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Disposable Printed Lateral Flow Electrochemical
Immunosensors for Human Cardiac Troponin T

Eithne Dempsey and Dhanraj Rathod

Abstract— Here we report an electrochemical ELISA approach
for cardiac Troponin T (cTnT) determination based on a lat-
eral flow membrane with underlying screen printed electrodes
(<100 �/cm2). The thick film transducer was modified with
the anti-cardiac Troponin T antibody via physisorption and the
electrochemical performance of the immunosensor was evalu-
ated using cyclic voltammetry. The capture antibody coated
immunoelectrode employed for electrochemical determination
of Troponin T antigen used a sandwich assay format with
horseradish peroxidase conjugated signaling antibodies held in
the track of a lateral flow sensor strip. A simple two step
procedure realized signal acquisition within <20 min (total assay
time). The lateral flow electrochemical immunosensor response
resulted in a calibration curve with linear response (0-700 ng/ml
cTnT) with limit of detection of 0.15 ng/ml.

Index Terms— Immunosensor, Troponin T, lateral flow
immunoassay.

I. INTRODUCTION

CARDIOVASCULAR disease (CVD) causes nearly half of
all deaths worldwide and includes myocardial infarction

(MI) which is one of the most significant forms of ischemic
heart disease, with necrosis of the myocardium leading to a
reduction in blood flow [1]. In recent years, electrocardio-
graphic investigation has been used as the main method for
establishing a MI diagnosis, supported by access to rapid and
reliable blood biomarker test data, assisting in diagnosis and
appropriate therapy. Clinical investigation of heart diseases
has developed in two main directions namely; detection of
new cardiac biomarkers and implementation of new devices
for point of care (POC) testing with enhanced sensitivity
and selectivity. In view of this, detection and quantification
of defined cardiac markers is now of primary importance in
diagnosis.

There are several high throughput automated systems
employed in clinics for disease diagnosis. At present,
commercially available bench-top analyzers and hand-held
devices are used for cardiac biomarker determination
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and include; Stratus®CS STAT (Dade Behring, Inc.),
i-STAT®(Abbott), Triage®Cardiac Panel (Biosite), Cardiac
Reader TM (Roche), RAMP®(Response Biomedical
Corp), and PATHFAST®(Mitsubishi Chemical Europe
GmbH) [2], [3]. Some such systems can be costly, laboratory
confined and require skilled operators.

The most widespread acute myocardial infarction (AMI)
biomarkers are troponin I [4], troponin T [5], creatine kinase-
myoglobin (CK-MB) [6] and myoglobin (Mb) [7]. All of
these cardiac markers differ in terms of their kinetics, cardiac-
specificity, and prognostic value. Troponins are regulatory
proteins which play a fundamental role in the contraction
of cardiac muscle cells [8] and are positioned at regular
intervals along the actin muscle strands. They are composed
of three subunits, referred to as cardiac troponin T (cTnT),
cardiac troponin I (cTnI), and cardiac troponin C (cTnC) [9].
The letters T, I, and C relate to the function of each mem-
ber of the complex, where troponin-C is a calcium (Ca2+)
binding-subunit, troponin-I is an inhibitor, and troponin-T is a
tropomyosin binding subunit. These troponin subunits regulate
the Ca2+ dependent muscle contraction in all muscle cells.
Thus, the binding of Ca2+ to cTnC results in increased affinity
for troponin I which then releases its inhibitory function on
actomyosin adenosine triphosphate, and leads to adenosine
triphosphate hydrolysis and muscle contraction.

Troponin T is an important and highly specific marker, with
a prolonged circulating lifetime in blood after MI [10], [11].
It originates exclusively from the myocardium, and has a mole-
cular weight of 39.7 kiloDaltons (kDa). Initial elevation of
cardiac troponin T takes 4-6 hrs, with peak release time regis-
tered at 12-24 hrs [10], [12], [13] However, it remains elevated
for 7-21 days following myocardial injury, and thereby has
replaced less specific markers such as CK, CK-MB, aspartate
aminotransferase [14], and lactate dehydrogenase isoenzymes,
all of which have previously been used as confirmation of
heart injury. During MI, Troponin T is released slightly earlier
than troponin I. Therefore, troponin T is considered a valuable
indicator in the diagnosis of myocardial damage [15], [16].

Troponin T antibodies which are used to develop immunoas-
says are highly specific and do not cross-react with skeletal
muscle troponin isoforms, such that troponin released from
skeletal muscle cannot be detected [17], [18]. Therefore,
the cut-off concentrations for cardiac troponin I and T can
be reliably set at low levels <0.1 ng/ml. Hence, patients with
skeletal muscle injury are unlikely to have elevated circulating
levels of cTnT or cTnI (>0.1 ng/ml) [19]. Compared to
the previous ‘gold standard’ creatine kinase MB (CK-MB),
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cTnT is reported to be a highly specific marker for the
detection of cardiac injury. An increase in blood concentration
of troponin T can also occur in other clinical conditions such
as congestive heart failure, cardiomyopathy, myocarditis, heart
contusion, renal failure and left ventricular dysfunction in
septic shock [18], [20].

Clinical diagnosis, especially those of MI and heart injury,
requires reliable test systems. Rapid quantitative determination
of cTnT has been introduced into routine clinical usage based
on an electrochemiluminescence based immunoassay [20] and
immunoassay tests that can be used to monitor the levels of
troponin in less than 20 min [13], [20]. Many biochemical
methods for AMI diagnosis are based on enzyme-linked
immunosorbent assay (ELISA) [22]. However, the ELISA test
requires additional chemicals (washing steps), skilled personel
to carry out the test, and it cannot be used outside hospital
laboratories [22].

Screen printed carbon electrodes (SPE) have been widely
used in the design of disposable electrochemical immunosen-
sors for clinical analysis [23]–[25]. Screen printing micro-
fabrication technology is well established in the production of
thick film electrochemical transducers [26] and allows for mass
production of reproducible yet inexpensive and mechanically
robust strip solid electrodes [27]. Other important features
of electrodes include miniaturisation of the corresponding
device, along with ease of handling, and a disposable for-
mat [28], [29]. These electrodes can be constructed from
both graphite powder and an epoxy resin [30], resulting in
a composite that can act not only as a transducer for electro-
chemical signal generation, but also permits incorporation of
different substances such as mediators, enzymes, antibody and
antigen etc.

The first electrochemical immunosensors used for cardiac
markers based on a SP allowed detection of Mb over a
wide concentration range (0.01 to 10 μg ml−1) [31] while
a disposable immunosenssor for human cardiac troponin T
based on a streptavidin-microsphere modified screen printed
electrode resulted in linear response range between 0.1 and
10 ng/mL cTnT and a detection limit of 0.2 ng/mL [23].
Gomes-Filho et al. [32] reported a carbon nanotube based
electrochemical immunosensor over the relevant clinical range.
Limitations to these and related works include sensor complex-
ity and the requirement for multiple steps in the assay format
which restricts on-site use by minimally trained personnel at
the point of use.

A lateral flow assay (LFA) is a powerful tool which
permits a one step, rapid and low cost method of analy-
sis [31] having well established roots in pregnancy testing and
semi-qualitative optical detection [33]. Here we present the
combination of an easily constructed antibody modified thick
film electrochemical transducer with a lateral flow membrane
which offers advantages of convenience, on-board reagents and
sample handling in a simple single use operation. Immobili-
sation of an anti-Troponin T antibody via “wet” and “dry”
chemical methods was proven to be successful in immunoas-
say fabrication. Horseradish peroxidase (HRP) conjugated
secondary antibody reagent provided redox signal generation
via o-phenylenediamine (OPD) enzymatic conversion to the

diiamine with subsequent cathodic redox signal related to
troponin T levels.

II. EXPERIMENTAL

A. Materials

Carbon sensor paste (Gwent UK), silver/silver chloride
paste (Gwent UK), acetate paper (Xerox Ireland), insulating
tape (Sellotape UK), potassium chloride, KH2PO4, K2HPO4,
hydrogen peroxide (H2O2), phosphoric acid (H3PO4),
o-phenylenediamine, Tween 20 (Aldrich). Bovine serum
albumin (BSA) (Aldrich), anti-cardiac troponin T antibody
[Ab-cTnT], cardiac troponin T protein [cTnT] and anti-cardiac
troponin T antibody-HRP [Ab-HRP] were purchased from
Abcam UK. Deionised water of 18 M� was produced using
Millipore water system and all reagents were used as received.

B. Equipment

An electrochemical work station (CH Instruments Inc. 660)
was employed for electrochemical characterisation of elec-
trodes using cyclic voltammetry (CV). Experiments were
performed in a conventional three-electrode system using a
carbon conducting track working electrode vs. Ag/AgCl (aq.)
reference electrode and a carbon counter electrode. Screen
printed electrodes (SPE) were fabricated in house using a DEK
255 screen printer.

C. Electrochemical Immunosensor Fabrication

1) Immunosensor fabrication using in-house screen printed
electrodes: The electrode design (2×35 mm) was printed
onto commercial acetate paper using a HP inkjet printer.
Transparent single sided adhesive tape was placed on the
designed portion, creating an aperture. The screen ink was
deposited by a stencil printing process; using a squeegee
(a rubber blade used to print the ink through the screen on
the substrate). The tape was then removed slowly (snap-off)
to ensure that the electrode was not disturbed. Electrodes
were then cured at 60°C for 2 hrs and the resistance of each
electrode was measured individually. If measured resistance
was >100 �/cm2, devices were re-fabricated until this value
was achieved. The reference electrode (RE) was formed by
depositing a layer of a silver/silver chloride paste on the
surface of the central carbon track. The electrode printing
process is schematically presented in Scheme 1. Following
curing, the middle portion of the electrode was covered
with insulating tape maintaining a 5 mm active open area
with working electrode (WE), reference electrode (RE) and
counter electrode (CE) (Fig.1(A)). The capture antibody raised
against the cardiac troponin T was physisorbed by a “wet”
chemical process. This was achieved by adding 5 μl of
200 μg ml−1 antibody to the electrode surface followed by
incubation at 4°C overnight. The capture antibody-coated elec-
trodes were then washed three times with phosphate buffer –
Tween (PBS-T) (5 min per wash), pH 7.4 in order to remove
loosely attached antibody over the electrode surface. This
process created a monolayer of randomly oriented capture
antibody at the electrode surface. The electrodes were then
air dried at room temperature for 30 min, and maintained at
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Scheme 1. Schematic showing the stages involved in the electrode printing
process.

Fig 1. (A) Screen printed carbon working electrode (WE) Ag/AgCl
reference (RE) and carbon counter electrode (CE). (B) Working principle
of the electrochemical immunosensor.

4°C for 24 hr in order to strengthen the antibody binding to
the carbon surface.

The capture antibody coated immunoelectrode then under-
went a blocking procedure with 5% (w/v) BSA for 1 hr
followed by washing with phosphate buffer – Tween (PBS-T)
three times (5 min per wash). The electrode was then employed
for the detection of troponin T over a range of concentration
(100-1000 ng ml−1) at 25°C using a 20 min binding period.
The electrodes were then washed three times with PBS-T
(5 min per wash) followed by exposure to the conjugated
antibody (Ab-HRP) (100 μl of 10 μg ml−1) for 1 hr.
Further washing with phosphate buffer – Tween (PBS-T)
followed and then a cyclic voltammogram was recorded in

Scheme 2. Oxidation of o-phenylenediamine to o-phenylenediimine
by HRP enzyme (forward reaction) and electrochemical reduction of
o-phenylenediimine at the immunoelectrode surface by CV (backward
reaction).

1 mM o-phenylenediamine (OPD)/hydrogen peroxide (H2O2)
in PBS, pH 6 over the potential window +0.2 to −0.2 V
at 100 mVs−1 vs. Ag/AgCl reference electrode. A schematic
representation of the capture antibody-antigen and horseradish
peroxidase antibody complex on the electrode surface is pre-
sented in Fig. 1. The conjugate antibodies at the electrode
surface converted o-phenylenediamine to o-phenylenediimine
(Scheme 2). The o-phenylenediimine intermediate was then
electrochemically reduced via potential scanning over the
potential window +0.1 to −0.1 V at 100 mVs−1 vs. Ag/AgCl.
Electrochemical cycling was initiated from +0.1 V in order
to observe the reduction wave of the diimine molecule which
correlated with the concentration of troponin T bound to the
capture antibody.

2) Lateral flow Immunosensor Based on Screen Printed
Electrode: In house screen printed electrodes were fabricated
as described above. The primary antibody raised against tro-
ponin T (capture antibody) was immobilised onto the surface
of the electrode by adding 5 μl of 200 μg ml−1 onto the
active area (5×2 mm2) and incubating at 4°C overnight.
Following this process, electrodes were washed as above and
the electrode was then air dried at room temperature for
30 min and placed at 4°C for 24 hr. A Whatman filter paper
(membrane, 5×50 mm2) was then placed directly over the
SPE area using double sided adhesive tape (70 μm), as shown
in Fig. 2 B&C. Following this, the HRP conjugate antibody
(5 μl of 200 μg ml−1) was placed on the membrane at
a distance of 30 mm from the working electrode, and the
sample containing troponin T antigen (cTnT) was immediately
added at a distance of 50 mm from working electrode. During
this process, the antigen traveled down the strip towards the
anti-troponin binding site and formed a complex with the
conjugated antibody in the flow path. Subsequent forward
migration towards the working electrode realized sandwich
formation at the capture antibody zone. This process was
allowed to proceed for 20 min, followed by washing with
PBS-T three times (1 min per wash). During washing, the
PBS-T solution was applied to one end and collected on an
adsorbent pad. The washing step assisted in the removal of
free antibody conjugate and in this way served to reduce
non specific binding (interference), and miminise background
signals. Once the washing step was completed, 50 μl of 1 mM
OPD/H2O2 in PBS, pH 6 was applied directly onto the elec-
trode and the electrochemical signal was measured immedi-
ately. The current response obtained from the electrochemistry
of o-phenylenediamine was shown to be proportional to the
concentration of troponin T applied to the lateral flow sensor.

Authorized licensed use limited to: Technological University Dublin. Downloaded on January 05,2022 at 10:09:16 UTC from IEEE Xplore.  Restrictions apply. 



DEMPSEY AND RATHOD: DISPOSABLE PRINTED LATERAL FLOW ELECTROCHEMICAL IMMUNOSENSORS 1831

Fig 2. Lateral flow immunosensor fabricated using screen printed carbon
electrodes.

Fig 3. Shows the adsorption of horseradish peroxidase conjugate antibody
over the BSA coated (A) and uncoated electrode surface (B).

Experiments were repeated over a range of concentration of
troponin T from 100-700 ng ml−1. All standard test solution
measurements were repeated five times (inter electrode, n=5)
in order to determine the reproducibility and precision of the
immunosensor.

III. RESULTS AND DISCUSSION

A. BSA Blocking Effect on HRP-Conjugate Adsorption

Non-specific adsorption is a common problem associated
with signaling antibodies during immunosensor fabrication,
and can be reduced using surface blocking proteins (gelatin,
casein, milk protein and bovine serum albumin - BSA). In the
current study, bovine serum albumin was used as a surface
blocking protein due to its adsorption properties on carbon
surfaces [29]. Here we examined the non-specific adsorption
of signaling antibody on a BSA-coated and uncoated SPE
surface. The adsorption of the signaling antibody in the
presence and absence of a BSA layer on the electrode surface
is depicted schematically in Fig. 3.

The non-specific adsorption of horseradish peroxidase-
conjugate antibody under immunoassay conditions was
revealed by peroxidase activity measurements recorded on
a BSA coated and uncoated electrode surface. The voltam-
metric features for the peroxidase formed o-phenylenediimine

Fig 4. Cyclic voltammogram of in-house screen printed carbon electrode
(a) SPE/HRP-Ab, (b) SPE/BSA/HRP-Ab in 1 mM o-phenylenediamine/H2 O2
in phosphate buffer, pH 6 at 100 mVs−1 vs. Ag/AgCl reference electrode.

include; a redox couple between +0.2 V to −0.2 V and an
increase in peak current observed (Fig. 4). The adsorption of
a high concentration of conjugate at the BSA coated elec-
trode was investigated with respect to the uncoated electrode
surface. The influence of BSA immobilisation on the diimine
signal at thick film carbon transducers showed a diminished
electrochemical signal for diimine reduction, indicating less
bound peroxidase conjugate.

The diimine reduction current for the BSA coated electrode
was found to be 0.21 μA mm−2 (Fig. 4b), while in the absence
of BSA (Fig. 4a) the diimine reduction current was elevated
to 0.61 μA mm−2. This represents a three-fold increase in
response over the BSA coated electrode surface. In both cases
the reduction and oxidation of o-phenylenediimine occurred
over the potential window +0.1 to −0.1 V. An additional
anodic peak appeared at Ep = 0.135 V vs. Ag/AgCl, which
may be due to further oxidation and dimerisation of the
diamine molecule which commenced at a higher potential.
This experiment confirmed the significant role of BSA coating
in immunoassay fabrication.

B. Detection of Troponin-T at Modified Screen
Printed Electrode

Fig. 5a shows the electrochemical response of the capture
antibody-coated BSA electrode which appeared from the non-
specific adsorption of the horseradish peroxidase-conjugate
antibody in the absence of the troponin T antigen. This
indicated that the capture antibody-coated BSA electrode
was porous enough to allow exchange of electrons at the
electrode solution interface. The diimine reduction current
of background response was found to be 0.304 μA mm−2

due to non-specific adsorption of the conjugated antibody on
the capture antibody coated electrode surface (SPE/Ab/BSA/
Ab-HRP). The electrochemical signal elevation in the presence
of antigen at 100 ng ml−1 (SPE/Ab/BSA/cTnT/Ab-HRP)
shows a signal of 0.39 μA mm−2 due to reduction of
o-phenylenediimine. This indicated that the antigen formed
a complex with the antibody (Fig. 5b) and elevation in the
electrochemical signal of diimine reduction with the antigen
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Fig 5. Cyclic voltammogram of modified SPE in 1 mM o-phenylenediamine
/H2O2 in phosphate buffer pH 6 vs. Ag/AgCl reference electrode at
100 mVs−1, (a) SPE/Ab/BSA/Ab-HRP, and (b) SPE/Ab/BSA/cTnT
(1000 ng ml−1)/Ab-HRP.

Fig 6. Calibration plots shows current density vs. concentration of troponin T
detected at the SPE surface (n=5). Limit of detection = 0.49 ng ml−1.

level over a concentration range of 100-1000 ng ml−1 was
achieved. Additionally, the increase in the diimine reduction
current above the background signal indicated that the capture
antibody was exposed to the active antigenic sites for the
specific antigen.

A calibration plot for the detection of troponin T over a wide
concentration range based on the electrochemical signal of
diimine showed proportionality with the antigen concentration
as shown in Fig. 6. Initially, increases in the electrochemical
signal for o-phenylenediimine showed a linear response for
troponin T from 100-500 ng ml−1, and a steady current
response appeared from 600-1000 ng ml−1. The immunosen-
sor showed a sensitivity of 0.11 nA ng−1 ml−1 with a lower
limit of 0.49 ng ml−1. The steady response obtained suggested
that the capture antibody surface was saturated with antigen,
and no further antigenic sites were available. This effect served
to limit the use of the immunoelectrode at a working concen-
tration range for antigen detection. Additionally, a limiting
current of 874 nA mm−2, at higher concentration indicated
that all antigenic sites on the capture antibody were involved
in binding.

Fig 7. CV of the immunoelectrode in the absence of antigen
(a) [SPE/Ab/BSA/Ab-HRP], (b) detection of troponin T antigen
(100 ng ml−1) at capture antibody coated BSA electrode [SPE/Ab/BSA/cTnT/
Ab-HRP] in 1 mM o-phenylenediamine /H2O2 in phosphate buffer, pH 6 at
100 mVs−1 vs. Ag/AgCl reference electrode.

All concentrations of antigen were analysed using five
replicates (n=5) in order to illustrate the reproducibility and
precision for target antigen detection. Statistical analysis of
the diimine electrochemical signal arising over this range
of antigen concentration resulted in average coefficient of
variation of 13.8%. This imprecision may be due to variation
in the diimine signal at the electrode surface due to screen
printed carbon surface inter-electrode reproducibility and/or
the surface blocking effect of the BSA protein. A random
orientation of capture antibody at the electrode surface also
may be a reason, however, at some concentration points,
the coefficient of variation was <10%. In conclusion, the cap-
ture antibody-coated BSA electrode was capable of detecting
and quantifying the target specific antigen over the range
examined.

C. Detection of Troponin T by Lateral Flow Immunosensor
Following the proof of concept study for troponin T detec-

tion on a screen printed modified electrode, fabrication of a
facile electrochemical lateral flow device was achieved via
placement of a Whatman membrane onto the capture antibody-
coated BSA electrode, using a spacer of 70 μm thickness.
This membrane created a 40 μm gap between the electrode
and membrane surface which facilitated Ab-Ag binding. The
conjugated antibody (5 μl of 200 μg ml−1) was present at
the middle portion of the membrane at a distance of 3 cm
from the electrode surface. A 150 μl aliquot of sample
containing troponin T antigen over a concentration range of
100-700 ng ml−1 was added and allowed to bind for a period
of 20 minutes. During this time the Troponin T traveled from
one end of the electonic lateral flow device to the detection cell
via capillary action. A complex with HRP conjugated antibody
was formed en-route and capture occurred at the antibody-
coated screen printed carbon electrode surface.

The specific target antigen was measured via the elec-
trochemical reduction of diimine (Fig. 7), over the range
100-700 ng ml−1. A resulting calibration plot showed linearity
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Fig 8. Calibration curve for Troponin T using the electrochemical lateral
flow immunosensor, over a concentration range of 100-700 ng ml−1 (n=5
devices).

TABLE I

COMPARATIVE PERFORMANCE CHARACTERISTICS OF IMMUNOSENSORS

FOR DETECTION OF VARIOUS CARDIAC MARKERS

with a detection limit of 0.15 ng ml−1, and sensitivity of
0.2 nA ng−1 ml−1 (Fig. 8). Here, the Whatman membrane
played an important role in rapidly capturing the antigen-
conjugate antibody complex on the electrode, generating a
more sensitive signal, reducing reagent addition steps and
assay time to result. Therefore, this type of lateral flow sensor
can contribute towards both the qualitative and quantitative
determination of troponin T with the potential for extension
to a dual Troponin I and T assay format. The coefficient
of variation ranged from 7.3-16.5% for n=5 lateral flow
electrochemical devices. Additional design improvements are
required to minimize membrane porosity variations and flow
rate effects inherent to lateral flow dynamics.

Table 1 gives a comparison of analytical performance char-
acteristics for recent reports regarding cardiac markers based

on modified electrodes. The biosensor developed in this work
compares well with respect to time to result, convenience of
use/minimal reagent handling errors and is one of the few
reports in the literature of lateral flow membrane technology
integrated with screen printed electrode immunosensors for
Troponin T quantitation.

IV. CONCLUSION

Here, we have successfully fabricated a single use dis-
posable electrochemical immunosensor, based on low cost
materials - screen printed carbon electrode and lateral flow
membrane, for the determination of human cardiac troponin
T. Troponin T was detected at concentrations ranging from
100-1000 ng ml−1 at a modified screen printed electrode or
100-700 ng ml−1 using an electrochemical lateral flow device.
A linear relationship was shown to exist between the elec-
trochemical signal from the reduction of o-phenylenediimine
and antigen over the range examined, with sensitivity values
of 0.11 nA ng−1 ml−1 and 0.19 nA ng−1 ml−1, respectively,
within a 20 min assay time. This sensor was easy to fabricate,
suitable for mass production, cost effective and provided proof
of principle for detection and quantification of a globally
relevant biomarker of MI, with the potential to contribute to
its early detection at the point of care with the ultimate benefit
of reducing patient mortality.
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