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Device and the Role of Defect Chemistry in its Operation. 
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Abstract 

A simple metal-semiconductor-metal device comprising TiO2 cast from a suspension of 

Degussa P25 and placed between two metal plates (Al/Al lap shears) demonstrated memristive-

like resistive switching behaviour. A mechanism is proposed which relies upon the formation 

of p and n-type regions within the P25 semiconductor material ultimately leading to the 

formation of a p-n junction. This device also exhibited enhanced steady state currents upon the 

imposition of potential steps, most notably at higher potential magnitudes (both anodic and 

cathodic). Indicating lack of ionic conduction. 

Keywords 

TiO2, Degussa P25, memristor, nanoparticles, point defects. 

 

1. Introduction  

         There has been considerable interest in the fabrication and understanding of the operation 

of Resistive Random Access memory (RRAM or ReRAM) or memristor devices in recent years 

[1-3]. Typical structures comprise a metal-semiconductor-metal (MSM) configuration with 

TiO2 being a popular semiconductor material. Indicators of bipolar resistance switching include 

a “figure of eight” current-potential profile, along with a transition from a high resistance state 

to a low resistance state [4].  

         There have been a number of mechanisms proposed for the operation of a memristor. 

These include Mott transition, Schotty Barrier behaviour at the interface, charge trapping or 

detrapping, polaron melting and ordering, electric field-induced generation of crystalline 
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defects and creation or destruction of a conducting filament [5]. An electrochemical model 

based on ionic movement within the interlayer has also been proposed [6-7]. However, the 

model which is most often proposed in reviews of memristor operation is the conductive 

filament or thermoelectric model [1, 2, 8, 9, 10 and 11]. The oxygen vacancies formed at the 

anode migrate to the other electrode and are responsible for the transition from a high resistance 

state (HRS) to a low resistance state (LRS) [1]. Models involving conducting filament growth 

refer to oxygen ion current and propose a very high local temperature rise for filaments; up to 

1000°C [11]. The main issue with this model is that charge transport through the insulating 

layer is highly hindered.  

           At room temperature electrical conductivity (σ) in transition metal oxides such as TiO2 

is the sum of the product of both electron (n) and hole concentrations (p) and mobility terms 

(μn and μp respectively) and is given by e(nμn + pμp) where e is the elementary charge [25]. 

Under ambient conditions the ionic conductivity component, σi which normally contributes is 

negligible. It assumes substantial values only at highly elevated temperatures.  

         Although various models have been proposed to explain resistive switching behaviour in 

the TiO2 layer, the nature of charge transport in such devices is still the subject of much debate. 

For example Lim and Ismail in their review of conduction mechanisms of resistive switching 

devices reported a range of different mechanism sometimes for the same device [29]. In this 

work a new model is proposed based on concepts derived from point defect models in 

conjunction with the operation of an electrolytic cell utilising electron and electron hole carriers 

within the semiconducting TiO2 solid state electrolyte sandwiched between two aluminium 

plates. 
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2. Experimental  

        A suspension of TiO2 (Degussa P25, 0.076 g) was prepared in 2-propanol (10 cm3). 10 μL 

of this suspension was then placed on an aluminium plate or lap shear (dimensions of 10 cm × 

2.5 cm × 2 mm). The general scheme of the device structure is shown in Fig.1. A potentiostat 

(CHI 600A) was used to apply a potential, where the reference and auxiliary connections were 

linked to one lap shear, while the working electrode connection was linked to the other. Using 

this equipment, potentials lower than 0.6 V were typically applied, in order to prevent current 

overload of the potentiostat. An AFM measurement of the P25 TiO2 layer indicated it was 40 

nm in thickness. 

 

Figure 1 Device arrangement. TiO2 NP were cast from a suspension which was allowed to dry on an Al plate. A 

second Al plate was then clamped on top to form a sandwich-like assembly  

3. Results and discussion  

           It is important to highlight that in the literature, there have been many memristors for 

which a control was not mentioned. Figure 2 is a cyclic voltammogram (plot of current as a 

result of a linear potential ramp) of such a control assembly consisting of an aluminium lap 

shear clamped directly on top of another aluminium lap shear. As expected, the result is an 

Ohm’s law plot where the resistance is calculated to be 5 Ω.  
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Figure 2 Plot showing the typical ohmic behaviour of a blank (control) device comprising two plates Al/Al lap 

shears clamped together. Scan rate=10 mV/s 

        Figure 3 shows typical current-voltage (I-V) data of an Al/TiO2/Al assembly. This data 

was obtained from imposition of a potential scan rate of 0.1 V/s over an applied potential range 

of −0.5 to +0.5 V. The initial starting potential was 0 V. The current in this figure appears to 

be much larger than those most often reported in the literature, since most assemblies in the 

literature are prepared using micro fabrication facilities, yielding significantly smaller surface 

contact areas [12]. However for this simple device the contact area of the P25 TiO2 layer 

sandwiched between the two aluminium plates is much greater; of the order of 0.5 cm2.  



 

xxxxxxxxxxx 
 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.3

-0.2

-0.1

0.0

0.1

0.2

 

 

C
u

rr
e

n
t 
(A

)

Voltage (V)

 

Figure 3 A plot of current against the potential displaying typical behaviour of a bipolar memristor of a structure 

of Al/TiO2/Al assembly. Al lap shear is connected to the working electrode connection and the other is connected 

to the counter + reference electrode connections  

             Figure 3 shows a triangular curve that exhibits a clear hysteresis and asymmetric 

switching behaviour. For the sake of clarity only 6 cycles are shown in Fig. 3 , where the first 

three initial scans are overlaid together with the 28th , 29th and the 30th consecutive scans. 

Similar behaviour was demonstrated by Gale et al for Al/sol-gel TiO2/Al and by other authors 

[13,14].The clear advantage of this device is its ease of construction. 

            It should be stressed that for the Al/TiO2/Al device, there is a possible effect of the 

aluminium oxide layer, or even a more complex mixed phase (hydrated aluminium oxide) 

which may well act as a source of holes (h●). The chemical reaction between an Al top/bottom 

electrode and an amorphous sol-gel TiO2  has been confirmed experimentally by Jeong et al  

using high-resolution transmission electron microscopy (HRTEM), an analytical TEM 

technique using energy-filtering transmission electron microscopy (EFTEM), and an in situ x-

ray photoelectron spectroscopy (XPS) [14]. 
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3 

4 

2 
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           Such findings have been proposed and supported by different research groups, which 

suggests that there is an oxygen deficiency present in the middle region of TiO2 [14-15]. It 

contradicts the belief that oxygen vacancies at the metal-oxide interface play a critical role on 

the reversible switching between a high resistance state and a low resistance state. It should be 

noted that Al/TiO2/Al is more correctly represented as Al/Al2O3 (OH)/TiO2/Al2O3 (OH)/Al, 

however, the conventional representation is Al/TiO2/Al [28]. 

         In pure TiO2 samples (such as Degussa P25) at high temperatures (typically above 1273 

K), the following equilibria describing defect chemistry reactions can happen [16]. This can 

result in either the creation of n-type TiO2 (equations (1)-(3)) or p-type TiO2 (equation (4)), 

represented by Kröger–Vink notation, where (●●) represents a double positive charge and (e') 

signifies a negatively charged electron. 

Ox
o     Vo

●● + 2e' + ½ O2                                               (1) 

2Ox
o + Tix

Ti   Tii
●●● + 3e' + O2                                   (2) 

2Ox
o + Tix

Ti     Tii
●●●● + 4e' + O2                                                                    (3)             

O2    2Ox
o + VTi '''' + 4h●                                               (4) 

         Also Vo
●● corresponds to an oxygen vacancy, with a double positive charge. Equation (1) 

explains why the presence of oxygen vacancies has been attributed to an n-type TiO2 

semiconductor. In this notation, Tii
●●● denotes Ti3+ in an interstitial site and Tii 

●●●● represents 

Ti4+ in an interstitial site. In these reactions e' is a Ti3+ atom in a titanium lattice site (quasi-free 

electron) and h● is an O− anion in an O2− lattice site (a quasi-free hole) [17]. 

         Figure 4 displays the currents obtained from the application of selected constant 

potentials (in 0.1 V increments) for a period of 10 s. The resulting constant current indicates a 

resistive behaviour. This confirms that the current is produced by the rapid movement of 
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electrons or holes rather than from ionic species. However, the current behaviour is different 

when a positive potential is applied compared to when a negative potential is applied. In the 

case of the high negative potentials (−0.4 V and −0.5 V), an initial current decay is evident 

before a steady state current was attained.  
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Figure 4 Current transient at fixed potentials for 10 s in 0.1 V steps ranging from 0.1 V to 0.5 V on right (a) and 

-0.1 V to -0.5 V on left side for Al/TiO2/Al (b) 

           This initial decay is possibly influenced by the dual layer Al2O3/(OH) passive film 

created and the chemical change of the titanium oxide thin layer sandwiched between two 

aluminium electrodes [18-19]. In the Al/TiO2/Al device the space charge layer is forward 

biased, which leads to the generation of a low resistance state and ultimately a constant current 

at both positive and negative fixed potentials. Such constant currents are not observed for the 

mass transport of ionic species, only at p-n junctions, where the movements of electrons and 

holes suggests a non-diffusional behaviour.  

         Degussa P25 (TiO2) comprises a mixture of anatase and rutile nanoparticles (in the ratio 

80:20) with an average size of 21 nm. SEM images of this material indicates that it forms 

(a) (b) 

0.1V 

0.5V −0.1V 

−0.5V 
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nodules with a porosity level of about 30-40% [20-21].Initially a white powder once 

disaggregated it is translucent. This material is manufactured at high temperatures, typically 

ranging between 1273 K and 2673 K [22]. As a consequence of being formed at such high 

temperatures, Degussa P25 TiO2 is inherently non-stoichiometric in nature and contains 

various point defects including quasi-free electrons and quasi-free electron holes, oxygen 

vacancies, titanium vacancies and titanium interstitials as reported in Nowotny et al [25]. In 

practice such defects arise from the processing conditions (such as production temperature) 

and the presence of either reducing (hydrogen-rich) or oxidising (oxygen-rich) environments. 

These defects may react according to the equilibria described by equations 1-4 above.   

              Sometimes small impurity levels may also act as dopants and can alter the 

semiconductor’s band gap. In fact Degussa P25 (TiO2) serves as the archetypal 

photoelectrochemical catalyst and is known to operate through the movement of electrons and 

holes at room temperature in a wide range of photoelectrochemical processes including 

generation of solar hydrogen fuel and photocatalysis of organic compounds for waste water 

purification [25].       

When the Degussa P25 (TiO2) is connected between two metal electrodes in a 

memristor configuration such as the assemblies described previously and a positive potential 

is applied    (region 1 in Figure 3), then oxidation occurs at the anode (equation (5)) to form a 

p- type TiO2 . In this case Vo
●● remains, while the electrons pass into the electrode and oxygen 

is evolved. This electrochemical evolution of oxygen has been observed experimentally in TiO2 

based memristor assemblies [5,13,23].  

Ox
o  → Vo

●● + 2e' + ½ O2             (5) 

Alternatively the anode material may also be oxidised [13,23].  



 

xxxxxxxxxxx 
 

2Al + 3/2O2   →   3Vo
●● + Al2O3 + 6e'          (6) 

Meanwhile, at the cathode n-type TiO2 is formed through the reaction [23]: 

  2Tix
Ti + 2e' →  2TiTi'  

                                                                      (7) 

          In this case TiTi' corresponds to a Ti3+ species in a Ti4+ vacancy leading to an overall 

single negative charge [24, 25]. Such an electrochemical reduction has previously been 

reported by Gale et al [13] and is widely reported in the literature [13, 23, 24]   

          Therefore, at the negative electrode (cathode) n-type TiO2 forms and at the anode p-type 

TiO2 is created at the same time. The operation of p-type TiO2 at room temperature has been 

reported by Nowotny et al [30].  

         In the low resistance state, a forward biased p-n type junction appears when the p-type 

and n-type regions extend from the metal electrode surfaces and meet in the middle with 

enhanced current carrying capability. This accounts for the resulting increase in current at about 

−0.16 to 0.5 V in Figure 3. During the initial electrochemical reaction (5) and (6) O2− anions 

migrate to the anode and this has been observed experimentally [5] Thus at the cathode the 

formation of TinO2n-1 (eg Ti2O3 or possibly even a Magnéli phase) occurs [3]. Once the n and 

p region are formed the charge is subsequently passed by electron and hole movement as shown 

in the schematic presented in Figure 5(a) and (b).    

 

(a) 

(b) 
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Figure 5 (a) Model for the transition from insulator to semiconductor in region 1 of figure 3. (b) A fully 

semiconducting memristor responsible for the increase in current in region 2 of figure 3       

         In region 2 (from 0.5 V to 0.0 V), in figure 3 there is a decrease in the applied potential 

and a corresponding decrease in the driving force of the current. 

         In contrast, in region 3 (from 0.0 V to −0.5 V) in figure 3 there is a reversal of the reactions 

(5) and (6) mentioned above. While regions 1 and 2 operate to increase the population of the 

electrons and holes at the cathode and anode respectively, in region 3 these populations 

decrease. However there is a residual build-up of O2 (effectively h●) and Ti(III) species (e') 

which still allows for a reasonable current through the reversal of the original reactions (5, 6) 

and (7). By the time we get to region 4 (from −0.5 V to 0.0 V) the movement of electrons and 

holes has decreased substantially, and the device returns rapidly to its original high resistance 

state. Fig 5 shows a schematic representation of the process. 

          The I-V plot presented in Figure 3 is not symmetric; which has been seen in other devices 

produced micro lithographically [12, 14]. Indeed a characteristic of our device is its simplicity; 

it can be produced without vacuum or microlithographic techniques. Thus it is a platform which 

can be modified using ink jet [26] or screen-printing techniques [27].   

 

4. Conclusions 

          The field of memristors is rapidly growing; a recent reference lists a table of commercial 

devices along with their characteristics [1]. In this paper a device of very simple construction 

utilising cystalline Degussa P25 TiO2 is demonstrated along with a new semiconductor model 

of resistive switching operation ascending from point defect chemistry concepts involving the 

formation of a p-n junction arising from formation of n and p type regions within a solid state 

electrolyte is proposed. 
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