks (NUNC) and incubated at 20oC. This procedure was repeated every 4 hours.  

Tissue Culture Imaging 

Photography of tissue cultures was used to monitor cell attachment and growth. 

Cultures were observed using a Nikon Eclipse E600 Inverted Microscope mounted 
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with a SPOT RT Color digital camera (Diagnostic Instruments Inc., Michigan, USA) 

and images processed using SPOT Basic Camera Software (Diagnostic Instruments 

Inc.)  

DNA and RNA Isolation and Visualisation 

DNA was isolated from both tissue and cultured cells using the GenElute Mammalian 

Genomic DNA Kit (Sigma-Aldrich). The DNA was quantified using a BioPhotometer 

6131 Spectrophotometer (Eppendorf, Germany) measuring at 260 ηm. Samples were 

standardised to 10 μg total DNA /ml using molecular grade water for use in PCR 

studies. RNA was extracted using the Qiagen RNeasy Micro extraction kit (Qiagen, 

where where) following the manufacturers protocols. Final RNA concentrations were 

measured spectrophotometrically at 260 ηm and 280 ηm using an BioPhotometer 

6131 (Eppendorf, Germany).  

Characterisation of Cell Cultures 

Forward and reverse primers were designed based on the mitochondrial and nuclear 

sequences of all fish species investigated. The mitochondrial genome of all species 

included here is widely available on the internet or in the literature.  

The ‘Primer 3’ primer design program also available on the Internet at the following 

url: 

(http://www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi/) was used to generate 

the unique sequences and designed to have corresponding parameters especially 

melting temperature and GC ratios. The sequences were synthesised by Sigma-

Genosys, UK. Primers, specific to the mitochondrial genome of Oncorhynchus spp. 

(designated RT1) and Cyprinus carpio (designated C1 and C2), were designed to 

confirm the origin of the CHSE-214 and EPC cell lines respectively (Table 2.1). PCR 
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reaction mixes contained 1 μM each of forward and reverse primer, 10 ng DNA 

template, 1 x ReddyMix PCR Reaction Mix (Sigma-Aldrich). 
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Primer 
Identification 

Sequence Product 
Size(bp) 

RT Left Primer   - catttagcacttcccatcgc 
Right Primer - tgggctcaaacgataaatcc 

2569 

C1 Left Primer   - cgtagcccaaacaatttcgt 
Right Primer - aatggtgctcggtttgtttc 

189 

C2 Left Primer   - acatagccgatcaacgaacc 
Right Primer - ctgccacccagtatgtcctt 

353 

Table 2.1 PrimerSequences Selected for Rainbow Trout (Oncorhynchus mykiss) (RT1) and Carp 
(Cyprinus carpio) (C1 & C2). 
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Thermocycling consisted of 2 min at 95oC, 30 cycles of 40sec at 94oC, 2 min at 56oC 

and 3 min 40 sec at 72oC with a final extension time of 10 min at 72oC using a PTC-

225 Peltier Thermo Cycler (MJ Research, MA. USA). Amplified products were 

separated on a 1% agarose gel and bands visualised using a Gene Genius Bioimaging 

System (Syngene, UK). 

Immunocytochemistry. 

Immunocytochemical analysis was performed using strepavidin peroxidase with a 

Vectastain ABC kit (Vector Labs, California). Subconfluent cultures of CHSE, EPC, 

hTERT and HPV-G, cells were grown. hTERT and HPV-G cells were used as 

positive controls for fibroblast and epithelial cells respectively. All cultures were 

washed twice in PBS to remove any debris and then fixed in 10% buffered formalin. 

The primary mouse monoclonal antibody (1:100 dilution), Vimentin (Dako, 

Denmark) was applied to all cell lines for 1 hour. Simultaneously, primary mouse 

monoclonal antibody (1:100 dilution), Cytokeratin (Dako, Denmark) was added to a 

separate suite of cultures for 1 hour. Biotinylated antimouse reagent was then added 

to all cultures for 30 minutes followed by Strepavidin Peroxidase for a further 30 

minutes, with a PBS wash in between each step. The chromagen, 0.02% DAB 

(Sigma-Aldrich) was then added for 10 minutes in darkness and washed off in 

distilled water. Cells were then counterstained with Harris haematoxylin and mounted 

with glycergel. A negative control, where no primary antibody was added was 

included in each experimental run. Positive staining was observed as a brown staining 

in the cytoplasm. 

 

2.4 Results. 
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Growth of Vertebrate Tissues 

Primary cultures of gill, spleen and skin from rainbow trout (Oncorhynchus mykiss), 

turbot (Scophthalmus maximus) and flounder (Platichthys flesus) were grown in vitro 

(Figure 2.1). Table 2 summarises the species used, the source of the explant and the 

culture media used. Finfish tissues are least problematic in culture. Skin, gill and 

spleen are the most commonly grown tissues used in these experiments. Spleen 

cultures were the slowest growing while skin tended to be the fastest growing tissue. 

Of the vertebrate species used, O. mykiss and P. flesus were the most straightforward 

to culture in vitro. Tissues from finfish were culturable and were not affected by 

contamination as much as shellfish. Gills explant cultures tended to be the most 

difficult tissues to grow. This was mainly attributed to fungal infections and poor 

attachment of the explant to the flask. 
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 (A) 

 

 (B) 

 
 

Figure 2.14Cells migrated from a tissue section of O. mykiss (A) gill and (B) skin after 8 days of 
incubation. 

Identification of cells migrated from gill tissue is difficult due to the lack of distinctive 
features. Cells migrated from skin tissue are sparse and some cells contain black apoptotic-
like bodies (arrows) within the cell cytoplasm. Bar = 50µm. 
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Species Tissue Cultured Media Notes 
Rainbow trout Skin Spleen RPMI Generally successful. Contamination & poor 

attachment typical cause of failure in gill 
Turbot Skin Spleen RPMI Gill difficult to culture 
Flounder Skin Spleen RPMI Very good success rate for most organs and 

particularly skin. Conduit forms from 
explant.  

Clam Mantle Pallial 
Mantle 

Leibovitz  
L-15 (2x) 

Generally difficult to grow. Success most 
likely with P.M. Dissection difficult in 
smaller organisms. Contamination prevalent. 

Mussel Mantle Pallial 
Mantle 

Leibovitz  
L-15 (2x) 

High contamination problems. Antibiotic 
treatment necessary but treatment time 
affects success. 

Scallop Trochophore Larvae Leibovitz  
L-15 (2x) 

Dissociation of larval cultures successful but 
no growth/attachment achieved. Specialist 
facilities required which is main limiting 
factor. Also seasonal supply to a certain 
degree. 

Table 2.2 Listing the species cultured in this study, the tissue section used, the media providing best 
results and general notes on the in vitro culture of the specific tissues. 
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Growth of Invertebrate Tissues 

Primary cultures of gill, mantle and pallial mantle have been cultured from blue 

mussel (Mytilus edulis) and Manila clam (Tapes semi-decussatus). There were 

minimal differences in the growth achieved between species or tissue types. 

Dissection of tissues from the clam was often difficult due to the size of the animal 

and the nature of the tissue. Tissue cultures of scallop (Pecten maximus) larvae, were 

attempted without success which was indicated by a negative trypan blue exclusion 

viability test following dissociation.  

Growth of Tissue Cultures 

Primary cultures from explants of O. mykiss, P. flesus and Mytillus edulis were 

established on tissue culture flasks and examples are illustrated in Figure 2.1 -2.4. 

Cells, which have migrated from O. mykiss gill following 8 days of incubation in 

Figure 2.1 (A) were difficult to identify due to the photographic quality and the lack 

of distinctive features. In Figure 2.1 (B), epithelial cells derived from O. mykiss skin 

emerged. Growth was sparse and some cells contained black apoptotic-like bodies 

within the cell cytoplasm. 

Figure 2.2 (A) and 2.2 (B) are examples of O. mykiss and P. flesus erythrocyte cells 

respectively migrated from spleen explants. Generally, there was a progression from 

these cells to epithelial type cells over time (1 month approx.). Unlike human 

erythrocytes, fish erythrocytes contain a nucleus, which were easily visible here. In 

Figure 2.2 (A), ‘drumstick’ type cells are also evident and have yet to be identified. 

Epithelial cells from the skin of flounder are illustrated in Figure 2.3 (A). Good 

growth typified tissue explants from this organism. In this photograph, a ‘conduit’ 

type structure connects the explant to the outgrowth of cells. Few, if any, cells grew 

adjacent to the explant but stem from these ‘conduits’. Several conduits emerged 
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along the circumference of each explant. This phenomenon was observed in all 

successful flounder skin explant cultures.  

Figure 2.3 (B) shows epithelial and secretory cells from the pallial mantle of M. 

edulis. Epithelial cells are typified by the finger like projections stretching from the 

body of the cell while the secretory cells here are rounded in shape and contain many 

vacuoles. 

No obvious effect was observed on the larvae 10 minutes following exposure to this 

cocktail of enzymes, however by 40 minutes, some cells had dissociated from the 

larvae and movement of the trochophore larvae was reduced. At 50 minutes post 

exposure to the enzyme cocktail, the larvae experienced almost complete dissociation 

however trypan blue exclusion method confirmed the lack of viability at this stage 

(Figure 2.4). 
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 (A) 

 
 
 (B) 

 
Figure 2.25Erythrocytes which have migrated from spleen sections of O. mykiss (A) and P. flesus (B) 
following 8 days of incubation 

Bar = 50 µm.  
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Figure 2.36Migration of (A) epithelial-like cells from a skin explant of P. flesus (A) arise from 
‘conduits’ connecting the cells to the main explant and (B) epithelial and secretory cells migrating from 
a section of the pallial mantle of M. edulis. 

Images were taken following 8 days incubation. Bar = 50µm.  
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   (B) 

 
   (C) 

 
Figure 2.47A cocktail of Trypsin (0.5%), Pronase (0.15%) and Collagenase (0.1 %) equilibrated to 960 
osmol/kg was used in combination to dissociate P. maximus larvae. 

Larvae were observed 10 minutes (A), 40 minutes (B) and 50 minutes (C) post treatment 
(Bar = 500 µm) 

(A)
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Characterisation. 

Figure 2.5 shows the results from cell line characterisation using DNA analysis. 

Bands in lanes 1 and 10 correspond to amplification using salmonid DNA from 

rainbow trout and the CHSE-214 cells with the RT1 primers set which is specific for 

salmonids. Analogous bands in lanes 5 - 6 and 14 – 15 confirm the relationship 

between carp DNA and the EPC cell line. The absence of bands in lanes 2 & 3 

containing RT DNA and carp primer sets (-ve control for carp primer sets), lanes 4 

containing carp DNA and the RT1 primer set (-ve control for rainbow trout primer 

sets) and lanes 7-9 containing turbot DNA and the RT1 and carp primer sets confirm 

that there is no cross reactivity between any of the primer sets and DNA from other 

target species. 

The absence of bands appearing in 11, 12 & 13 also confirm that there is no cross 

contamination of the cell lines used in this study.  
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       RT DNA          Carp DNA         Turbot DNA      CHSE-214 DNA     EPC DNA 

 
Figure 2.58PCR amplification is used to characterise the CHSE and EPC cell lines used in this study. 

Presence of bands represents a positive reaction with DNA and respective primers. DNA 
samples were taken from the fish, O. mykiss and C. carpio and amplified using primer sets 
RT1 specific for O. mykiss (Lane 1) and C1 and C2 specific for C. carpio (Lanes 5 & 6). 
Lanes 2 and3 are negative controls to confirm that no amplification is possible with 
rainbow trout DNA and carp primers and vice versa. Turbot DNA was used as a negative 
control for all primer sets. DNA was extracted from cell lines and amplified using the same 
primers. The band appearing in Lane 10 confirms that this DNA does originate from 
salmonids. The bands found in lanes 14 & 15 confirm that the EPC cell line does originate 
from carp species. 
 

 

   1     2      3       4        5       6        7       8        9      10      11   12       13     14      15 
RT1  C1  C2     RT1   C1    C2     RT1   C1     C2    RT1   C1   C2     RT1   C1     C2 
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Immunocytochemistry 

CHSE and EPC cells stained with the cytokeratin primary antibody reacted positively 

as evidenced by the brown staining observed in Figure 2.6 (A) (CHSE-214 data not 

shown). In contrast, CHSE and EPC cells stained with vimentin did not react 

positively as shown in Figure 2.6 (B) (CHSE-214 data not shown). As expected, the 

positive control for epithelial cells (HPVG cells) reacted with cytokeratin and not 

with vimentin (data not shown), while the fibroblast positive controls (hTERT cells) 

reacted with vimentin but not with cytokeratin (data not shown). The above suggests 

that the fish cell lines investigated have epithelial morphology. 
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Figure 2.69EPC cells are stained for cytokeratin (A) and vimentin (B) which are necessary components 
in cytoskeletal structure associated with epithelial morphology. 

Bar = 50 µM 
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MtDNA amplification. 
 
The amplification of a control region of mtDNA from equal total DNA concentrations 

shown in Figure 2.7 show variations in the concentration of product generated 

depending on tissue type, exposure level and time harvested post-exposure. It is clear 

that amplification is more pronounced (and therefore mtDNA more abundant in the 

original cell population) in samples derived from gill and spleen DNA than from skin. 

Indeed there is very little observable difference in the amount of PCR product 

amplified from DNA found in skin. Generally, there is an increase in the DNA 

concentration with dose and time of harvesting post irradiation treatment. This is 

most apparent in the amplification of DNA from spleen samples. Increasing levels of 

amplified products are also evident in control samples especially in gill and spleen 

samples and to a lesser degree in skin samples.  
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           2 h                 48 h                 96 h 

(a)  M   C    0.5   5.0     C   0.5   5.0    C    0.5  5.0 

 
  (b)    

 
(c) 

 
(d) 

 
 

Figure 2.710Mitochondrial DNA PCR products from rainbow trout (a) skin, (b) gill, and (c) spleen 
tissues at 2 h, 48 h and 96 h following irradiation at 0.5 Gy and 5.0 Gy and corresponding PCR 
products from nuclear DNA based RT/DG primer set (d) serving as control. 
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RNA Quality 

Spectrophotometeric analysis of RNA samples (Table 2.3.) gives an indication of the 

quality of RNA extracted from tissue culture samples. The quality of RNA is 

determined by calculating the ratio value of absorbance at 260:280. The samples from 

sections of gill, skin and spleen tissues range from 1.76 – 1.88, 1.75 – 1.88 and 1.81 – 

1.90 respectively. Generally, these values are accepted as being that of high quality 

RNA and suitable for follow up molecular studies. 
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Treatment 

Gill Skin Spleen 

Control 1.88 ± 
0.02 

1.83 ± 
0.07 

1.89 ± 
0.03 

0.1 Gy 1.87 ± 
0.01 

1.77 ± 
0.04 

1.81 ± 
0.001 

0.5 Gy 1.88 ± 
0.03 

1.88 ± 
0.03 

1.90 ± 
0.02 

1.0 Gy 1.81 ± 
0.03 

1.78 ± 
0.04 

1.87 ± 
0.01 

5.0 Gy 1.76 ± 
0.13 

1.75 ± 
0.05 

1.88 ± 
0.01 

10.0 Gy 1.85 ± 
0.02 

1.84 ± 
0.02 

1.90 ± 
0.03 

Table 2.3 Average 260/280 ratios for RNA extracted from rainbow trout tissues using Qiagen RNA Mini 
Prep kit. 
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2.5 Discussion. 
Growth of Tissues 

Experiments in tissue growth to date suggest that primary cultures are achievable with 

most organisms tested. Tissues cultured are listed in Table 2.2. All tissues attempted 

have been successful in culture with the exception of the scallop (Pecten maximus) 

larval cells. It is difficult to generate quantitative data in primary tissue culture. 

Results are subject to the authors experience, opinion and discretion. The growth is 

generally irregular in shape surrounding the explant. The location of the explant may 

originate from a different region of the organ, even though efforts are made to 

standardize this, and the animals may be in different states of health or growth cycle 

prior to dissection. Achieving adequate surface area contact of the tissue to the tissue 

flask appears to be an important requirement for successful outgrowth. Once the 

tissue can attach to the flask, outward growth typically follows. Organs such as the 

gill tend to be particularly difficult to standardize due to their nature and shape. The 

tissue must have the cut face downward on the flask surface. While this is feasible for 

skin and spleen explants, gill explants are more difficult to dissect and mount in this 

way. This may be one reason why gill explants grow inconsistently and attachment is 

less predictable. The density of gill tissue further compounds these problems given its 

tendency to float in the culture medium thus delaying or preventing attachment to the 

flask floor. 

Skin explants were less successful when antibiotic washes were used following 

dissection. Techniques, which avoid using antibiotics in the preparation stages as 

opposed to the growing stages (i.e. in the medium) were generally more successful. 

Contamination was more common in invertebrate cultures, most likely due to the 
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nature of the animals as clams and mussels inhabit difficult environments and as filter 

feeders, concentrate many microorganisms.  

Earlier workers, especially Mulford et. al. (2000), showed that the more suitable 

media for teleosts and shellfish are RPMI and Leibovitz L-15 respectively which 

concurs with this study. However, Kilemade 2003 (Personal communication) has 

suggested that growth is also achievable using various mixes of commercially 

available media. It is important, particularly with invertebrate cultures that the 

osmolarity of the media are regulated to equilibrate with levels found in the 

haemolymph of shellfish.   

There are several difficulties relating to the culture of invertebrates in particular the 

contamination problem. The other main difficulty is with the passaging of these 

cultures. No cultures have been passaged to date. The author considered that media 

change rather than reseeding on new flasks would be more beneficial in preliminary 

experiments.  

In theory, the targeting of larval cells for the development of viable cell cultures is 

compelling. Larval cells are at a high growth phase following embryogenesis. 

Doubling occurs at optimum levels and is visible under magnification. The eggs and 

sperm may be held in sterile conditions prior to fertilisation and steps involving 

dissociation may be carried out with minimum effort or treatment. Furthermore, all 

cells generated from the larvae are stem cells which, some suggest, are easier to grow 

and may be more suitable for cell line development. There are a number of drawbacks 

including the difficulty of sourcing and maintaining larvae. Larval culture requires 

specialised preparation and training. Often, the location of shellfish larvae culture 

operations are in remote locations making it difficult logistically. 
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As shown in Table 2.2, growth was not achieved for scallop larval cell cultures. There 

may be a number of reasons for this. Firstly, this experiment could only be carried out 

once. Few are in a position to perform a similar experiment given the time, facilities 

and expertise required. Takeuchi et al. (1995) and Le Marrec et al. (1995) have 

carried out similar work on mussels and oysters respectively. More work would be 

needed to optimise dissociation and growing conditions for the use of larvae in cell 

culture experiments. 

Tissue dissociations using a variety of enzymes (trypsin, pronase and collagenase) in 

various combinations were used. It may be that dissociation time and enzyme 

concentration were too extreme. Figure 2.4 shows the effects of a combination of 

trypsin, pronase and collagenase on scallop larvae over 10, 40 and 50 minutes, where 

the dissociated cells at 50 minutes were tested for viability and found to be dead. 

Perhaps a number of extra wash steps following dissociation treatment would have 

prevented this, or indeed the narrow window of opportunity lay between the 40 and 

50 minute time periods.  

Contamination was pronounced and steps taken to eliminate this with antibiotic 

treatment may have been too severe on such early cell stages. Marine invertebrate 

larvae are notoriously sensitive to low levels of toxin. Certainly both antibiotic 

treatment and dissociation enzymes are toxic for these organisms. Mechanical 

dissociation, although prone to contamination is probably the best approach for this 

reason. Alternative approaches including fertilisation in sterile seawater and 

subsequent rinsing in sterile seawater prior to culture is recommended. Given that the 

access to larvae is limited, more resources are required to conduct tissue culture trials 

with larvae than other species.  

Characterisation. 
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The molecular analysis combined with immunocytochemistry for the characterisation 

of cell lines was found to be an adequate and convenient approach here. More 

sophisticated molecular analyses can be performed which could focus these results 

further if necessary. The combination of both techniques complements each other in 

that the molecular analyses confirm the organism from which the cells are derived 

while the staining technique confirms their epithelial nature. 

Semi-Quantitative Mitochondrial Genome Frequency Analysis 

The effect of radiation on mtDNA transcription as may be observed in Figure 2.7 

indicates differences in the initial quality/quantity of DNA. The products generated 

confirm that these differences are not only associated with the different exposures but 

also with the different tissue types. The nuclear associated products in Figure 2.7 (d) 

are low in intensity but constant throughout the tissue types confirming that equal 

total DNA was added to each PCR reaction. In contrast, the amplified bands in the 

treated gill and spleen samples are more intense than in skin. The distinct increase in 

band intensity with increasing dose in gill and spleen indicates an increase in the 

proportion of mtDNA in the starting sample. However this increase in intensity is not 

found in the skin samples indicating no effect of radiation on that organ. This concurs 

with earlier work which shows that mitochondria in skin tissues and the skin tissue in 

general is least sensitive in comparison to the other two tissues (26). The increase in 

the levels of amplified products in the control samples over time suggests that the 

disturbance of the tissues associated with these experiments and the culture in vitro 

initiates an increase in mitochondria production even in non-irradiated samples.   

RNA Quality 

We extracted RNA in this study so as develop a gene expression assay to identify 

toxic stress, in this case from γ radiation. Fundamental to the development of such 
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assay, is the ability to isolate quality RNA from the cultured tissue samples. The 

average 260/280 ratios shown in Table 2.3 suggest that the quality of the RNA range 

between 1.75 and 1.90 for gill, skin and spleen tissues. It is generally accepted that an 

OD ≥ 1.8 and ≤ 2.0 is indicative of good quality RNA. The fact that good quality 

RNA can be retrieved from tissues which are subjected to in vitro tissue culture 

followed by radiation exposure is a reflection of the robustness of RNA in this case.  

To conclude, the development of in vitro fish and shellfish models for use in aquatic 

eco-toxicology studies was a worthy exercise however several limitations and barriers 

to their development persist. Among these, the development of reliable cultures of 

both cell lines and tissue cultures is the primary. While cell lines are easily 

characterised and offer many opportunities in the field of eco-toxicology, presenting 

applications in areas such as spectroscopy and flow cytometry, the literature suggests 

that tissue cultures are more true to their original structure, function and genetics. 

While we demonstrate that tissue cultures can be initiated and are sustainable in vitro, 

for periods adequate for bioassay, many can be unreliable with some tissues not 

attaching to the flasks for a variety of reasons. In this study we show that the 

establishment of attached tissue cultures need not be necessary for the development of 

bioassays and alternatively, demonstrate that the tissue culture aspect can facilitate a 

‘holding and treatment’ facility rather than a bioassay in itself. We show that quality 

DNA and RNA can be isolated from tissue cultures following this approach for 

further molecular analyses such as mitochondrial sequencing and associated gene 

expression studies. Consistently successful tissue cultures were achieved from 

rainbow trout, flounder and to a lesser degree mussel. Furthermore, the use of 

molecular techniques, coupled with immunocytochemistry techniques combine well 

to confirm identity and characterise cells in culture. 
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3.1 Abstract. 

O’Dowd, C., Mothersill, C.E., Cairns, M.T., Austin, B., Lyng, F.M., McClean, B. and 

Murphy, J.E.J. Assessing the mitochondrion as a biomarker of fish tissue damage 

using γ radiation as a stress model in vitro. 

There is an ever-increasing need for biomarkers to identify toxic stress in the aquatic 

environment. Such techniques need to be accurate, expeditious, ethical and 

economical. Typically, in vitro based platforms fit these criteria however many of 

these systems often undergo ‘assay drift’ and consequently do not fully represent the 

real-life situation.  

In recent years, there has been growing interest in the mitochondrion and its 

(dys)function or altered function and dynamics as a marker of toxic assault. The 

mitochondrion is an essential organelle in the cell and is associated with energy 

production and metabolism in the organism as it is the site of oxidative 

phosphorylation (OXPHOS). It has its own genetic material which is more 

susceptible to damage than nuclear DNA (nDNA) due to its proximity to the site of 

OXPHOS, the absence of introns, the lack of a protective histone coat and effective 

repair mechanisms which are present in nDNA. Stress responses including increases 

in mitochondrial mass and alteration in the activity of proteins associated with 

OXPHOS have been reported and offer potential as putative biomarkers of toxicity. 

In this study, we used real-time PCR to identify alterations in mitochondrial genome 

copy number in cultured fish tissues exposed to γ radiation. These values were 

compared to the activity of the citrate synthase enzyme, an established marker of 

mitochondrial mass in cells. Results show that while this approach is appropriate and 

the technique is robust, expeditious and straightforward, further development is 

required to yield greater enhancement and sensitivity. 
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3.2 Introduction. 

Developing environmental biomarkers systems which are expeditious, accurate, 

economical and ethical continues to be a huge area of interest in the scientific 

community. This is mainly due to continuous amendments to legislation, greater 

complexity of pollutants and increased pressure on the aquatic environment. While in 

vitro systems, based on cell lines, would appear to satisfy many of the above criteria, 

they can be susceptible to ‘assay drift’ (1 - 3). Hence these may not truly represent the 

trophic structures and complexities which exist in the aquatic environment and which 

to date, had been served well by batteries of live organisms representing a wide range 

of trophic levels. 

Aside from the economic cost of maintaining the large numbers of organisms 

required for meaningful results, the ethical and legislative considerations associated 

with live animal experiments further incentivises the development of viable 

alternatives. Many molecular scientists are targeting functions and cellular processes 

in various organisms which identify toxic stress. Several have identified the 

mitochondrion as a potential candidate for this. The mitochondrion is found in almost 

all cells of eukaryotic species including plants and animals. It is a polymorphic 

organelle responsible for the majority of energy production in the cell. The 

mitochondrion has its own genome and is able to replicate, transcribe and translate its 

own DNA independent of the nDNA. However, mitochondrial and cellular functions 

are interdependent. The mitochondrial genome has the translational capabilities for 13 

of the 87 proteins necessary for OXPHOS. Other proteins necessary for this function 

are synthesised in the cytosol and imported into the mitochondrion (4, 5).  

More recently, the importance of the mitochondrion in other functions within the cell 

including its central role in apoptosis has been recognised (6). Energy is stored in 
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cells by means of high-energy phosphate bonds, formed in molecules of adenosine tri 

phosphate (ATP). ATP is converted from adenosine diphosphate (ADP) by the 

addition of a phosphate group. This occurs anaerobically in the cell cytoplasm via 

glycolysis and more efficiently through the aerobic process of OXPHOS in the matrix 

of the mitochondrion (7, 8).  

Irregular mitochondrial function and/or dysfunction and mtDNA damage is 

associated with aging, age-related disorders, cancer and a growing number of other 

common metabolic and neurological disorders (9-11). While many of these disorders 

are transferred genetically through the maternal lineage, many others are associated 

with dysfunction following exposure to toxins. The mitochondrial genome has no 

protective histone coat and the mtDNA polymerase γ has no proof reading capability 

polymerases associated with nDNA (12). This is compounded by the absence of 

introns and proximity to free radical production (13). 

Mitochondria and more specifically mtDNA are typically heteroplasmic. The 

organelle contains several copies of its genomic DNA which are often not identical to 

each other, as one would expect. Typically the degree of heteroplasmy is an indicator 

of the damage of some toxic event past or present. Heteroplasmy enables the 

mitochondria to sustain normal function until a threshold level of mutation is reached. 

Hayashi et al., (1991), demonstrated that the threshold level for mutant DNA is 60% 

and this is sufficient to inhibit overall mitochondrial function (14). There are tissue 

specific differences in the threshold levels which can exist without clinical effects 

emerging (15, 16). Tissues with higher energy demand such as muscle and nervous 

tissue have a lower threshold level and explains why most mitochondrial diseases 

occur or present first in these tissues.  
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It is therefore becoming apparent, that while mitochondrial (dys)function may be 

studied to identify associations with disease in humans, they may also be utilised as 

biomarkers to indicate toxic stress in other organisms (17, 18).  

The mitochondria react quickly to changing energy demands within a cell and support 

the organ by increasing in number, increasing IMM folding and increasing OXPHOS 

turnover (4). Mitochondrial biogenesis is controlled by at least two significant 

synchronized signalling mechanisms. Firstly, increases in the levels of calcium in the 

cell activates the calcium-calmodulin kinase (CAMK) enzyme which is associated 

with the expression of proteins necessary for mitochondrial biogenesis including 

NRF-1, NRF-2, PGC-1 and mitochondrial transcription factor A (mtTFA) (19). 

Secondly, a reduction in the cellular concentration of high energy phosphates 

including ATP and phosphocreatine are necessary for mitochondrial biogenesis (20). 

This is linked to the activation of 5′-AMP activated protein kinase (AMPK), an 

enzyme closely related to CAMK which stimulates the other proteins necessary for 

biogenesis (21, 22). Indeed Lyng et al. (2006) identified calcium flux in cells exposed 

to irradiated cell conditioned medium (ICCM) in HPV-G cells within 30 min (23).  

Notably, mitochondria have been reported to modify their activity and position within 

the cell based on energy requirements or exposure to stress including radiation, toxins 

and hypoxic conditions (21, 24 - 26).  

It has also been reported that mitochondrial numbers can be increased by radiation 

(27, 28). More recently, Nugent et al. (29) identified increased levels of 

mitochondrial activity following exposure to both direct and bystander medium in 

human cell lines 

In this study, we hypothesise that alterations in the numbers of mtDNA relative to 

nDNA can be used to identify exposure to toxic stress in fish tissues. In an effort to 
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develop a bioassay based on altered mtDNA levels, we excised sections of rainbow 

trout, Oncorhynchus mykiss gill, spleen and skin tissue and examined the ratio of 

mtDNA nDNA in control and irradiated sections using real time PCR. Results are 

compared to relative mitochondrial mass levels.  

3.3 Materials and Methods. 

Rainbow trout (Oncorhynchus mykiss) of ≅ 200 g average weight were collected at a 

Rafford commercial trout hatchery in Galway, Ireland. Fish were sacrificed in 

accordance with guidelines approved by the Dublin Institute of Technology Ethics 

Committee, i.e. involving an overdose of anesthesia. 

Tissue Explant Preparation and Irradiation 

Gill, skin and spleen tissue explants were excised from rainbow trout immediately 

post mortem. Tissue sections were mounted in T-25 tissue culture flasks (Sarstedt, 

Germany) containing 5 ml MEM (Minimum Essential Medium) (Sigma-Aldrich) 

supplemented with 10% (v/v) foetal calf serum (Gibco Biocult, Scotland), 2 mM L-

glutamine (Gibco Biocult), 40 IU/ml penicillin/streptomycin (Gibco Biocult), 30 mM 

Hepes buffer (Gibco Biocult), and 1% (v/v) non-essential amino acids (Gibco 

Biocult). Flasks were incubated overnight at 20oC to allow explant attachment. 

Explants were then exposed to either 0 Gy, 0.5 Gy or 5 Gy radiation from a 60Co 

teletherapy unit (St. Luke’s Hospital, Rathgar, Dublin 6, Ireland) using a dose rate of 

1.8 Gy/min at a source-to-flask distance of 80cm. Explants were removed from the 

flasks 2hr, 48hr or 96hr post irradiation and stored at -20oC. 

DNA Isolation, Quantification and Analysis 

DNA was isolated from fish tissues using the GenElute Mammalian Genomic DNA 

Kit (Sigma Aldrich). The DNA was quantified to confirm adequate yield using a 

Biotech Ultraspec 3000 UV/Visible spectrophotometer (Pharmacia, Stockholm) 
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measuring at 260 nm. The 260 nm:280 nm ratio was also measured to confirm DNA 

quality. Samples were then standardised to 10 μg/ml using molecular grade water. 

Restriction Fragment Length Polymorphism (RFLP) Analysis 

Restriction fragment length polymorphism (RFLP) analysis was carried out on PCR 

products RT1 – RT7 and RTD1. These primer sets had been designed and confirmed 

to amplify the entire rainbow trout mitochondrial genome (Table 1). RFLP analysis 

can detect differences in amplified homologous sections of DNA based on size 

differences when these sections are cut using restriction enzymes. The sequences 

generated by the primer sets were entered into the NEBcutter restriction mapping 

program (30) together with a list of restriction enzymes available in the laboratory 

Restriction digests consisted of;- 

PCR Product Sample   10 μl 

Restriction Enzyme   1 μl 

Appropriate Buffer   3 μl 

Dist. Sterile H2O   6 μl 

The samples were incubated at 37oC for 20 h. Restricted bands were visualised using 

the Gene Genius Bioimaging System (Syngene, UK).  
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Primer Sequence 
Origin 

Start bp Prod. Size 
(bp) 

Sequence 

RT 1 (F) Rainbow trout 
mitochondria 

437  atccttaagaaaccagcccc 

RT 1 (R) ‘’ 3031 2595 gttttgatttgcaagaggcg 
RT 2 (F) ‘’ 2338  aactttagtttaggcccccg 
RT 2 (R) ‘’ 4923 2586 atctcttgaggatgggttcg 
RT 3 (F) ‘’ 4768  catttagcacttcccatcgc 
RT 3 (R) ‘’ 7336 2569 tgggctcaaacgataaatcc 
RT 4 (F) ‘’ 7170  ttttgattcttcagccaccc 
RT 4 (R) ‘’ 9729 2560 aggcttgaatcatggctacg 
RT 5 (F) ‘’ 9546  attagcctttttatccgccc 
RT 5 (R) ‘’ 12138 2593 aggccaaaacaataaagggg 
RT 6 (F) ‘’ 11920  aactgtgatgagctgcctgc 
RT 6 (R) ‘’ 14518 2599 gaagttatgtagtgtaagggttggg 
RT 7 (F) ‘’ 14355  cctcaaacttcctacccacc 
RT 7 (R) ‘’ 276 2564 ggagcccgtgttaattgg 
RT 1A RT Mito D-loop 16559  accctccctagtgctcagcgagagg 
RT 1B 1-1003bp 1020 1104 agttaagctacgtcagcggcgg 

Table 3.14Primers for amplicons used in RFLP analysis of the rainbow trout mitochondrial genome, 
the starting location and the amplified product size expected. The combined products amplified by 
these primers will generate the entire mitochondrial genome of rainbow trout. 



 100

Single Strand Conformational Polymorphism (SSCP) Analysis 

Single Strand Conformational Polymorphism (SSCP) analysis was carried out on 

products amplified which comprise the entire mitochondrial genome. Following 

restriction of the products as described above , an equal volume of SSCP loading 

buffer (95% Formamide, 20 mM EDTA, 0.05% xylene cyanol, 0.1% bromophenol 

blue, adjusted to pH 7 using NaOH) was added to the restricted products in an thin-

walled Eppendorf tube.  

The DNA samples were then denatured into single stranded products by boiling for 

10 min. The samples were immediately placed in ice to cool quickly. This prevented 

the DNA from re-annealing into double stranded product. The samples were then held 

at –20oC until required for running on a polyacrylamide gel.  

The polyacrylamide gel solution was prepared using 20 ml of 30% acrylamide, 7.5 ml 

10X TBE, 40 ml sterile distilled water, 7.5ml 50% glycerol and 500 µl ammonium 

persulphate (NH4SO4). Glass plates with 3mm spacer bars and a comb were cleaned 

thoroughly, assembled and clamped together. 1% agarose was used to seal along the 

outside of the spacer bars to avoid any leakage of polyacrylamide. Just prior to 

pouring the gel solution 62.5 µl of TEMED was added. The gel was submerged in 1x 

TBE buffer prior to removing comb leaving intact wells in place. Fifteen µl of each of 

the single strand samples containing loading buffer were loaded into each well. The 

gel was run overnight (~16 h) at 16 mA.  

To develop the gel, impregnation solution (1g AgNO3, 1.5 ml 37% HCOH, made up 

to 1l with ddH2O), developing solution (30 g Na2CO3, 1.5 ml 37% HCOH, 2 mg 

Na2S2O2 made up to 1l in ddH2O) and acetic acid (10%) solution were prepared and 

chilled on ice. The gel was placed in a shallow tray containing acetic acid and 

agitated for 20 min to fix. The gel was then and placed in ice cold impregnation 
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solution for 30 min. The gel was briefly rinsed and placed in developing solution until 

bands appeared (~5 min). The gel was then fixed by immersion and agitation in acetic 

acid for 2-3 min prior to visualisation and documenting using the Gene Genius 

Bioimaging System. 

 

Real-Time PCR 

Table 2 shows the details of all primers used in this study. The efficiency of each 

primer set (E) was determined by inclusion of a dilution series of template DNA in a 

PCR reaction containing 1x SYBR Green Master Mix (Qiagen, Germany) and 0.5 

µM of both forward and reverse primers [Table 2]. An mtDNA and an nDNA primer 

set are used in the study to identify the relative levels of mitochondrial to nuclear 

genomes following toxic assault.  



 102

 
Primer Amplicon 

(bp) 
Efficiency Sequence  

RT5 Fwd 183  attagcctttttatccgccc 
RT4 Rev  1.92 aggcttgaatcatggctacg 
RT18S Fwd 285  gttccgaccataaacgatgc 
RT18S Rev  2.10 gctccaccaactaagaacgc 

Table 3.25The primers used in this study for the amplification of mitochondrial and nuclear DNA show 
the amplicon size and the level of efficiency of the reaction using real time PCR. 
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Relative expression values were calculated following the mathematical expression 

[ENuc
(Ct Nuc) / EMito

(Ct Mito)] x 4. This equation was formulated to express the number of 

mitochondrial genome copies relative to nuclear genomes in tetraploid species such 

as salmonids, and to which rainbow trout belong.  

Citrate Synthase Analysis  

170 μl of 10 mM TRIS Buffer, 2 μl 15 mg/ml Acetyl CoA, (20 μl 2 mg/ml 5’5’-

dithio-bis-(2-nitrobenzoic acid (DTNB) and 5 μl tissue homogenate were equilibrated 

to 30 oC. 5 μl 10 µg/ μl Oxaloacetic acid was added and the rate of absorbance change 

recorded at 412 nm for 5 min in a temperature controlled Helios scanning 

spectrophotometer (Thermo Scientific, MA, USA). Protein concentration of each 

sample was quantified using the Bradford Assay (Bradford, 1976). Citrate synthase 

(CS) activity was calculated as nmoles/min/mg protein using the equation A = ecl 

(ε412 = 13.6 nM-1 cm-1) to convert ΔA/min to nmoles per min. 

Statistical Analyses 

Data are presented as the mean values ± standard errors of three independent 

experiments incorporating at least three replicates per experiment. All statistical 

analyses were carried out using the SigmaStat software package (SPSS Inc.). 

Significance was determined using the Student’s t-test and differences were 

considered significant if p ≤ 0.05.  

3.4 Results 

Restriction Fragment Length Polymorphism (RFLP) Analysis 
 
Products amplified, using the mtDNA based RT3 primer set are shown in Figure 1 

below as a representative of all RFLP results. Here, the RT3 amplicons for each tissue 

type were restricted using Ava I endonuclease to identify if mutations in the 

mitochondrial genome of rainbow trout following radiation could be identified. This 



 104

was carried out on DNA samples isolated from control and irradiated tissue explants 

cultures of skin, gill and spleen. Restricted products of 1129 bp, 1032 bp and 408 bp 

shown in the gels appear to be similar in size and intact, indicating either the absence 

of any damage to this region of the mtDNA or the inapplicability of this technique.  
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Figure 3.11RFLP analysis of the RT3 product amplified from (a) gill, (b) skin and (c) spleen tissue 
cultures of rainbow trout and restricted using AVA 1 restriction enzyme into 1129bp, 1032bp and 
408bp fragments. Lanes 1-9 represent treatments at 0 Gy, 0.5 Gy and 5 Gy at 2 hours, 48 hours and 96 
hours respectively. 
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Single Strand Conformational Polymorphism (SSCP) Analysis 
 
The banding in gels shown in Figure 2 represents single strand DNA sections. The 

gels in shown Figure 2 (a), (b) and (c) do not identify any polymorphisms, and are 

representative of the SSCP analyses carried out on the rainbow trout tissue culture 

samples. There are no obvious polymorphisms, indicative of damage to the mtDNA 

in the irradiated tissues.  
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Figure 3.212Polyacrylamide gels with banding for single strand conformational analysis of rainbow 
trout (a) gill, (b) skin and (c) spleen tissue cultures following exposure to radiation. Lanes 1-9 represent 
treatments at 0 Gy, 0.5 Gy and 5 Gy at 2 hours, 48 hours and 96 hours respectively. 
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Real-time PCR 
 
Real time PCR determined the number of mitochondrial genomes per cell. Generally, 

gill and skin tissues had a greater number of mitochondrial genomes per cell than 

spleen. The highest relative copy number (28.9) of mitochondrial genomes per cell 

was found in gill tissues exposed to 5 Gy and sampled 48 hours post exposure. 

Conversely, the lowest relative copy number (2.2) was observed in skin tissues 2 

hours post exposure to 0.5 Gy dose [Figure 3].  

The relative copy number of mitochondrial to nuclear genomes in each tissue type 

varied considerably depending on exposure and time of analysis post exposure. 

Control samples from all tissues vary in levels of mitochondria relative to nuclear 

over time. There was a general increase in the relative copy number found in control 

samples from the 2 hour time point to the 48 hour time point. Little change was 

observed in the relative copy number in control samples between 48 hour and the 96 

hour time point.  

There was a significant increase in the relative mitochondrial levels in gill at 2 hours 

with increasing dose. If incubated for 48 hours, this increase was only maintained in 

the 5 Gy dose with no change at the 0.5 Gy dose. If incubated for 96 hours, this effect 

became more prominent with a significant decrease in mitochondrial genomes at the 

0.5 Gy dose and a significant increase at the 5.0 Gy dose. 

In skin, this effect was observed at the 2 hour time point. The 0.5 Gy dose exhibits a 

significant decrease in mitochondrial genomes and the 5.0 Gy dose a significant 

increase following the treatment. There are significant decreases in the relative 

mitochondrial numbers in skin tissues at 48 hours and 96 hours when compared to 

controls. 
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There is only one significant change in the relative copy number of genomes in spleen 

tissues. This increase occurs after incubation at 48 hours in tissues exposed to 5 Gy 

radiation. 
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Figure 3.313Real time PCR results showing the relative copy number of mtDNA genomes per cell in 
rainbow trout gill, skin and spleen tissues exposed to 0 Gy, 0.5 Gy and 5.0 Gy radiation and incubated 
for 2 hours, 48 hours and 96 hours following the radiation exposure. The calculations are based on the 
equation outlined in Pfaffl (2001) [ENuc

(Ct Nuc) / EMito
(Ct Mito)] x 4 and multiplied by four to account for the 

tetraploid nature of rainbow trout. * denotes P ≤ 0.05, ** denotes P ≤ 0.005 
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Citrate synthase activity is generally higher in gill and skin tissues than in spleen 

tissues [Figure 4]. The highest level of CS was recorded in skin tissues exposed to 0.5 

Gy radiation and analysed 48 hours following this exposure. Conversely, the lowest 

level was observed in the control spleen samples for the 96 hours post exposure 

treatments. 

While CS data generally correlates with the data found in the relative copy number of 

genome data for these tissues, few correlations exist between both sets of data.  

An exception to this was observed in gill tissues analysed 48 hours post exposure. 

Here, a significant increase in CS and relative mitochondrial genome copy numbers 

correlate. Generally, there is a decreasing trend of CS activity in all tissues from 2 h 

post exposure to 96 hours post-exposure.  

In gill samples 2 hours post exposure, CS levels decreased significantly following a 

0.5 Gy exposure. Conversely, at the 48 hours time point post exposure, a significant 

increase in CS level was observed in the 5.0 Gy samples. 96 hours post exposure, a 

dose response-type effect was observed with significant increases in CS levels 

following 0.5 Gy and 5.0 Gy exposures.  

The skin samples exhibited a converse effect. There was a significant increase in the 

level of CS in skin exposed to 5.0 Gy 2 hours post treatment. There was also a 

significant increase in CS in the samples exposed to 0.5 Gy 48 hours post exposure.  

The spleen samples exhibited the a dose dependent response type trend with 

increasing CS levels at both 2 hours and 96 hours following exposures. There was no 

change of CS levels in spleen tissues at 48 hours. 
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Figure 3.414Citrate Synthase activity levels found in fish gill, skin and spleen tissue cultures exposed to 
radiation at 0 Gy, 0.5 Gy and 5.0 Gy gamma irradiation and analysed 2 hours, 48 hours and 96 hours 
post exposure. 
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3.5 Discussion 

The mitochondrion, given its significance within the cell is theoretically an ideal 

candidate for applications in the area of biomarker development. It is a distinct 

organelle associated with the majority of energy production within the cell. While it is 

only responsible for 13 of the estimated 87 proteins necessary for OXPHOS, any 

functional defects within the mitochondrial fraction elicit detrimental effects in the 

OXPHOS process. Furthermore, the phenomenon whereby toxic exposure increases 

the level of mitochondrial activity can be assessed using PCR technologies. Equally, 

by focusing on an organelle as ubiquitous as the mitochondrion, biomarker systems 

based on tissue culture platforms of a vast range of species can be utilized. This 

facilitates the reduction of live animal experiments by increasing the number of 

sections which can be assessed for mitochondrial dysfunction following toxic assault.  

In this study, analysis of the entire mitochondrial genome is carried out using primers 

to amplify consecutive sections of DNA. In theory, RFLP analysis should show 

differences in size based on mutations occurring in the double stranded mitochondrial 

DNA. However, in this study, no such mutations or size differences existed indicating 

that either radiation does not adversely affect DNA in the fish tissue sections tested 

here or that the technique is not robust enough to identify these modifications.  

Single strand conformational analysis is a similar approach but assesses DNA which 

has been denatured into single strands and is a more specific technique for identifying 

mutations. The banding patterns found in both RFLP and SSCP analyses in this study 

show no obvious deletions or mutations arising from radiation. The fact that a high 

level of radiation (i.e. 5 Gy) is used certainly questions the appropriateness and 

suitability of using these techniques to assess damage to DNA in fish tissue cultures. 

At such high exposures, damage would be expected.  
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The result based on RT PCR in this study identify cells of rainbow trout gill and skin 

tissues as having similar level of mitochondrial content and that these tissues show 

mitochondrial levels considerably higher than that found in spleen. High levels of 

mitochondria correlate with increased metabolic activity in the cell, replicating their 

DNA and dividing principally in response to energy needs rather than in synchrony 

with the cell cycle. These results would concur with this phenomenon. Increased 

levels of CS found in gill and skin would support this model – tissues with increased 

energy demand such as skin and gill in fish contain higher mitochondrial numbers. 

Indeed while the spleen plays a vital role in the generation of blood cells in rainbow 

trout, the energy required by tissues which are exposed to the environment may 

expend energy for continuous regeneration and maintenance. Gill and skin also 

function in oxygen and solute transport into and out of the organism, functions likely 

to require considerable energy. These results also concur with the citrate synthase 

levels at the control time point which is an established marker of active mitochondria. 

Inconsistencies do emerge from these results over time and following irradiation. The 

highest and lowest levels of mitochondrial content recorded using the RT-PCR data 

was gill and skin. These values were achieved in tissues following irradiation at 5 Gy 

at the 48 hour time point and 0.5 Gy at the 2 hour time points respectively. However, 

the levels of mitochondrial content in gill and skin were, overall, higher than those 

found in spleen thus supporting evidence found by others. 

Mitochondrial content, based on RT-PCR results from gill tissue samples, increase 

from the low at 2 h control. In gill and skin tissue a distinct ‘U’ shape pattern appears 

especially the 2 hour time point (skin) and the 96 hour time point (gill) suggesting 

that lower levels of radiation reduce the levels of mitochondrial content while higher 

levels are stimulatory. It may suggest that fish skin and gill tissue cultures exposed to 
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high dose may require increased levels of mitochondria to enter apoptosis. Another 

possibility could be that mitochondria must be increased in the toxic environment to 

dilute out significant damage to its genome, in the absence of other protective 

mechanisms. It is clear from these results that different tissue specific responses exist 

following direct exposure to radiation – spleen tissues exhibiting a different response 

to both gill and skin tissues.   

In any case, an interesting dose effect pattern may exist where mitochondrial content 

is inhibited at relatively low radiation doses and stimulated at high doses. While not 

significant throughout, the pattern observed in the citrate synthase data at the 2 h and 

48 h time-points supports the RT-PCR data in this regard. In nuclear DNA, a 

radiation dose threshold is proposed by some where repair mechanisms intervene if 

the damage is not significant and apoptosis is activated if the damage is deemed to be 

too extensive to repair efficiently (31). In the case of mitochondrial DNA, could an 

opposing mechanism exist whereby there is a mitochondrial termination event at low 

dose and an amplification of biogenesis following high dose? Certainly one of the 

main mechanisms open to the mitochondrion for the prevention of transfer of 

damaged mtDNA is the ‘dilution effect’ where increased biogenic activity reduces the 

possibility of defective mtDNA being transferred intra-generation. 

 

Subsequent time-points show decreasing levels of the mtDNA genomes relative to 

nuclear genomes. While no significant differences exist, the CS activity for skin at the 

2 h time-point broadly corresponds to these data, supporting the notion that a similar 

result is achieved albeit possibly via a different mechanism in skin. Certainly, others 

have found that melanin, which is abundant in fish skin tissues, modifies the effects 

of radiation considerably (32). However, given the extensive nature of the significant 
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differences found in skin tissues at all-time points, the RT PCR data would not 

support this view. Conversely, while the spleen RT PCR data is less conclusive the 

clear dose response patterns observed in CS activity at 2 h and 96 h for spleen suggest 

that the tissue may be sensitive to the effect of radiation.  

To conclude, while the results in this study are not conclusive there are considerable 

similarities in the patterns of response between the RT PCR data and the CS data. 

This suggests that primers designed in this study for rainbow trout are useful to a 

certain degree for the monitoring of mitochondrial DNA copy number following 

exposure to toxic doses of radiation. Further refinement may be useful in this regard. 

However the approach which focuses on the mitochondrial biogenesis as a marker of 

toxic stress facilitates the application in in vitro technologies and also maintains a 

close /direct link with the organisms which suffer from exposure to the toxins. The 

application of real time PCR introduces accuracy, speed and simplicity to the assay 

process. Using this technology, an assessment of the relative number of mitochondria 

can be assessed. We show that, similar to those results found in other cell lines and 

organisms, by increasing toxic exposure, through radiation in this case, positively 

affects the numbers of mitochondria relative to nuclear. Essentially, stressed tissues 

produce more mitochondria in a reaction. This facilitates the tissues to overcome the 

exposure with adequate intact and functioning mitochondria. RT PCR results in this 

study suggest that tissues in rainbow trout vary in the levels of mitochondria 

depending on a number of factors. These include tissue type, time post dose and dose 

intensity. This is supported by earlier work where we saw tissue specific differences 

following exposure to radiation. 
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4.1 Abstract. 

The bystander response has been documented in cell lines and cell cultures derived 

from aquatic species over the past number of years. However, little work has been 

undertaken to identify a similar bystander response in tissue explant cultures from 

fish. In this study, indirect effects of ionising γ radiation on tissue explant cultures of 

fish were investigated. Tissue explants in culture were exposed to 0.5 Gy and 5.0 Gy 

γ radiation from a Co60 teletherapy unit. A bystander response in Epithelioma 

papullosum cyprini (EPC) cells exposed to γ irradiated tissue conditioned media from 

rainbow trout explants was investigated and the effects on cell survival quantified by 

the clonogenic survival assay. Dichlorofluorescein and rhodamine 123 fluorescent 

dyes were used to identify alterations in reactive oxygen species (ROS) and 

mitochondrial membrane potential (MMP), respectively. Results indicate a different 

response for the 3 tissue types investigated. Clonogenic assay results vary from a 

decrease in cell survival (gill) to no effect (skin) to a stimulatory effect (spleen). 

Results from fluorescence assays of ROS and MMP show similarities to clonogenic 

assay results. This study identifies a useful model for further studies relating to the 

bystander effect in aquatic organisms in vivo and ex vivo.  
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4.2 Introduction. 

The ‘bystander response’ is a phenomenon whereby non-irradiated cells exhibit 

radiation-like responses when in the vicinity of irradiated cells, or exposed to growth 

medium transferred from irradiated cells. The effect may manifest as a reduction of 

surviving cells exposed to the conditioned medium resulting from induction of 

apoptosis, genomic mutation or instability (1, 2, 3). The significance of this effect can 

only be truly evaluated, in terms of risk assessment to patients or regulation of 

exposure levels, by investigating the bystander response in vivo. Mothersill et al. (4) 

studied the bystander effect in vivo in murine bladder epithelium. Studies attempting 

to address this problem have also exposed ex vivo tissue explants of human 

urothelium to irradiation and transferred the culture media to a stable cell line with a 

defined response to bystander factors (5). Variations in the level of response were 

noted depending on a number of factors including genetic background, gender, 

smoking status and existence of bladder malignancy (5). A previous study by 

Mothersill et al. (6) demonstrated that while irradiated human epithelial cells inhibit 

clonogenic survival in unirradiated cells, a similar experiment using irradiated human 

fibroblasts (MSU-1) showed no effect. The existence or amplitude of the bystander 

response is therefore not ubiquitous in all cell or tissue types. Indeed while many 

focus on toxic bystander effects, several accounts of stimulatory and adaptive effects 

are also seen in the historical literature (7-12).   

Due to an increased concern about effects of radioactivity on non-human 

species, several studies have investigated the in vivo and in vitro responses to direct 

radiation on mammals, plants and fish. These have been reviewed by Real et al. (13) 

as part of the development of a framework for the assessment of the environmental 

impact of radiation. It is clear from this that a considerable amount of work has been 
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carried out fish radiobiology. Most of the work relates to acute exposures of fish to a 

variety of sources including γ radiation. Real et al. (13) reviewed 34 studies relating 

to chronic or low level exposures evenly distributed between freshwater, marine and 

anadromous species. Most of these relate to reproductive studies which targeted the 

most sensitive embryonic stages. Of these, data suggest that dose rates of <4 x 103 

μGy h-1 of γ radiation are unlikely to affect survival. Investigators found considerable 

reduction in the testis size and sperm count in rainbow trout, plaice, guppy, medaka 

and eelpout when exposed to dose rates of ≤1–5 x 103 μGy h-1 of γ radiation. Reduced 

courtship and immune response were also affected in rainbow trout at these doses. 

These values appear to be similar in effects to other non-human mammalian species. 

Knowles et al. (14) concluded that studies carried out on plaice testes showed similar 

radio-sensitivity to mammalian testes. 

The aquatic environment, and consequently its biota, is more susceptible to 

radioactive pollution than most other environments. Monitoring of radioactive 

pollution in fish is routinely carried out to ensure that humans are not exposed to 

significant levels of radioactivity through the food chain. While nuclear testing has 

ceased, outputs to the aquatic environments continue from reprocessing plants, 

nuclear power plants and nuclear powered vessels (15). In these contexts and given 

that the bystander signal can induce radiation-like damage in non-irradiated cells, 

defining the response of aquatic biota to radiation exposure is certainly necessary. 

Studies have already identified bystander responses from fish cell lines such as 

chinook salmon embryo (CHSE) (16) and in hematopoietic tissue cultures of the 

prawn, Nephrops norvegicus (17). Moreover, Dowling et al. (16) and Olwell (18) 

carried out clonogenic experiments on the EPC fish cell line exposed to bystander 

media. However, with these exceptions, little work has focused on the indirect or non-
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targeted response effect, which radiation exposure stimulates in aquatic biota. The 

effects of bystander factors generated from whole fish tissues, has not been 

adequately investigated to date. Indirect effects of radiation, such as bystander effects, 

on fish tissue cultures could have implications in areas of ecotoxicology, radiation 

dosimetry, food safety and regulation/risk evaluation. This study aimed to investigate 

a potential bystander response from fish tissue cultures of the rainbow trout, 

Oncorhynchus mykiss, ex vivo, post exposure to γ radiation. Irradiated tissue 

conditioned media (ITCM) was generated from trout gill, skin and spleen explants. 

The effect of this conditioned media on cell survival was investigated, using the 

clonogenic assay in which the EPC cell line was used as a reporter system. The EPC 

cell line is an adherent epithelial type cell line isolated from a herpes virus induced 

hyperblastic lesion on the common carp, Cyprinus carpio. It is commonly used, 

particularly in the diagnosis and isolation of fish viruses. The suitability of the EPC 

cell line as a reporter culture for radiation studies was confirmed by using irradiated 

cell conditioned media (ICCM) generated from EPC cultures in a clonogenic survival 

assay. In an effort to further characterise the effect of ITCM on exposed cells, ROS 

and MMP load post exposure were also determined.  

4.3 Materials and Methods. 

Fish 

Rainbow trout (Oncorhynchus mykiss) of ∼200 g average weight were collected at 

Rafford Trout Hatchery, Athenry, Co. Galway, Ireland (Prop. Francis and Marian 

Burke). Fish were held in aerated freshwater tanks for ∼4 hours. The fish were 

humanely sacrificed by overdose of anesthetic following guidelines approved by the 

Dublin Institute of Technology Ethics Committee. 

Irradiated Tissue Conditioned Media Generation 
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Gill, skin and spleen tissue was excised from rainbow trout immediately post 

sacrifice. Tissue sections were mounted in T25 tissue culture flasks (Sarstedt, UK) 

containing 5ml MEM (Minimum Essential Medium), (Sigma-Aldrich, UK) 

supplemented with 10% (v/v) foetal calf serum (Gibco, UK), 2mM L-glutamine 

(Gibco, UK), 40IU/mL penicillin/streptomycin (Gibco, UK), 30mM Hepes buffer 

(Gibco, UK) and 1% (w/v) non-essential amino acids (Gibco, UK). Flasks were 

incubated overnight at 22oC to allow explant attachment. The explants were then 

exposed to either 0 Gy, 0.5 Gy or 5.0 Gy γ radiation from a 60Co teletherapy unit (St. 

Luke’s Hospital, Rathgar, Dublin 6, Ireland) with a dose rate of 1.8Gy/min at a source 

to flask distance of 80cm. Media (now ITCM) was removed 2 hours post exposure, 

filter sterilised and stored at -20oC until required for testing using EPC cells. 

Clonogenic Assay. 

A clonogenic or colony forming assay adapted from the original description by Puck 

and Marcus (19) was used to investigate the effects of ITCM on cell survival. Six 

hundred EPC cells were seeded into T25 flasks containing 5 ml MEM supplemented 

as for primary explant cultures and allowed to attach overnight. Medium was then 

replaced with 5ml ITCM and flasks were incubated at 22oC for 15 days. Cells were 

stained for 5 minutes with 20% carbol fuschin to aid visualisation. A group of 50 or 

more cells was considered a colony. Surviving fractions were calculated and 

compared to those of control flasks.  

To confirm the suitability of the EPC cell line as a reporter system for use in 

bystander studies, T25 flasks containing 5 ml of growth medium were seeded with 

7.5 x 105 cells and incubated overnight (∼16 hours). Cells were then exposed to either 

0 Gy, 0.5 Gy or 5.0 Gy and the media (now ICCM) was harvested 2 hours post 

exposure, filter sterilised and frozen at –20oC until required for use in the clonogenic 
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assay. A clonogenic experiment as described above was then prepared using the 

ICCM. 

Reactive Oxygen Species (ROS) Assay 

2,7 dichlorofluorescein (DCF) (Molecular Probes, The Netherlands) was employed as 

a marker for ROS load in EPC cells following exposure to ITCM. Highly fluorescent 

DCF is generated following the diffusion of 2,7 dichlorofluorescein diacetate (DCFH-

DA) into the cell where it undergoes enzymatic hydrolysation producing DCFH (non-

fluorescent DCF). ROS rapidly oxidizes DCFH to form the fluorescent DCF (20). 

Therefore, increased fluorescence correlates to higher levels of ROS. Ninety-six well 

microtitre plates (Sarstedt, UK) were seeded with 3 x 104 EPC cells per well in 200μl 

of MEM. The plates were incubated for 16 hours at 22oC to confluency. Media was 

removed and replaced with ITCM and incubated for 6 hours at 22oC. An external 

negative control of unexposed MEM was included to test for changes in control 

ITCM samples. Medium was again removed and the cells washed twice with Ca/Mg 

Buffer (0.1M CaCl2, 0.1M MgCl2 in phosphate buffered saline). DCF (100μl of 5μM) 

was added to each well, and the plates were incubated for a further 30 minutes at 

22oC. The dye was removed by washing 3 times in Ca/Mg buffer before adding 100μl 

of the buffer to each well. Fluorescence was measured in a Tecan GENios microplate 

reader (Tecan, USA) employing excitation and emission wavelengths of 488nm and 

525 nm respectively.  

Mitochondrial Membrane Potential (MMP) Analysis. 

MMP was measured using Rhodamine123 (Rh123) (Sigma Aldrich, U.K.). Rh123 is a 

green fluorescent dye, which accumulates in mitochondria in proportion to their 

membrane potential, indicative of functional mitochondria and healthy cells (21). 

Briefly, ninety-six well plates were seeded with 3 x 104 EPC cells / well in 200μl of 
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MEM and incubated for 16 hours at 22oC. Media was removed and replaced with 

ITCM and incubated for a further 6 hours at 22oC. An external negative control of 

unexposed MEM was included to test for changes in control ITCM samples. 

Following incubation, the media was removed and the cells were washed twice with 

Ca/Mg buffer. Rh123 (100 μl of 5μM) was added to each well and the plates 

incubated for a further 30 minutes at 22oC. Cells were washed a further 3 times using 

Ca/Mg buffer before adding 100μl of Ca/Mg buffer to each well. Fluorescence was 

measured in a GENios microplate reader (Tecan, USA) employing excitation and 

emission wavelengths of 488 nm and 525 nm, respectively.  

Statistical Analyses 

All statistical analyses were carried out using the Sigma Stat software package (SPSS 

Inc., U.S.A.). The data presented are mean values +/- standard error for 3 to 5 

independent experiments incorporating at least 3 replicates per experiment. 

Significance was determined using the students t-test and differences were considered 

significant if p ≤ 0.05.  

4.4 Results. 

Clonogenic Assays  

The effects of direct radiation exposure on the EPC cell line are shown in Figure 4.1. 

There is no significant effect when cells are irradiated at 0.5 Gy. However, there is a 

highly significant effect when EPC cells are irradiated at 5 Gy (P < 0.001). The 

surviving fractions of directly irradiated EPC cells are 96% ± 4 and 53% ± 2 

respectively. A small but significant (P = 0.007) bystander effect was observed in 

EPC cells post exposure to medium derived from 5.0 Gy irradiated EPC cells. This 

confirms their suitability for use as a reporter system in this study. The surviving 
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fractions for EPC cells exposed to ICCM derived from 0.5 Gy and 5.0 Gy exposed 

cells were 90% and 83% respectively when compared to that of control.  
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Figure 4.15Surviving fractions of EPC cells following exposure to direct irradiation of 0 Gy, 0.5 Gy and 
5.0 Gy and irradiated cell conditioned media from confluent EPC cultures exposed to 0 Gy, 0.5 Gy and 
5.0 Gy γ irradiation. Values are the mean of 3 independent experiments and errors are expressed as the 
standard error of the mean. P-values less than 0.05 and 0.005 are considered significant and are 
denoted by * and ** respectively. 
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The clonogenic analysis shown in Figure 4.2 indicates a non-uniform response to 

ITCM derived from the different rainbow trout tissue types. There is no significant 

difference in the survival of EPC cells exposed to ITCM derived from rainbow trout 

skin tissues. In contrast, exposure to 0.5 Gy and 5.0 Gy ITCM from spleen tissues 

induced a positive growth response in EPC cells. Conversely, the ITCM derived from 

rainbow trout gill tissues significantly reduced the surviving fraction of EPC cells 

with increasing dose. The 0.5 Gy ITCM reduced the surviving fraction to 42% and 

5.0 Gy ITCM treatment further reduced the surviving fraction to 34%. The plating 

efficiencies for the clonogenic analysis varied in control ITCM exposed EPC cells 

indicating that the unirradiated tissue explants had some form of inhibitory effect. 

Table 4.1 shows the plating efficiency of cells exposed to ITCM from the various 

tissue types. Considerable differences are evident in the plating efficiencies of EPC 

cells exposed to ITCM from non-irradiated explants. While control ITCM derived 

from spleen give a plating efficiency of 36%, both skin and gill control ITCM gives 

plating efficiencies of 25% and 24% respectively. 
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Figure 4.216Surviving fractions of EPC cells following exposure to ITCM derived from rainbow trout 
spleen, skin and gill tissue explants. All three tissue types were exposed to 0 Gy, 0.5Gy and 5 Gy γ 
irradiation. Relative surviving fractions are expressed as the standard error of the mean. A P-value less 
than 0.05 is considered significant and is denoted by *. 
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Irradiation Dose 
(Gy) 

Spleen 
ITCM 

Skin 
ITCM 

Gill 
ITCM 

0 Gy 36± 12 25 ± 12 24 ± 10 
0.5 Gy 39 ± 14 23± 12 10 ± 6 
5.0 Gy 43 ± 14 22 ± 12 8 ± 4 

Table 4.16Plating efficiencies (PE) of EPC cells in clonogenic assays exposed ITCM derived from 
spleen, skin and gill of rainbow trout. 
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Reactive Oxygen Species 

Figure 4.3 illustrates the differences in ROS levels between EPC cells exposed to 

control (0 Gy), 0.5 Gy and 5.0 Gy ITCM. Values are expressed as a percentage of 

ROS levels in EPC cells exposed to control ITCM for each tissue type. ITCM derived 

from irradiated skin is the only tissue type to have shown an increase in ROS above 

control level. This increase appears to rise in a dose dependent manner to 117% (P = 

0.021) and 131% (P = 0.022) that of control, in 0.5 Gy and 5.0 Gy respectively. 

Conversely, ITCM derived from gill tissue exposed to 5.0 Gy produced a significant 

reduction (89%, P = 0.039) of ROS in EPC cells compared to control. There was no 

significant difference observed in the levels of ROS generation in EPC cells exposed 

to 0.5 Gy (99%) gill derived ITCM, nor either of the 0.5Gy and 5.0 Gy spleen ITCM 

treatments (106% and 98% respectively). Table 4.2 is included to show the 

differences in ROS generation between EPC cells exposed to control ITCM and the 

external negative control. The level of ROS generation in EPC cells exposed to 

control ITCM from gill was 179% (P < 0.005) that of external negative control. 

Similarly, the level of ROS generation in EPC cells exposed to control ITCM from 

skin control was 112% (P = 0.049) that of external negative control. Conversely, there 

was no significant effect on ROS level in EPC cells exposed to control ITCM derived 

from spleen when compared to external negative control.  
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Figure 4.317Fluorescence of DCF as a percentage of control, in EPC cells exposed to ITCM derived 
from gill, skin and spleen tissues of rainbow trout, which had been exposed 0 Gy, 0.5 Gy and 5.0 Gy � 
irradiation. Fluorescence intensity of DCF is directly related to ROS. Values are the mean of 3 repeat 
experiments with 3 replicate values, and errors are expressed as the standard error of the mean. A P-
value less than 0.05 is considered significant and is denoted by *. 
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 Fluorescence of DCF (Percentage of external control +/-S.E.)  
ITCM Treatment 

(Gray) 
Gill ITCM Skin ITCM Spleen ITCM 

0 Gy **179 ± 8 *112 ± 5 91 ± 4 
0.5 Gy **177 ± 10 **130 ± 6 97 ± 6 
5.0Gy **159 ± 9 *146 ± 14 *90 ± 4 

Table 4.27Fluorescence of DCF in EPC cells exposed to ITCM from rainbow trout tissues expressed as 
percentage of external control. 

* denotes P ≤ 0.05, ** denotes P ≤ 0.005 
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Mitochondrial Membrane Potential 

Figure 4.4 illustrates the differences in MMP levels in EPC cells post-exposure to 

ITCM from each tissue type exposed to 0 Gy, 0.5 Gy and 5.0 Gy. Values are 

expressed as a percentage of the control. ITCM derived from gill exposed to 0.5 Gy 

and 5.0 Gy irradiation showed significantly (P ≤ 0.005) increased MMP in EPC cells, 

both of which are 116% of the control (0 Gy) ITCM. Conversely MMP levels in EPC 

cells cultured in ITCM derived from skin exposed to 0.5 Gy and 5.0 Gy were lower 

than that of the respective control. The 5.0 Gy skin derived ITCM was significantly 

lower (81%, P = 0.014) than the control. MMP levels in EPC cells exposed to spleen 

derived ITCM showed mixed activity with no change in the ITCM from spleen 

exposed to 0.5 Gy and a highly significant (183%, P = 0.002) increase in MMP levels 

following exposure to ITCM from spleen irradiated with 5.0 Gy. In Table 4.3, MMP 

levels are expressed as a percentage of the external negative control to avoid any 

effects which irradiation may have on the control media. EPC cells exposed to ITCM 

derived from non-irradiated gill and skin tissues exhibited a significant reduction in 

fluorescence (60% and 82%, respectively) compared to the external negative control. 

However, EPC cells exposed to ITCM from non-irradiated spleen showed no 

significant reduction of MMP levels compared to the external negative control.  
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Figure 4.418Fluorescence of Rh123 as a percentage of control in EPC cells exposed to ITCM derived 
from gill, skin and spleen tissues of rainbow trout, which has been exposed to 0 Gy, 0.5 Gy and 5.0 Gy γ 
irradiation. Fluorescence intensity is directly related to MMP. Values are the mean of 3 repeat 
experiments and errors are expressed as the standard error of the mean. P-values less than 0.05 and 
less than 0.005 are considered significant and are denoted by * and ** respectively. 
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 Fluorescence of Rh123 (Percentage of external control +/-S.E.) 
ITCM Treatment 

(Gray) 
Gill ITCM Skin ITCM Spleen ITCM 

0 Gy **60 ± 1 *82 ± 4 87 ± 8 
0.5 Gy **70 ± 3 **63 ± 2 87 ± 6 
5.0Gy *70 ± 5 *66 ± 6 **157 ± 8 

Table 4.38Fluorescence of Rh123 in EPC cells exposed to ITCM from rainbow trout tissues expressed 
as percentage of external control. 

* denotes P ≤ 0.05, ** denotes P ≤ 0.005 

 



 140

4.5 Discussion. 

The ‘bystander response’ is a phenomenon whereby non-irradiated cells exhibit 

radiation-like damage when in the vicinity of irradiated cells, or exposed to growth 

medium transferred from irradiated cells. The amplitude or even existence of the 

bystander response is not ubiquitous in all cells/cell types; studies have however 

identified bystander responses from fish cell lines including members of the salmonid 

group to which rainbow trout belong (16,18). In this study, the existence of a 

bystander response from γ irradiated rainbow trout gill, skin and spleen tissues was 

investigated ex vivo. The suitability of EPC cells as a reporter system for bystander 

studies was confirmed by exposing EPC cells to irradiated EPC cell conditioned 

media. The results shown in Figure 4.1 support earlier results obtained by Olwell (18) 

in which a bystander effect was observed. The EPC cells were then incorporated into 

a clonogenic assay as a reporter system to test media in which fish skin, gill and 

spleen samples had been exposed to 0 Gy, 0.5 Gy and 5.0 Gy γ radiation.  

The results of this study indicate that bystander factors are released from rainbow 

trout tissues into the culture media post irradiation. Interestingly, each tissue type 

exhibits a different response. Skin appears to be largely unaffected by radiation with 

no significant bystander response observed in EPC cells. Average values from the 

replicate experiments, in which EPC cells were exposed to skin derived ITCM, were 

suggestive of an inhibitory dose response with increasing radiation. Large error 

margins between these experiments suggested that this impotency in skin tissues in 

this study varied in intensity or were dependent on other factors. Mosse et al. (22) 

showed that melanin induces radio-resistance in human cell lines. The high 

concentration of melanin in fish skin cells (23) could confer radio-resistance to this 

tissue type and may offer one explanation for the absence of an effect in EPC cells 
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exposed to rainbow trout skin derived ITCM. Conversely, both gill and spleen, which 

do not contain melanin may be more susceptible to the effects of a bystander factor. 

Levels of melanin in fish skin vary depending on seasonality, culture conditions and 

disease status (24). As the fish in this study were collected at different times during 

the year, a variation in consequent ITCM generation is a possibility. Further studies 

relating to the effects of melanin levels in skin tissues are recommended. 

A bystander response from fish tissues, seen as an ‘hormetic’ type effect in 

subsequent clonogenic assays has not been reported to date. Hormesis is commonly 

associated with growth response, and other manifestations including metabolic 

effects, longevity, reproductive responses and survival (8). Many workers have 

reported positive effects, which direct radiation exposure induces in biota (25-28). It 

is unclear as to how direct radiation stimulates this positive response.  

In this study, the stimulatory effect in EPC clones cannot be fully regarded as being 

hormesis as the stimulation is not effected by direct radiation but indirectly via a 

signal emitted from spleen tissue exposed to direct radiation. Therefore, the 

stimulatory effect, identified in this study, may be better described as a radiation 

induced stimulatory effect (RISE). This is triggered by irradiation but effected via a 

bystander signal, which, unlike typical bystander responses, confers stimulation rather 

than inhibition. Indeed, the dose related stimulation may be an important factor when 

investigating the mechanism of this activity. The nature of the spleen tissue, in terms 

of structure or function or both obviously has a mechanism whereby a toxicant, such 

as radiation exposure, can trigger the release of a response signal, which counteracts 

the initial toxic assault to the extent that a stimulatory growth effect is observed. 

Moreover this mechanism is most likely dose responsive and not found in the gill or 

skin tissues.  
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Several studies have established the link between ionising radiation and the 

activation of NF-κB, the anti-apoptotic transcription factor associated with many 

cellular processes including the up-regulation of genes coding for the expression of 

adhesion molecules (29, 30). These molecules include the intercellular adhesion 

molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and E selectin 

(31, 32). Indeed the authors noted increased attachment of spleen tissues following 

irradiation. Certainly, ITCM enriched with adhesion molecules could alter the 

response of the clonogenic assay by stimulating EPC cell attachment, thereby 

increasing the clonogenic survival of EPC cells, as opposed to limiting them by 

apoptosis and/or necrosis. The association of NF-κB with lymphocytes, - the 

predominant cell type of the spleen may support this theory.  

The inhibitory responses detailed in other studies have pointed towards 

disruption of the electron transport chain, generation of ROS and initiation of the 

apoptotic cascade (33, 34). In this study, the generation of ROS (Figure 4.3) in EPC 

cells treated with ITCM may partially explain the inhibition of clonogenic survival of 

EPC cells (Table 4.1) shown in this study. However, the levels of ROS measured in 

the EPC cultures exposed to gill derived ITCM (Table 4.2) are not consistent with the 

reduction in clonogenic survival of these cells. If ROS were solely responsible for 

clonogenic inhibition evident in cells exposed to gill derived ITCM, then low survival 

should also be found in the control samples. These data therefore suggest that an 

alternative pathway exists which either negates the effects of ROS in controls or 

inhibits clonogenic survival independent of ROS. Furthermore, this only appears to 

occur in EPC cells exposed to gill derived ITCM.  

The gill tissue, in its role in oxygen exchange in the organism, is mitochondria 

rich and therefore, has the potential to generate higher levels of ROS than either skin 
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or spleen when disrupted by toxic assault. The discrepancies in the plating 

efficiencies between the control samples in this study appear to be ROS dependent 

and may be related to the level of mitochondrial content or functional energy 

requirements of the different tissue types. If this is the case, the results in Table 4.2 

suggest that any disruption of the tissue, whether it is of a toxic nature or a physical 

disturbance (i.e. removing the tissue from the fish) will generate significant levels of 

ROS. This phenomenon may have implications in the application of in vitro bioassay 

platforms in environmental toxicology when attempting to validate the in vivo /in 

vitro responses. The effects of ROS on the EPC cultures do, to some degree, support 

the MMP results (Figure 4.4 and Table 4.3). MMP reduction is typically a result of 

heightened activity of ATP synthase and a consequent dissipation of the proton 

gradient across the inner mitochondrial membrane. This heightened activity is likely a 

response to a higher energy demand by the cells to maintain homeostasis following 

exposure to ITCM. Cells with low MMP are more likely to produce ROS due to the 

high activity of the mitochondria whereas the cells with low ATP synthase (and 

therefore higher MMP) are less likely to produce ROS. Consequently, MMP is lowest 

in the control gill tissues (Table 4.3) where levels of ROS are highest (Table 2). 

Conversely, MMP is highest in EPC cells exposed to the spleen 5.0 Gy ITCM where 

the ROS was found to be lowest.  

To conclude, a clonogenic assay was used in this study to identify bystander 

responses in EPC cells exposed to media in which rainbow trout gill, skin and spleen 

were irradiated. The clonogenic assay, often referred to as the ‘gold standard’ assay 

for investigations into bystander responses (35-37) identified interesting tissue 

specific differences. It is hypothesized that melanin confers some degree of radio-

resistance to rainbow trout skin tissue. ROS and MMP activity are commonly used as 
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a tool for the assessment of cellular compromise in cell culture studies following 

toxic challenge (38-40). While ROS and MMP show similarities to clonogenic 

responses following exposure to ITCM identified in this study, further work is 

required to confirm a mechanistic link between these responses. While MMP levels 

found in this study are consistent with the clonogenic results, the ROS results were 

more ambiguous with fewer consistent similarities. This is particularly true of gill 

tissue explants in which higher ROS levels were found in the control samples than in 

the treated samples in contrast to the clonogenic result which shows significant 

inhibition in treated gill samples. This may suggest that other pathways exist in gill 

tissue, which reduces the inhibitory effects of ROS in cells exposed to gill derived 

control ITCM. This study highlights the current gap in knowledge on the effects of 

radiation in aquatic species and the lack of validated techniques required for fish-

based tissue culture systems.   
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5.1 Abstract. 
O’Dowd, C., Mothersill, C.E., Cairns, M.T., Austin, B., Lyng, F.M., McClean, B., 

Seymour, C. and Murphy, J.E.J. The Application of Image Analysis in Advancing the 

Clonogenic Assay. Rad. Res. 

 

The clonogenic assay has been used in effectively its original form since the 1950’s, 

as the preferred method to determine the effects of exposure to toxins, and 

particularly radiation, in vitro. One of the main criticisms of the assay is its 

susceptibility to subjectivity regarding what constitutes a colony of ≥50 cells. Since 

thousands of colonies need to be counted in a typical clonogenic assay, objectivity 

can often be compromised by the laborious nature of the task. Here, we examine the 

application of image analysis techniques in the clonogenic assay focusing on accurate 

and consistent colony counting and colony and cell size analysis. Results confirmed 

the accuracy and sensitivity of the clonogenic assay for use with the EPC cell line in 

radiation studies. They also identified dynamic changes which are occurring at colony 

and cellular levels within treated cell culture populations. The application of image 

analysis to clonogenic assays is not only expeditious but facilitates the simple and 

objective collection of data relating to cell culture population dynamics. This adds 

value to clonogenic data and may enhance our understanding of the complex nature 

of toxic exposure in in vitro biological models. 
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5.2 Introduction. 
The clonogenic assay has long been used as the “gold standard” for the identification 

of effects of toxicant exposure on cell lines and in particular for radiation studies in 

biological systems (1 - 4). In order to ensure statistically relevant and accurate results, 

many flasks containing several thousand colonies are typically counted. This work is 

laborious, repetitive and time-consuming often resulting in loss of objectivity and a 

consequent deterioration in the quality and reproducibility of results (5 – 9). 

Achieving objectivity throughout the results is the single greatest challenge of the 

clonogenic process (6).  

Many researchers realize the usefulness of image analysis and colony counting 

software technology in clonogenic counts (10-12). This technology has proven to be 

accurate, consistent and expeditious. Moreover, assuming that all of the flasks are 

analysed under the same conditions, the technology is above all objective. While the 

technology being applied has improved the clonogenic assay in terms of objectivity, 

the basis of the clonogenic assay remains unchanged (1). However, with the advances 

in image capture and analysis technology, additional useful data may be generated 

from the typical clonogenic flask. For example, the dynamics of the clonogenic 

population can be assessed including the structure, size and accurate extent of the 

population. Typical colonies comprising 50 cells can be accurately and objectively 

identified and colonies which have grown larger than the median colony size may be 

considered. Previously, such differences were often attributed to contamination or 

two or more cells being seeded together as a result of clumping in the initial 

inoculum. However, such shifts in size distribution of the clonogenic population may 

be an indication of sub-acute and/or molecular responses to toxins. In an effort to 

characterize colonies of different size, a PCR confirmation step can be introduced. As 
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colony size and formation is a parameter often used to identify cell type, the inclusion 

of PCR analysis can determine if colonies of disparate size comprise cells of the same 

origin or not.  

While many studies give details of replicate clonogenic counts, few have described 

the growth dynamics of these colonies, the accurate identification of ‘50 cell 

colonies’, or the effects on cell size. We hypothesized that the nature of the colony 

and its size relative to its sister colonies provides useful additional information in the 

clonogenic process. In this study we examined a number of techniques based on 

image analysis and PCR, and assessed their application in the context of clonogenic 

assays in radiation science. We focused on direct exposure of Epithelioma 

papullosum cyprini (EPC) cells to Cobalt60 γ radiation. EPC cells are an adherent 

epithelial-type cell line isolated from a herpes virus induced hyperblastic lesion on the 

common carp, Cyprinus carpio. We also investigate the indirect exposure of EPC 

cells to γ radiation using Irradiated Cell Conditioned Media (ICCM) from exposed 

EPC cells.  

Image analysis may be utilized to add value to the standard clonogenic assay data (i.e. 

plating efficiency and survival fraction) through accurate and consistent identification 

of the ‘50 cell’ colony and the calculation of colony and cell size differences 

following exposure. A number of possible indicators of the effects of radiation on a 

cell line routinely used in clonogenic assay experiments are investigated. A PCR 

characterization step is included to confirm the origin of divergent colonies in terms 

of size so as to dismiss the possibility that contamination may be responsible. These 

techniques and the merit of the data produced are discussed.  

5.3 Materials and Methods. 
Clonogenic assay of EPC cells exposed to direct radiation. 
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A clonogenic assay adapted from the description by Puck and Marcus (1) was used to 

investigate the effects of both direct and indirect irradiation. Eight hundred EPC cells 

were seeded in T25 flasks in triplicate, each containing 5 ml Minimum Essential 

Medium (MEM) (Sigma-Aldrich), supplemented with 10% (v/v) fetal bovine serum 

(Gibco), 2 mM L-glutamine (Gibco), 40 IU/ml penicillin/streptomycin (Gibco), 30 

mM Hepes buffer (Gibco), and 1% (w/v) non-essential amino acids (Gibco). After 

overnight attachment flasks were exposed to either 0 Gy, 0.5 Gy or 5.0 Gy γ radiation 

from a 60Co teletherapy unit (St. Luke’s Hospital, Rathgar, Dublin 6, Ireland) with a 

dose rate of 1.8 Gy/min at a source-to-flask distance of 80 cm. The growth medium 

was replaced with 5 ml of fresh medium following radiation and the flasks were 

incubated at 22oC for 15 days. Resulting colonies were fixed with neutral buffered 

formalin (10% v/v formalin in PBS) and stained for 5 minutes with 20% carbol 

fuschin.  

Clonogenic assay of EPC Cells Exposed to Irradiated Cell Conditioned Medium. 

T75 flasks (Sarstedt) containing 30ml of MEM growth media were seeded with 7.5 x 

105 cells and incubated overnight at 22oC. Cells were then exposed to either 0 Gy, 0.5 

Gy or 5.0 Gy as above. The media (now ICCM) was harvested 2 hours post exposure, 

filtered through 0.22 µm pore size porosity filters, and stored at –20oC until required. 

Eight hundred EPC cells were seeded into T25 flasks in triplicate, containing 5 ml 

MEM and allowed to attach overnight. Medium was then replaced with 5 ml ICCM 

and flasks were incubated at 22oC for 15 days. Colonies were fixed and stained as 

described above. 

Image Analysis 

An image of each flask was acquired using the ChemiDoc XRS image analysis 

system (BioRad, Italy). These images were then analysed using ImageJ software 
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(http://rsb.info.nih.gov/ij/) employing the analytical option ‘analyse particle function’ 

where colony number and colony area were measured. The data generated gives the 

area of each colony in pixels. This pixel value was calibrated by measuring a 60mm x 

25 mm coverslip (VWR International) which was placed beneath each flask being 

analysed. This facilitated the calibration of each flask individually. In a concurrent 

experiment, sister flasks were prepared as in the clonogenic experiment above. 

Following the appropriate treatments and incubation, the cells were fixed in neutral 

buffered formalin and stained with a 0.3% (v/v) solution of toluidine blue (Agar 

Scientific, Essex, UK). Slides were prepared from the flasks by removing the upper 

section of the flask and mounting a coverslip using glycerol gel (Dako, CA, USA). 

Flasks containing EPC cells exposed to either direct radiation or ICCM media were 

then analysed for cell size differences using a compound microscope (Nikon, Japan) 

mounted with a digital camera (SPOT). Randomly selected colonies were digitally 

captured and also analysed using the ImageJ software.  

Colony surface area and the surface area of a random selection of individual cells 

comprising the colony were measured. A cell count of each colony chosen was 

carried out. This data was used to generate a standard curve with cell number against 

colony size allowing prediction of the number of cells in any colony for which 

surface area data existed. This also facilitated the accurate identification of colonies 

comprising 50 cells or more which is the central tenet of the clonogenic assay. The 

colony size data from the original clonogenic assay could then be modified by 

removing any colony data points which contained 50 cells or less. Surviving fractions 

were calculated and compared to those of control flasks.  

Molecular Confirmation Analysis 
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The primer sets C3 (F1 and R1) and RT10 (F1 and R1) were designed based on the 

mitochondrial genome of the carp, (Cyprinus carpio) and the rainbow trout, 

(Oncorhynchus mykiss) respectively (Table 1). To confirm the origin of 

morphologically different colonies, samples from individual colonies were placed 

directly in a micro tube containing 1x Readymix Taq (Sigma-Aldrich), and 5μM 

primers. The PCR reaction conditions were 95oC for 2 minutes then 30 cycles of 94oC 

for 40 seconds, 56oC for 2 minutes and 72oC for 3 minutes. Reactions were carried 

out in a Peltier Thermal Cycler, PTC-225 (MJ Research, Massachusetts, USA). PCR 

products were separated on an agarose gel and visualized using the ChemiDoc system 

(BioRad, Italy).  
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Primer Sequence Origin Prod. Size Sequence 

Carp C3 F 353bp acatagccgatcaacgaacc 

Carp C3 R 

Carp mitochondria 
(Accession No. 
NC_001606)  ctgccacccagtatgtcctt 

RT 10  F 800bp cacagcaggccacctcctaattc 

RT 10  R 

Rainbow trout 
mitochondria 
(Accession No. 
NC_001717)  agtgtcagtatcaggcggcagc 

Table 5.19Details of primers used for confirming origin of cell lines used in this study. 
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5.4 Results. 
Clonogenic assays 

A typical captured image of a clonogenic flask is shown in Figure 1. As with most 

clonogenic flasks, a broad range of colony sizes are evident.  

Colony size measurements of control EPC clonogenic flasks were correlated with cell 

number in Figure 2. The resulting regression equation (correlation coefficient R2 = 

0.7814) was y = 86.953x + 2948.1 indicating that the area of a 50 cell colony is 7295 

µm2 (Figure 2). In these controls, colonies ranged in size from 5300 µm2 to 39200 

µm2. In colonies comprising 50 – 90 cells there is a strong correlation with size 

however above this number, this correlation is increasingly erratic. 

Figure 3 shows the typical information provided using a normal clonogenic study. 

EPC cells directly exposed to 0.5 Gy and 5.0 Gy radiation exhibited significant 

reductions in surviving fractions (82% and 61% respectively). EPC cells exposed to 

ICCM derived from cells exposed to 5 Gy also exhibited a significant reduction 

(88%), when compared to that of controls (Figure 3).  

Colony Image Analyses 

The size of each colony on each clonogenic flask was measured. The average colony 

sizes on both directly irradiated cells and those exposed to ICCM are shown in Figure 

4. Colonies exposed to direct radiation are approximately twice the size of 

corresponding colonies exposed to ICCM. This is also the case with sham ICCM. 

There is also a reduction in colony size in cells exposed to direct radiation which was 

found to be highly significant in the 5 Gy exposure. Conversely, there is a general 

increase in colony size in EPC cells exposed to ICCM from 0.042 mm2 in controls to 

0.046 mm2 and 0.045 mm2 in. 0.5 Gy and 5.0 Gy ICCM respectively. Only 0.5 Gy 

ICCM is significantly greater in size.  
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Figure 5.19 A typical clonogenic flask containing EPC colonies following incubation at 22oC for 15 
days. Colonies are stained with carbol fuschin. Bar = 6mm 
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Figure 5.20The relationship between colony size and cell number for EPC cells in control samples. The 
correlation is represented by the equation y = 86.953x + 2948.1. The R2 is 0.7814. 
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Figure 5.321Effects of direct radiation and ICCM exposure on EPC cells determined by clonogenic 
survival analysis. Values are the mean of 3 independent experiments and errors are expressed as the 
standard error of the mean. P-values less than 0.05 are considered significant and are denoted by *. 
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Figure 5.422The average colony size of EPC cells exposed to direct radiation and ICCM. Colonies were 
captured digitally using the ChemiDoc system (BioRad) and measured using ImageJ software. Values 
are the mean of 3 independent experiments and errors are expressed as the standard error of the mean. 
P-values less than 0.05 and 0.005 are considered significant and are denoted by * and ** respectively. 
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Cell Size Image Analysis 

The size of cells comprising colonies exposed to both direct radiation and ICCM were 

measured. The data shows that there is a significant increase in cell size in EPC cells 

directly exposed to 5.0 Gy radiation (Figure 5). Conversely, there is a significant 

reduction in cell size of EPC cells exposed to ICCM from 5.0 Gy γ-irradiated EPC 

cells (P = 0.029) but not 0.5 Gy which shows no change from control levels.  

PCR Analysis 

The gel shown in Figure 6 confirmed that the DNA taken from both large and small 

colonies is of carp origin. Bands appearing in lanes 2 and 4 are positive controls for 

carp and rainbow trout mitochondrial DNA respectively. Samples taken from both 

large colonies (lanes 5 – 7) and small colonies (lanes 8 – 10) only amplify the 353 bp 

product associated with carp and not the 800 bp product associated with rainbow 

trout. 
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Figure 5.523The average cell size of EPC cells following exposure to direct radiation and ICCM. 
Colonies were captured digitally using the ChemiDoc system and measured using ImageJ software. 
Values are the mean of 10 cell measurements chosen randomly along transects of 5 colonies from each 
dose regime in triplicate. Each experiment was carried out independently in triplicate and errors are 
expressed as the standard error of the mean. P-values less than 0.05 are considered significant and are 
denoted by *. 
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Figure 5.624PCR analysis of colonies randomly selected from test culture flasks. The sample gel 
pictured shows products amplified using the Carp C3 primer and samples taken from both large 
colonies (lanes 6 - 8) and small colonies (lanes 9 - 11) found in clonogenic flasks. Lanes 1 – 2 are 
negative and positive controls for Carp C3 primer pair respectively and lanes 3 – 4 are negative and 
positive controls for RT 10 primer pair respectively. 
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5.5 Discussion. 
The clonogenic assay is an in vitro test system which examines the ability of a single 

cell to divide successfully over several generations to form a colony of identical 

clones. It has been used extensively and to great effect by toxicologists and radiation 

biologists for several decades to determine cytotoxic effects of test treatments. 

Indeed, some have suggested that it is the ‘gold standard’ assay for the identification 

of toxic assault or for identifying bystander effects in biological systems (2 - 4). 

However, while few if any can dispute the fact that the clonogenic assay is the 

benchmark assay system for relative toxicity measurements, some limitations still 

persist. The manual counting of colonies is tedious, lengthy and often suffers from 

user subjectivity. Also, contamination can occur especially in those cell lines which 

require several weeks to form colonies. Over the years, little has changed in the 

clonogenic assay protocol despite significant scientific advances particularly in areas 

associated with image capture and analysis technologies. In this study, the application 

of image capture technologies of clonogenic flasks and subsequent analysis using the 

associated software has been examined. In an effort to confirm derivation of the 

atypical colonies formed, a PCR-based identity confirmation step was included. 

The image of a clonogenic flask in Figure 1 shows how emergent colonies in a typical 

assay may vary in appearance and size. Indeed, from the early stages in clonogenic 

assay development, Puck and Marcus introduced the threshold colony size of 50 cells 

to eliminate those colonies which undergo several divisions prior to collapse 

following lethal dose exposure (1). However, as Biston et al. (6) pointed out, 

surviving cells proliferate with diverse doubling times leading to a large range in 

colony sizes. Furthermore, the clonogenic assay may not be suitable for all cell lines 

in the way that it was for the cell line for which it was initially developed.  
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It is interesting to note that the estimated ‘50 cell’ colony using the EPC cell line and 

based on the linear regression study carried out here covers an area of approximately 

0.007mm2. This is scarcely visible to the naked eye when stained, therefore relying on 

an objective eye to differentiate at this level would be challenging. The use of image 

analysis to calibrate cell number against colony size is admittedly time consuming but 

while once-off measurements may be adequate in cases where the exact same 

conditions exist, this approach may be too presumptuous for general use in cell 

culture. The benefits of calibration leave no room for miscalculation or 

misinterpretation in an assay which is prone to such vagaries and surviving fractions 

may be calculated accurately and objectively.  

The suitability of the EPC cell line as a reporter culture for radiation studies was 

confirmed by using irradiated cell conditioned medium (ICCM) generated from EPC 

cultures in a clonogenic survival assay in our previous studies (13). While slight 

deviations exist in the plating efficiencies, the original result is confirmed. Such 

differences may be attributable to media batch differences or growing conditions, 

however some may be associated with the precision afforded by image analysis. 

Another interesting feature is the range of colony sizes within this clonogenic study. 

Indeed several orders of magnitude of difference exist in the control samples from the 

direct exposed cells. The substantial difference in colony size between directly 

irradiated cells and those exposed to ICCM is clearly associated with the addition or 

process of transferring media. While nutrient limitation is a possibility, this is 

unlikely as the media is fresh prior to irradiation and removed 2 hours post radiation. 

The only other possibility is that the sterilization through a 0.22 µm filter may have 

some form of inhibitory or deleterious effect on this media. 
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We surmise that variations in colony size can be explained by sub-lethal effects 

brought on by toxic exposures. In the directly exposed cultures in this study, the 

overall trend in colony size is downward thus correlating with the surviving fraction 

calculations. It is clear from these results that exposure to radiation does alter the 

colony size in EPC cells, however calculating the surviving fraction appears to be a 

more sensitive end-point than assessing distortion of the population structure based 

on colony size.  

Many studies have identified a decrease in colony size (10, 14): Spadinger et al. 

identified a dose-dependent response with a mammalian cell line characterized by 

fluctuations in the 0 – 1.5 Gy dose ranges citing inducible repair mechanisms as a 

possible mechanism to explain this phenomenon.  

While surviving fractions also decrease with increasing dose-exposed ICCM, there is 

an increase in colony size suggesting that other mechanisms are at work. Direct 

radiation inhibits colony size but exposing cells to media from irradiated cells 

promotes colony size. It appears that radiation exposure may release a component or 

factor from EPC cells into the culture media which subsequently can be utilized by 

non-irradiated cells to generate fewer but larger colonies and that this appears to be 

dose related. This might suggest that cells exposed to ICCM are attracted to each 

other. These amalgamate and create fewer larger colonies, when activated by factors 

which are released into the growth media, in a survival mechanism.  

What kind of factor could be responsible for such an effect? Earlier work by our 

group identified stimulatory effects in EPC cells cultured in tissue conditioned media 

(13). It was proposed that this effect may be associated with the release of adhesion 

molecules such as VCAM, ICAM and e-selectins. Could this also be the case here? 

Certainly, cells have some form of inter-communication mechanisms. Many cell 
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types are density dependent requiring a threshold concentration in order to survive in 

culture.  

Cell size also varies with dose and exposure type. Cells in colonies exposed to direct 

radiation increased with increasing dose although this was only significant at 5.0 Gy. 

Conversely, cells in colonies exposed to ICCM significantly decreased in size when 

exposed to 5.0 Gy ICCM.  

This could be similar to ecological principles associated with competition and may 

not be reaction to dose or exposure. Essentially larger colonies tend to have smaller 

cells due to competition in the cell ‘bundle’ while smaller colonies tend to have larger 

cells as there is less competition for space. Indeed, we can argue that as colonies 

become smaller with increasing direct radiation, their constituent cells become larger. 

Conversely, as colonies become larger with increasing ICCM exposure, their 

constituent cells become smaller. As colonies directly exposed to radiation are 

approximately twice the size of ICCM exposed colonies, we therefore have to 

presume that there is another factor which is responsible for the cell size effects 

identified in this study. 

Contamination of the clonogenic flasks is a possibility especially in busy labs where 

many cell lines are cultured and several users share the same facilities. This study 

incorporated a PCR characterization step, which set out to confirm the authenticity of 

disparate colonies that formed within the same flasks. While it is impossible to say 

that no other contaminating factor is responsible for large or small colonies, the 

inclusion of the PCR step confirms beyond reasonable doubt that all colonies develop 

from the original inoculum. Figure 6 confirms that samples taken from both large and 

small colonies do originate from carp and are therefore, likely to be EPC-derived 

colonies. 
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To conclude, the application of image analysis in the clonogenic assay procedure can 

identify interesting aspects to the growth dynamics in emergent clonogenic 

populations. The approach is fast, accurate and objective for the generation of plating 

efficiencies and surviving fractions. Generally however, the traditional clonogenic 

approach of calculating the surviving fractions appears to be a more sensitive 

endpoint than colony size or indeed cell size. 

This data suggests that alteration in colony size is a common phenomenon associated 

with EPC cells but size can be modified by toxic exposure. In EPC cells, colony size 

can be used as an endpoint of γ radiation exposure. However, low dose effects may 

suffer from lack of sensitivity relative to the traditional clonogenic endpoints.  

Direct radiation inhibits colony size formation, but the media from directly irradiated 

cells promotes colony formation in a dose dependent fashion. The increase in cell size 

in EPC cells exposed to direct radiation and the decrease in cell size exposed to 

ICCM are partly explained by competition for space.  

We support other authors in their calls for the introduction of image analysis 

applications as routine practice in the clonogenic assay. Furthermore, while the 

inclusion/collection of other parameters such as colony size and cell size data may not 

appear to be any more sensitive than traditional clonogenic measurements, their 

introduction provides added value and indeed may be more appropriate for other cells 

lines, dose exposures or experiment designs. 
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6.1 Abstract. 

In recent years ethical, legislative and economic pressures have created a renewed 

interest in the development of alternatives to in vivo whole animal experimentation. 

In vitro studies, particularly those using cell cultures, have been used increasingly as 

tools to assess the degree of toxicity associated with or present in particular 

environments. However, it has been noted that while cell cultures are useful to give 

relative toxicity values, genotypic and phenotypic integrity may be compromised in 

the continuous artificial environment they inhabit. Equally, cell cultures lack the 

complexity of functional organs and thus do not truly represent the effects which 

toxins exert on organ and organism functionality. In this study, ex vivo tissue culture 

of rainbow trout gill, skin, and spleen samples were analysed for variation of 

expression in genes associated with oxidative phosphorylation following exposure to 

ionising radiation (IR).   

Significant IR-induced changes in gene expression and enzyme activity associated 

with the mitochondrial oxidative phosphorylation process were identified. The tissues 

examined in this study demonstrated an exposure threshold at which radiation dose 

stimulates an alteration in the regulatory activity of mitochondrial associated genes. 

Spleen tissues exposed to low levels of IR (0.1 Gy) appeared most sensitive whereas 

skin tissues proved least sensitive reacting only to higher doses (>1 Gy). 

We propose this investigative approach as an innovative alternative to in vivo studies 

as it identifies toxic exposure in vitro and could significantly reduce the number of 

live animal toxicity tests required. 
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6.2 Introduction. 

Various organisms and techniques have been used to monitor toxic inputs to the 

environment (1–3). The aquatic environment has been the subject of many studies 

relating to pollution by either natural or anthropogenic sources. These include toxins 

of a chemical, biological and/or physical nature (4). While many of these inputs are 

easily recognisable shortly after they enter watercourses, many go unnoticed for 

considerable periods leading to chronic damage over the medium to long term.  

The conventional approach to investigating the effects of toxins in the environment is 

to expose a ‘battery’ of organisms to a specific toxin / test substance. These 

experiments are designed to replicate, as much as possible, the theoretical interaction 

of test substances within a common trophic structure by including organisms from 

different genus, families and phyla associated with the particular environment where 

these substances are found. Based on the survival/fatality data generated from these 

test organisms lethal concentration values for the test substance are calculated (5, 6). 

In the aquatic environment, organisms typically include members of the micro and 

macroalgae, bacteria, protozoa, invertebrate and vertebrate families. While this 

approach is a good indicator of lethal dose concentrations of toxicants in a water 

body, significant shortcomings exist. Thus, many millions of fish are sacrificed 

annually in laboratory-based experiments raising moral, ethical, economic and indeed 

scientific questions relating to this practice. 

As a consequence of these pressures, the use of in vitro based techniques is becoming 

increasingly popular. Many studies have centered on the development of in vitro 

based assay techniques to identify toxic exposure. These frequently involve the use of 

in vitro based cell cultures often associated with representatives from the trophic 

structures of conventional toxicity tests (7).   
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While the use of cell lines holds several advantages due to their non-reliance on live 

animal experiments and their usefulness in facilitating molecular and 

spectrophotometric based techniques including cloning, flow cytometry and growth 

studies, there are some misgivings associated with their use in toxicity studies. These 

include concerns relating to the loss of physiological traits associated with the 

organism which it aims to represent. This is due to the artificial environment in which 

cell lines are isolated, maintained and reproduced in vitro (8). To avoid this problem, 

some have suggested using primary cultures from specific organisms (9, 10). While 

this will not completely remove the need for the sacrifice of animals, the nature of 

primary in vitro tissue culture means that many experiments can be carried out using 

sections from the same organs, thereby reducing the number of animals used in the 

experimentation. Furthermore, the genotypic and phenotypic traits of the functioning 

organ more closely represent the living organism.  

An increasing emphasis has been placed on gene expression to identify the effect of 

toxins on biological systems (11-13). The alteration of gene expression following 

biological, chemical and physical toxic exposures has been identified in several 

studies in humans, rodents, mice, fish, and invertebrates and arguably represents a 

more sensitive endpoint than the more classical endpoints in the field at present (14-

17). 

Gene expression arrays have been used to identify toxic or stress related responses in 

aquatic species such as Atlantic salmon and rainbow trout (18, 19). These have 

mainly concentrated on genes associated with the nuclear genome. Surprisingly, few 

studies have examined the usefulness of gene expression to identify toxic effects 

associated with the mitochondrion yet the mitochondrion is central to several vital 

cellular processes, including energy production by oxidative phosphorylation 
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(OXPHOS), calcium homeostasis and apoptosis. It has its own genome and is able to 

replicate, transcribe and translate its own DNA independently of the nuclear DNA. 

However, mitochondrial and cellular functions are interdependent and considerable 

cross-talk occurs (20). For example, the mitochondrial genome has the translational 

capabilities for 13 of the 87 proteins necessary for the OXPHOS process in the cell 

(21). The remaining proteins associated with the mitochondria are derived from 

nuclear encoded genes.  

The concentration of mitochondria in any particular cell relates to the energy 

requirement and function of the organ from which the cells are derived (22). Organs 

with high levels of mitochondria include gills of fish where much of the oxygen is 

processed and the skin across which oxygen diffuses. Functional mitochondria in 

these tissues are vital to the survival of the organism: any influence of a toxicant on 

OXPHOS in the mitochondrion is subsequently reflected in the health of that 

organism. Given their importance, their easy isolation and maintenance and their 

independent DNA genome, this study has targeted the mitochondrion as a source of 

biomarkers for toxic stress.  

In this study, we have chosen to examine a middle ground. Rather than eliminating 

the use of live animals which may compromise results to an unacceptable level, we 

have aimed to significantly reduce the numbers of live animals used by combining in 

vitro based tissue culture techniques with a gene expression study focusing on the 

functioning of the mitochondrion. The activity of a number of genes encoded by and 

specific to this function were included. We also included a key enzyme which is 

encoded by the nuclear genome but specific to the mitochondrion. The nuclear 

encoded, nuclear specific gene, beta-actin gene (β-actin) was used as a reference 

‘housekeeper’ (23 - 25). Enzyme kinetic analysis was carried out in an effort to 
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quantify the phenotypic (and functional) impact, if any, of any changes in gene 

expression. 

6.3 Materials and Methods. 

Fish 

Rainbow trout of ≅ 200 g average weight were collected from a commercial fish farm 

in Ireland. Fish were held in aerated freshwater for ≅ 4 h before sacrificing with an 

overdose of anesthetic following guidelines approved by the Dublin Institute of 

Technology Ethics Committee.   

Tissue Explant Preparation and Irradiation 

Gill, skin and spleen tissue explants were excised from rainbow trout immediately 

after death and transferred to T-25 tissue culture flasks (Sarstedt) containing 5 ml 

MEM (Minimum Essential Medium) (Sigma-Aldrich) supplemented with 10% (v/v) 

foetal calf serum (Gibco-BRL), 2 mM L-glutamine (Gibco-BRL), 40 IU/ml 

penicillin/streptomycin (Gibco-BRL), 30 mM Hepes buffer (Gibco-BRL), and 1% 

(v/v) non-essential amino acids (Gibco-BRL). Flasks were incubated overnight at 

22oC to allow explant attachment before exposure to either 0 Gy, 0.1 Gy, 0.5 Gy, 1.0 

Gy, 5 Gy and 10 Gy radiation from a 60Co teletherapy unit (St. Luke’s Hospital, 

Rathgar, Dublin 6, Ireland) with a dose rate of 1.8 Gy/min at a source-to-flask 

distance of 80 cm. Explants were removed from the flasks 2 h after irradiation, cut 

into small fragments (ca. 1 - 2 mm2) and stored in RNAlater solution (Sigma-Aldrich) 

at -20 oC until required (26, 27). 

Isolation of Ribonucleic Acid (RNA) and Reverse Transcription 

Explants were homogenized and RNA extracted using the Qiagen RNeasy Micro 

extraction kit following the suppliers’ protocols. Final RNA concentrations were 

measured spectrophotometrically at 260 nm and 280 nm. Reverse transcription of 
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RNA employed the Invitrogen Superscript III Reverse Transcriptase kit (Invitrogen 

Corp.). Briefly, 500 ng of RNA from each tissue sample was incubated at 65 oC for 

15 min with 0.5 µl oligo dT20, 10 mM dNTP followed by ice immersion for 5 min. 4 

µl of 5 X 1st Strand Buffer, 1 µl of 0.1 M DTT, 1 µl of SuperRNAse Out and 1µl 

Superscript III were then added. This was incubated at 50 oC for 60 min followed by 

enzyme denaturation at 70 oC for 15 min. 

Gene Expression Analysis 

Table 6.1 shows the details of all primers employed. Complementary DNA (cDNA) 

(25 ng) was used in each 20 µl real-time PCR reaction SYBR Green Master Mix 

(Qiagen) containing 0.5 µM primers. The efficiency of each primer set (E) was 

determined by preparing a dilution series of template. Relative expression values 

were calculated following the mathematical expression [E-ΔΔCt] generally used for real 

time PCR data and originally proposed by Pfaffl (2001) where Ct = the cycle 

threshold (the number of PCR cycles required before the fluorescent signal is detected 

above background levels) (28). Each cDNA sample was measured in triplicate for 

each primer set. 
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Gene Origin Accession No. Primer F1 Primer R1 

β -actin Nuclear AJ438158 gaagatgaaatcgccgcactgg ctttctggcccatcccaacca 
Cytochrome c 
subunit Vb 

Nuclear AF255351 tccgtacctgtacaaccttgcaattg ttcctttcttcagtgcctgcaagg 

Cytochrome c 
Oxidase 1 

mtDNA NP_008292 ctcaaccaaccacaaagacattggc tcacgttatagatttggtcatccccc 

ATPase subunit 
6 

mtDNA NP_008295 cttcttcgaccaatttatgagcccc tcggttgatgaaccacccttgc 

NADH 
dehydrogenase 
subunit 1 

mtDNA NP_008290 tagcatacattgtacccgttctgttagcag aatagttttaggccgtctgcgatgg 

Table 6.110Details of target genes and primer sequences for the gene expression study. 
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Extraction of Mitochondria 

Approximately 1 g of tissue explant was homogenised in 2 ml of ice cold 

mitochondrial extraction buffer (2 mM EGTA, 20 mM Tris, 0.25 mM Sucrose, 40 

mM Potassium chloride (KCl)). The homogenate was centrifuged at 2000 g for 10 

min at 6 oC, the supernatant removed and centrifuged at 10,000 g for 10 min at 6 oC. 

The resulting mitochondrial pellet was re-suspended in 200 µl of a 10 % glycerol 

PBS solution. Earlier work by these authors identified a reduction of enzyme activity 

following freeze-thaw cycles, particularly in Complex II/III. The inclusion of 10% 

glycerol negated this effect. Samples were frozen at -80oC until needed for enzyme 

kinetic analyses. Negligible losses of activity were identified in samples stored at -

80oC over the timeframe of this study. Protein measurements of all samples were 

performed in triplicate using the Bradford assay following enzyme analysis (29). 

Enzyme Analyses 

The activity of OXPHOS enzyme complexes I, II-III, IV, V were measured following 

techniques described by James et al. (1996) with some minor modifications (30). The 

assay for citrate synthase (CS) activity, a marker enzyme used to identify intact 

mitochondrial mass, is based on the original assay performed by Shepherd and 

Garland (1969) (31).  

The measurement of complex I activity is based on the reaction;  

NADH + H+ + UQ1 = (I) ⇒ NAD + UQ1H2 

It was measured by preparing 10 mM Tris, 50 mM KCl, 1 mM EDTA, pH 7.4, 2.5 

mM NADH, 40 mM KCN, 12 µM antimycin A1 and 1 mg/ml phosphatidyl choline) 

and 10 μl of sample and equilibrating to 30 oC prior to the addition of 10 μl of 0.8 

mM coenzyme Q10. The rate of disappearance of NADH was measured at 340 nm 

(ε340 = 6.811 nM-1 cm-1)  
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The measurement of complex II-III activity is based on the reaction; 

Succinate + Oxidised cytochrome C = (II-III) ⇒  Malate + Reduced cytochrome C. 

This reaction was measured by preparing 50 mM KH2PO4, 0.1 mM EDTA, pH 7.4, 

12 µM antimycin A1, 0.8 mM rotenone, 2 mM reduced cytochrome c in SDW and 

equilibrating to 30 oC prior to the addition of 10 μl sample. The rate of reduction of 

cytochrome c was measured at 550 nm (ε550 = 21.1nM-1 cm-1)  

The measurement of complex IV activity is based on the reaction; 

Reduced Cytochrome C + ½02 + 2H+ + 2e-  = (IV) ⇒ Oxidised Cytochrome C + 

H2O. 

The decrease in absorption of cytochrome c was measured at 520 nm (ε520 = 27.7 nM-

1 cm-1) in the reaction containing 200 mM Tris, 10 µM EDTA, pH 7.5, 12 µM 

Antimycin A1, 0.8 mM Rotenone, 2 mM reduced Cytochrome C and equilibrating to 

30 oC prior to the addition of 10 μl sample.  

The measurement of complex V activity is based on two reactions; firstly ATP is 

hydrolysed to ADP in the presence of Complex V and this ADP is reformed by a 

reaction with phosphoenolpyruvate (PEP) in the presence of pyruvate kinase (PK) to 

form ATP and pyruvate. In the second step, pyruvate is converted to lactate by lactate 

dehydrogenase (LDH) and the oxidation of NADH to NAD is measured at 340 nm 

(ε340 = 6.811 nM-1 cm-1). 

The reactions are; 

ATP =V⇒ ADP + Pi  

ADP + PEP = PK ⇒ ATP + Pyruvate  

Pyruvate + NADH = LDH ⇒ Lactate + NAD  

This reaction was measured by preparing 2 mM MgCl2, 0.2 mM EDTA, pH 8.0, 2.5 

mM NADH, 50 mM MgATP, 40 mM KCN, 0.8 mM rotenone, 100 μM antimycin A1, 
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20 mM phosphoenol pyruvate, 60 units pyruvate kinase, 150 units lactate 

dehydrogenase and equilibrating to 30 oC prior to the addition of 10 μl sample and 

measuring absorbance. 

Citrate Synthase 

Citrate synthase is the initial enzyme of the tricarboxylic acid (TCA) cycle. The 

enzyme catalyzes the reaction between acetyl coenzyme A (acetyl CoA) and 

oxaloacetic acid to form citric acid. This enzyme is an exclusive marker of the 

mitochondrial matrix. To measure citrate synthase prepare 170 μl of 10 mM Tris 

Buffer, 2 μl acetyl CoA (15 mg/ml), 20 μl DTNB (5’5’-dithio-bis-(2-nitrobenzoic) 

acid (2 mg/ml)) and 5 μl sample tissue homogenate was equilibrated to 30 oC. 5 μl of 

oxaloacetic acid was added and the rate of absorbance change recorded at 412 nm for 

5 min. Protein content of the sample was quantified using the Bradford Assay. Citrate 

synthase (CS) activity was calculated as nmoles/min/mg protein using the equation A 

= ecl (ε412 = 13.6 nM-1 cm-1) to convert dA/min to nmoles per min. 

 Statistical Analyses 

The data presented are mean values ± standard errors for three to five independent 

experiments incorporating at least three replicates per experiment. All statistical 

analyses were carried out using the Prism software package (Graphpad Software Inc., 

CA, USA.). Significance was determined using Anova followed by Dunnett’s 

Multiple Comparison Test comparing treated samples to control. A post analysis test 

for linear trend, which calculates linear regression on group means versus dose, was 

carried to determine if dose responses were significant. Differences were considered 

significant if P ≤ 0.05. 

6.4 Results. 

Gene Expression 
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The effect of irradiation dose on gill tissue expression of the four selected genes is 

illustrated in Figure 6.1 (a). There is no definitive relationship between cytochrome C 

subunit Vb (CCVb) gene expression in gill with exposure dose. However, the 0.1 Gy 

dose did elicit a significant up-regulation in this gene. Conversely, the cytochrome 

oxidase subunit 1 gene (Cox 1) is significantly up-regulated in all radiation doses. 

Furthermore, there is an extremely significant linear correlation (P < 0.0001) 

associated with Cox 1 gene expression and increased radiation dose. In contrast, there 

is a highly significant negative correlation (P < 0.0022) with ATPase subunit 6 (ATP 

6) gene expression and dose. There was significant up-regulation in NADH 

dehydrogenase subunit 1 (ND 1) gene expression in the gill tissues at 1 Gy and 10 Gy 

though not 5 Gy.  

In rainbow trout skin tissues exposed to irradiation in vitro (Figure 6.1 (b), the nuclear 

encoded mitochondrial based CCVb gene shows an extremely significant negative 

correlation between expression and increased dose exposure. Expression of all the 

mitochondrially-encoded genes in this study (Cox 1, ATP 6 and ND1) were 

significantly up-regulated (P < 0.0001) following exposures up to and including 1 

Gy. No significant change was identified in expression levels in the 5 Gy and 10 Gy 

doses from control. 

Gene expression in spleen tissues was remarkable both for the very large activation in 

expression of all genes exposed to 0.1 Gy (4 – 14 fold) and for the narrow window of 

dose that effect this (Figure 6.1 (c). There are no significant differences observed in 

samples exposed to radiation greater than 0.1 Gy.  
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Figure 6.125Expression levels of mitochondrial related genes, CCVb, Cox 1, ATP 6 and ND1, in gill 
tissues (A), in skin tissues (B) and in spleen tissues (C). Cycle Threshold (Ct) values are normalized to 
the mean activity of the housekeeping gene β-actin and expressed relative to the non-irradiated control. 
Values are expressed as means of 3 independent experiments ± S.E. * denotes P ≤ 0.05, ** denotes P ≤ 
0.01, *** denotes P ≤ 0.001. 
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Enzyme Kinetics 

The activity of complex I in gill, skin and spleen is shown in Figure 6.2. There were 

considerable differences in the basal activity between spleen and the other tissue 

types. However there are no significant changes in the level of this complex with 

dose. 

Complex II/III (Figure 6.3) showed the highest basal level of activity in spleen 

tissues, with lesser activity in skin tissue and gill tissue. There was a significant 

increase (P = 0.034) in complex activity in only those gill tissues exposed to 0.1, with 

activity observed as that of control post higher exposures. Neither skin nor spleen 

tissues exhibited any marked changes in complex II/III levels following treatment. 

Basal activity of Complex IV in spleen was considerably lower (≥ 5 fold) than in 

either gill or skin tissues (Figure 6.4). However, no significant changes in Complex 

IV enzyme activity were observed for any of the tissues compared to their respective 

controls. 

Complex V results showed a similar pattern to complex IV in that basal activity in the 

spleen was much less than either gill or skin (Figure 6.5). Similarly, no marked trend 

of response to exposure dose was observable in any of the tissues analysed with 

respect to their controls.  
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Figure 6.226Complex I activity in mitochondria fractions of gill, skin and spleen tissue explants 
following exposure to 60Co ionizing radiation. Values are expressed as a mean of 3 independent 
experiments ± S.E. * denotes P ≤ 0.05, ** denotes P ≤ 0.005. 
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Figure 6.327Complex II/III activity in mitochondria fractions of gill, skin and spleen tissue explants 
following exposure to 60Co ionizing radiation. Values are expressed as means of 3 independent 
experiments ± S.E. * denotes P ≤ 0.05, ** denotes P ≤ 0.01 
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Figure 6.428Complex IV activity in mitochondrial fractions of gill, skin and spleen tissue explants 
following exposure to 60Co ionizing radiation. Values are expressed as means of 3 independent 
experiments ± S.E. * denotes P ≤ 0.05, ** denotes P ≤ 0.01, 
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Figure 6.529Complex V activity in mitochondrial fractions of gill, skin and spleen tissue explants 
following exposure to 60Co ionizing radiation. Values are expressed as a mean of 3 independent 
experiments ± S.E. * denotes P ≤ 0.05, ** denotes P ≤ 0.005. 
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Basal citrate synthase (CS) activity across tissue types showed higher levels of 

activity in gill and skin tissues relative to spleen (approximately 2.5 times). However, 

the dose responses were all quite different (Figure 6.6). The CS activity in exposed 

gill tissues also showed a highly significant and marked loss of activity following 0.1 

- 0.5 Gy exposure, however activity was not affected by 1 – 5 Gy doses. Indeed a 

significant increase was observed post 10 Gy with respect to control. All exposed skin 

tissues showed a highly significant loss of CS activity compared to the control. Linear 

trend analysis identified a highly significant (P < 0.0001) negative correlation with 

dose in skin tissues. Interestingly, this analysis also identified the same negative dose 

effect in exposed spleen tissues albeit exhibiting a lower level of activity in the 

control than either 0.1 Gy or 1.0 Gy samples. At both 5 Gy and 10 Gy exposures, an 

extremely significant inhibition in CS activity was observed.  
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Figure 6.630Citrate synthase activity in gill, skin and spleen tissue explants following exposure to 60Co 
ionizing radiation. Values are expressed as means of 3 independent experiments ± S.E. * denotes P ≤ 
0.05, ** denotes P ≤ 0.01, *** denotes P ≤ 0.001 
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6.5 Discussion. 

This study focused on the regulation of several mitochondrial encoded genes 

associated with OXPHOS in in vitro cultures of gill, skin and spleen tissues of 

rainbow trout exposed to γ radiation (Figure 6.7). The CCVb (nuclear encoded) and 

Cox I (mitochondrially encoded) genes used in this study code for components of the 

Complex IV enzyme while ATP 6 and ND I genes code for components of complexes 

V and I respectively (Table 6.1). The expression of these genes in gill, skin and 

spleen tissue cultures following exposure to γ radiation, were measured relative to ß-

actin. 
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Figure 6.731Diagram showing the components and reactions of the electron transport chain (ETC). 
Genes used in this study code for some of the components associated with this system. CCVb is nuclear 
encoded and codes for Complex IV, Cox I is mitochondrial-encoded and codes for Complex I. The 
nuclear encoded marker enzyme for intact mitochondria, citrate synthase, is also shown as part of the 
citric acid cycle which subsequently generates 3 NADH and FADH2 to ferry electrons to the electron 
transport chain. 

 

Citrate 
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Results from gill and skin tissues showed some similarities. The nuclear encoded 

CCVb gene is generally down regulated in both gill and skin while the 

mitochondrially encoded Cox 1 gene is up-regulated in both. This is not the case in 

the spleen tissues where there is a general, though not universal, up-regulation of the 

CCVb gene and no change in the Cox 1 gene, with the exception of the 0.1 Gy 

treatments. This is interesting in that both of these genes code for the Complex IV 

enzyme of the Electron Transport Chain (ETC). One would expect that if one gene is 

regulated to code for a particular protein complex, then another gene associated with 

that complex is regulated in the same way.  

The Cox 1 gene also behaves differently at higher doses in both gill and skin tissues. 

While the Cox I gene continues to be up-regulated in a dose dependent manner up to 

10 Gy in the gill tissue, skin tissues display a threshold limit at 1 Gy and beyond 

where Cox I gene activity returns to control levels.  

This significant trend is also identified in the ATP 6 and ND 1 genes in skin tissues. 

This suggests that skin tissues in rainbow trout have a radiation threshold limit which 

alters the regulation of mitochondrial genes coding for key enzymes associated with 

the ETC. This is not clear in the case of gill. The ATP 6 gene results show no changes 

in regulation following treatment while the ND 1 gene shows some up regulation but 

only at the higher doses.  

The relative expression of genes in spleen tissues deviates considerably from both gill 

and skin above. The significant up-regulation of all the genes in spleen tissues at the 

0.1 Gy treatments suggests that within this tissue, a similar threshold exists as in the 

skin tissue. However it is activated at a dose one order of magnitude less than skin 

and is considerably more radiosensitive evidenced by the narrow window within 

which this up-regulation occurs. In addition, the up-regulation of the CCVb gene in 
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spleen tissues, which is nuclear encoded but mitochondrial associated indicates that 

the threshold effect deviates somewhat in how it is activated in both tissues types.   

Generally, there appears to be little correlation between gene expression results and 

the activity of complexes in this study. There may be several reasons for this. The 2h 

interval post-treatment may have affected this. While Lyng et al. (2001) found 

calcium fluxes in mitochondria just 30 seconds following exposure to irradiated cell 

conditioned media in human keratinocytes, a considerable ‘time-delay’ may exist 

between the assembly of the genetic machinery and the generation of enzyme 

complexes for utilisation within the mitochondria (32). 

Within many of the enzyme complex results, rather large errors exist which prevent 

statistically significant differences being achieved. This appears to be an issue 

throughout studies relating to fish. The incorporation of at least 5 replicates would 

certainly be recommended in this case. 

The enzyme kinetic results do identify an interesting pattern where gill and skin 

tissues are comparable in their general levels of activity relative to spleen. In some 

ways this is similar to the pattern found in the gene expression study. Specifically, 

this manifests as having low relative activity in complex I and II/III and high relative 

activity in complexes IV and V.  Indeed it is clear that in mammalian systems at least, 

the ratios of complexes are not equal. A commonly used ratio in mammalian systems 

proposed by Hatefi (1985) for complexes I:II:III:IV:V is 1:2:3:7:4 (33). More recently 

Schagger and Pfeiffer (2001) suggested a ratio of 1:1:3:7:4 in the bovine heart (34). 

This ties in well with the levels of activity found in this study for gill and skin. 

However spleen results would contradict these.  

On the basis that there are no significant changes in any of the enzyme complexes in 

skin tissues exposed to a wide range of radiation doses, one could conclude that the 
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tissue is quite radio-resistant. However, as Figure 6.1(b) shows, considerable changes 

are occurring at a genetic level in both nuclear and mitochondrial encoded genes. This 

may suggest that the measurement of enzyme activity in fish skin tissues may not be 

the most sensitive tool to identify toxic stress in fish. This however may be limited to 

radiation exposure. Many suggest that high levels of melanin, which rainbow trout 

skin tissues contain, confer significant resistance to the effects of radiation (35, 36).  

CS is commonly used as a quantitative marker for mitochondrial mass (37). CS is 

localised to the mitochondrion and is encoded exclusively in the nuclear genome. 

This enzyme assay was included to identify alterations in levels of mitochondria 

relative to the nuclear component in each sample. The results confirm the generally 

accepted premise that tissues such as gill and skin, which have a functional role in 

oxygen supply, have higher levels of mitochondria as measured by CS activity than 

tissues such as spleen in this case. One can see from the results here that considerable 

variations exist not only in treated samples but also the control tissues. Moreover, CS 

assay represents quite a sensitive biomarker of low-level toxic stress in all tissue 

types with significant differences from control following the lowest exposure doses 

used. 

The level of CS activity in the treated spleen samples appears unpredictable from 

dose to dose. While some inconsistency exists in the treated gill samples it represents 

more of a dose threshold type effect than volatility. Conversely, in terms of relating 

dose to compromised mitochondria, skin tissues show that a significant negative dose 

response exist confirming regularity in this tissue type. 

To summarize, both skin and spleen tissues appear to identify a threshold level of 

toxic exposure above which the regulatory activity of mitochondrial associated genes 

is stimulated. The threshold in spleen is very low at 0.1 Gy while the threshold in the 
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more robust skin is higher at 1 Gy. Differences in gene regulation may be associated 

with variances in the levels of complexity and functions of the tissue in question. The 

regulatory trends of the same genes in gill tissues are less consistent and may relate to 

the gills’ interfacing function with both the environment and circulatory systems. 

Whereas the gills are exposed to both internal biochemical and externally to gas 

exchange differentials, pathogenic organisms and toxic substances including free 

radicals, the skin plays an important role in gas exchange and its prime function is as 

a physical barrier. While substances such as air pass through it, the skin itself may not 

be exposed to the perilous biochemical and environmental factors associated with the 

gill. Moreover, the skin of rainbow trout contains high levels of melanin which confer 

a certain level of resistance to radiation exposure. The spleen, on the other hand, does 

not interface with the environment directly and therefore may be more sensitive to 

‘extra-ordinary’ exposure or interference. Whatever the reasons, it is clear that 

radiation exposure not only stimulates altered responses at different doses but also in 

different tissue types. 

Little correlation could be found between gene regulation and enzyme activity at 2 h 

post radiation: possibly such correlation could be achieved by sampling at a later time 

point. A time-series of sampling post treatment over a 24 h period is recommended to 

identify a more relevant sampling point. Furthermore, an increase in the number of 

replicates is also recommended given that fish often show quite diverse responses. 

While CS activity is necessary for the standardisation of mitochondrial mass in tissue 

samples, results in this study suggest that it may indeed be a sensitive biomarker of 

low dose radiation in its own right. 

Nonetheless, significant alterations in levels of expression in ex-vivo fish tissues at 

low doses of radiation suggest that this is a promising approach for use as a 



 203

biomarker in toxicity studies. Moreover, the technique has the potential to 

significantly reduce the number of live animal experiments with a consequent 

alleviation of the ethical, moral and economic pressures which currently exist in the 

area of environmental toxicology.   
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CHAPTER 7. GENERAL DISCUSSION.  

 

There is a growing need for in vitro technologies for use in the assessment and 

monitoring of the aquatic environment, and to reduce the current dependence on the 

use of whole organisms. An increase in the pressure on the aquatic resource in terms 

of human requirements, commercial exploitation and increased recreational use 

means that the resource is susceptible to increased levels of pollution and damage.  

The aquatic environment is a complex convergence of biological, chemical and 

physical processes. The ability of an aquatic resource to withstand natural and 

anthropogenic pressures is dependent on its size, location and stage of development. 

Therefore few aquatic environments can be treated with a standardised approach. 

Monitoring and assessment of these resources are therefore very difficult to conduct.  

Existing and conventional approaches to monitoring/assessing the aquatic 

environment typically involve exposing a battery of test organisms to samples from 

the aquatic environment and / or chemicals which are thought to be linked to the 

resource and subsequently measuring a 50% lethal concentration or dose level (LC50 

or LD50).  

This approach has served well to date and has been useful in establishing toxic levels 

in particular environments. However, there are shortcomings and one in particular is 

that countless organisms, which we are aiming to protect, are being sacrificed 

annually using these tests. In the past number of years there is increasing interest in 

the use of in vitro based model systems which can identify toxicity in particular 

samples but do not rely on live organisms to provide lethal dose results.  
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While this is a worthy cause there are concerns that these model systems do not truly 

represent the organisms which they are replacing and by continuing to culture these 

tissues in vitro, some of the traits and sensitivities are being lost.  

In an effort to address these disparate problems, and achieve a middle ground, this 

thesis examined the development of toxicity tests based on in vitro tissue culture 

platforms using aquatic organisms. The rationale behind this approach is to 

significantly reduce the numbers of live animals used in toxicity tests but maintain the 

direct relationship with the environment being tested. Furthermore, as is shown in 

Chapter 2, there are inherent and systemic problems in establishing consistent 

cultures that are adequately robust to provide a repetitive test platform necessary for 

toxicity monitoring. This is particularly true for invertebrate cultures and especially 

marine invertebrate cultures, which are unreliable. In addition, no established cell line 

has been developed from a marine invertebrate organism. In chapter 2, these 

difficulties and time constraints re-focused the author’s direction on establishing a 

tissue culture as a ‘holding and exposure’ approach rather than a tissue culture 

approach followed by an exposure. This facilitates the possibility for the development 

of an expeditious test system. By focusing on the mitochondrion, which is of prime 

importance in the cell, and monitoring its function and the mtDNA genome, a 

practical approach to address the tissue culturing of aquatic organisms and assessment 

of toxicity was possible. The ‘holding and exposure’ approach facilities significant 

reductions in the numbers of fish required for environmental exposure studies. For 

example, a typical statistically relevant test with a control and 3 exposures (0.5 Gy, 

5.0 Gy and 10 Gy) would require a 36 fish while the application of an in vitro test 

using the holding and exposure test requires tissues from 12 fish. This significantly 
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reduces the numbers of fish required in experimental tests and supportive on both 

moral and economic grounds. 

While ethical concerns are not completely alleviated the technique is a significant 

move in the right direction in terms of reducing live animal trials and may form a 

basis for further significant reductions. For example, the culture and exposure of 

tissues which does not require the sacrifice of animals could bring about further 

significant improvements in current live animal testing practices. In vitro culture of 

fin clippings may be a good starting point in this approach.  

While the ethical concerns are of foremost concern for many, the economics of 

eliminating the use of live animals for environmental testing and monitoring will 

undoubtedly be the basis for bringing an end to these practices.  If we consider the 

costs associated with live animal testing, it is clear that significant cost reductions can 

be achieved using a suitable in vitro model system. Not only are there significant cost 

savings due to the reduced number of animals used but also the costly holding and 

maintenance of animals can be significantly reduced.     

To examine this approach and its benefits/malefits further, a stress model was 

required. A model toxicant system, which was well defined, that caused DNA 

damage, was easily quantifiable, easy to access and safe to use were identified as the 

ideal qualities. The application of Co60 γ radiation as the stress model for toxic 

exposure was used, as it fulfilled these requirements. In initial studies, work focused 

on the investigating the application of a platform, based on fish tissue cultures, which 

could be used to identify the effects of radiation exposure on these cultures. The 

initial studies initially focused on molecular aspects associated with the assay system 

especially the quantity and quality of mtDNA which could be recovered from test 

samples following exposures. Results, highlighted in Chapter 2 show that good 
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quality DNA can be recovered from samples held and exposed in the test platform, 

which facilitates an additional avenue of analysis to be conducted based on PCR.  

Preliminary results also identify an alteration in the quantity of mtDNA associated 

with the tissue samples following exposure and this was dependent on tissue type and 

radiation dose. The possibility of using, this platform and these features, as marker 

systems of toxic stress were investigated in subsequent chapters. 

Chapter 3 investigates standard PCR and molecular techniques to assess the quantity 

and quality of DNA extracted from fish tissue samples exposed to radiation. The 

hypothesis being tested is that alterations in quantity and quality of mtDNA could be 

used as a putative biomarker of toxic stress. In these studies, citrate synthase is used 

as a marker of mitochondrial mass. Increases in the level of mt genomes did not 

correlate directly with increases in radiation dose however, some anomalies were 

highlighted which could be incorporated into a useful model system.    

In order to develop the application of radiation as a test stressor and the in vitro tissue 

culture system, a section of the study focused on the bystander effect brought on by 

exposure to growth media of irradiated tissues. This study was conducted by exposing 

EPC fish cell cultures to irradiated tissue conditioned media (ITCM) in the 

clonogenic assay platform. Results from this study are shown in Chapter 4 and 

published in Radiation Research (1). This study identified that there is a bystander 

effect in EPC cells exposed to media from radiation exposed rainbow trout tissues. 

However, a clear difference in response is evident depending on the tissue type. The 

results show that there is little response in the growth of indicator EPC cells grown in 

media from irradiated skin tissues, a significant reduction in the growth of cells 

exposed to ITCM from irradiated gill tissues and an increase in the growth of 

indicator cells exposed to media from irradiated spleen tissue. The conclusions drawn 
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from this study identify possible links between attachment and effect, which may 

compromise the basis of the clonogenic assay in this case. The work suggests that 

rather than a deleterious effect on the cells directly, the bystander effect displayed is a 

result of adhesion factors such as ICAM, VCAM and E-selectin into the growth 

media from the irradiated tissues. These adhesion factors modulate the growth effects 

of the indicator cells in the subsequent exposures. 

In an effort to investigate the cell attachment in clonogenic assays further and to 

investigate other inconsistencies relating to changes in colony size in irradiated 

cultures, image analysis was introduced into the work programme. The results of this 

study are shown in Chapter 5. The aim of the study was to identify any changes in the 

size of the emerging colonies or indeed the size of the cells in these colonies 

following exposure to direct and indirect radiation. A wider dose exposure regime 

was used in these studies to capture the effects of radiation dose rather than effects 

evident over time following exposure. The conclusions identified here suggest that 

image analysis in tandem with the clonogenic assay can add value to that assay, not 

only by establishing the fifty cell colony limit but also identifying changes in the 

morphology and size of cells and colonies following toxic exposures. A PCR step was 

also introduced to confirm that the alterations in colony size were not associated with 

contaminated or co-cultured organisms.  

The work shown here in Chapter 6 takes features of previous chapters and brings 

them a step further to develop an in vitro based system suitable for use in aquatic 

tissue culture systems. Following the confirmation that good quality RNA was 

extractable from tissues held in culture flasks overnight, irradiated and frozen as 

shown in Chapter 2 and that the mitochondrial genome is affected by irradiation in 

fish tissues in Chapter 3 the application of gene expression in irradiated fish 
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mitochondria offered a very interesting biomarker platform possibility for use in in 

vitro toxicity testing. It also offered the possibility to investigate the effects of 

multigenic transcription, which is associated with the mitochondrial genome, and how 

the mitochondrial proteins can be modified independently of each other. Devin et al. 

(2004) suggests that mitochondrial transcription is more dynamic in nature (2). The 

results shown in Chapter 6 certainly support this as alterations in the mitochondrial 

genes tested varied depending on tissue types and the dose exposure regimes. 

 

To conclude, there is an unmet need for an in vitro based assay system which deviates 

from the traditional approach of calculating the LD50/LC50 based batteries of live 

animal testing from representative trophic levels in nature. Many authors have 

recognised the benefits of using in vitro cell culture-based test systems which would 

avoid the use of live animals. However, problems exist with this approach especially 

the relationship with the actual organism, the environmental relevance of cell lines 

and drift in the cell line being cultured over several generations in plastic flasks. As 

an alternative to cell cultures, others have proposed the use of tissue culture (primary 

or secondary) as a solution to this problem. While the number of live animals is 

significantly reduced using this approach, establishing and maintaining tissue cultures 

can be time consuming, costly and often gives variable results.   

 

The main conclusions of this thesis are as follows: 

• The development of a ‘holding and treatment’ tissue culture platform for use in in 

vitro assays significantly reduces the use of live animals in environmental 

toxicology testing but maintains the relevancy of the assay due to the primary 

nature of the cells comprising the explant (Chapter 2).  
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• The mitochondrion is an ideal marker of toxic stress which can be used in vitro. The 

organelle offers several endpoints including functional activity, mtDNA integrity, 

mtDNA quantity and several enzyme markers including citrate synthase (Chapter 

3). 

• Tissue cultures of rainbow trout, which have been irradiated, induce a bystander 

effect in EPC cells in vitro. This effect is dependent on tissue type (Chapter 4). 

• The effectiveness of the clonogenic assay may be offset by adhesion factors 

released from cells following exposure to radiation. Added value can be achieved in 

the clonogenic assay if used in conjunction with image analysis (Chapter 5). 

• Gene expression analysis of tissue cultures using the ‘holding and treatment’ 

system, outlined above, is a viable alternative to live animal testing (Chapter 6). 

 

There are numerous possibilities for the development of suitable in vitro based 

technologies which could form the basis for the development of effective in vitro 

based assay platforms. This thesis highlights aspects of the biological systems such as 

the mitochondrion, DNA, RNA and enzyme kinetics to identify the effects of toxic 

stress on biological systems. However, time restrictions and financial constraints 

limited the further development of possibilities identified here. This is especially true 

for the image analysis section which could have benefited from a more extensive 

study. Ideally, a study of the adhesion factors released into the ITCM could have shed 

light on several aspects of this study. Furthermore, the application of gene expression 

analysis offers significant opportunity to develop additional low cost, accurate and 

expeditious assays. Gene expression is likely to play an increasing role in 

environmental toxicology in future development in this area of research as it offers 

improvements in some, if not all, features of a well-defined biomarker test system 
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outlined above. The development of suitable microarray chips associated with 

organisms from the aquatic environment would facilitate major advances in this area. 

The mitochondrion shows major potential in the area of toxicology and should be 

pursued. It is felt that this organelle offers many opportunities for the development of 

in vitro based applications in environmental toxicology. Mitochondria have been 

overlooked for too long in this respect. Indeed this work would also have benefited 

from the development of a mitochondrial gene array which could be applied in the 

same way as microarrays are currently being used. However, with only 13 genes, the 

‘mitoarray’ would be a more elegant system if proven successful.  

Notwithstanding these issues, the work presented here outlines practical aspects and 

alternatives which should be considered in the future development of environmental 

toxicology. It offers the potential for significant reductions in live animal testing 

while maintaining relevancy to the specific environment being tested and highlights 

issues relating to radiation biology and the bystander effect which have received little 

attention to date in the aquatic environment.   
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