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Abstract 
 
Horticultural products such as mushrooms are exposed to external agents during their post-

harvest life, which are going to affect product quality. Loss of whiteness during storage is 

particularly important in the mushroom industry. Rough handling and distribution of crops, 

fruiting body senescence, bacterial and viral infection are among the causes of mushroom 

discolouration. The aim of this work was to study the use of metabolic fingerprinting and 

metabolic profiling tools for the detection and discrimination of mechanical damage on 

mushrooms. This research involved: 

1. Investigating whether the chemical changes induced by mechanical damage and 

ageing of mushrooms could be (a) detected in the mid-infrared absorption region 

using FTIR spectroscopy as a fingerprinting tool and (b) identified using 

chemometric data analysis. 

2. Investigating metabolites in mushroom tissues using GC/MS as a metabolic 

profiling technique.  The method was used to profile mushroom samples to identify 

metabolic markers for damage and to gain understanding of the many metabolic 

processes that occur. 

3. Studying low levels of damage in mushrooms using NMR spectroscopy as a 

fingerprinting technique coupled with chemometrics to identify markers and 

determine metabolite structure.   

The results from this study show the usefulness of FTIR spectroscopy coupled with 

chemometric data analysis for evaluating damage in mushrooms with specific 

wavenumbers identified. Metabolic profiling using GC/MS has led to a library of 

metabolites being built. Specific metabolites have been identified as markers for damage.
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1. Introduction 

1.1. GENERAL INTRODUCTION 

1.1.1. Mushroom History 

Mushrooms have been part of the fungal diversity for around 300 million years, probably 

being collected in the wild as food and possibly for medicinal purposes by prehistoric 

humans. With the widespread cultivation of plants for food, mushrooms were eventually 

cultivated and not simply picked in the wild.  

The first mushroom to be cultivated was probably Auricularia auricular around 600 A.D. 

The historical record for Lentinula edodes is much more considerable and indicates that L. 

edodes was first cultivated circa 1000 A.D. according to the famous Chinese Book of 

Agriculture published in 1313 (Chang and Miles, 1978). The most significant advance in 

the field occurred in the seventeenth century when Agaricus bisporus was cultivated in 

France (Skovgaard, 2002) using horse manure as a substrate. The horse manure was 

initially colonised by mushroom spores from wild sources and when a mushroom bed had 

been harvested the substrate was broken up, dried and used as ‘spawn’ to inoculate new 

beds. A side effect of this method was that each site had to be abandoned after a year or 

two due to the build up of disease and insects. 

Later developments in mushroom cultivation included the growing of mushrooms indoors 

using a pure culture spawn containing living mycelium of the desired mushroom species. 

Pure culture mushroom spawn for A. bisporus was first achieved in 1886 in the United 

Kingdom, in 1894 in France, and in 1902 in the United States. 

In Ireland mushrooms were first grown commercially in the mid 1930’s with exports to 

Great Britain beginning in 1947 (Chang and Miles, 2004). 
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1.1.2. Fungal Kingdom 

Historically mushrooms were classified with plants. However, modern studies established 

that mushrooms along with other fungi, have features of their own that are sufficiently and 

significantly distinct to place them in a separate fungal kingdom, the Kingdom Myceteae. 

Fungi differ from the plant kingdom by their possession of a cell wall that is different in 

composition. The mode of nutrition of fungi is heterotrophic but, unlike animals is 

absorptive as opposed to digestive. 

A mushroom is defined as a higher fungus belonging to the sub-kingdom Dikarya with a 

distinctive fruiting body that can be above or below ground. Higher fungi may be 

ascomycota or basidomycota, edible or non-edible, poisonous and also medicinal species 

(Courtecuise and Duhem, 1995; Chang and Miles, 2004). The phyla basidiomycota include 

some of the most familiar and conspicuous of all fungi including the common button 

mushroom A. bisporus.  

1.1.3. Mushroom Morphology 

A. bisporus mushrooms consist of three different tissues cap, gills and stipe (Figure 1.1). 

1. The cap is fleshy and hemispherical and as the cap expands it becomes flattened in 

order to protect the gills. The cap colour ranges from white to cream at first, 

becoming brownish with age and damage.   

2. The gills are the reproductive tissues of the mushroom and produce millions of 

spores, which are located underneath the cap. In many mushrooms the gills are 

covered early in development by a veil and in the mature mushroom the remains of 

this veil can be seen as a ring around the stipe. Over time the colour of the gills 

change from a pinkish colour to a brown black colour as the spores mature. 
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3. The stipe is white in colour and it is connected at its base to the mycelium in the 

compost. Its function is to lift the cap above the compost in order for the spores to 

be released (Flegg et al., 1985; Courtecuise and Duhem, 1995). 

 

 

Figure 1.1 A schematic representation of a mushroom fruiting body (Mohacek-Grosev et al., 2001) 

 
The vegetative part of the mushroom is called the mycelium, which is made up of 

filaments called hyphae. These filaments grow only at the tip or at specialised regions and 

form a system of branching threads and cordlike strands that branch out throughout the 

soil, compost or other material on which the mushroom is growing.  After a period of 

growth and under favourable conditions the established (matured) mycelium produces the 

fruiting body (Chang and Miles, 2004). 

1.1.4. Mushroom Physiology 

Mushrooms are heterotrophs and acquire their nutrients by absorbing soluble inorganic and 

organic materials from substances like wood logs, manure composts or other organic 

synthetic composts. It is important for them to find organic carbon in their environment i.e. 

in their substrate. This carbon source provides the skeletal carbon for organic compounds 

and the energy for the anabolic processes. Other elements necessary for fungal life include; 

oxygen, hydrogen, phosphorus, potassium, copper, iron, zinc and vitamins. Water is also 
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essential to fungi for its role during the growth cycle. Heat and light also play a part in 

their physiology (Beelman et al., 2003; Chang and Miles, 2004). 

1.1.5. Nutritional Attributes 

The nutritional value of the mushroom originates from its chemical composition. It should 

be noted that mushroom composition varies greatly due to their strains, cultivation 

techniques (including different substrates), maturity at harvest and methods of analysis 

(Beelman and Edwards, 1989). Mushrooms are considered health foods as they are low in 

calories, fats and essential fatty acids, high in protein, vitamins and minerals. The high 

levels of potassium, phosphorus and selenium along with very low levels of sodium add to 

the beneficial attributes of mushrooms.  Mushrooms have also been reported as therapeutic 

foods, useful in the prevention of diseases such as hypertension, hypercholesterolemia, 

atherosclerosis and cancer (Crisan and Sands, 1978; Kuraswa et al., 1982; Manzi et al., 

2001).   

1.1.5.1. Carbohydrate & Fibre 

Carbohydrates are generally the main components of the mushroom (ranging from 30-75% 

of dry weight) (Manzi et al., 2004; Colak et al., 2007). Glucose, mannitol and α-trehalose 

are the main representatives of monosaccharides, their derivatives and oligosaccharide 

groups, respectively. Usual contents of glucose and trehalose are low. The content of 

mannitol, which participates in volume growth and firmness of fruiting bodies, differs 

widely (Barros et al., 2007).   

The reserve polysaccharide of mushrooms is glycogen with usual content at about 5-10% 

of dry matter. Chitin is a water-insoluble structural polysaccharide, accounting for up to 

80-90% of dry matter in mushroom cell walls (Manzi et al., 2004).   

The content of fibre varies greatly between species with values for A. bisporus reported as 

10.4% (dry weight) (Chang and Miles, 2004).   
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1.1.5.2. Protein & Amino Acids 

The proteins of cultivated mushroom contain all nine essential amino acids i.e. those which 

the body cannot synthesise (lysine, methionine, tryptophan, threonine, valine, leucine, 

isoleucine, histidine and phenylalanine). Mushrooms generally contain 19-35% protein 

(dry weight) (Chang and Miles, 2004). 

1.1.5.3. Lipids 

Lipids in the cultivated mushroom A. bisporus have been investigated extensively (Weete, 

1980). The lipid content in different species of mushrooms ranges from 1.1 to 8.3% (dry 

weight), with an average content of 4.0% (Chang and Miles, 2004). 

The acids include C12-C20 even-numbered fatty acids (Holtz and Schisler, 1971; Prostenik 

et al., 1978; Weete et al., 1985)  and C16-C24 hydroxy fatty acids (Prostenik et al., 1978), 

with oleic, linoleic and palmitic acids predominating. These may exist in their free form or 

be conjugated to other lipid constituents. Esterification of the glycerol with fatty acids may 

lead to the formation of mono-, di- or triglycerides. Stancher and colleagues expanded the 

observed range of free and bound fatty acids to include C8 and C13-C17 odd-numbered acids 

(Byrne and Brennan, 1975; Stancher et al., 1992).   

The chief unsaturated fatty acid of mushrooms lipids, linoleic acid, is the precursor of the 

mushroom alcohol (1-octen-3-ol) (Tressl et al., 1982). This alcohol together with the two 

associated C8 ketones (1-octen-3-one, 3-octanone), constitute the main volatiles and are 

considered the major contributors to the characteristic mushroom flavour. 

1.1.5.4. Vitamins & Minerals 

It has been reported that edible mushrooms are a good source of several vitamins including 

thiamine (B1), riboflavin (B2), niacin, biotin and ascorbic acid (Vitamin C) (Crisan and 

Sands, 1978; Chang and Miles, 2004). Mushrooms are deficient in vitamin D2. However, 

they are found to be a rich source of ergosterol, the precursor of vitamin D2. Ergosterol in 
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mushrooms can be converted into vitamin D2 by UV irradiation (Mau et al., 1998; Jasinghe 

and Perera, 2006). 

They are also a good source of minerals. The major mineral constituents are potassium (K), 

phosphorus (P), sodium (Na), calcium (Ca), magnesium (Mg) and selenium (Se).  Copper 

(Cu), zinc (Zn), iron (Fe), manganese (Mn), molybdenum (Mo) and cadmium (Cd) make 

up the minor mineral constituents (Chang and Miles, 2004).   

1.1.6. Mushroom Production 

The use of plastic bags for mushroom growing was developed in Denmark in 1959 and 

spread to France and Germany (MacCanna, 1984). The system of growing in plastic bags 

(Figure 1.2) and tunnels was the basis of the expansion of the Irish mushroom industry in 

the 1980s. 

The two basic requirements for mushroom growing are good substrate (i.e. compost) and 

the right environmental conditions. As compost quality is largely outside the control of 

mushroom growers, their main contribution to final product quality is crop management. 

This involves controlling temperature, relative humidity, watering, ventilation and CO2 

levels. Modern mushroom houses are equipped with computerised environmental control 

systems for this purpose (Teagasc, 1994).   

During the crop cycle, mushrooms are harvested in a rhythmic pattern of breaks or flushes 

that occur at approximately seven day intervals. After two flushes, production declines 

rapidly and a grower must decide to terminate the crop and start anew or face dwindling 

harvest of mushrooms from each successive flush.   

The steps involved in mushroom production are: 

Phase 1: Preparation of compost 

Phase 2: Pasteurizing and final composting 

Phase 3: Spawning 
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Phase 4: Casing 

Phase 5: Harvest (MacCanna, 1984; Teagasc, 1994; Chang and Miles, 2004) 

The Food and Agricultural Organisation of the United Nations (FAO) issued a small 

booklet called ‘International Standards for Edible Fungi’ (Codex Alimentarius 

Commission No. 38) in 1970. The standards are as follows: 

1. Buttons – Mushrooms with membranes closed, only just forming. Stem length not to 

exceed 2 cm (¾ inch), cap diameter 2.5 to 6 cm (1 to 2½ inches). 

2. Caps – Mushrooms with membranes well developed or just opening, with cap retaining 

a pronounced cap shape. Stem length not to exceed 2.5 cm (1 inch) from the apex.  Cap 

diameter 2.5 to 7 cm (1 to 2¾ inch). 

3. Flats or Opens – Mushrooms that have advanced beyond the cap stage, the cap forming 

the letter ‘T’ with the stipe.  Cap diameter 2.5 to 7 cm (1 to 3½ inch) and stem length 

not to exceed 2.5 or 3 cm, according to the class.  

These definitions are widely accepted but the measurements may vary on a wider range. 

 

 

Figure 1.2 A. bisporus growing in a polyethylene bag 
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1.1.7. Irish Mushroom Industry 

Mushrooms are the single most important horticultural crop grown in Ireland (Teagasc, 

2007). From small beginnings the industry has grown to become a major producer of fresh 

mushrooms and the third largest fresh A. bisporus exporter in Europe, after Poland and the 

Netherlands (Van Horen, 2008). Over 60,000 tonnes are produced annually with 80% 

(>45,000 tonnes) being exported to UK markets (Teagasc, 2007).   

The mushroom industry expanded dramatically during the 1980s and 1990s with the 

introduction of a new concept of growing called the ‘satellite’ system. The satellite system 

was invented in Ireland and is quite simple. Compost companies would sell compost to an 

associated group of growers, and then buy the mushroom crop back from the growers. 

Further marketing of the mushrooms was handled by the sales organisation of the compost 

company. This resulted in a very efficient production and marketing system, with growers 

having a secure source of compost and a guaranteed market for their mushrooms 

(http://www.mushroombusiness.com). 

Ireland was ranked third in the world fresh-mushroom exports behind China and The 

Netherlands between the years 2000-2004 (Grogan, 2008). However, in recent years the 

production of mushrooms has decreased in Ireland by 20%, while in Poland it has 

increased by 100%. Poland is now the biggest producer and exporter of mushrooms in 

Europe (Van Horen, 2008).   

Competition between The Netherlands and Poland has had a negative effect on established 

mushroom industries throughout Europe, with the numbers of farms declining in most 

mushroom producing countries. Ireland has seen a steady decline in the number of 

mushroom growers from 504 in 2000 to 100 in 2006 (Grogan, 2008). 

The only way to move forward and remain profitable is to maximise efficiencies in all 

links of the production and supply chain. The Irish mushroom industry still controls a 
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significant share of the UK mushroom market, however, in order to continue to consolidate 

this position a number of challenges must be addressed:  

• Top quality compost needs to be consistently supplied to growers. 

• Growers need to maximise efficiencies at production level by increasing quality, 

yields and throughput of compost. 

• Logistical costs need to be kept to a minimum (Neary, 2003). 

Despite the difficulties faced over the past few years, growers are investing in order to 

improve the growing system, which will allow the Irish industry to maintain a strong 

position in the European export market place (Grogan, 2008). 

 

1.2. FACTORS EFFECTING MUSHROOM QUALITY 

1.2.1. Shelf-life 

Mushrooms have a short shelf-life compared to most vegetables. This is due to their thin 

and porous epidermal structure which results in high respiration rates which give rise to 

deterioration immediately after harvest (Brennan et al., 2000). Maturation and senescence 

are phenomena which together with microbial activity contribute to postharvest 

deterioration of fresh mushrooms (Beelman, 1987). 

Mushrooms are very perishable products with a usual shelf-life of less than 3 days at 

ambient temperature (Lee, 1999), and from 8 to 10 days under refrigeration (Burton, 

1989). Extending the shelf-life of mushrooms is desirable as an extra few days would 

compensate for time in transit, thereby giving more flexibility to processors, retailers and 

consumers alike (Brennan et al., 2000). A longer shelf-life would be particularly important 

for any exporting country (i.e. Ireland) for which access to the food markets in larger 

neighbouring countries within Europe is vital.   
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A number of recent studies have been carried out into extending the shelf-life of 

mushrooms. This research has focused on developing postharvest technologies and 

improving packaging designs to increase shelf-life (Kim et al., 2006; Aguirre et al., 2008; 

Gowen et al., 2008b; Taghizadeh et al., 2009). Although postharvest treatments delay 

mushroom senescence and extend shelf-life the product quality during storage is mainly 

dependent on the quality of the harvested mushroom (Flegg et al., 1985). 

1.2.2. Mushroom Quality 

Quality is a difficult term to define as it is not a single recognisable characteristic. One 

definition of quality is the ‘totality of characteristics of an entity (product, service, process, 

activity, system, organisation, person) that bear on its ability to satisfy stated and implied 

needs’(Will and Guenther, 2007). This means that the product must meet the consumer’s 

expectations. Consumers judge quality of fresh produce on the basis of appearance 

including ‘freshness’ at the time of initial purchase. They are also concerned about the 

nutritional quality and safety of the products. 

Quality in mushrooms is judged by the consumer and can be assessed as a combination of 

visual appearance, freshness, colour, size, maturity stage, development stage, firmness, 

turgor, microbial growth, blemish-free, weight loss and blotching (Burton, 1989; Carey 

and O'Connor, 1991; Vizhanyo and Felfoldi, 2000).  High quality mushrooms are defined 

as white, unblemished, firm, clean and with a closed veil (Eastwood and Burton, 2002). 

Mushroom quality is affected by pre-harvest factors such as strain, composting, casing, 

watering and temperature regime, atmosphere composition and flush number. The post-

harvest factors include picking, transportation, chilling and packaging (Gormley, 1986). 

Another factor that affects mushroom quality after harvest includes disease (Beelman et 

al., 1989), together with improper handling during harvest, packaging and transport which 

results in bruising. 
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The single most important consideration of quality in fresh mushrooms is colour as it is the 

first characteristic that consumers see. Therefore any discolouration i.e. brown marks are 

easily seen and viewed by the consumer as an indictor of low quality (Burton, 2004). 

1.2.2.1. Mushroom Discolouration 

The loss of whiteness during storage results in large economic losses every year.  Cap 

browning, softening, moisture loss and development of some off-flavours cause the 

mushroom to loose its marketability (Jolivet et al., 1998). The mushroom is susceptible to 

discolouration induced by senescence, damage and physiological disorders (Vizhanyo and 

Felfoldi, 2000).   

Browning of mushrooms is a result of the formation of pigments called melanins.  These 

melanins are formed by enzymatic reactions containing phenolic or polyphenolic 

molecules (Falguera et al., 2010). 

1.2.2.1.1. Phenolic Compounds 

The structure of phenol (C6H5OH) (Figure 1.3) is that of a hydroxyl group (-OH) bonded to 

a phenyl ring (-C6H5). 

 

HO
 

Figure 1.3 Structure of phenol 

 
Polyphenolics are a multiplicity of different phenolic compounds i.e. compounds 

composed of aromatic benzene ring(s) substituted with hydroxyl groups, including all 

functional derivatives. The main natural phenolics present in the mushroom A. bisporus are 

glutaminyl-4-hydroxybenzene, p-aminophenol, phenylalanine and tyrosine (Figure 1.4). 
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Figure 1.4 Natural melangenous phenolics present in A.  bisporus 

 

Two distinct mechanisms of phenol oxidation are responsible for mushroom browning: (a) 

activation of tyrosinase, an enzyme belonging to the polyphenoloxidase (PPO) family 

and/or (b) spontaneous oxidation (Jolivet et al., 1998). 

(a) Activation of tyrosinase: Tyrosinase (PPO) is a copper-containing enzyme that 

catalyses two distinct reactions involving molecular oxygen with various phenolic 

substrates: (1) the o-hydroxylation of monophenols to o-diphenols (monooxygenase or 

cresolase activity) and (2) the subsequent oxidation of o-diphenols to o-quinones 

(diphenolase or cathecholase activity). Later polymerisation of these compounds leads to 

the formation of a heterogenous group of melanins (Figure 1.5) (Duckworth and Coleman, 

1970; Aydemir, 2004). 
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Figure 1.5 Mechanism by which L-tyrosine converts L-tyrosinase firstly to L-DOPA and then to o-
dopaquinone, and the following steps that lead to melanin formation (Falguera et al., 2010) 

 
Colour is the main quality parameter for fresh mushrooms, with initial studies of 

tyrosinases being motivated by a desire to understand and prevent enzymatic browning that 

occurs in the presence of air when mushrooms are cut or bruised. This problem of 

postharvest browning has been tackled from several aspects (Kuyper et al., 1993; Martinez 

and Whitaker, 1995; Brennan et al., 2000). However, there has been a recent interest in 

tyrosinases due to discoveries of beneficial properties on health, such as antioxidative, anti-

inflammatory, immune and anti-tumour properties (de Faria et al., 2007). 

The three major stress factors that induce mushroom discolouration are; senescence and 

damage affecting healthy mushrooms and microbial spoilage e.g. bacterial/viral infections 

affecting diseased mushrooms (Vizhanyo and Felfoldi, 2000). 
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1.2.2.1.2. Senescence 

Senescence is a natural deteriorative process that takes place postharvest as soon as the 

mushroom is picked i.e. removed from the soil. Mushrooms after harvest are cut off from 

nutrients and water and begin to mobilise and redistribute nutrients (Burton, 2004). It is an 

oxidative process that involves degradation of the cellular and sub-cellular structures and 

macromolecules, and the mobilisation of the products of degradation to other parts of the 

mushroom. Susceptibility to oxidative stress depends on the overall balance between 

production of oxidants and antioxidant capability of the cell (del Rio et al., 1998). 

Permeability changes during senescence have been linked with a simultaneous decline in 

membrane lipid (Ferguson and Simon, 1973).  Therefore, as a result of senescence or 

natural ageing the cell membranes become disrupted and compartmentalisation is lost, 

allowing enzymes and substances to mix, thereby accelerating browning (Jolivet et al., 

1998). 

1.2.2.1.3. Mechanical Damage 

Mechanical damage or bruising has been defined as damage to tissue by external forces 

causing physical change in texture and/or eventual chemical alterations of colour, flavour 

and texture (Mohsenin, 1986). The brown discolouration in mushrooms caused by 

mechanical damage is largely confined to the skin tissue, the high levels of phenols and 

polyphenol oxidase in the skin tissue being one of the main reasons for this. Another 

reason is that the skin tissue is only loosely attached to the main flesh of the mushroom 

sporophore, which means that these surface cells absorb most of the energy of mechanical 

damage (Burton et al., 2002).   

Mushroom bruisability can vary from crop to crop and even within a crop. Sensitivity to 

mechanical damage is not only determined by genetics but also depends on a number of 

environmental and agronomic factors. Flush number and strain were highlighted by Burton 
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and colleagues as having a large influence on bruisability. The other major factors 

identified in the study were water potential of casing and humidity in the growing room 

(Burton et al., 2002).   

Mechanical damage is a consequence of inappropriate harvest, manipulation and 

transportation. Mushroom cultivation may be the first exposure to mechanical damage as 

mushrooms growing in close proximity of each other may brush off one another in turn 

causing tissue damage and bruising. The presence of small flies in a growing tunnel can 

interact with mushroom surfaces also resulting in damage. The problem of bruising can be 

controlled somewhat during production, although it is harder to control during transport 

and packaging. 

Mushroom picking and handling is another area where mechanical damage occurs. A small 

mechanical force such as hands slipping over a mushroom during picking can cause 

damage and brown discolouration (Burton et al., 2002; Burton, 2004). The importance of 

careful handling must be stressed. Mushrooms should be picked gently, and as dry as 

possible, into the tray from which they are going to be marketed (Gormley, 1986; 

Gormley, 1987).   

Transportation is an area where mechanical damage also occurs. Damage caused by 

transport vibration was assessed on different species of fruit and vegetables such as 

peaches (O'Brien et al., 1995), apricots (O'Brien and Guillou, 1969) and tomatoes (Singh 

and Singh, 1992). The loss of fresh fruit and vegetables during transport and distribution 

has been estimated to be above 30% in China, given their sensitivity to mechanical damage 

(Zhou et al., 2007). An efficient transport system in terms of trucks with good suspension 

to ensure a smooth journey together with controlled refrigeration for the mushroom is 

essential (Gormley, 1987).   



     Chapter 1. Introduction 

16  

Much research has been carried out to investigate ways to reduce bruising in order for 

mushroom growers to optimise growing procedures for less bruised, high quality 

mushrooms. Treatments including refrigeration, overwrapped packages, modified 

atmosphere packages, irradiation, wash solutions and stipe trimming have been introduced 

to improve postharvest quality (Simon et al., 2005; Kim et al., 2006; Roy et al., 2006; 

Eissa, 2007). These treatments can only act to preserve the quality of the product generated 

in cultivation. Different irrigation water treatments applied throughout the growth of a 

mushroom crop can begin to improve mushroom quality during the  cultivation process 

(Miklus and Beelman, 1996). 

Recent studies have shown the potential use of spectroscopic techniques coupled with 

chemometrics to detect damage in fresh mushrooms. These findings reveal the possibility 

of developing a tool that could detect damage before browning becomes visible thereby 

reducing economic losses for the industry (Esquerre et al., 2009). 

1.2.2.1.4. Microbial & Viral Spoilage 

The most important disease on mushroom farms is brown blotch, which accounts for an 

estimated crop loss of 5-10% in the UK, with further losses occurring after mushrooms 

have been harvested (Fermor et al., 1991).   

Discolouration of A. bisporus caused by pathogenic pseudomonads, the so-called blotch 

diseases are well documented. These bacteria grow and break down mushroom fibres 

which soften the mushroom leading to enzymatic browning. The major species responsible 

for this is Pseudomonas tolaasii which produces a toxin that lyses mushroom cells 

(Gormley, 1975), resulting in sunken dark brown lesions (Tolaas, 1915; Paine, 1919). 

Pseudomonas reactans causes mild dark purple to light brown discolouration and a slight 

surface depression that becomes deeper and darker with age (Wells et al., 1996), while the 

pale yellowish red discolouration that develops into a reddish ginger-coloured 
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discolouration (ginger blotch disease) is characteristic of Pseudomonas gingeri (Wong et 

al., 1982). 

Much research has been carried out in order to find an adequate method to prevent or 

control the disease. Manipulation of the environmental conditions (i.e. relative humidity, 

temperature etc) has proved to be essential but not sufficient. 

A pathogen called La France virus impacted severely on the mushroom industry in the 

USA and the UK in the 1960s (Schisler et al., 1967). In recent years a novel disease has 

become prevalent in the British mushroom industry. Mushroom virus X (MVX) is an 

enigmatic disease which causes crop delay, pinning disruption, poor quality and 

occasionally brown off-coloured mushrooms (Gaze et al., 2000). In Ireland the brown 

mushroom symptom tends to occur in isolation and is not associated with yield reductions, 

but the symptom causes a significant loss of quality. 

1.2.3. Mushroom Variability 

A batch has been defined by Schoten and Van Kooten as all individuals sharing the same 

harvest date, grower and cultivar (Schouten and Van Kooten, 1998), implying a common 

growth history. If all individuals in a batch were identical and stored under the same 

conditions, they would all reach the quality limit at the same time. However, this is not the 

case because of the presence of biological variation (Schouten et al., 2004).   

Biological variation is described as the composite of biological properties that differentiate 

individual units of a batch. This means that due to differences between individuals, every 

batch will be different and will behave differently, depending on the extent of variation in 

the product and the batch (Tijskens and Konopacki, 2003). 

One of the main problems in mushroom technology (as in many fresh products) is the 

uncontrollable effect that product variability has on the management of the product. 

Agricultural products (including mushrooms) are managed by sorting and grading of 
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produce based on appearance, texture, colour shapes and sizes. The manual sorting and 

grading systems are based on traditional visual quality inspection performed by human 

operators which is tedious, time consuming, slow and inconsistent. Cost effective, 

consistent, high speed and accurate sorting systems can be achieved with machine vision-

assisted grading and imaging techniques (hyperspectral imaging systems). Computer 

application and imaging systems in agriculture and food industries have been applied in the 

areas of sorting fresh products, detection of defects such as bruises and dark spots on fresh 

fruits, mushrooms and vegetables (Brosnan and Sun, 2004; ElMasry et al., 2009; Gowen et 

al., 2009).   

 

1.3. METABOLOMICS 

1.3.1. Mushroom Metabolism 

Metabolism is described as the sum of the chemical activities of a cell.  It can be divided 

into two parts – catabolism and anabolism. Catabolism refers to the breakdown of a 

substance into simpler forms with the liberation of energy. An example of catabolism is the 

breakdown of the polysaccharide cellulose to glucose, then to pyruvic acid and eventually 

CO2. Anabolism is the synthesis of cell materials and this process requires energy. An 

example of this process is the synthesis of cell wall polysaccharides such as glucans from 

component monosaccharides. 

In mushroom biology metabolism is illustrated as follows: 

1. The breakdown of substrate materials yielding energy and providing smaller more 

soluble compounds. 

2. Those energy controlled processes that are needed for the transport of certain 

materials across the cytoplasmic membrane, and 
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3. Synthesis of cell materials, including the cell wall, from the compounds that have 

entered the cell (Chang and Miles, 2004). 

1.3.1.1. Carbohydrate Metabolism 

Although studied in a wide variety of organisms carbohydrate metabolism in fungi has 

received little attention and therefore data on acquisition and conversion of carbon 

compounds by fungi is scarce. Research has mainly focused on the yeast Saccharomyces 

cerevisiae and the filamentous fungi Aspergillus nidulans, A. niger and Neurospora crassa 

(Wannet et al., 2000). 

Simple saccharides (mainly glucose) generally enter glycolysis after being transported into 

the Agaricus bisporus cell. Depending on the metabolic status of the cell, the glucose 

molecule can then be diverted to several biochemical pathways (Figure 1.6).   
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Figure 1.6 Pathway of carbohydrate routing in Agaricus bisporus (Wannet et al., 2000) 
PP-Pathway: Pentose phosphate pathway 

 



     Chapter 1. Introduction 

20  

It should be noted that in A. bisporus the Krebs cycle (or TCA cycle) is blocked at the 2-

oxoglutarate dehydrogenase complex (Rast et al., 1976). This complex can be functionally 

replaced by the enzymes of the 4-aminobutyrate shunt: glutamate decarboxylase, 4-

aminobutyrate aminotransferase and succinate-semialdehyde dehydrogenase. 

In the case of Agaricus bisporus studies on the carbon metabolism have mainly focused on 

abundantly synthesised mannitol and trehalose (Wannet et al., 2000). 

1.3.1.1.1. Metabolism of Mannitol 

Mannitol is the main storage carbohydrate where it can contribute up to 20% of the 

mycelium dry weight and up to 50% of the fruit body dry weight (Stoop and Mooibroek, 

1998; Ruijter et al., 2003). Mannitol is an abundant sugar in nature occurring in bacteria, 

algae, lichens, fungi and other vascular plants. 

In fungi mannitol is reputed to play different roles including osmoregulation, serving as a 

storage or translocation carbohydrate, regulating co-enzymes and regulating cytoplamsic 

pH by acting as a sink or source for protons (Lewis and Smith, 1967; Jennings, 1984). 

Mannitol has also been proposed to have a role in oxidative stress protection. The ability of 

mannitol to quench reactive oxygen species (ROS) in vitro is proven (Smirnoff and 

Cumbes, 1989) and there is a growing pool of evidence that mannitol may have a similar 

role in pathogenic fungi during infection. 

The mannitol cycle was postulated by Hult and Gatenbeck in 1978 from studies of cell-free 

extracts of the fungus A. alternate (Figure 1.7). The cycle consists of four enzymes: 

mannitol-1-phosphate dehydrogenase (MPD), NADP+-mannitol-2-dehydrogenase (MDH), 

mannitol-1-phosphate phosphatase (MPP) and hexokinase (HK).  The mannitol cycle 

pathway branches off from glycolysis at fructose-6-phosphate. Mannitol biosynthesis is 

traditionally thought to occur through the dephosphorylation of mannitol 1-phosphate. The 
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formed mannitol is then consumed through oxidation to fructose thereby completing the 

cycle (Hult and Gatenbeck, 1978). 
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Figure 1.7 The mannitol cycle as originally postulated by Hult and Gatenbeck (Hult and Gatenbeck, 
1978) 

(i) The mannitol pathway branches off from glycolysis at fructose-6-phosphate, which is converted to 
mannitol-1-phosphate by MPD. (ii) Mannitol biosynthesis is traditionally thought to occur through the 
dephosphorylation of mannitol-1-phosphate to mannitol MPP, (iii) Mannitol is then converted by MDH 

through oxidation to fructose, which is subsequently phosphorylated by HX (iv) to fructose-6-phosphate, thus 
completing the cycle.  HX: hexokinase: MDH, NADP+ -mannitol-2-dehydrogenase; MPP: mannitol-1-

phosphate phosphatise; MPD: mannitol-1-phosphate dehydrogenase 
 

1.3.1.1.2. Metabolism of Trehalose 

Trehalose is a non-reducing disaccharide (α-D-glucopyranosyl-α-D-glucopyranoside) and 

consists of two α-linked glucose sugars and in A. bisporus it is thought to serve as a reserve 

carbohydrate which is degraded under specific conditions (e.g. fructification) and has been 

suggested as a possible sugar translocated from the mycelium to the sporopore (Wells et 

al., 1987; Wannet et al., 1999). For a long time trehalose in fungi was thought to function 

as a storage compound, however, it has been found to function as a stress protectant. In 

Saccharomyces cerevisiae a link was found between the induction of genes responsible for 

trehalose synthesis and stress conditions such as heat, dehydration and radiation (Parrou et 
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al., 1997). Synthesis of trehalose in bacteria and yeasts occur predominantly via the 

trehalose synthase complex (trehalose-6-phosphate synthase and trehalose-6-phosphate 

phosphatases) and the hydrolytic cleavage of trehalose occurs via acid and neutral 

trehalases (Figure 1.8) (Wannet et al., 1999).  
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Figure 1.8 Scheme representing a typical trehalose synthesis and degradation of fungi (Wannet et al., 
1999) 

 

1.3.1.2. Nitrogen Metabolism 

Nitrogen is a major component of nearly all of the complex macromolecules central to the 

structure and function of all living organisms. Fungi can use a surprisingly diverse array of 

compounds as nitrogen sources and are capable of expressing upon demand the catabolic 

enzymes of many different pathways. Nitrogen metabolism and its regulation have been 

extensively studied in a large variety of organisms. However basidiomycetes have received 

relatively little attention (Marzluf, 1997). 

Fungi assimilate simple nitrogenous sources for example ammonium ions for the 

biosynthesis of amino acids and proteins. Ammonium ions are readily translocated and can 

be directly assimilated into the amino acids glutamate and glutamine by glutamate 
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dehydrogenase (GDH) and glutamine synthetase (GS), respectively. Transfer of one amino 

acid from glutamine to 2-oxoglutarate yielding two molecules of glutamate is catalysed by 

glutamate synthase (glutamine:2-oxoglutarate aminotransferase, GOGAT) (Figure 1.9). 

Agaricus bisporus has two distinct glutamate dehydrogenases using NADH (NAD-GDH) 

or NADPH (NADP-GDH) as a cofactor (Moore and Al-Gharawi, 1976; Baars et al., 1995). 

It should be noted that glutamate is also an intermediate in the 4-aminobutyrate shunt 

(section 1.3.1.1). 
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Figure 1.9 Possible pathways of ammonia incorporation: (1) glutamate dehydrogenase (2) glutamine 
synthetase (3) glutamine: (GOGAT) 

 

1.3.1.2.1. Urea Metabolism & The Ornithine Cycle (urea cycle) 

Higher fungi including cultivated mushrooms accumulate substantial amounts of urea in 

their fruit bodies (Hammond, 1979). Despite its abundance very little is known about its 

physiological role. Urea is chemically inert and highly soluble and therefore may serve as 

an osmotically favourable form of fungal nitrogen reserve.  Accumulation of urea 

facilitates the translocation of water and metabolites in fruit bodies (Donker and Van As, 

1999) which is needed for the production of spores.  
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Two major mechanisms for urea formation can be envisaged: the ornithine cycle and 

nucleic acid degradation. The ornithine cycle was demonstrated to be the major route for 

urea synthesis in the fruit body of A. bisporus (Reinbothe et al., 1967). 

Arginase is an ornithine cycle enzyme that catalyses the hydrolysis of arginine to urea and 

ornithine, fulfilling a prominent role in nitrogen metabolism of many organisms.  Its 

activity controls the cellular levels of arginine and ornithine which are needed for essential 

metabolic processes such as protein synthesis and production of polyamines and prolines. 

In addition the ornithine cycle (Figure 1.10) enables the organism to detoxify NH4
+ and to 

excrete nitrogen from the system (Wagemaker et al., 2005). 
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Figure 1.10 Ornithine/urea cycle with relevant biochemical pathways (Wagemaker et al., 2007)   

 

1.3.2. Defining Metabolomics 

Metabolomics is one of the more recently introduced ‘omnics’ technologies, joining 

genomics, transcriptomics and proteomics as tools in global systems biology (Sumner et 

al., 2003). ‘Omnics’ technologies are based on the comprehensive biochemical and 

molecular characterisation of an organism, tissue or cell type. Metabolomics is a 
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technology that aims to identify and quantify the metabolome. It has been defined as the 

total quantitative collection of small molecular weight compounds (metabolites) present in 

a cell or organism which participate in metabolic reactions required for growth, 

maintenance and normal function (Oliver et al., 1998; Harrigan and Goodacre, 2003). 

Generally, these include organic species such as amino and fatty acids, carbohydrates, 

vitamins and lipids, although inorganic and elemental species can also be studied (Lahner 

et al., 2003).   

In general metabolomic analyses have been classified as targeted or untargeted (Figure 

1.11). Targeted analyses focus on a specific group of intended metabolites with most cases 

requiring identification and quantification of as many metabolites as possible within the 

group (Ramautar et al., 2006). In comparison untargeted metabolomics focuses on the 

detection of as many groups of metabolites as possible to obtain patterns or fingerprints 

without necessarily identifying nor quantifying a specific compound/compounds (Monton 

and Soga, 2007). 

Metabolomic studies may also be classified as discriminative, informative and/or 

predictive depending on the objective of the analysis (Figure 1.11).   

METABOLOMICS

Targeted Untargeted

Data treatment

Extraction & sample prep

Discriminative Predictive Informative

 

Figure 1.11 General classification of metabolomics (Cevallos-Cevallos et al., 2009) 

 



     Chapter 1. Introduction 

26  

Discriminative analyses have been aimed at finding differences between sample 

populations without necessarily creating statistical models or evaluating possible pathways 

that may elucidate such differences. This type of metabolomics was used on wine in order 

to classify it by grape variety and production area (Son et al., 2008). In contrast 

informative metabolomics have focused on the identification and quantification of targeted 

or untargeted metabolites to obtain sample intrinsic information. This type of 

metabolomics has been used in the development and continuous update of metabolite 

databases such as the human genome database (Wishart et al., 2007).   

Some metabolomic studies have been predictive. In this instance, statistical models based 

on metabolite profile and abundance were created to predict a variable that was difficult to 

quantify by other means. These types of models have been created for prediction of green 

tea sensory quality (Ikeda et al., 2007). 

Metabolomic analyses consist of a sequence of steps including sample preparation, 

metabolite extraction, derivatisation, metabolite separation, detection and data treatment 

(chemometrics) (Figure 1.12). In some cases not every step is required.  Only detection and 

data analysis have been essential steps in all reported metabolomic studies. The selection 

of the steps depends on the type of instrumentation to be used for separation (e.g. gas 

chromatography (GC) vs liquid chromatography (LC)), the detection method (e.g. mass 

spectrometry (MS) vs nuclear magnetic resonance (NMR) spectroscopy) and the kind of 

sample being analysed for example whether it is liquid or solid (Cevallos-Cevallos et al., 

2009).  
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Figure 1.12 Schematic representation of the process of metabolomic analysis (Cevallos-Cevallos et al., 
2009) 

 

1.3.3. Development of Metabolomics 

Metabolomics originated from metabolite profiling, which has been a part of medical 

practice for thousands of years. As far back as the fifth century BC, Hippocrates and 

Hermongenes both described the diagnosis and detection of diseases through sensory 

analysis of urine i.e. colour, taste, smell. The analysis of biofluids became more 

quantitative with the development of clinical chemistry in the mid-19th century.  However, 

it was not until the early 20th century that clinical chemistry and metabolic profiling 

became a part of routine medical practice with the development of colorimetric tests and 

early instrumentation used to quantify metabolites in blood and urine (Rosenfeld, 2002).   

A new generation of analytical instrumentation appeared in the 1970s which permitted the 

identification of not just a single compound but a whole class of compounds. Gas 

chromatographic (GC) columns started to be coupled to mass spectrometers to create 

GC/MS systems, which could detect organic acids from blood and urine. The earliest 

metabolite profiling publications originated in the early 1970s from the Baylor College of 
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Medicine (Devaux et al., 1971; Horning and Horning, 1971). These authors illustrated their 

concept through the multicomponent analyses of steroids, acids and neutral and acidic 

urinary metabolites using GC/MS.  Following this type of research, the concept of using 

metabolite profiles to screen, diagnose and assess health began to spread.   

At the turn of the century, multiple genome and Expressed Sequence Tag (EST) 

sequencing projects were underway, fuelling the ‘genomics’ era (Genome, 2000; Goff et 

al., 2002; Yu et al., 2002). These high throughput sequencing projects revealed a large 

number of predicted genes. The genes could not be assigned a function based on sequence 

information alone, which led to the proposal to assess gene function using large-scale 

analyses at the transcriptome level, initiating the ‘functional genomics’ era.  Following on 

from this it became apparent that proteomics might be more insightful in terms of 

monitoring results of gene expression.   

This way of thinking eventually led to consideration of the metabolome. It is believed that 

Oliver was the first to make the connection based on the perceived need for quantitative 

and qualitative measurement of phenotype to assess genetic function and redundancy in 

yeast (Oliver, 1997). His group estimated the number of yeast metabolites to be 

approximately 600 and proposed the concept of metabolomics. This approach was then 

pioneered for plants by researchers at the Max Planck Institute (Trethewey et al., 1999; 

Fiehn et al., 2000; Trethewey, 2001; Fernie et al., 2004; Fiehn, 2008). 

Plant-science papers still form the majority of published papers on GC/MS metabolite 

profiling compared to biomedical research or microbiology. Metabolite profiling in plants 

is regarded as a standard tool in plant research and is routinely applied in many 

laboratories. Applications range from environment studies, genetic studies of complex 

traits to agricultural and food-quality investigations for example the substantial 

equivalence of genetically modified food to classic bred cultivars (Fiehn, 2008).   



     Chapter 1. Introduction 

29  

1.3.4. Metabolomic Limitations 

The major limitation of metabolomics is its current inability to comprehensively profile all 

of the metabolome. This failure is directly related to the chemical complexity of the 

metabolome, the biological variance inherent in most living organisms and the limitations 

of most instrumental approaches. The chemical components of metabolites range from 

ionic inorganic species to hydrophilic carbohydrates, hydrophobic lipids and complex 

natural products. This chemical diversity and complexity makes it extremely difficult to 

profile all of the metabolome simultaneously. No single analytical method has the ability to 

profile all of the metabolome. Despite this several developments aim to analyse many 

metabolites, even of different chemical classes by a single method. The use of selective 

extraction and parallel analyses using comprehensive visualisation of the metabolome is 

being employed (Sumner et al., 2003).   

Variability in metabolomics can present itself in the form of (a) analytical variance and (b) 

biological variance.   

(a) Analytical variance can be defined as the coefficient of variance or relative 

standard deviation that is directly related to the experimental approach.  The 

variance will differ depending on the analytical platform being used and its 

indeterminate origin. 

(b) Biological variance arises from quantitative variations in metabolite levels 

between for example mushrooms of the same species grown under identical 

conditions and is indeterminate in origin. Biological variations typically exceed 

analytical variations (Roessner et al., 2000; Sumner et al., 2003). 

Ways to minimise biological variance include pooling samples either by analysing 

different tissues of the plant within a single sample or by pooling multiple replicate plants. 

This helps to minimise random variations through statistical averaging. However, many 
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variations in metabolite levels often have biological significance and result from functional 

differentiation of tissues. Another option would be to start with homogenous tissue such as 

cell cultures.  There is a need to incorporate strategies to minimise variability. Parameters 

including the growth stage, environmental conditions and in particular sampling are 

important factors that can also reduce variability (Sumner et al., 2003).   

Sampling is one of the most underestimated parts of metabolomic analyses. The 

composition and quantity of metabolites detected depend to a large extent on the sample 

preparation chosen. The time and method of sampling can greatly influence the 

reproducibility of the analytical sample. The storage of samples is also important and needs 

to be considered as the continued freeze/thawing of samples can be detrimental to stability 

and composition (Roessner et al., 2000).   

Another challenge encountered in metabolomics is dynamic range. This is when the 

presence of excessive amounts of some metabolites can cause significant or severe 

chemical interferences that limit the range in which other metabolites may be successfully 

profiled. For example high levels of primary metabolites such as sugars often interfere with 

the ability to profile secondary metabolites such as flavonoids. A positive aspect of this is 

that highly expressed metabolites are often unique and can provide exclusive bases for the 

differentiation of cell states, organs, tissues, varieties and organisms. They are often 

referred to as biomarkers. A number of different analytical approaches have been 

developed to improve dynamic range and to reduce complications (Sumner et al., 2003). 

1.3.5. Metabolomic Technologies 

Metabolomic approaches generally try to measure metabolite profiles in a non-targeted 

way. This means they try to separate and detect as many metabolites as possible in a single 

analysis and therefore the analytical technique must be suitable for a diverse range of small 
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endogenous metabolites in various concentrations. It must also separate compounds with 

different physical and chemical properties and be reproducible (Ramautar et al., 2006).  

The field of metabolomics requires profiling and fingerprinting methods. Metabolic 

profiling uses hyphenated techniques such as gas chromatography-mass spectrometry 

(GC/MS), liquid chromatography-mass spectrometry (LC/MS) or capillary electrophoresis-

mass spectrometry (CE/MS). These techniques provide a detailed chromatographic profile 

of the sample and consequently measurements of the relative or absolute amounts of the 

components. 

Nuclear magnetic resonance (NMR) spectroscopy, Raman spectroscopy and Fourier-

transform infrared spectroscopy are referred to as ‘fingerprinting’ methods. They are more 

rapid, general screening methods that can be configured as ‘high-throughput’ and are 

suitable for determining differences and classifying samples (Halket et al., 2005). 

1.3.5.1. Gas Chromatography-Mass Spectrometry 

Gas Chromatography-Mass Spectrometry (GC/MS) is one of the most widely used 

analytical techniques in metabolomics and has had a fairly long history in metabolic 

profiling (Horning and Horning, 1971). It combines the high separation efficiency and 

resolution of capillary GC that is essential for complex metabolic profiling with the high 

sensitivity of mass-selection detection. It is used to analyse qualitatively and quantitatively 

a wide range of volatile and/or derivatised non-volatile metabolites with high analytical 

reproducibility, although it is biased against non-volatile high molecular (MW) metabolites 

(Bedair and Sumner, 2008).   

The majority of metabolites analysed require chemical derivatisation at room temperature 

or elevated temperatures to provide volatility and thermal stability prior to analysis. The 

most commonly utilised derivatising procedure for GC/MS metabolite profiling includes a 

two-step derivatisation scheme (Roessner et al., 2000).  The first step involves the use of 
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alkoxyamines to convert carbonyl groups to oximes in order to stabilise the reducing 

sugars and the second step involves replacing the active hydrogen in polar functional 

groups such as carboxylic acids, alcohols and amines with a trimethylsilyl group (typically 

N-methyl-N-(trimethylsilyl)trifluoracetamide) (MSTFA).  Derivatisation increases the 

thermal stability and volatility of a broad range of metabolites (Bedair and Sumner, 2008).   

As a result of this limitation of GC/MS, most polyphosphorylated and activated 

intermediates are presently not accessible to GC/MS analyses (Kopka et al., 2004). 

Metabolite identification is provided by matching the retention time or retention index and 

mass spectrum of the sample peak with those of a pure compound previously analysed 

under the same experimental conditions.  Many commercial and public domain databases 

(e.g. NIST, Golm metabolome consortium, NIH) exist to help metabolite identification. 

However, the available mass spectral databases do not contain all metabolites that would 

be expected from studying metabolic reaction networks. Many efforts are being made to 

create metabolomics-specific mass spectral libraries. Structural identification can also be 

performed via interpretation of fragment ions and fragmentation patterns (Dunn and Ellis, 

2005).   

In recent times applications in plant metabolomics are becoming widespread. Plants 

including potatoes (Roessner et al., 2000) and tomatoes (Roessner-Tunali et al., 2003) 

have been studied to measure effects of genetic or environmental modifications and 

stressors.   

1.3.5.2. Liquid Chromatography-Mass Spectrometry 

Liquid Chromatography-Mass Spectrometry (LC/MS) is another combined system that 

provides metabolite separation by LC followed by electrospray ionisation (ESI) or less 

typically atmospheric pressure chemical ionisation (APCI). This technique is simplified 

compared to GC/MS as lower analysis temperatures are used and sample volatility or 
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thermal stability are not required (Dunn and Ellis, 2005). It is a more universal separation 

technique for the targeted analysis of specific metabolite groups or utilised in a broader 

non-targeted manner. Additionally LC/MS also has the benefit of analyte recovery by 

fraction collection and/or concentration, which is more challenging when using GC 

separations (Bedair and Sumner, 2008).   

The identification of metabolites in LC/MS is achieved through accurate mass 

determination, tandem MS analysis and/or coupling to nuclear magnetic resonance (NMR). 

However, a major disadvantage of LC/MS relative to GC/MS in metabolomic profiling is 

the lack of transferrable LC/MS libraries for metabolite identification.  The mass spectral 

variability between LC/MS systems in terms of relative ion abundances, in-source 

fragmentation, tandem mass spectra fragment ions and lack of LC retention indices that 

compensate for instrument and experiment variability hinders comparison of LC/MS data 

between laboratories (Halket et al., 2005).  Currently there are a few limited mass spectral 

libraries available though none the size of GC/MS libraries. 

A recent advancement in LC metabolic profiling has been the introduction of the 

commercially available ultra-high pressure liquid chromatography (UHPLC) systems, 

which operate at relatively higher pressures and use more tightly packed columns, which 

greatly enhance chromatographic resolution and efficiency (Wilson et al., 2005). This 

provides enhanced opportunities for resolving complex biological mixtures in non-targeted 

metabolite profiling. 

Applications of LC/MS are mainly focused on clinical applications in the discovery of 

biomarkers for a number of diseases. Applications in plant and microbial metabolomics are 

small in number. One example from the plant area is the determination of apple 

polyphenols and glucosides (Alonso-Salces et al., 2004). 
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1.3.5.3. Capillary Electrophoresis-Mass Spectrometry 

Capillary Electrophoresis (CE) is an analytical separation technique capable of high-

resolution separation of a diverse range of metabolites and is particularly suitable for the 

separation of polar and charged compounds (Soga and Imaizumi, 2001). With respect to 

separation and efficiency it is a more powerful technique compared to LC due to the plug-

flow profile generated by the electroosmotic flow (EOF) as compared to the parabolic flow 

in LC. 

Capillary zone electrophoresis (CZE) has been the major CE technique used for CE/MS 

analysis of metabolites, due to the simplicity of the running buffer and the lack of 

surfactant or other additives necessary in other modes of separation. The charged 

molecules are separated in CZE based on their differential mobility, whilst neutral 

molecules migrate through the capillary using the electroosmotic flow without separation 

(Bedair and Sumner, 2008). The main advantage of this technique is the ability to separate 

almost any charged metabolite with very high resolution without prior derivatisation. It has 

been employed to identify primary metabolites in rice (Sato et al., 2004) and over 1,600 

compounds in Bacillus subtilus (Soga et al., 2003). 

The major drawback of CE is poor concentration sensitivity due to the limited amount of 

sample volume that can be introduced into the capillary and the low absorption path-length 

if UV detection is used (Ramautar et al., 2006). 

1.3.5.4. Emerging Mass Spectrometry Technologies 

Soft ionisation techniques involving lasers to provide sample volatilisation and ionisation 

are currently being developed with the potential to provide rapid, high through-put global 

analyses (Dunn and Ellis, 2005). A review of such techniques has been provided by Bedair 

and Sumner (Bedair and Sumner, 2008). 
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The application of orthogonal multi-dimensional separations will impact the sensitivity and 

number of metabolites detected in the future through improved chromatographic resolution 

and increased signal to noise (S/N) ratios. Great potential is offered by the high throughput 

capabilities of GCxGC/TOF/MS. These instruments are designed for high scanning speeds 

(up to 500 scans s-1) or high mass resolution.  Higher scanning speeds are currently being 

employed for metabolic profiling with mass spectral deconvolution and have great 

potential to solve the high through-put problem in GC. The application of HPLC-HPLC-

MS and HPLC-CE-MS (Evans and Jorgenson, 2004) is also in practice. These methods 

together with complex informatics technologies are employed to improve resolution of 

highly complex biological samples. 

1.3.5.5. Nuclear Magnetic Resonance Spectroscopy 

Nuclear Magnetic Resonance (NMR) Spectroscopy is a technique that takes advantage of 

the spin properties of the nucleus of atoms. 1H is the most used nuclei for NMR 

measurements because of its very high natural abundance (99.98-99.97%) (de Laeter et al., 

2003) and good NMR properties. It has been used extensively for metabolomic research 

over the last twenty years (Lindon et al., 2001; Lindon et al., 2004a; Lindon et al., 2004b) 

and benefits from the fact that it is a specific but non-selective technique. Hence, each 

separate resonance observed in an NMR spectrum is specific to a particular compound 

which provides a wealth of structural information regarding the components of a sample. A 

combination of chemical shift (indicating the nature of the chemical environment in which 

a particular nucleus is located), spin-spin coupling (indicating the number and nature of 

nearby nuclei and thus connectivity information) and relaxation or diffusion (which gives 

an indication of the size of a molecule and also the large scale environment in which a 

molecule is located) all allow the rapid identification of any components regarded as 

interesting in the analysis. NMR analysis is non-destructive and does not require pre-
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selection of the analysis conditions that is required for mass spectrometry or 

chromatographic operating conditions (stationary phase, mobile phase, temperature) (Dunn 

et al., 2005). However, MS does provide significant improvements in sensitivity in 

comparison to NMR spectroscopy. 

Different metabolomic approaches may be applied when using NMR spectroscopy 

(Ratcliffe and Shachar-Hill, 2005). One of the approaches is directly related to the usage of 

NMR structure elucidation. Generally the compounds of interest are isolated from their 

tissues and solubilised for the acquisition of one-dimensional 1H NMR and when required, 

additional (2D)-NMR spectra (e.g.  COSY, TOCSY and NOESY). 

The spectra are complex resulting in thousands of signals relating to metabolites. For data 

processing the spectrum is usually divided into groups of chemical shifts with widths of 

0.02-0.04 ppm. The chemical shifts can be assigned to specific metabolites and pure 

metabolites can be added for further clarification. Another alternative is the use of the 

spectrum pattern in classification of samples similar to other metabolic fingerprinting 

techniques (i.e. FTIR or Raman spectroscopy) (Choi et al., 2004; Pereira et al., 2006). 

The technique is used in clinical and pharmaceutical applications for the analysis of 

biofluids or tissues, especially with 1H NMR spectroscopy. Studies are based on cells 

response to stress, including disease or therapeutic interventions by adjustment of their 

intra and extra-cellular environments to ensure homeostasis (Dunn and Ellis, 2005). NMR 

spectroscopy has also been employed in other fields for the analysis of plant-cell extracts 

such as Arabidopsis (Ward et al., 2003) and tobacco (Choi et al., 2004) and to determine 

the mode of action of biochemicals (Aranìbar et al., 2001). 

1.3.5.6. Vibrational Spectroscopy 

Techniques such as Infrared (IR) and Raman spectroscopy are valuable analytical 

techniques. Although these two vibrational spectroscopic techniques are not as sensitive as 
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mass spectrometric methods and do not allow the collection of a list of metabolite 

identities in complex samples, they do provide a relevant metabolomics tool. Fourier 

transform infrared (FTIR) spectroscopy is the more widely used method to obtain spectral 

fingerprints of biological samples representing a snap-shot of the biochemistry at a given 

time. The two methods have the benefit of allowing the rapid (particularly with respect to 

FTIR), reagentless, non-destructive analysis of complex biological samples therefore 

facilitating high throughput screening and providing unbiased measurements of the whole 

system (Kell, 2004).   

Optical spectroscopy mainly measures the vibrations and rotations of molecular functional 

groups that result from the energy exchange when radiation interacts with a sample. This 

interaction results in an increase of molecular energy which can produce three different 

transitions; electronic excitation, vibrational change and rotational change. IR spectroscopy 

utilises the IR region of the spectrum (12,000 cm-1 to 10 cm-1) and is divided into three 

sub-regions, near-IR (NIR), mid-IR and far-IR. The boundaries between these are not 

clearly defined but MIR is usually considered to range from 4,000 to 400 cm-1, with NIR 

being at wavenumbers above 4,000 cm-1 and far-IR at wavenumbers below 400 cm-1 and 

into the microwave region.  Raman spectroscopy utilises a monochromatic beam usually 

having a wavelength within the visible or UV regions of the spectrum.  Both Raman and 

IR spectroscopy give information about molecular vibrations (Dunn and Ellis, 2005).  

1.3.5.6.1. Infrared Spectroscopy 

IR spectra are typically shown as percentage transmittance plotted against wavenumber.  

Absorbance is favoured over transmittance as the absorbance is proportional to 

concentration at a given wavelength (Beer’s Law). An IR spectrum consists of many bands 

originating from the vibrational motion within the molecule due to the absorption of 

incident radiation. Bands due to rotational motion are absent from the spectra of biological 
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samples as the samples tend to be in the condensed form as solids, liquids or solutions, so 

only vibrational motion is observed. The features of the spectra, the number of bands, 

frequency, intensity and half-widths are characteristic so giving a fingerprint unique for the 

sample (Nelson, 1991). 

In general spectral fingerprints are collected spanning either the MIR or the NIR regions. 

Despite the close proximity of these regions different attributes are observed.  MIR 

absorption arises from fundamental molecular vibrations providing data containing 

chemical and structural information about the sample, which is amendable for direct 

interpretation (Griffiths and de Haseth, 2007). In contrast to this NIR absorption arises 

from overtones and combination-band absorption characteristics of CH, NH and OH 

groups, giving spectra containing broad overlapping features which are not directly 

interpretable at a chemical level (Belton et al., 1987). Metabolomic applications of IR 

spectroscopy currently favour the use of the MIR region as this provides greater chemical 

and structural information about a sample (Johnson et al., 2003). 

The primary applications of FTIR spectroscopy to study complex biological systems are in 

the field of microbiology, typically with respect to biomedical and industrial applications 

(Nelson, 1991). Its potential as a diagnostic tool has been recognised for the identification 

of possible biomarkers for certain diseases. It has also been used as a diagnostic tool for 

quality assurance within the food industry. 

1.3.5.6.2. Raman Spectroscopy 

Raman spectroscopy operates by the detection of scattered energy after irradiation of a 

sample by monochromatic visible or UV radiation. The majority of the scattered energy 

has the same frequency as the incident radiation and is termed Rayleigh scattering. A small 

proportion of the scattered radiation consists of discrete frequencies above and below that 

of the incident radiation and this is called Raman scattering which is the result of an 
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inelastic collision in which there is the exchange of energy between the photon and the 

molecule (Everall et al., 2000).   

For a molecule to be Raman active i.e. that it is susceptible to Raman scattering, there 

needs to be a change in the molecular polarisability caused by internal vibration. An 

incident electric field induces an electric dipole moment which is a separation of charge 

within the molecule and under these conditions the molecule is said to be polarised. 

Electrons within the molecule are more easily displaced along a specific axis producing a 

polarizability ellipsoid. Raman scattering is a measure of the changes in the magnitude or 

direction of this ellipsoid. For IR the molecular vibration must produce a change in the 

electric dipole of the molecule (Banwell, 1983). 

During the 1980s Raman spectroscopy was overlooked in the field of biological sciences. 

However over the past decade there has been an increasing number of publications 

demonstrating its potential use for the identification and characterisation of 

microorganisms. The use of Raman spectroscopy for the study of complex biological 

systems outside the field of microbiology is still very much in its infancy.  Studies have 

demonstrated its potential in the biochemical analysis of honey (De Oliveira et al., 2002) 

and for the analysis of plant pigments and essential oils (Schrader et al., 2000). 

 

1.4. CHEMOMETRICS 

1.4.1. Defining Chemometrics 

The term chemometrics was introduced by Svante Wold and Bruce R. Kowalski in the 

early 1970s. Since then chemometrics has been developing and is now widely applied to 

different fields of chemistry, especially analytical chemistry (Wold, 1995). Chemometrics 

is a discipline using mathematical and statistical methods for the selection of the optimal 

experimental procedure and data treatment for data analysis (Massart et al., 1997). 
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Metabolomic analysis generates large and complex datasets and because of this 

chemometrics has become an important part of metabolic profiling and fingerprinting due 

to its ability to provide interpretable models for complex inter-correlated data. It provides 

tools to make good use of measured data, enabling practitioners to make good use of 

measurements and to model quantitatively and produce visual representations of 

information.  The use of multivariate statistical methods such as principal component 

analysis (PCA), partial least squares (PLS) and random forests (RF) is of great importance 

as these include efficient, validated and robust methods for modelling information-rich 

chemical and biological data. Therefore chemometrics can be defined as the tools used to 

extract the information of complex biological and chemical systems. 

Chemometrics has grown into a well-established data analysis tool in areas such as 

multivariate calibration, quantitative structure-activity modelling, pattern recognition and 

multivariate statistical process monitoring and control. Although seemingly diverse the 

commonality in these areas is that high complexity data tables are generated and that these 

can be analysed and interpreted by chemometric methods (Trygg and Lundstedt, 2007).   

1.4.2. Chemometric Tools 

1.4.2.1. Principal Component Analysis 

Principal Component Analysis (PCA) is one of the oldest and most widely used 

multivariate techniques (Hotellin, 1933). The concept behind PCA is to describe the 

variance in a set of multivariate data in terms of a set of underlying orthogonal variables 

(principal components) (Sumner et al., 2003). The definition of principal component 

analysis therefore, is the analysis of data that has been transformed from the original axes 

to the principal axes.  

 It is a useful technique to reduce the dimensionality of large data sets and is described as 

the powerhouse of chemometric tools. PCA is also useful for identifying significant signals 
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in noisy data. The mathematical technique used in PCA is called eigen analysis. The 

eigenvalues and eigenvectors of a square symmetric matrix with sums of squares and cross 

products can be solved from data matrix obtained from metabolite analysis. In many cases 

the data matrix for PCA should be prepared from data obtained by GC/MS, LC/MS etc. 

The eigenvector associated with the largest eigenvalue has the same direction as the first 

principal component. The eigenvector associated with the second largest eigenvalue 

determines the direction of the second principal component. The sum of the eigenvalues 

equals the trace of the square matrix and the maximum number of eigenvectors equals the 

number of rows (or columns) of this matrix. PCA has the ability to identify and indicate 

useful information from the metabolome using a few principal components. In fact the 

application of PCA to a metabolome data set provides two quantities: the score (related to 

the eigenvalue) and the loading (related to the eigenvector). 

The loading allows the evaluation of the contribution that each metabolite makes to the 

information associated to a particular principal component. The loading is useful for 

understanding differences among samples in each metabolite level. The PCA score is 

defined as the coordinate of data vectors in the base of the principal component analysis. 

The score plot, limited to the significant principal components, gives a visual image of the 

differences of samples from an all around view point. The first principal axis is the 

direction in which the data are primarily distributed in n-dimensional space (Fukusaki and 

Kobayashi, 2005). Therefore PCA can indicate relationships among groups of 

variables/metabolites in a data set and show relationships that might exist between objects 

(Shin et al., 2010). 

The capability of PCA to manage and interpret large data sets has seen it being effectively 

employed to define relationships that exist for example in fatty acid characterisation 
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studies of food lipids (Kadegowda et al., 2008). Applications of metabolomics and PCA 

are highlighted in section 1.5 (Table 1.1) 

1.4.2.2. Partial Least Squares 

Partial Least Squares (PLS) regression or discrimination is a wide class of methods for 

modelling relations between sets of observed variables by means of latent variables. It 

consists of regression and classification tasks as well as dimension reduction techniques 

and modelling tools. The underlying assumption of the PLS method is that the observed 

data is generated by a system or process which are driven by a small number of latent 

variables.  Projections of the observed data to its latent structure by means of PLS was 

developed by Wold and co-workers (Wold, 1995). 

PLS has received a lot of attention in the field of chemometrics. The algorithm has become 

a standard tool for processing a wide spectrum of chemical data problems.  The success of 

PLS in chemometrics resulted in many applications in other scientific areas including the 

field of metabolomics (Yamamoto et al., 2009; Kim et al., 2010). 

In its general form PLS creates orthogonal score vectors (also referred to as latent vectors 

or components) by maximising the covariance between different sets of variables. There 

are different PLS techniques to extract these latent vectors, with each one giving rise to a 

variant of PLS methods (Wangen and Kowalski, 1989; Westerhuis et al., 1998).   

PLS can be naturally extended to regression problems by linking the latent variables to the 

dependent variable through a Gaussian linear model. The predictor and predicted 

(response) variables are each considered as a block of variables. PLS then extracts the 

score vectors which serve as a new predictor representation and regresses the response 

variables on these new predictors. The natural asymmetry between predictor and response 

variables is reflected in the way in which score plots are computed. This variant is known 
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under the names of PLS1 (one response variable) and PLS2 (at least two response 

variables) (Helland, 2001).   

In the same way PLS can be applied to classification problems by the correct linkage of the 

response and is referred to as partial least squares discriminant analysis (PLS-DA) (Barker 

and Rayens, 2003) which is more commonly used in metabolomics studies. It is 

particularly suited to dealing with problems where numbers of predictors are large and 

collinear. The reduced dimensions from PCA and PLS can facilitate the visualisation of 

high dimensional spectral data (Davis et al., 2006).   

1.4.2.3. Random Forests 

Random Forests (RF) (similar to Support Vector Machine) belong to a family of statistical 

methods associated with analysis of large datasets in contrast to PLS and PCA which were 

originally designed with smaller data sets in mind. As such a random forest is a collection 

of decision trees which is created following a particularly efficient strategy aimed at 

increasing the diversity between the trees. Decision trees are unstable in nature i.e. they are 

unstable methods for which a small change in the dataset can result in large changes in the 

developed method (Breiman, 1996). To increase the diversity among the members of the 

ensemble, RF fits each tree on a bootstrap replicate of the full set of samples. A bootstrap 

replicate (Efron and Tibshirani, 1983) is a random subset of the available dataset of the 

same length taken with replacement (i.e. each sample is picked at random from the full 

original dataset irrespective of whether it has been picked before). Another source of 

diversity is introduced during the growing of each tree.  For each node the method selects a 

small random subset of m attributes (from the total M attributes available) and uses only 

this subset to search for the best split. The combination of these two sources of diversity 

(i.e. bootstrapping plus selecting at each node only from a subset of attributes) produces 

easy-to-build ensemble models, where predictions on regression or classification are 
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performed through consensus (i.e. majority vote between all trees for classification and 

average prediction from all trees for regression). These features make random forests very 

efficient statistical methods for prediction and generalisation. 

One of the most important properties of RF is the control of overfitting even when the 

ensemble contains thousands of individual trees. The error rate of a RF model on unseen 

samples shows a smooth convergence to a limiting value when the number of trees goes to 

infinity. The RF algorithm has only one free parameter in practice, the number m of 

attributes made available at each node during the growing of trees. Breiman demonstrated 

that its results are not strongly dependent on this parameter and the default value of m (the 

square root of the total number of attributes M) usually gives near optimal results, unlike 

PLS methods which are very sensitive to the number of latent variables used in the model 

(Breiman, 2001). 

Each tree in a RF is typically grown on a bootstrap of the full dataset. On average 37% of 

the samples will not be present in a given bootstrap and these sets of unseen samples are 

referred to as out-of-bag (OOB) sets. These OOB sets are used in particular to give an 

unbiased estimate in the prediction error on unseen cases. This estimation can be used to 

give a measure of relevance of the attributes included in the RF model (once it has been 

grown) in the following way: one at a time, each attribute is shuffled (i.e. its values are 

randomly permuted between all samples in the dataset). An OOB estimation of the 

prediction error is made on this ‘shuffled’ dataset.  Intuitively, an attribute that is irrelevant 

to the model will not change the prediction performance when altered in this way. 

However, if the model made strong use of a given attribute altering its values will lead to 

an important decrease in performance between the ‘original’ dataset and the ‘shuffled’ 

dataset which is therefore related to the relevance of the attribute affected by the process 

(Breiman, 2001). 
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A RF approach can be seen in the recent study by Zheng and colleagues (Zheng et al., 

2009). Other applications include the use of data mining tools in descriptive sensory 

analysis (Granitto et al., 2007) and in the field of biological sciences e.g. RF has been used 

in microarray studies and other types of DNA and protein analyses (Shi et al., 2005). 

 

1.5. METABOLOMIC APPLICATIONS 

Much work in the field of metabolomics has focused primarily on clinical or 

pharmaceutical applications such as drug discovery (Watkins and German, 2002; Kell, 

2006), drug assessment (Lindon et al., 2004a), clinical toxicology (Griffin and Bollard, 

2004), clinical chemistry (Wishart, 2008a) and human diseases (Kaddurah-Daouk and 

Krishnan, 2009). Applications of metabolomics can be seen in many clinical areas, for 

example comparing metabolite profiles of urine of a healthy individual with that from a 

sick patient (Stenlund et al., 2009), bacterial metabolomics (Ramautar et al., 2006) and 

disease diagnostics (Madsen et al., 2010). 

Over the past few years metabolomics has emerged as a field of increasing interest to food 

scientists (Gibney et al., 2005; García-Cañas et al., 2010). The fact that metabolomics 

allows the simultaneous characterisation of large numbers of chemicals in biological 

matrices makes it an attractive tool to acquire a far more detailed and comprehensive 

molecular picture of food. Foods are now being analysed with more chemical detail 

leading to hundreds or even thousands of distinct chemical identities being detected and/or 

identified (Moco et al., 2006; Ninonuevo et al., 2006). Metabolomic applications within 

the food industry are diverse ranging from profiling of plant species, to discriminating 

between food spoilage bacteria, to studying the effects of stresses on plants and so forth. 
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1.5.1. Metabolomics in Food Quality 

Targeted metabolomics focused on volatiles has shown great potential to assess pre-harvest 

issues that affect quality. Pre-harvest fungal diseases in mango (Moalemiyan et al., 2007), 

post-harvest bacterial contamination of onions (Vikram et al., 2005) and McIntosh apples 

(Vikram et al., 2004), as well as diseases of stored carrots (Vikram et al., 2006) have been 

assessed by sampling headspace metabolites followed by GC/MS analysis. For each of the 

above examples the volatile profile was found to be disease-specific, with many 

compounds identified by GC/MS databases. In addition changes in polyphenolic 

compounds during berry breeding (Stewart et al., 2007) have been characterised by 

informative metabolomics. Post-harvest metabolomic analysis has the potential for 

detecting and understanding food spoilage as reported in 2008 by Kushalappa and 

colleagues (Kushalappa et al., 2008). Table 1.1 summarises some recent metabolomics 

studies used for food analysis. 

Future trends will involve the use of discriminative and predictive metabolomics as the 

ultimate tool for quality control. The metabolite profile of products meeting minimum 

standards can be used as a baseline for quality acceptance. Individual samples can be 

analysed and compared to determine acceptability of the batch produced. Food adulteration 

may also be assessed in this way as adulteration can be detected by appearance of 

uncommon peaks in the samples metabolic profile. The use of predictive models coupled 

with profiling techniques provides a cost alternative to quality analyses. Predictive models 

have been developed to estimate sensory attributes of green tea (Ikeda et al., 2007), 

watermelon (Tarachiwin et al., 2008) and mushrooms (Cho et al., 2007).  The potential of 

metabolomic techniques to rapidly identify adulterated food and beverages as well as their 

potential to accurately monitor undetectable quality control issues suggests that 
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metabolomics could soon play a major role in many aspects of food quality assessment and 

quality control (Wishart, 2008a).       
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1.5.1.1. Metabolomics in Food Safety 

Metabolomics has the potential to assess safety of pre- and post- harvest technologies.  

Unintended effects of genetic modification of foods can be assessed by untargeted 

discriminative analyses. Metabolomics has been used to differentiate genetically modified 

(GM) foods from non-treated ones, an example of this was seen for potatoes (Catchpole et al., 

2005). Sample differentiation occurred based on the intended variations of fructans in GM 

samples. After removal of fructan derivatives from the model no discrimination was observed. 

This suggests that GM potatoes are similar in composition to original ones, concluding that no 

major unintended changes occurred after genetic modifications. Metabolomics could therefore 

be used to provide new information regarding new or controversial processing technologies 

such as irradiation. 

There are a number of metabolomic approaches used for the detection of microbiologically 

spoiled or contaminated foods (Ellis and Goodacre, 2001). In a recent study Ammor and 

colleagues investigated the use of Fourier transform infrared spectroscopy in tandem with 

chemometrics to explore its potential as a rapid and accurate method for monitoring the 

spoilage of minced beef samples under different storage conditions. It showed that the 

comparison of FTIR spectra could highlight certain biochemical changes during meat 

spoilage (Ammor et al., 2009). 

1.5.1.2. Metabolomics in Food Component Analysis 

Food component analysis traditionally involved identifying and classifying food components 

into broad categories such as carbohydrates, proteins, fats, vitamins, fibre, trace elements, 

solids and/or ash. With the introduction of metabolomics came the ability to analyse with 

considerably more chemical detail, allowing the identification of hundreds of distinct 

molecules being detected and/or identified in certain foods (Moco et al., 2006; Ninonuevo et 

al., 2006; Wishart et al., 2007). The potential to “unravel” foods and beverages into their 
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chemical constituents offers food chemists a unique opportunity to understand the molecular 

details of what gives certain foods and drinks their unique taste, colour, texture or aroma. It 

also offers the nutritional scientist the opportunity to precisely identify the bioactive 

ingredients in foods and better understand their potentially beneficial (or harmful) 

consequences (Wishart, 2008b). 

A large number of natural foods, spices and beverages have already been the subject of 

detailed metabolomic-based analysis including milk (Ninonuevo et al., 2006), tomatoes and 

tomato juice (Moco et al., 2006), and many others. These analyses used a combination of 

techniques such as NMR spectroscopy, GC/MS and LC/MS.   

In the coming years it is likely that food consumption studies will become much more 

common with far more comprehensive metabolomic analyses being performed on many of the 

economically or pharmaceutically more important fruits (e.g. bananas, pomegranates, 

pineapples, blueberries), vegetables (e.g. avocadoes, corn, spinach, cauliflower), grains (e.g. 

wheat, barley, rye), meats (e.g. beef, chicken, fish), processed foods (e.g. cheese, yoghurt, 

vegetable oils), nuts (e.g. almonds, cashews) and the many nutraceutical foods or beverages 

(e.g. ginseng, garlic, coffee, green tea). Metabolomic-based food component studies will 

allow food scientists to more precisely follow the consequences of different preparation 

(frying versus baking; steaming versus boiling) and preservation (freezing, drying, smoking, 

refrigerating) processes on key food components/metabolites. This process will help in the 

breeding, selection or modification of better crops, the breeding and feeding of 

livestock/fishstock as well as the preparation of many processed foods (Wishart, 2008b). 

1.5.1.3. Metabolomics & Mushrooms (A. bisporus) 

A review of some metabolites that have been identified in mushrooms using different 

metabolomic techniques are outlined in Table 1.2. 
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Table 1.2 A summary of metabolites that have been identified in mushrooms by metabolomic techniques 

Metabolomic 
Technique 

Metabolites identified Analysis 
purpose 

Reference 

NMR Diacylglycerophospholipids 
(DAGP) 

Neutral acylglycerols 
Ether lipids 

Sphingolipids 
Sterols 

NMR lipid 
profile 

(Bonzom et al., 
1999) 

GC/MS Fatty acids: 
Caprylic acid 
Capric acid 
Lauric acid 

Linoleic acid 
Nonadecanoic acid 

Tricosanoic acid 
Oleic acid 

Fatty acid 
composition 

(Yilmaz et al., 
2006) 

HPLC Fructose 
Glucose 

Myo-inositol 
Mannose 
Ribose 
Sucrose 

Trehalose 
Arabinose 

Non-volatile 
taste 

components 

(Chiang et al., 
2006) 

HPLC Free amino acids:  
Alanine 
Leucine 
Serine 

Tyrosine 
Valine 

Aspartic acid 
Lysine 

Non-volatile 
taste 

components 

(Tsai et al., 
2007) 
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Aims and Objectives 

The work presented in this thesis aims to investigate the effects that mechanical damage 

have on the metabolism of mushrooms using novel metabolic fingerprinting and metabolic 

profiling tools. Those tools will be employed to detect and discriminate mechanical 

damage on mushrooms. 

To achieve this aim, the following objectives were set: 

• Experiments studying the metabolic effect of mechanical damage in mushrooms 

were set up, studying both the immediate response to damage as well as the 

metabolic changes after storage of mechanically damaged mushrooms. 

• Fourier transform infrared (FTIR) spectroscopy and chemometric methods were 

used to investigate whether the chemical changes induced by mechanical damage 

and ageing could be (a) detected in the mid-infrared absorption region and (b) 

identified using chemometric data analysis. 

•  Nuclear magnetic resonance (NMR) spectroscopy and chemometric methods were 

used to determine if low levels of damage could be differentiated, in order to 

evaluate the potential of this technology to detect damage. 

• Gas chromatography-mass spectrometry was used to profile metabolites in 

damaged and undamaged mushrooms. GC/MS coupled with chemometric data 

analysis was used to detect metabolic markers of damage and to assess the 

metabolic processes that occur. 



   
     

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. THE USE OF FOURIER TRANSFROM INFRA-RED 
SPECTROSCOPY AND CHEMOMETRIC DATA ANALYSIS 

TO EVALUATE DAMAGE AND AGE OF MUSHROOMS 
(AGARICUS BISPORUS)
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3. The use of fourier transform infra-red spectroscopy and chemometric 
data analysis to evaluate damage and age of mushrooms (Agaricus 
bisporus) 

 
The aim of this study was to investigate whether the chemical changes induced by 

mechanical damage and ageing of mushrooms can be (a) detected in the mid-infrared 

absorption region and (b) identified using chemometric data analysis. Further, the ability to 

develop a rapid tool that could detect physical damage and age before browning becomes 

visible would be of importance to the mushroom industry and could reduce economic 

losses. 

3.1. MATERIAL AND METHODS 

3.1.1. Mushrooms 

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin, 

Ireland) and harvested damage-free.  A set of 160 (n = 160) closed cap, defect-free A. 

bisporus strain Sylvan A15 (Sylvan Spawn Ltd., Peterborough, United Kingdom) 

mushrooms (3-5 cm cap diameter) were selected for this study and immediately 

transported by road to the testing laboratory. Special trays were designed to hold 

mushrooms by the stem using a metal grid to avoid contact between (a) the mushrooms, (b) 

the tops of mushroom caps and (c) the tray lid during transportation.  Mushrooms arrived 

at the laboratory premises within 1 hour after harvesting and were either damaged for the 

specified time length or remained damage-free and then stored at 4 ºC until required for 

analysis. 
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3.1.2. Mushroom Treatments 

Mushrooms (n = 160) were harvested in the conventional manner on a single occasion.  On 

the day of harvest a random subset (n = 80) was subjected to physical damage using a 

mechanical shaker (Gyrotory G2, New Brunswick Scientific Co., USA) set at 300 rpm 

(rotations per minute) for 20 min giving these mushrooms an L-value of 86 which 

according to Gormley and O’Sullivan places them in a category of good quality and 

acceptability at the beginning of the storage experiment (Gormley and O'Sullivan, 1975). 

These samples were labelled as damaged (D). The remaining 80 mushrooms were 

untreated and labelled undamaged (UD). 10 damaged and 10 undamaged mushrooms were 

selected at random from their respective subsets on the day of harvesting and prepared for 

spectroscopic analysis (see below). These are referred to as day 0 samples. The remainder 

of the mushrooms (70 each of damaged and undamaged) were placed in plastic punnets 

and stored as separate batches at 4 ºC in a controlled temperature facility (Labcold 

sparkfree refrigerator, UK). On each of the seven consecutive days of such storage, a set of 

10 damaged and 10 undamaged mushrooms were randomly selected, removed from 

storage and prepared for FTIR spectroscopic analysis. 

3.1.3. FTIR Spectroscopy 

Sample preparation involved the manual dissection of each mushroom into its three main 

tissue types (cap, gills and stipe) before freezing overnight at -70ºC in a cryogenic 

refrigerator (Polar 340V, Angelantoni Industrie spA, Massa Martana, Italy) followed by 

freeze-drying (Micromodulyo, EC Apparatus Inc, New York, USA) for 24 h. Freeze-dried 

samples were manually ground into fine particles using a pestle and mortar. Then 9 mg 

(3% w/w) of each sample was mixed with 291 mg (97%w/w) of KBr (Sigma Aldrich, 

Dublin, Ireland). KBr pellets were prepared by exerting pressure of 100 kg/cm² (1200 psi) 

for approximately 2 min in a pellet press (Specac, United Kingdom). To eliminate any 
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interference which might be caused by variation in pellet thickness different pellets were 

prepared from the same sample and their infrared spectra were compared. These samples 

were identical with their average spectra used for analysis (Garip et al., 2009). 

Spectra were collected using a Nicolet Avatar 360 FTIR E.S.P (Thermo Scientific, 

Waltham, MA, USA) over the frequency range 4000-400 cm-1. One hundred scans of each 

pellet were collected at 4 cm-1 resolution at room temperature using OMNIC software 

(version ESP 5.1). The average of the 100 scans was used for further data analysis.  FTIR 

spectral data were discretized resulting in spectra containing 1868 individual points 

(discretized every 2 cm-1) for chemometric analysis.   

The table (Table 3.1) below contains a summary of the sample numbers, sample ages and 

number of spectra taken during the study. 

Table 3.1 Summary of samples analysed by FTIR spectroscopy 

Age (Day) Damage (Min) Tissue Number of Spectra 

0 0 C,G,S 30 
0 20 C,G,S 30 
1 0 C,G,S 30 
1 20 C,G,S 30 
2 0 C,G,S 30 
2 20 C,G,S 30 
3 0 C,G,S 30 
3 20 C,G,S 30 
4 0 C,G,S 30 
4 20 C,G,S 30 
5 0 C,G,S 30 
5 20 C,G,S 30 
6 0 C,G,S 30 
6 20 C,G,S 30 
7 0 C,G,S 30 
7 20 C,G,S 30 

 C,G,S: Cap, gills, stipe 

3.1.4. Chemometric Data Analysis 

Multivariate models for damage and age prediction in mushrooms using both raw (i.e. 

unmodified) and pre-treated spectral data were developed. The pre-treatment used was 
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standard normal variate (SNV) and was intended to reduce scatter-induced effects in the 

spectra (Preisner et al., 2008). The frequency region studied was 2000-400 cm-1 

(fingerprint region). This spectral region encompasses absorptions from most of the 

chemical species present and attenuation of the dataset in this way avoids spectral regions 

which have low information content and may therefore interfere with effective model 

development. 

Principal component analysis (PCA) was used to identify patterns in data in a way which 

emphasises differences and similarities. It is used to indicate relationships among groups of 

variables in a data set and show relationships that might exist between objects (Zheng et 

al., 2009). 

Random forest (RF) models were built to (a) discriminate between damaged and 

undamaged mushrooms and (b) to predict mushroom ages. The number of trees fitted to 

build the random forest was 1000. The number of random wavenumbers tried at every 

node of the tree was set at 500 after optimization and the RF model trained was made using 

a stratified random sampling strategy of the sample spectra that would take the same 

number of samples from each of the tissues.  

Partial least squares (PLS) regression was applied to the spectral data sets to develop a 

quantitative model for prediction of the age of damaged mushrooms. A common problem 

in development of multivariate prediction models is selection of the optimum number of 

PLS loadings. Often this selection is based on an examination of the root-mean-square 

error of cross-validation (RMSECV). But identification of a minimum is not always 

possible or unambiguous and sub-optimal models incur a significant risk of overfitting. 

Experience has shown that this can be a problem when parameters which are of practical 

relevance, such as post-harvest age or damage, but have unclear molecular basis are being 

modelled. To avoid overfitting, model cross validation was employed as follows: 
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1. Samples were randomly-designated from each tissue/damage status/time grouping 

as calibration (60%) or validation (40%) samples. The validation subset was left 

out during the optimization of model based on the calibration set. 

2. The model optimization step was carried out in order to estimate optimal 

dimensionality of the PLS model built on the calibration set. The method employed 

for this was based on the observation that an indication of overfitting is the 

appearance of noise in regression vectors. This takes the form of a reduction in 

apparent structure and the presence of sharp peaks with a high degree of directional 

oscillation. A simple method (Gowen et al., 2010) for objectivity quantifying the 

shape of a regression vector, combined with the root mean square error of cross-

validation (RMSECV) for the calibration set was applied in this study. 

3. The random sample designation, model development and evaluation were 

performed 100 times. At the end of this cycle, models were initially examined on 

the basis of the number of latent variables selected. The most common number was 

then chosen as the optimum. 

Mushroom discrimination (damaged versus undamaged) was performed using partial least 

squares discrimination analysis (PLS-DA). For PLS-DA, analytical contrasts were used to 

specify the damaged and undamaged factor. PLS-DA calibration models were developed 

and assessed using 100 randomly-populated calibration and validation sample sets. 

Principal component analysis (PCA) and partial least squares (PLS) regression were 

performed using MATLAB and The Unscrambler software (v.9.7; Camo A/S, Oslo, 

Norway). The routine for selection of the optimum number of PLS loadings was also 

performed in MATLAB. Random forest (RF) modelling was performed using R 2.8.0 (R 

Development Core Team, 2007).  
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Univariate statistical analysis was carried out on specific wavenumbers highlighted by RF 

models as being important variables for detecting damage in mushrooms. The significance 

of damage and tissue factors and their interactions was tested by analysis of variance 

(ANOVA).  R 2.8.0 was used to analyse the data. 

3.2. RESULTS AND DISCUSSION 

3.2.1. Spectral Data 

Average raw spectra of each of the three tissue types collected from all the damaged and 

undamaged samples (day 0-7) are shown in Figure 3.1(a-c). A number of observations may 

be made on these spectra:   

First, the major feature is a vertical offset from one average plot to another. This offset 

originates in light scatter effects and may be a complication in further data analysis.  

Average spectra of the three tissue types also bear a close resemblance to each other with 

little visible difference in peak minima locations in Figure 3.1. 
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Figure 3.1 FTIR transmittance spectra of all mushroom tissues in (a) 400-1800 cm-1 (b) 2800-3050- cm-1 

and (c) 3050-4000 cm-1 ranges 

 
 

In terms of minima locations there are major bands at 1650, 1090, 1020 and 935 cm-1 and 

minor minima may be seen at 1560, 1150 and 1050 cm-1 (Figure 3.2).  Unambiguous 

identification of the molecular source of features in mid-infrared spectra of biological 

material is difficult but the peak at 1650 may be attributed to an amide I group vibration 

while the peak at 1560 cm-1 may be identified as resulting from vibrations of amide II 

groups (Belton et al., 1995; Di Mario et al., 2008). 
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Figure 3.2  Average FTIR spectrum of undamaged cap tissue 4000-400 cm-1 (raw data) 

 
Both major absorption peaks at 1090 and 1020 cm-1 have been attributed to vibrations of 

chitin, a major structural polysaccharide in mushrooms. Absorption at 1090 cm-1 may also 

arise from vibrations of secondary alcohols. Smaller features at 1150 and 1050 cm-1 have 

been attributed to vibrations of tertiary and primary alcohol structures (Workman, 2001). 

Minima at 935, 890 and 874 cm-1 correspond to α- and ß-anomer C1-H deformations.  The 

vibrations at 935 and 890 cm-1 are attributed to glucan vibrations, while the vibration at 

874 cm-1 is assigned to a mannan vibration (Pierce and Rast, 1995; Sandula et al., 1999; 

Mohacek-Grosev et al., 2001). An inability to attribute all spectral features is a common 

feature of spectroscopy of complex biological matrices, but the presence of such spectral 

detail implies the detection of a significant quantity of information which may be usefully 

interrogated by multivariate mathematical methods. 

3.2.2. Principal Component Analysis 

Undamaged samples were studied separately on the basis of their tissue type i.e. caps, gills 

and stipes. The initial PCA of the mushroom caps data revealed a single sample (day 7) 
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that lay anomalously at some significant distance from the others. This was deleted and the 

resulting score plot is shown in Figure 3.3 for PC1 versus PC2. These first two principal 

components accounted for 97 and 2% respectively of the total variance in the spectral 

dataset and some sample clustering on the basis of storage time is readily apparent. As a 

general observation, it may be stated that the majority of the day 0 mushroom caps have a 

score value on PC1 greater than zero and are therefore located on the right-hand-side of 

Figure 3.3(a). While there are indications in the plots that samples of different storage time 

cluster together, the spread of these clusters is quite large and it is not possible to readily 

discern any trend relating plot position and storage time. There is a suggestion that the 

dispersion of the samples decreases as the length of storage time increases. With regard to 

undamaged gill tissue, observations similar to those made above in relation to undamaged 

caps may be made although the distribution patterns are somewhat different. 

In the case of damaged mushroom tissues, a different pattern was found. It is clear from 

Figure 3.3(d-f) that day 0 samples clustered together but separately from those of day 1 to 

day 7 samples, irrespective of tissue type. This strongly suggested that physical damage 

had a significant effect on tissue structure and the subsequent ageing process. Some 

implications regarding the rate of change of mushroom tissue composition with ageing 

may be garnered from the observation that separation of day 0 from all other subsequent 

days accounts for the most variation in the spectral collection of damaged mushroom caps, 

gills and stipes. 
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Figure 3.3 PC1versus PC2 score plots of undamaged mushroom tissue (a) caps (b) gills (c) stipes and 
damaged tissue (d) caps (e) gills and (f) stipes; 0-7: Sample ages from zero to seven days 

 

 
 

(a) (b) 

(c) (d) 

(e) (f) 
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3.2.3. Detection of Damage 

3.2.3.1. Random Forests  

The first random forest model developed attempted to identify which wavenumbers could 

be used to predict damage specifically. The model tried to predict damage in mushrooms 

using the IR spectra, a variable indicating the tissue from which the spectra originated (cap, 

gill or stipe) and the age of the mushroom (in days from 0-7) as explanatory variables. This 

resulted in good classification between damaged and undamaged samples with an out-of-

bag error rate (OOB) of 5.9%, sensitivity 93.3% and specificity 95%. 

In RFs there are two measures of importance to indicate how informative a particular 

variable (a wavenumber in our case) is, the mean decrease in accuracy and the Gini index.  

The decrease in Gini index is not as reliable as the marginal decrease in accuracy 

(Breiman, 2001; Pang et al., 2006) and for that reason the latter was analysed. The most 

important variables for predicting damage in the model are shown in Figure 3.4(a). The 

most important variable was the age of the mushroom samples followed by the 

wavenumbers 1868, 1870 and 1845 cm-1.   

Induced damage in mushrooms leads to an enzymatic response which is followed by 

brown discolouration. The enzymes involved in this response, tyrosinase or polyphenol 

oxidases, catalyse the oxidation of phenols, which in turn promote the formation of 

melanin-like compounds. This reaction is found not only in damaged mushrooms, but is 

also part of the natural ageing process, with mushrooms becoming darker and less firm 

during storage (Eastwood and Burton, 2002). The three wavenumbers identified can be 

used to differentiate between the chemical changes that are induced by the mechanical 

damage and are independent of those that take place due solely to ageing.  The three 

wavenumbers are unassigned peaks. 
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Figure 3.4 Relative importance plot of variables that are important in the random forest model for 
predicting damaged/undamaged samples. (a)The most important variables are age followed by the 

wavenumbers 1868, 1870 and 1845 cm¯¹ (b) When age is not an explanatory variable, the most 
important variables are tissue type followed by the wavenumbers 1868, 1870 and 1560 cm¯¹ 

 

By removing the variable age from the model a second model was built and used to predict 

whether there was damage or not. This random forest could be used as a classifier of 

mushroom damage and gave a very good prediction model with an OOB error rate of 

9.8%, sensitivity of 89.2% and specificity of 91.2%. Even receiving mushrooms whose 

storage time after harvest was unknown, the model could still classify damaged and 

undamaged mushroom samples with a very good classification rate. The variables of 

importance involved in this classification model are shown in Figure 3.4(b).   

The most important variable for predicting damage according to the mean decrease 

accuracy plot is the tissue used in the analysis followed by the wavenumbers 1868, 1870 

and 1560 cm-1. The peak located at 1560 cm-1 is attributed to amide II vibrations of 

proteins (Mohacek-Grosev et al., 2001). Amide II bands are associated with an out-of-

phase combination of in-plane C-N stretching and N-H bending of amide groups (Militello 

et al., 2004). Absorption of this band was found to be higher in damaged samples and 
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therefore an important variable for detecting damage in mushroom samples. The 

wavenumbers 1868 and 1870 cm-1 are unassigned.  

Appropriate univariate statistical treatment was applied to the wavenumbers identified by 

RFs as being important variables for detecting damage in mushrooms. These wavenumbers 

were 1868, 1870, 1845 and 1560 cm-1. The significance of damage along with other factors 

such as tissue type and their interactions were tested by analyses of variance (ANOVA). 

Box-plots for the wavenumbers at 1560 and 1868 cm-1 (Figure 3.5) show an increase in 

absorbance within damaged samples, a trend which was seen for all important 

wavenumbers. 
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Figure 3.5  Box plot showing the absorbance values for each tissue at (a) 1560 cm-1 and (b) 1868 cm-1 

D=Damaged samples 
UD=Undamaged samples 

SNV=Standard normal variate (pre-treatment) 
 
The significance of the Damage factor (p<0.001) for each wavenumber (Table 3.2) 

indicates that the difference in absorbing species at these wavenumbers was significant 

between damaged and undamaged samples. For all the important variables identified by 

RFs, they each had higher absorption levels within damaged samples, an example of this 

was seen for 1560 and 1868 cm-1 in the box-plots (Figure 3.5). 
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The Tissue factor also had a significant effect (p<0.001) on the absorption at these 

wavenumbers. This meant that each tissue type may react differently to physical damage.  

The significance of the Day*Tissue interaction means that damage and tissue type i.e. cap, 

gills or stipe had an effect on the absorption of the specific wavenumbers. It should be 

noted that tissue type was identified as an important variable for predicting damage (Figure 

3.4b) in RF models. The box-plot (Figure 3.5) clearly shows that damaged samples had 

higher absorption than undamaged samples for all tissue types.  

 

Table 3.2 ANOVA table of the effect of damage, tissue and age on the absorption at specific 
wavenumbers identified as important variables for predicting damage by RFs 

Wavenumber 
(cm-1) 

Factor P-Value Significance Level 

1868 Damage 
Tissue 

Damage*Tissue 

2.2 x 10-16 
5.1 x 10-05 
3.5 x 10-12 

*** 
*** 
*** 

1870 Damage 
Tissue 

Damage*Tissue 

2.2 x 10-16 
2.2 x 10-16 
0.7 x 10-02 

*** 
*** 
** 

1845 Damage 
Tissue 

Damage*Tissue 

2.2 x 10-16 
4.0 x 10-05 
1.8 x 10-12 

*** 
*** 
*** 

1560 Damage 
Tissue 

Damage*Tissue 

2.2 x 10-16 
2.2 x 10-16 
0.7 x 10-02 

*** 
*** 
** 

Significance levels at 95% (*), 99%(**), 99.9% (***) 
 

In conclusion damaged samples had higher absorption at the wavenumbers 1868, 1870, 

1845 and 1560 cm-1 compared to undamaged samples regardless of tissue type.  The 

ANOVAs are therefore complimentary to RF models for damage as the variables of 

importance for predicting damage were significantly different between damaged and 

undamaged samples. 
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3.2.3.2. Partial Least Squares  

PLS-DA models were developed to discriminate between undamaged and damaged 

mushrooms of all tissue types separately. A summary of the average and dispersion of the 

results obtained on a percentage basis for each tissue is shown in Table 3.3. 

Table 3.3 Summary of results for mushroom discrimination using PLS-DA on the basis of damage 

Tissue type #Samples #Loadings % 
undamaged 
misclassified 
mean (std. 
deviation) 

% damaged 
misclassified 
mean (std. 
deviation) 

Caps 160 7 4.1 (4.3) 7.6 (4.0) 
Gills 160 9 2.1 (3.0) 0.8 (1.7) 
Stipes 160 12 1.7 (2.1) 0.6 (1.5) 

 

It is apparent that misclassification errors associated with all models are low, especially so 

in the case of gills and stipes. In terms of numbers of samples misclassified, these 

percentages translate to only 1 or 2 samples in each case. These results indicate that FTIR 

of freeze-dried mushroom tissues (especially gills and stipes) may be used to discriminate 

between damaged and undamaged mushrooms aged post-harvest from 0-7 days with 

almost complete confidence. 

Modelling damage in mushrooms has been reported in literature in 2008 by Gowen and 

colleagues and Esquerre et al., in 2009 (Gowen et al., 2008a; Esquerre et al., 2009). 

Gowen and colleagues investigated the use of hyperspectral imaging and principal 

component analysis (PCA) to develop models to predict damage on mushroom caps with 

correct classification ranging from 70-100%. Using near infra-red spectroscopy and partial 

least squares (PLS) regression, Esquerre and colleagues were able to correctly classify 

undamaged mushrooms from damaged ones with an overall correct classification model 

with 99% accuracy. The models for predicting damage using FTIR and random forests 

correctly classified 94 and 90% of samples respectively, whilst the PLS predictive models 

correctly classified 92-99% of undamaged samples from damaged ones.   
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These results highlight the usefulness of FTIR and chemometrics for detecting damage in 

mushrooms. This could lead to the development of a monitoring and classification system 

to detect physical damage before browning becomes visible, using specific wavenumbers 

identified as important variables in the ‘fingerprint region’ of mushroom spectra. 

3.2.4. Predicting Postharvest Age 

3.2.4.1. Random Forests 

Initial random forest models were built to predict the mushroom age from day zero to 

seven (0-7) using the IR spectra from the tissues and knowing whether they had been 

subjected to damage or not with the aim to identify specific wavenumbers associated with 

ageing. The random forest model produced an OOB error rate of 32% i.e. 68% of samples 

were correctly classified. The results of the model fit are shown in Table 3.4. 

Misclassification of samples was seen for all mushroom ages particularly days 4, 5 and 7.  

Classification of day zero samples performed quite well in the model with 82% of samples 

correctly classified, which leads to the possibility of using IR spectroscopy as a tool to 

discriminate fresh mushrooms (D0) from mushrooms that have been subjected to 

refrigeration. This type of tool could enable packers and producers to avoid fraud and 

‘recycling’ of product, supporting the evidence from visual inspection. 
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Table 3.4 Confusion matrix and the error rate for the prediction of mushroom age.  The OOB error 
rate: 32%.  The numbers in bold are correctly classified samples 

  

 
 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
Error rate 

 0 49 3 0 3 2 0 3 2 0.18 
 1 1 42 2 4 0 1 4 6 0.30 
 2 4 5 43 2 3 0 0 3 0.28 
 3 1 3 5 47 2 1 0 1 0.22 
 4 3 0 3 3 32 2 8 9 0.47 
 5 0 0 3 12 3 29 4 8 0.51 
 6 1 0 6 0 2 0 48 3 0.20 
 7 2 1 5 2 2 6 8 34 0.43 

0-7: Sample age in days from day zero to day seven 
Error rate: The % misclassification for each sample age 

 

The variables of importance identified by the mean decrease accuracy plot were damage, 

tissue type and the wavenumbers 399, 952 and 1508 cm-1 (Figure 3.6a). 

A second model was developed to predict age using the same approach as above but 

removing the damage variable from the model. The model performed similarly to above 

with an OOB error rate of 33%. Again misclassification within all samples ages was seen. 

The model correctly classified 79% of day zero samples. The important variables identified 

to predict age were tissue type and the wavenumbers 399, 954, 952 and 1508 cm-1 (Figure 

3.6b). The peak located at 952 cm-1 is assigned to a vibration of glucan (ß-anomer C-H 

deformation) (Mohacek-Grosev et al., 2001). Glucans play many different roles in the 

physiology of fungi, with some accumulating in the cytoplasm as storage. However most 

are present in the cell wall structure (Ruiz-Herrera, 1992).  This suggests that the ability to 

model ageing in mushrooms may depend on the effect of glucan levels changing in the cell 

wall due to natural senescence. The bands at 399 and 1508 cm-1 are unassigned. The OOB 

errors produced to model ageing were quite large >33% which may be due to the low 

sample numbers. 
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Figure 3.6 Relative importance plot of variables that are important in the random forest model for 
predicting age.  (a) The most important variables are damage followed by tissue type and the 

wavenumbers 399, 952 and 1508 cm-1 (b) When damage is not a variable, the most important variables 
are tissue types and the wavenumbers 399, 954, 952 and 1508 cm-1. 

 

3.2.4.2. Partial Least Squares 

PLS regression was applied separately to the caps, gills and stipes datasets in an attempt to 

develop separate quantitative models for prediction of the age of mushrooms, both 

damaged and undamaged. Selection of the appropriate number of latent variables for each 

model was assessed on the basis of the frequency of their occurrence. As shown in Figure 

3.7, this was a clear and unambiguous choice. A summary of the results obtained using 

mushrooms from day 0 to 7 inclusive is shown in Table 3.5. In the case of undamaged 

mushrooms, root mean squared error of cross validation (RMSECV) values achieved were 

relatively high, only permitting the prediction of post-harvest age of damaged mushrooms 

to within ±2 to 3 days approximately (95% confidence limit) depending on tissue type. 
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Figure 3.7 Frequency of generation of PLS regression models for mushroom post-harvest age on the 

basis of the number of latent variables selected.  (a) undamaged caps, (b) undamaged gills, (c) 
undamaged stipes, (d) damaged caps, (e) damaged gills and (f) damaged stipes.  Abiscissa – no. of 

latent variables in model; ordinate – no. of occurrences 

 

Table 3.5 Summary of PLS regression results for the prediction of post-harvest age (day 0-7 inclusive) 
in undamaged and damaged mushrooms 

Treatment Tissue #Samples #Loadings RMSECV* RER** 
Undamaged Caps 80 7 1.2 2.0 

      
 Gills 80 7 1.5 1.6 
      
 Stipes 80 7 1.2 1.9 
      

Damaged Caps 80 7 1.3 1.9 
      
 Gills 80 8 0.8 3.1 
      
 Stipes 80 6 1.2 2.2 

*RMSECV= root mean square error of cross-validation (mean of 100 runs); **RER = SD/RMSECV 
 

The practical utility of such accuracy levels may be gauged by examination of the 

SD/RMSECV ratio, all but one of which are below 3.0, the generally accepted minimum 

value for a model to be of practical utility. With regard to damaged mushrooms, model 

predictive accuracies were similar for caps and stipes with RMSECV (and RER) values of 

1.3 (1.9) and 1.2 (2.0) respectively. In the case of gill tissue, better predictive accuracy was 

achieved with RMSECV and RER values equal to 0.8 and 3.1 respectively. The number of 

latent variables associated with these models was low and similar in all cases, with a 
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variation between 6 and 8 only. The application of an objective indicator of the optimum 

number of PLS loadings to include in any model contributed to their stable performance. 

The results presented for modelling age in mushroom using FTIR and chemometrics had 

misclassification errors of over 30% (RFs) yielding relatively unsuccessful results. 

However, random forest models were able to classify day zero samples reasonably well 

with correct classifications of 82 and 79% which leads to the possibility of using IR 

spectroscopy in detecting fresh mushrooms from old mushrooms and could be used within 

the sector for detecting fraud and ‘recycling’ of product.   

The time required for freeze-dried sample preparation and measurement in this protocol is 

of the order of hours. Thus this approach would be applicable for research and quality 

control purposes. However, this may be reduced to the order of minutes by the use of 

specific wavenumbers, possibly raw mushroom tissue and alternative IR sample handling 

(i.e. attenuated total reflectance). This study highlights the usefulness of FTIR coupled 

with chemometric data analysis in particular for evaluating damage in mushrooms. 

 

3.3. CONCLUSIONS 

FTIR and chemometric data analysis was applied to evaluate damage and age in 

mushrooms. RF models were produced with the ability to predict damage in mushrooms 

with low error rates (<10%). The first model developed used the IR spectra, a variable 

indicating the tissue type and the age of the sample as explanatory variables. This model 

produced a very low OOB error rate of 5.9%. A second model was produced with the age 

variable removed and this model performed well with an OOB error rate of 9.8%.  

PLS-DA models were developed to discriminate undamaged and damaged mushrooms of 

all tissue types separately. Misclassification errors were low in all models, particularly in 

the case of gills and stipes. The use of FTIR coupled with PLS-DA produced strong 
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models with the ability to discriminate between damage and undamaged samples with 

almost complete confidence. 

Random forest (RF) models were developed to try to predict mushroom age from day zero 

to day seven (0-7). Unfortunately models produced high error rates (>30%). However the 

model could correctly classify 82% of day zero samples, which could be used to 

discriminate fresh mushrooms from mushrooms that are one day or older and have been 

subjected to refrigeration. 

 PLS regression was applied to tissue types separately in an attempt to develop separate 

quantitative models for age prediction. Undamaged and damaged samples were treated 

separately. The models were able to predict postharvest age to within 2-3 days depending 

on tissue type for undamaged mushrooms.  Damaged models resulted with predictive 

accuracies similar for caps and stipes (2 days), with better predictive accuracy achieved for 

gills. 

Results presented in this work show that FTIR spectroscopy and chemometrics could be 

used to classify mushrooms according to their damage class (i.e. undamaged or damaged). 

This study demonstrates the potential use of FTIR as a tool for discriminating damage in 

mushrooms with the potential for developing a classification system for the industry.  



   
       

  
  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4. THE USE OF NUCLEAR MAGENETIC RESONANCE 

SPECTROSCOPY AND CHEMOMETRIC DATA 
ANALYSIS TO EVALUATE LOW LEVELS OF DAMAGE 

IN MUSHROOMS (AGARICUS BISPORUS) 
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4. The use of nuclear magnetic resonance spectroscopy and chemometric 
data analysis to evaluate low damage levels in mushrooms (Agaricus 
bisporus) 

 
The aim of this study was to investigate the chemical changes induced by low levels of 

mechanical damage in mushrooms using 1H NMR spectroscopy and to identify the extent 

of damage using NMR together with chemometric data analysis. 

4.1. NMR LIPID PROFILE OF MUSHROOMS 

Lipid extracts from Agaricus bisporus have been analysed by 1D-proton and 2D-proton 

COSY NMR spectroscopy. Bonzom and colleagues studied a series of lipids extracted 

from freeze-dried mushrooms and performed qualitative and quantitative analysis. The 

data obtained was both accurate and detailed and obtained without chemical modification 

of the samples (Bonzom et al., 1999). 

In addition, similar success with this method was observed for metabolic profiling of 

lettuce leaves by Sobolev et al.. In this study a large number of water soluble metabolites 

and complex spectra of metabolites extracted in organic solvents were fully assigned 

(Sobolev et al., 2005). 

The results of both these studies demonstrate the potential of NMR spectroscopy as a 

method for the study of plant metabolism. It could also provide a useful tool for the studies 

of plant diseases, toxicity and the monitoring of metabolic changes. 
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4.2. MATERIAL AND METHODS 

4.2.1. Mushrooms 

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin, 

Ireland) and harvested damage free. A set of 120 closed cap mushrooms (n = 120) were 

selected each week for three weeks (i.e. 3 repetitions) for this study. A subset (n = 60) were 

labelled day zero mushrooms and the remaining sixty samples were labelled as day one 

samples. From each subset of sixty, thirty (n = 30) were labelled as damaged (D) and 

subjected to physical damage using a mechanical shaker set at 300 rpm (rotations per 

minute) for 30 seconds, giving these mushrooms an L-value of 98, which according to 

Gormley and O’Sullivan places them in a category of excellent quality (Gormley and 

O'Sullivan, 1975). The remaining samples (n = 30) were labelled as undamaged (UD). 

Day zero samples were prepared for analysis while day one samples were stored overnight 

at 4 ºC before being prepared for NMR analysis. A total of 1200 (600 polar and 600 non-

polar) samples were analysed by NMR spectroscopy, a summary of which is given in 

Table 4.1. 

Table 4.1 Summary of samples analysed by NMR spectroscopy 

Age 
(Day) 

Damage 
(Seconds) 

Tissue Number of 
Samples 

Number of 
Spectra (polar 
& non-polar) 

0 0 Cap 
Gills 

Stipes 

30 
10 
10 

60 
20 
20 

0 30 Cap 
Gills 

Stipes 

30 
10 
10 

60 
20 
20 

1 0 Cap 
Gills 

Stipes 

30 
10 
10 

60 
20 
20 

1 30 Cap 
Gills 

Stipes 

30 
10 
10 

60 
20 
20 
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4.2.2. NMR Profiling Protocol & Overview 

Sample preparation involved the manual dissection of each mushroom into its three main 

tissue types (cap, gills and stipes). The samples were then frozen overnight at -70 ºC in a 

cryogenic fridge (Polar 340V Cryogenic fridge, Angeelantoni Industrie spA, Massa 

Martana, Italy), followed by freeze-drying (Micro-modulyo, EC Apparatus Inc, New York, 

USA). Dried sample tissues were then ground into a fine powder using a pestle and mortar 

and an extraction of polar and non-polar phases was performed as described by Wu et al., 

with minor modifications (Wu et al., 2008). An overview of the experimental procedure is 

described in Figure 4.1. 

 

Freeze-dried samples

Extraction of polar phase Extraction of non-polar phase

Dissolve in DMSO Dissolve in CDCl3

Data analysis Data analysis  

Figure 4.1 Overview of metabolite fingerprinting NMR spectroscopy protocol 

4.2.2.1. Extraction 

A tissue sample (400 mg) was homogenised in methanol (4 ml/g) and cold water (0.85 

ml/g) in a Teflon tube. The homogenate was placed into a glass vial and the following 

solvents were added; chloroform (4 ml/g) and water (2 ml/g). Samples were then vortexed 

for 60 seconds, left on ice for 10 minutes to partition and centrifuged for 10 minutes at 

2000 g at 4 ºC. The polar phase samples were dissolved in dimethyl sulfoxide-d6 (DMSO-
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d6, 99.99 atom % D) (Sigma Aldrich, Dublin, Ireland). The non-polar phase samples were 

dissolved in deuterated chloroform (CDCl3, 99.98 atom % D, containing 0.1% (v/v) 

tetramethylsilane (TMS)) (Sigma Aldrich, Dublin, Ireland). All solutions were filtered 

through glass wool and transferred to standard 7 mm NMR tubes (Sigma Aldrich, Dublin, 

Ireland). 

4.2.3. NMR Measurements 

1H NMR experiments were carried out on a Bruker Avance III 500 MHz spectrometer 

(Bruker Avance III UltraShield 500 MHz NMR, Germany) with a transmitter frequency of 

500.13 MHz for protons (Figure 4.2). The pulse programme used was zg30 using a 30 

degree flip, dwell time of 48.4 µs, acquisition time of 3.17 seconds and acquisition mode 

was DQD. 16 scans and 2 dummy scans were used and the sweep width was 20.7 ppm and 

receiver gain was 456. For processing a line broadening of 0.3 Hz was applied and the 

baseline correction used a 5 degree polynomial.  

Spectra were referenced using the residual chloroform for DMSO signals. All spectra were 

obtained at 198 K. The NMR preprocessing software used was TOPSPIN 2.1 (version 

2.1.4, Bruker BioSpin, Germany).  
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Figure 4.2 (a) Bruker Avance III 500 MHz spectrometer and (b) NMR spectroscopy tubes containing 
mushroom samples stacked in the autosampler 

 

4.2.4. Chemometric Data Analysis 

The analysis of NMR data involved the following steps: 

1. A preliminary observation of the data using principal component analysis (PCA) to 

identify clusters of data and outliers as appropriate. 

2. Modelling the data using random forests (RF) was performed in order to confirm 

the ability of multivariate statistics to predict damage with the purpose of 

identifying important frequencies (signals) in the discrimination which may be used 

for the identification of markers of low level damage. 

3. Univariate statistics (ANOVA) were used to assess the ability of the selected 

frequencies (signals) in the NMR spectra to discriminate low levels of damage. 

4. A further step of modelling the data was performed in which the data was split into 

a training and test database using a random sampling procedure and resulting in 

75% of the data being used for training and 25% for testing (Figure 4.3). 
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5. Partial least squares discriminant analysis (PLS-DA) using the indications of the 

PCA and optimising the hyperparameter of the number of components in the PLS 

regression step was performed. Confusion matrices for the training and test sets 

were used to identify the ability of PLS-DA models to discriminate damage. 

6. Principal component analysis (PCA), random forests (RF), partial least squares 

(PLS) and univariate statistical analysis were performed using R 2.10.0 (R 

Development Core Team, 2009).  

 

 

Data

Training Data set Test Data Set

75% of samples 25% of samples

Sensitivity and Specificity

Used as a masked test
set to assess predictionSupervised learning to

determine optical 
parameters

 

Figure 4.3 Illustration of the splitting into training & test datasets to assess the prediction of damage in 
mushrooms (Pers et al., 2008) 

 
 

4.3. RESULTS AND DISCUSSION 

4.3.1. Non-polar Phase Spectral Analysis 

Figure 4.4 represents a typical 1H NMR spectra for a day zero undamaged non-polar phase 

fraction of a mushroom sample. Three distinct regions are apparent.  

1. Aromatic groups are represented by signals between 6-10 ppm. A number of 

phenolic compounds are present in mushrooms. The main natural phenolics present 

in Agaricus bisporus are glutaminyl-4-hydroxybenzene, p-aminophenol, 

phenylalanine and tyrosine (Jolivet et al., 1998). A number of other phenolics have 
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been reported in literature as being indentified in mushrooms such as p-

hydroxybenzoic acid, p-coumaric acid and cinnamic acid (Gasowska et al., 2004; 

Tsai et al., 2009; Vaz et al., 2011). 

2. Carbohydrate groups are typically represented by signals between 3-6 ppm. 

Numerous carbohydrates have been reported in literature as present in mushrooms 

such as ribose, xylose, mannose, glucose, sucrose and trehalose (Beecher et al., 

2001; Heleno et al., 2009; Kalač, 2009).  

3. Finally lipid groups (aliphatic) are typically represented by signals between 0-3 

ppm. A number of lipids have been reported in literature as present in mushrooms 

including fatty acids (Holtz and Schisler, 1971; Byrne and Brennan, 1975; Yilmaz 

et al., 2006), sterols (Yokokawa and Mitsuhashi, 1981; Weete et al., 1985; Bonzom 

et al., 1999; Teichmann et al., 2007), acylglycerols (Bonzom et al., 1999) and 

phospholipids (Bonzom et al., 1999). 

 

 

Figure 4.4 Representative 1H NMR spectrum of undamaged day zero non-polar phase cap tissue 
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Unfortunately poor resolution of the peaks hinders identification and assignment of 

individual groups for qualitative purposes. However, distinct variations can be observed 

between damaged and undamaged samples (Figure 4.5). 

 

Figure 4.5 1H NMR spectrum of (a) undamaged cap versus (b) damaged cap day zero (non-polar 
phase) 

Arrows and circles are used to highlight differences between the spectra 
 
 

Figure 4.5 depicts the typical spectra of (a) undamaged day zero cap and (b) damaged day 

zero cap. Visible differences in the spectra are highlighted. Peaks in the same areas appear 

less resolved and in some instances, signals are completely lost in the damaged samples. 

This is highlighted in the carbohydrate and aromatic regions (arrows and circles).  

Although the identification of phenolic compounds was inconclusive, there were noted 

differences between this region in the damaged and undamaged mushroom samples. A 

definite decrease can be seen for the peak located at 7.3-7.4 ppm. There was also a loss of 

a number of signals beside this peak suggesting that phenolic compounds in mushrooms 

may be affected by low levels of damage indicating that this region of the spectra could 

possibly be used to discriminate between damaged and undamaged mushrooms. 
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The carbohydrate region also showed variation between the spectra of damaged and 

undamaged mushroom samples. The spectra for damaged mushroom caps contains less 

peaks in this region (as for all regions) again indicating that this type of damage may have 

an effect on carbohydrates present in mushroom cap samples which might be measureable 

by NMR spectroscopy. 

Fatty acid chains are represented in the aliphatic region, with differences in the spectra also 

suggesting possible effects of damage to the mushrooms on these lipid groups. Differences 

in the spectra of both gills and stipes are also evident (Figure 4.6). The ability to detect 

these levels of damage i.e. 30 seconds, illustrates the potential of NMR analysis as a tool 

for profiling damage in mushroom samples. 

 

 
Figure 4.6 1H NMR spectra of non-polar phase day zero undamaged (red) and damaged (blue) (a) gills 

and (b) stipes 
 

4.3.1.1. Assignment of Signals 

The assignment of individual metabolites by NMR analysis has been shown by Bonzom 

and colleagues. In this study lipid mixtures were separated on solid phase by ion exchange 

chromatography into four separate fractions corresponding to neutral lipids, free fatty 
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acids, neutral phospholipids and acidic lipids. The total lipid content was found to be 

represented by resonances at 2.31 ppm. This peak corresponds to the carboxylate protons 

(CH2COO), which are present in all free fatty acids or conjugates. Hence the total lipid 

fraction was measurable (Bonzom et al., 1999). Similar results were noted in the study of 

lettuce leaves (Sobolev et al., 2005). NMR analysis also showed a similar peak at 2.3-2.4 

ppm representing the CH2COO protons of the lipid fraction of the sample. 

In addition further lipid protons were also identified in these two studies, allowing 

unequivocal assignment of individual fatty acid groups. For example, Bonzom et al. 

reported the following signals: A resonance at 2.0-2.1 ppm was assigned to protons next to 

the double bonds in the lipid chain (CH2CH=CHCH2). 
1H resonance at 1.6-1.7 ppm was 

assigned to protons next to the carboxylate groups (CH2CH2COO). The 1H resonance 

peaks between 1.2-1.4 ppm were attributed to CH2 protons in the lipid chain, with signals 

around 0.86 ppm assigned to methyl groups of the lipids (CH3) (Bonzom et al., 1999). 

These findings are also supported by lipids identified in lettuce leaves (Sobolev et al., 

2005). 

Figure 4.7 shows the expanded aliphatic region of the spectrum of undamaged day zero 

cap tissue. Although the peaks are not resolved, comparisons can be made between results 

obtained in this study and the aforementioned studies. A peak at around 2.3 ppm (Figure 

4.7) may represent the carboxylate protons (CH2COO) of the lipids present in the sample, 

potentially identifying the total lipid content. The remaining groups identified by Bonzom 

et al CH2CH=CHCH2, CH2CH2COO, CH2 and CH3 may also be represented by peaks 2 to 

5 respectively in Figure 4.7. Further resolution is needed to fully assign these signals. 
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Figure 4.7 1H NMR spectrum (expanded) of lipidic fraction of undamaged cap tissue day zero 
containing possible signals for 1: CH2COO, 2: CH2CH=CHCH2, 3: CH2CH2COO, 4: CH2, 5: CH3 

 

Identification of individual peaks was not attempted for signals in the aromatic or 

carbohydrate regions. Interpretation of the 1H NMR spectra was difficult in these regions 

without better resolution of the signals. 

4.3.2. Polar Phase Spectral Analysis 

Figure 4.8 shows a typical 1H NMR spectrum of undamaged polar phase cap tissue in 

DMSO. The polar phase spectra are not as information rich compared to the non-polar 

phase spectra, nonetheless peaks are present in the aliphatic (amino acids) and midfield 

(carbohydrate) regions of the spectra. 
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Figure 4.8 Representative 1H NMR spectrum of undamaged day zero polar phase cap tissue 

 

Although a number of differences were noted between non-polar phase spectra for 

damaged and undamaged mushroom samples, this trend was not as clearly observed for 

polar phase samples (Figure 4.9). 

 

Figure 4.9 1H NMR spectrum of (a) undamaged cap day zero versus (b) damaged cap day zero (polar 
phase) 

 

Further extraction and purification procedures would be recommended in an attempt to 

identify individual peaks qualitatively and quantitatively. Suitable extractions may be 

(a) 

(b) 
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performed which specifically target individual groups. For example, extraction of 

phenolics using an acetone and water mixture described by Cheung et al. may be used to 

isolate these groups. The purpose of this study was to analyse the antioxidant activity and 

total phenolics of edible mushroom extracts. This extraction procedure could also be used 

for NMR analysis. The procedure involved freeze-drying the mushroom samples, followed 

by extraction using a Soxhlet extractor under reflux conditions. The residues were then 

extracted by boiling water with the organic solvent extracts removed using rotary 

evaporation and the water extracts dried in a freeze-dryer. Analysis was then carried out 

(Cheung et al., 2003). 

The Bligh and Dyer method was used by Bonzom et al. to extract lipids from freeze-dried 

and powdered cultivated Agaricus bisporus prior to NMR analysis (Bligh and Dyer, 1959). 

This was followed by solid phase chromatographic extraction, as it provides a rapid and 

effective way of isolating compounds of interest from complex matrices. Bond Elut ion-

exchange chromatography was successfully used to separate lipids into four fractions, 

which were then analysed separately by NMR analysis (Bonzom et al., 1999). 

The successful extraction of individual groups of metabolites may optimise this method as 

a possible technique for profiling the effect of damage on mushroom metabolites. As seen 

by Bonzom et al., integration of the signals aid in identification of individual metabolites, 

which may then be measured as means of assessing the effects of damage and time on the 

type and amounts of metabolites in these mushrooms. 

4.3.3. Principal Component Analysis 

Samples were studied separately based on their tissue type i.e. cap, gills and stipes and on 

their age i.e. day zero and day one. Polar and non-polar phase groups were examined 

individually. PCA is an unsupervised method which converts high-throughput instrumental 

data (i.e. NMR) into a qualitative visual presentation (score plot) (Lindon et al., 2001), 
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resulting in sample clustering into either similar or different groupings. The purpose of 

PCA in this study was to discriminate between classes i.e. damaged and undamaged 

mushrooms. 

Score plots were analysed for a number of principal components (PCs). However, there 

was no separation between clusters i.e. no clear differentiation between damaged and 

undamaged samples. This trend was seen for all tissue types, days and phases (polar/non-

polar). Examples are given in Figure 4.10 for non-polar gill tissue and in Figure 4.11 for 

polar gill tissue. 

 

Figure 4.10 PC1 versus PC2 score plots of non-polar phase gill tissue for (a) day zero samples and (b) 
day one samples 

 

The score plots for non-polar phase gill tissues are shown in Figure 4.10 for PC1 versus 

PC2. These first two principal components accounted for 46 and 43% respectively for day 

zero samples and 47 and 34% for day one samples. No clear separate clusters were found 

for non-polar phase samples. A similar trend was found in polar phase samples (Figure 

4.11). 
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Figure 4.11 PC1 versus PC2 score plots of polar phase gill tissue for (a) day zero samples and (b) day 
one samples 

 

4.3.4. Detection of Damage 

4.3.4.1. Random Forests 

Overall random forest models were produced for all non-polar phase spectra (cap, gills, 

stipes) and for all polar phase spectra (cap, gills, stipes). RF models were developed for 

each day (day one/day zero) and for the individual tissues separately (Table 4.2). Non-

polar phase samples produced the best models for discriminating between damaged and 

undamaged mushrooms, with non-polar phase stipes having the lowest OOB error rate 

(10%), followed by non-polar phase gill tissue (>15%). Visible differences could be clearly 

seen between damaged and undamaged non-polar phase 1H NMR spectra for all tissue 

types prior to chemometric analysis (Figure 4.5).  

Differences between damaged and undamaged spectra were not clearly seen for polar 

phase samples. RF models produced high error rates when polar phase samples were used 

with gill and stipe tissue having error rates of >25% and therefore only non-polar phase 

samples may be used to predict damage in mushrooms. 
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Table 4.2 Summary of RF models produced to discriminate between damaged and undamaged 
mushrooms using NMR data 

Mushroom 
phase 

RF Model OOB (%) Important 
Variables 

Corresponding 
Signals 
(ppm) 

Spectral 
region 

 All Samples 17.33 14579, 14582, 
13240, 14505, 

22721 

7.299, 7.297, 
8.144, 7.346, 

2.167 

Aromatic  
 

Lipid 
 Cap tissue 25.0 14642, 14638, 

14631, 14630, 
26155 

7.24, 7.262, 
7.266, 7.267, 

0.002 

Aromatic 

 Gill tissue 14.17 23297, 24641, 
24645, 24635, 

23289 

1.804, 0.957, 
0.954, 0.960, 

1.809 

Lipid 

 Stipe tissue 10.83 14577, 14579, 
14536, 14584, 

14578 

7.301, 7.299, 
7.327, 7.296, 

7.300 

Aromatic 

 Day zero 
samples 

11.42 23289, 24644, 
24626, 24042, 

24635 

1.809, 0.955, 
0.966, 1.334, 

0.960 

Lipid 

 Day one 
samples 

9.97 22126, 22154, 
23092, 23113, 

14639 

2.542, 2.524, 
1.933, 1.920, 

7.262 

Lipid 
 

Aromatic 
 All Samples 45.67 22231, 22811, 

22934, 22198, 
22237 

2.476, 2.110, 
2.293, 2.497, 

2.472 

Amino 
 
 

 Cap tissue 13.33 22233, 22241, 
22193, 20944, 

22196 

2.475, 2.469, 
2.499, 3.287, 

2.498 

Amino 

 Gill tissue 25.83 20912, 23667, 
22846, 14158, 

13701 

3.307, 1.564, 
2.088, 7.565, 

7.853 

Carb 
Amino 

Aromatic 
 Stipe tissue 35.0 17022, 22817, 

17087, 12995, 
26048 

5.760, 1.571, 
2.088, 7.565, 

7.853 

 
Amino 

Aromatic 
 Day zero 

samples 
25.72 17095, 16040, 

14712, 17331, 
22826 

5.713, 6.378, 
7.216, 5.565, 

2.101 

Aromatic 
 

Amino 
 Day one 

samples 
 

19.0 23667, 23117, 
14027, 14042, 

23651 

1.571, 1.917, 
7.647, 7.638, 

1.581 

Amino 
Aromatic 

RF: Random forest 
OOB: Out of bag error rate 
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Variable importance plots (VIP) were produced for all of the RF models with non-polar 

phase samples indicating signals in the lipid and aromatic regions of the spectra as being 

important for modelling damage in mushrooms. RF models produced using the polar phase 

spectra identified signals in the amino acid and aromatic regions of the 1H NMR spectra as 

important for differentiating damaged and undamaged samples. Figure 4.12 shows 

examples of VIP plots produced for non-polar phase stipe tissue and non-polar phase gill 

tissue. 

 
 
 

Figure 4.12 Relative importance plot of variables that were identified as important by RF models for 
predicting damage (a) non-polar phase stipe tissue and (b) non-polar phase gills tissue 

 
 
The signals of importance, as indicated by the RF models, were examined by univariate 

statistical methods (ANOVA) to determine the significance of damage in mushroom 

samples. The significance of the Damage factor for each important variable (Table 4.3) 

indicated that the difference in NMR signals between damaged and undamaged samples 

were significant and therefore important as damage markers in mushrooms. 
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Table 4.3 ANOVA table of the effect of damage on each important variable as indicated by the RF 

model for all non-polar phase samples 

NMR Signal Factor P-Value Significance Level 
14579 Damage 

 
4.4 x 10-4 *** 

14582 Damage 
 

0.2 x 10-2 ** 

13240 Damage 
 

0.6 x 10-2 ** 

14505 Damage 
 

0.9 x 10-2 ** 

22721 Damage 1.5 x 10-9 *** 
Significance levels at 95% (*), 99%(**), 99.9% (***) 

 

4.3.4.2. Partial Least Squares 

PLS-DA models were developed to discriminate between undamaged and damaged 

mushrooms of all tissue types and sample phases (i.e. polar/non-polar) separately. Table 

4.4 shows the performance statistics of the models for each tissue. 

Table 4.4 Performance statistics of PLS-DA models built using NMR data 

 
Model 

 
#LV 

Sensitivitya 
(%) 

Specificitya 
(%) 

 Sensitivityb 
(%) 

Specificityb 
(%) 

NP caps 4 98 97 95 96 
NP gills 7 95 94 83 92 

NP stipes 5 89 89 73 80 
Polar caps 3 89 84 75 64 
Polar gills 3 78 80 68 73 

Polar stipes 4 85 66 79 44 
#LV: Number of latent variables used in the model 

a: Training Set 
b: Testing Set 

 
The PLS-DA model produced for non-polar phase caps achieved the best classification for 

damage in mushrooms with high sensitivity (i.e. percentage of samples correctly classified) 

and high specificity (i.e. percentage of samples from the other classes that are well 

classified by the model). Overall non-polar phase data models achieved better 

classification than polar phase data, with polar phase gills and stipes achieving the highest 
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misclassification of samples. These results showed that a high percentage of the spectra of 

the mushrooms that had been damaged were correctly classified. 

When the models were applied to the test set of spectra, sensitivity and specificity were 

still high with a low misclassification error rate. This trend was not seen for the other tissue 

groups, with the sensitivities decreasing in the test set models, particularly for polar phase 

groups (caps and stipes).  

 

4.4. CONCLUSIONS 

NMR spectroscopy coupled with chemometric tools had the ability to predict low levels of 

damage in mushrooms. Non-polar phase spectra revealed visible differences between 

damaged and undamaged. RF models were able to predict damage with OOB error rates of 

10% (stipe tissue). VIP plots indicated signals in the lipid and aromatic region of the 

spectra as being an important area for detecting damage. However, an inability to identify 

specific metabolite peaks indicated that further work in the extraction process would be 

required. NMR spectroscopy coupled with PLS-DA yielded models with very low error 

rates and could therefore be used for modelling damage in mushrooms. 

Visible differences were not seen as clearly between damaged and undamaged polar phase 

spectra. However, when coupled with chemometric multivariate data analysis, RF models 

were produced. The majority of models produced high error rates and could not be used to 

successfully model damage in mushrooms. PLS-DA models were able to predict damage 

with low error rates. 
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DAMAGE AND INVESTIGATION OF METABOLIC 
PATHWAYS 



  Chapter 5. GC/MS 
   
      

93 

 

5. Metabolic profiling of mushrooms (Agaricus bisporus) using GC/MS & 
chemometrics to identify markers for damage and investigation of 
metabolic pathways 

 
The aim of this study was to use a metabolic profiling approach using gas chromatography 

mass-spectrometry coupled with chemometric methods to profile damaged and undamaged 

mushrooms and to identify specific metabolites that could be used as markers of damage in 

mushrooms.   

5.1. MATERIAL AND METHODS 

5.1.1. Mushroom Treatments 

Second flush mushrooms were grown at the Teagasc Research Centre Kinsealy (Dublin, 

Ireland) and harvested damage-free. A set of 120 closed cap mushrooms (n = 120) were 

selected for this study. A subset (n = 80) was subjected to physical damage using a 

mechanical shaker set at 300 rpm.  Two damage levels were studied, damage after 20 

minutes (D20) which gives these mushrooms an L-value of 86 and places them in a good 

quality category and damage after 40 minutes (D40) which gives these mushrooms an L-

value of 73 and places them in a poor quality category (Gormley and O'Sullivan, 1975). 

For each damage level twenty mushrooms were analysed. Mushroom samples were 

analysed on day zero and after 24 hours. The remaining samples (40) were labelled as 

undamaged (UD), a set of twenty for day zero and twenty for day one. All tissues i.e. cap, 

gills and stipes were analysed separately in this study. All sample handling was carried out 

with the utmost care to avoid damage to the mushroom samples. A summary of the 

experimental design is shown in Table 5.1. 
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Table 5.1 Summary of samples analysed by GC/MS 

Age 
(Day) 

Damage 
(Minutes) 

Tissue Number of 
Samples 

Number of 
Spectra (polar 
& non-polar) 

0 0 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

0 20 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

0 40 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

1 0 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

1 20 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

1 40 Cap 
Gills 

Stipes 

20 
20 
20 

40 
40 
40 

 

5.1.2. Metabolic Profiling Protocol and Overview 

Sample preparation involved the manual dissection of each mushroom into its three main 

tissue types (cap, gills and stipes) before freezing overnight at -70 ºC in a cryogenic fridge 

(Polar 340V Cryogenic fridge, Angeelantoni Industrie spA, Massa Martana, Italy). Once 

frozen, extraction and fractionation was carried out. Methoxyamination of carbonyl 

moieties followed by derivatisation of acidic protons with N-methyl-N-(trimethylsilyl)-

trifluoroacetamide (MSTFA) prior to GC/MS analysis was performed as described by 

Fernie and Lisec with minor modifications (Lisec et al., 2006; Fernie, 2007), following 

private communication with the authors. An overview of the protocol is described in 

Figure 5.1. 
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Extraction of polar phase

Extraction of lipid phase

Fractionation

Transmethylation & derivatisation
of lipid phase

Derivatisation of polar phase

Data analysis
 

Figure 5.1 Overview of metabolic profiling (GC/MS) protocol 

 

5.1.2.1. Extraction of Polar Phase 

200 mg of frozen mushroom tissue and 1 ml of methanol (Sigma Aldrich, Dublin, Ireland) 

were added to an eppendorf tube. The sample was then mixed using a vortex mixer for 10 

sec. The methanol was used to inhibit enzymatic processes in the mushroom sample. Two 

internal standard (IS) compounds were added to the eppendorf tube, one polar (ribitol) and 

one non-polar (nonadecanoic acid) (Figure 5.2). The internal standard solutions were 50 µl 

of 0.2 mg / ml distilled water solution of ribitol (Sigma Aldrich, Dublin, Ireland) and 50 µl 

of 0.2 mg / ml of CHCl3 solution of nonadecanoic acid (Sigma Aldrich, Dublin, Ireland). 

The contents of the eppendorf tube were mixed again using a vortex mixer for 10 sec. 

OH

OH

HO

HO
OH

ribitol  

O

HO

nonadecanoic acid  

Figure 5.2 Structures of internal standards injected during the metabolic profiling study 
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The sample was then placed in a shaking bath for 15 min at 70 ºC. The different phases 

were then separated using a Micro Centrifugette 4212 (Medical Supply Co. LTD., Dublin, 

Ireland) at 14,000 rpm (rotations per minute) for 5 min. The supernatant (polar phase) was 

transferred from the eppendorf tube using a 200 µl micropipette and placed in a Teflon 

tube, and 1 ml of distilled water was added and mixed using the vortex. 

5.1.2.2. Extraction of Lipid Phase 

An aliquot of 750 µl of chloroform (Sigma Aldrich, Dublin, Ireland) was added to the 

pellet (lipid phase) and the eppendorf was shaken in a water bath at 37 ºC for 5 min. After 

centrifugation at 14,000 rpm for 5 min the supernatant was transferred to the same Teflon 

tube as the polar phase and homogenised with methanol, distilled water and chloroform 

using the vortex. The remaining phase was discarded. 

5.1.2.3. Fractionation 

The polar phase was separated from the lipid phase into a new eppendorf tube and dried in 

a freeze-dryer (Micro-modulyo, EC Apparatus Inc, New York, USA) for 24 h. 

5.1.2.4. Transmethylation & Derivatisation of Lipid Phase (non-polar) 

To extract the lipid phase 900 µl CHCl3 and 1 ml MeOH solution containing 3 % v/v 

H2SO4 (Sigma Aldrich, Dublin, Ireland) were added to the Teflon tubes. The lipids and free 

fatty acids were transmethylated for 4 h in an oil bath at 100 ºC. 

The next step involved removing the remaining polar phase. 4 ml of distilled water was 

added to the Teflon tube. After homogenisation using a vortex mixer and centrifugation at 

4,000 rpm for 15 min, the water phase was removed using a pipette.  This procedure was 

conducted twice.  
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The lipid phase was transferred to a glass vial. The vial was left unscrewed for 24 h or 

more to allow the chloroform to evaporate. After the evaporation, 10 µl of methoxyamine 

hydrochloride solution (20 mg / ml pyridine) and 10 µl of the silylation agent N-methyl-N-

trimethylsilyltrifluoracetamide (MSTFA, Sigma Aldrich, Dublin, Ireland) (Figure 5.3) 

were added to the vials. After silylation for 30 min at 37 ºC, 1 µl was injected into the 

GC/MS. A total of 360 non-polar injections were taken. 

 

O

N

Si F

 

Figure 5.3 Structure of the silylating agent N-methyl-N-trimethylsilyl-fluoroacetamide (MSTFA) 

 

5.1.2.5. Derivatisation of Polar Phase 

When the polar phase was dried, 50 µl of methoxyamine hydrochloride (20 mg/ml 

pyridine) was added and the solution was mixed using a vortex mixer. The sample was 

placed for 90 min in a shaking water bath at 30 ºC. Then 80 µl of MSTFA was added and 

the sample placed in a water bath at 37 ºC for 30 min. The sample was stored at room 

temperature for 120 min and 1 µl was injected into the GC/MS. A total of 360 polar 

injections were taken. 

5.1.3. Analysis of Metabolites by GC/MS 

The polar and non-polar samples were analysed similarly using a  Varian CP-3800 gas 

chromatograph coupled to a Varian Saturn 2200 quadrupole MS (JVA Analytical Ltd., 

Dublin, Ireland). Chromatography was performed on a Cp-sil 24 CB low bleed/MS 

capillary column (length 30 m, diameter 0.25 mm and film thickness 0.25 µl) using helium 

at 1.0 ml/min. Samples (1 µl) were injected into a programmed temperature ramp with a 
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split of 5:1. The GC temperature was initially 70 ºC for 5 min, increased at 3 ºC/min to 300 

ºC and then isothermal for 5 min. The GC/MS interface temperature was 220 ºC. MS 

acquisition conditions were electron impact (EI) ionisation at 70 eV, solvent delay of 1 

min, source temperature of 200 ºC, and mass range of 45-650 amu (atomic mass unit) at 2 

scans/sec. Data were acquired using the Saturn software (Saturn GC/MS WS Ver 5.5, 

Varian Inc, USA). 

5.1.4. Data Analysis 

A number of raw GC/MS data files were selected as representative examples for both polar 

and non-polar metabolites. These files were used with the Automated Mass Spectral 

Deconvolution and Identification System (AMDIS, V2.1, NIST, USA) software package to 

verify the presence of individual analytes and to deconvolute co-eluting peaks. Specific ion 

characteristics of each metabolite were selected to be used for compound detection in 

processing methods. Compounds were identified by analysis of standards, comparison with 

MS libraries and literature data. 

Typical chromatograms obtained in this study are shown in Figures 5.4, 5.5 and 5.6.  

During the analysis of the chromatograms the following steps were taken. 

• The chromatogram components were deconvoluted and the baseline noise 

subtracted with representative MS spectra selected (Figures 5.4, 5.5 and 5.6) 

• In a preliminary search with a reduced number of sample chromatograms, the 

representative spectrum of every component was compared with the NIST library 

of MS spectra (NIST Mass Spectral Search Programme Version 1.7a, USA, 2001). 

• Compounds identified which yielded weighted probabilities of over 70% were 

compiled in a library for automated batch search, which is an acceptable level to 

avoid false positives as reported by Norli and colleagues (Norli et al., 2010). 
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• An automated analysis to report the presence and quantification of all the 

compounds in the built library was performed by analysis of MS spectra and 

retention index. The quantification of the compound concentration was done 

through the use of internal standard area and the known concentration of this 

internal standard. 

• A matrix table with the concentration of each selected library metabolite in each of 

the samples was produced in the batch job, complete with sample information (i.e. 

flush, phase, tissue, storage age and damage level) and used for multivariate 

analysis. 

 

 
Figure 5.4 Initial AMDIS window of a typical non-polar phase mushroom showing the chromatogram 

total ion count (TIC) in the top window and a raw MS spectrum in the bottom window 
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Figure 5.5 AMDIS component window of a typical non-polar phase mushroom chromatogram showing 

the chromatogram (top) with all the deconvoluted components identified, the purity window and 
component information window (middle) and a deconvoluted and noise removed mass spectrum 

belonging to the selected component (bottom) 

 

 
Figure 5.6 AMDIS component window of a typical polar phase mushroom chromatogram showing the 

chromatogram (top) with all the deconvoluted components identified, the purity window and 
component information window (middle) and a deconvoluted and noise removed mass spectrum 

belonging to the selected component (bottom) 

 

5.1.5. Chemometric Data Analyses 

Principal component analysis (PCA), random forests modelling (RF), Partial least square 

discriminant analysis (PLS-DA), correlation matrices and univariate statistical analysis 

were performed using R 2.10.0 (R Development Core Team, 2009).  
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PCA was used to provide a preliminary observation of the data in order to identify clusters 

of data and outliers as appropriate. Samples were studied separately on the basis of tissue 

type and age (day zero/day one). 

Random forest (RF) models were built to (a) discriminate between damaged and 

undamaged mushrooms and (b) to identify specific metabolites as markers for damaged 

mushrooms. The number of trees fitted to build the random forest was 1000. The number 

of random metabolites was set at 100 after optimization and the RF model trained was 

made using a stratified random sampling strategy of the targeted/identified metabolites that 

would take the same number of metabolites from each of the tissues.   

Univariate statistical analysis was carried out on metabolites identified by RF models as 

being important markers of damage, which included analysis of variance (ANOVA) and 

Tukey tests. 

PLS-DA was applied to the GC/MS data to develop models for the prediction of damage in 

mushrooms using the Caret (classification and regression training) package in R (R 

Development Core Team, 2009). The data was split into training and test sets, with 75% of 

the data used for model training and the remainder used for evaluating model performance 

i.e. the test set. For more information on the PLS-DA models refer to section 4.2.4. 

Correlation matrices were used to determine patterns of correlation between (a) 

metabolites from the same group of compounds i.e. fatty acids, phenolic compounds, 

sugars and polyols or amino acids and (b) inter-correlations between metabolites in 

different groups of compounds. This approach can identify both biosynthetically related 

and co-ordinately regulated metabolites (Steuer et al., 2003; Dobson et al., 2008) 
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5.2. RESULTS AND DISCUSSION 

During the analysis of the 720 chromatograms a library with 105 metabolites was built. 

Table 5.2 contains 62 metabolites from both polar and non-polar phases. A number (44) of 

metabolites were not included in the table as they were only found in a very small 

percentage of chromatograms (<10%). In the non-polar phases (360 chromatograms) fatty 

acids and phenolics were identified and the internal standard (IS) nonadecanoic acid was 

found with an average retention time of 56.42 min.   

Sugars, polyols and amino acids were identified in polar phase chromatograms (360 

chromatograms) and ribitol the polar IS was detected as ribitol, 1,2,3,4,5-pentakis-O-

(trimethylsilyl), indicating that derivatisation was successful. This compound was found in 

the samples at an average retention time of 30.49 min. 

5.2.1. Non-polar Metabolites  

5.2.1.1. Fatty Acids (FAs) 

Fatty acids are chain-like structures with a carboxylic acid (HO-C=O) at one end and a 

methyl group (CH3) at the other. The remainder of the compound consists of a 

hydrocarbon (CH2) chain varying in length from 2-20 or more carbons. Fatty acids have 

the general formula CnH2n+1COOH. A representative non-polar phase total ion 

chromatogram containing the fatty acids and phenolics that were present in abundance in 

Agaricus bisporus are identified in Figure 5.7. A number of fatty acids have been 

previously reported in mushrooms (Byrne and Brennan, 1975; Hiroi and Tsuyuki, 1988; 

Hong et al., 1988; Senatore et al., 1988; Bonzom et al., 1999; Yilmaz et al., 2006).  
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Figure 5.7 Non-polar phase GC/MS total ion chromatogram (TIC) of a mushroom extract. Numbers in 
the figure correspond to compounds detailed in Tables 5.3 and 5.4 

Peaks 1-11 fatty acids 
Peaks 12-16 phenolics 

 

It should be noted that some fatty acid metabolites (e.g. dodecanoic acid and octadecanoic 

acid) produced two peaks corresponding to methyl esters and trimethylsily derivatives. Of 

these two peaks only one was included in the study. However, peaks 5 and 6 represent 

hexadecanoic acid methyl ester and hexadecanoic acid trimethylsilyl ester respectively 

(Figure 5.7) and are included to highlight this occurrence. A total of 18 fatty acids were 

separated and identified.   

5.2.1.1.1. Saturated Fatty Acids  

Saturated fatty acids contain no double bond in their hydrocarbon chain (Hui, 2006).  

Saturated fatty acids were largely predominant in non-polar phase chromatograms with 14 

compounds identified. A number of other fatty acids were identified by mass spectrometry 

but only occurred in a small percentage of chromatograms (Table 5.2). 
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Fatty acid metabolites (and all other metabolites) were identified on the basis of their 

molecular weight, molecular ions, retention times, literature data and comparison to library 

databases and standards. 

The electron impact (EI) mass spectra of saturated fatty acid methyl esters are very similar, 

having a reasonably abundant molecular ion and a characteristic base peak at m/z 74, 

which is a product of the well-recognised McLafferty rearrangement process (McLafferty, 

1959; McCloskey, 1970). Other characteristic ions include an ion at m/z 87, the first 

member of the carbomethoxy ion series ([(CH2)nCO2CH3]
+, where n = 1, 2, 3, 4….. m/z 

73, 87, 101, 115…), a hydrocarbon series of ions that are abundant in the low mass region 

and an acylium ion [M-31]+ (Zirrolli and Murphy, 1993). 

The McLafferty rearrangement ion is central in the identification of most fatty acid ester 

derivatives and its mechanistic aspects are shown in Figure 5.8. The resulting ion is 

important for identification purposes. 
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Figure 5.8 McLafferty rearrangement mechanism of fatty acids 

 

A site-specific rearrangement is involved where a hydrogen atom from position 4 of the 

aliphatic chain migrates to the carbomethoxy group, presumably through a six-membered 

transition state, which is sterically favoured. If one of the hydrogen atoms on carbon 4 is 

substituted, the McLafferty ion will be noticeable lower than expected.  This may explain 

why it is less evident in the mass spectra of unsaturated fatty acid derivatives with 

increasing numbers of double bonds, which can readily migrate to position 4 under 
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electron bombardment (Christie, 2010). The mass spectrum of octadecanoic acid methyl 

ester is presented in Figure 5.9. 

 

Figure 5.9 Mass spectrum of octadecanoic acid methyl ester 

Its fragmentation mechanism is characterised as follows. The molecular ion peak of 

octadecanoic acid methyl ester is found at m/z 298 [M]+. After the McLafferty 

rearrangement and α cleavage m/z 74 is produced, which was the base peak ion of the C6-

C26 saturated fatty acid methyl ester. The peak at m/z 255 [M-43]+ was the result of C-C 

bond cleavage and the loss of C3H7
+. These cleavage processes are shown in Figure 5.10.   
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Figure 5.10 Cleavage process of octadecanoic acid methyl ester 

 

The series of related ions giving rise to peaks at m/z 43, 55, 74 and 87 is formed by loss of 

neutral aliphatic radicals i.e. CH2 fragmentation. The characteristic ions of saturated fatty 

acid esters are therefore m/z 74 (McLafferty rearrangement), [M-43]+ the molecular ion 

[M]+ and the series of ions resulting from CH2 fragmentation (Zirrolli and Murphy, 1993; 

Cheung et al., 1994; Wu et al., 2007). 

The mass spectrum of dodecanoic acid (Figure 5.11), shows a molecular peak at m/z 214 

which corresponds to the molecular weight of the compound. 
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Figure 5.11 Mass spectrum of dodecanoic acid methyl ester 

 
The molecular ion peak at m/z 214, the peak at m/z 171 [M-43]+, the presence of the peaks 

at m/z 74 (McLafferty ion) and the series of related peaks at m/z 87, 101, 55 and 41 (CH2 

fragmentation) confirm this metabolite to be dodecanoic acid methyl ester (Wu et al., 

2007).   

5.2.1.1.2. Unsaturated Fatty Acids  

An unsaturated fatty acid is a fatty acid that contains at least one double bond within the 

fatty acid chain (Hui, 2006). A total of 4 unsaturated fatty acids were separated and 

detected by GC/MS; Linoleic acid, ricinoleic acid, erucic acid and palmitelaidic acid.  

Linoleic acid (9, 12 octadecadienoic acid) was detected and identified in non-polar 

mushroom extract chromatograms with an average retention time of 52.56 min. It is the 

main unsaturated FA of mushroom lipids and is the precursor of the mushroom alcohol (1-

octen-3-ol) (Mau et al., 1992). The molecular ion peak at m/z 294, the peak at m/z 263 [M-

31]+, the peak at m/z 67 (the result of double bond transfer) and the series of related peaks 

at m/z 41, 55, 67, 81, 95, 109 and 123 (CH2 fragmentation) confirm this metabolite to be 

linoleic acid methyl ester (Wu et al., 2007; Christie, 2010). 
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Figure 5.12 Mass spectrum of linoleic acid methyl ester 

The gas chromatographic retention times and mass spectrometric characteristic ions of 

fatty acid methyl esters detected abundantly in Agaricus bisporus are shown in Table 5.3. 

Table 5.3 Mass spectrometric characteristic ions and gas chromatographic retention times of fatty acid 
methyl esters 

N
o 

Fatty Acid Common 
name 

MW RT 
(min) 

BP Characteristic 
ions 

1 Dodecanoic Lauric 
acid 

(12:0) 

214 32.28 74 74, 171, 214 

2 Tridecanoic (13:0) 242 38.03 74 74, 199, 242 
3 Tetradecanoic Myristic 

acid 
(14:0) 

300 41.04 74 74, 257, 300 

4 Pentadecanoic (15:0) 256 41.15 74 74, 213, 259 
5 Hexadecanoic Palmitic 

acid 
(16:0) 

270 45.01 74 74, 227, 270 

6 Hexadecanoic 
acid  TMS 

As above 328 46.66 73 73, 285, 328 

7 trans-9-
hexadecenoic 

acid 

Palmitelai
dic  acid 
(16:1) 

268 46.82 55 55, 236, 268 

8 Heptadecanoic Margaric 
acid 

(17:0) 

284 47.77 74 74, 241, 284 

9 Octadecanoic Stearic 
acid 

(18:0) 

298 50.74 74 74, 255, 298 

10 9,12-
Octadecadienoic 

acid 

Linoleic 
acid 

(18:2) 

294 52.56 67 67, 263, 294 

11 Eicosanoic Arachidic 
acid 

(20:0) 

326 55.82 74 74, 283, 326 

Peak numbers 1-11 correspond to Figure 5.7 
TMS: trimethylsilyl ester; MW: molecular weight; RT: retention time; BP: base peak (ion) 
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5.2.1.2. Phenolic Compounds 

Phenolics are compounds possessing one or more aromatic rings with one or more 

hydroxyl groups and can range from simple molecules (phenolic acids, phenylpropanoids, 

flavonoids) to highly polymerised compounds (lignins, melanins, tannins) (Bravo, 1998). 

A number of phenolic compounds found in mushrooms have been previously reported in 

literature (Ribeiro et al., 2008; Barros et al., 2009; Vaz et al., 2011). 

Ten phenolic compounds were identified by mass spectrometry on the basis of their 

molecular weight, molecular ions, retention times and comparison to library databases and 

standard compounds. Out of these phenolic compounds seven were present in abundance 

in non-polar phase chromatograms (Table 5.4); 2,6-bis(1,1-dimethyl ethyl)-4-chloro-

phenol, 2-(4-methoxyphenyl)ethanol, 3,4-dihydrobenzyl alcohol, 8-phenyl-6-thio-

theophylline, diphenyl ether, tyrosine trimethylsilyl ester and benzoic acid methyl ester. 

The following three compounds were only present in a low percentage of chromatograms; 

1,3,8-trihydroxy-6-methylanthraquinone, phenol 2,4-bis(1,1-dimethylethyl) and 4-phenyl-

2-hydroxystilbene. The fragmentation pattern of benzoic acid methyl ester is described 

below. 

Benzoic acid methyl ester had an average retention time of 20.56 minutes. The mass 

spectrum of benzoic acid methyl ester (Figure 5.13) on EI ionisation shows the molecular 

ion at m/z 136.   

 

 

Figure 5.13 Mass spectrum of benzoic acid methyl ester 
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Its fragmentation mechanism is as follows; the molecular ion of benzoic acid methyl ester 

was m/z 136. The base peak is characterised by C6H5CO+ benzoyl ions at m/z 105.  Other 

prominent fragments are C6H5
+ ions at m/z 77 and C4H3

+ ions at m/z 5 (Opitz, 2007).   

 

Table 5.4 Mass spectrometric characteristic ions and gas chromatographic retention times of abundant 
phenolic compounds 

Peak 
Number 

Phenolic Molecular 
Weight 

Retention 
Time 
(min) 

Base 
Peak 

Characteristic 
ions 

12 Benzoic acid 136 17.04 105 136, 105, 77 
13 2-(4-

methoxyphenyl)ethanol 
152 25.50 121 152, 121, 77 

14 Diphenyl ether 170 31.75 170 170, 141, 77 
15 2,6-bis(1,1-dimethyl 

ethyl)-4-chloro-phenol 
240 33.00 225 240, 225 

16 8-phenyl-6-thio-
theophylline 

272 63.45 272 272, 243, 211 

17* Tyrosine O- 
trimethylsilyl-
,trimethyl ester 

325 44.53 179 73, 179 

18 * 3,4-dihydroxybenzyl 
alcohol 

356 35.37 73 356, 267, 179, 
73 

Peak numbers 12-16 correspond to Figure 5.7 
Peak numbers 17-18* correspond to Figure 5.14b 

* Metabolites found in polar phase chromatograms 
 

5.2.2. Polar Metabolites  

5.2.2.1. Amino acids 

A total of ten amino acids (AA) were separated and identified by GC/MS (Table 5.2).  The 

following AA were found abundantly in polar phase chromatograms (Figure 5.14a & 

5.14b): alanine, asparagine, glycine, aspartic acid, proline, threonine, tryptophan, valine 

and serine. Glutamine was detected in a small percentage of polar phase chromatograms. 

Amino acids contribute to the flavour of mushrooms with a number being reported in 

literature as being present in Agaricus bisporus (Tseng and Mau, 1999; Tsai et al., 2007). 
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Figure 5.14 (a) Polar phase GC/MS total ion chromatogram (TIC) of a mushroom extract (b) enlarged 
version. Numbers in the figure correspond to compounds detailed in Tables 5.5 and 5.6  

 

The fragmentation mechanism of valine is shown in Figure 5.15, with a table of all the 

amino acids and their characteristic ions given in Table 5.5. The common characteristic 

ions for identifying trimethylsilyated amino acids by EI ionisation are [M-CH3], [M-

COCH3], [M-CO2TMS] and [M-sidechain] (El-Khoury, 1999).   

The molecular ion (m/z 261) was not detected in the mass spectrum; [M-15] ion m/z 246 

was found in small proportion. 
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Figure 5.15 Mass spectrum of the amino acid valine 
 

Table 5.5 Mass spectrometric characteristic ions and gas chromatographic retention times of amino 
acids 

Peak 
Number 

Amino Acid Molecular 
Weight 

Retention 
Time 
(min) 

Base 
Peak 

Characteristic 
ions 

19 L-Valine,N-(TMS)-
,TMS ester 

261 15.85 144 246, 144, 73 

20 Glycine, N,N-
bis(TMS)-TMS ester 

291 17.58 174 248, 174, 73 

21 Serine, bis(TMS)- 259 18.46 116 132, 116, 73 
22 L-Threonine,O-

(TMS)-,TMS ester 
263 19.82 73 219, 117, 73 

23 Alanine, N,N-
bis(TMS)-TMS ester 

305 22.86 248 248, 174, 73 

24 L-Aspartic acid, N-
(TMS)-,bis(TMS) 

ester 

349 28.53 232 232, 73 

25 Glutamine,tris(TMS) 363 31.87 246 246, 73 
26 L-Proline (TMS)-

,TMS ester 
273 32.04 156 156, 73 

27 Aspragin,N,N,N-
tris(TMS)-,TMS 

ester 

420 41.70 188 405, 188, 73 

28 L-Tryptophan,N-1-
bis(TMS)-,TMS 

ester 

420 57.26 202 202, 73 

TMS trimethylsilyl 
Peak numbers 19-28 correspond to Figure 5.14b 

 

5.2.2.2. Sugars & Polyols 

Nine sugars and sugar alcohols were identified by MS. Table 5.6 shows the major ions 

appearing in the mass spectra of sugars and sugar alcohols. Those found abundantly in 

polar phase chromatograms were: D-mannose, sucrose, D-glucitol/mannitol, D-ribo-
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hexitol, myo-inositol and glycerol.  A number of sugars and polyols are present in 

mushrooms and have been reported in literature. Mannitol is the most abundant polyol 

found in mushrooms (Hammond and Nichols, 1975; Beecher et al., 2001; Yang et al., 

2001; Kim et al., 2009). Glucitol was identified by MS with a very high probability. It 

should be noted that glucitol and mannitol are isomers.  

 D-mannose produced ions at m/z 73, 147 and 217 that are characteristic of aldohexases. A 

molecular ion was not observed but the [M-15] ion was present in small proportions 

(Figure 5.16a). The sugar alcohol myo-inositol produced characteristic ions at m/z 318, 147 

and 73 and the parent ion [M]+ was detected at m/z 612 (Figure 5.16b) (Reineccius et al., 

1970; Schoots and Leclercq, 1979; Roessner et al., 2000; Mederios and Simoneit, 2007). 

 

Figure 5.16  Mass spectrum of methyl-silyated (a) D-Mannose and (b) inositol (Myo-inositol) 

Table 5.6 Mass spectrometric characteristic ions and gas chromatographic retention times of abundant 
sugar and polyols 

Peak 
Number 

Sugar & Sugar 
Alcohols 

Molecular 
Weight 

Retention 
Time 
(min) 

Base 
Peak 

Characteristic 
ions 

  29* Glycerol 308 15.59 73 293, 147, 73 
30 D-ribo-hexitol 526 38.50 73 333, 231, 73 
31 Myo-inositol 612 40.75 73 318, 147, 73 
32 D-glucitol/mannitol 766 49.45 73 751, 215, 73 
33 D-mannose 721 52.34 73 706, 387, 73 
34 Sucrose 918 60.16 361 361, 217, 73 

Peak numbers 29-34 correspond to Figure 5.14b 
*Not visible on chromatogram as peak too small 
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5.2.3. Principal Component Analysis  

Samples were studied separately on the basis of their tissue type i.e. caps, gills and stipes 

and also on their age i.e. day zero and day one. The score plot for day zero caps is shown 

in Figure 5.17a for PC1 versus PC2. These first two principal components accounted for 50 

and 40%, respectively of the total variance in the GC/MS data set, and some samples 

clustering on the basis of damage is readily apparent. The majority of undamaged caps 

(blue) formed a cluster on the left hand side of the centre of the plot, with D20 (pink) caps 

forming a cluster to the right hand side of the centre. D40 samples were spread randomly 

throughout the score plot with some samples found in UD and D20 clusters.   

In the case of day one caps (Figure 5.17b) a pattern can be seen in the score plot for PC1 

versus PC2 (accounting for 64 and 25% of the total variance) and again clusters have 

formed for UD and D20 samples indicating that metabolite levels are affected by damage. 
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Figure 5.17 PC1 versus PC2 score plots of cap tissue for (a) Day zero samples and (b) Day one samples 

0: Undamaged 
20: 20 min damage 
40: 40 min damage 

 
In the case of gill and stipe tissue clusters for different damage levels were not clearly 

evident, with overlapping of damage levels seen for both day zero and day one. 
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5.2.4. Detection of Damage  

5.2.4.1. Random Forests (Model 1: all data used) 

The first model developed attempted to identify specific metabolites that could be used as 

possible markers for damage in mushrooms. The model tried to predict damage in 

mushrooms using all metabolites identified by GC/MS, a variable indicating the tissue 

from which the metabolite originated (cap, gill, or stipe) and the age of the mushroom (day 

zero/day one) as explanatory variables. This resulted with an out-of-bag (OOB) error rate 

of 11.11%, sensitivity of 88.9% and specificity of 92%. The variable of importance (VIP) 

plot for predicting damage (Figure 5.18) identified pentadecanoic acid, linoleic acid, myo-

inositol, benzoic acid and hexadecanoic acid as the five most important metabolites as 

damage markers. The variables tissue and day were identified in the VIP plot as the 13th 

and 22nd most important variables respectively. By removing the variable age and tissue 

another model was built that took the identified metabolites in mushrooms and tried to 

predict whether there was damage or not. This RF could be used as a classifier of 

mushroom damage and gave a good prediction model with an OOB error rate of 11.39%, 

sensitivity of 88.6% and specificity of 92% (similar to the previous model). The important 

variables (top five) identified were the same as Figure 5.18. 
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Figure 5.18 VIP plot of metabolites that are important variables in the RF model for predicting 
damage 

 

 

The metabolites of importance as indicated by the RF model were examined by univariate 

statistical methods (ANOVA and Tukey tests) to determine the significance of damage for 

each of the three damage levels. A box plot (Figure 5.19) indicated that there was an 

increase in the quantity of myo-inositol from UD to D40 samples (undamaged samples to 

samples that had been exposed to high levels of damage).   



  Chapter 5. GC/MS 
   
     

117 

0 20 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Damage

M
y
o
.i
n
o
s
it
o
l

 

Figure 5.19 Box plot showing the quantity of myo-inositol at each damage level 
0: Undamaged 

20: 20 min damage 
40: 40 min damage 

 

Myo-inositol is found in Agaricus bisporus in low quantities compared to other sugar 

alcohols, such as mannitol. Recent studies showed that levels of myo-inositol (like 

mannitol) increased with maturation (Tsai et al., 2007). The increased levels in damaged 

samples also suggest that myo-inositol is affected by mechanical damage and may be a 

metabolic marker of damage. Sugars play important roles in all aspects of mushroom life. 

They provide the main respiratory substrates for the generation of energy and metabolic 

intermediates that are then used for the synthesis of macromolecules and other cell 

constituents. The sugars ribose and deoxy-ribose form part of the structure of DNA and 

RNA. Polysaccharides such as chitin and glucan are the major structural elements of 

mushrooms cell walls (Ruiz-Herrera, 1992). A linkage to sugar is required for proper 

functioning of many lipids and proteins and therefore as a consequence, the abundance and 

depletion of sugars, polyols and their derivatives initiate various responses in mushrooms 

and have profound effects on mushroom metabolism, growth and depletion (Yu, 1999). 
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The phenolic compound benzoic acid was identified as an important metabolite by the RF 

model for differentiating between damaged and undamaged mushrooms. A number of 

phenolic compounds including benzoic acid have been identified in Agaricus bisporus and 

other mushrooms (Rajarathnam et al., 2003; Kim et al., 2008).  Browning is a reaction that 

occurs when polyphenol oxidase (PPO) acts on a phenolic compound in the presence of 

oxygen to produce a dark colour (Martinez and Whitaker, 1995). Reports have found that 

the majority of phenolic compounds are present in mushroom skin rather than the flesh 

(Rajarathnam et al., 2003). In this study the benzoic acid content was higher in stipe and 

gill tissue compared to cap tissue. Levels of benzoic acid were at their highest at 20 min 

damage for each of the tissue types. The levels decreased substantially in gills and stipe at 

40 min damage (Figure 5.20) and to a lesser extent in the cap tissue suggesting that the 

browning reaction had come to completion i.e. the mushroom was completely damaged 

with levels of benzoic acid becoming depleted. 
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Figure 5.20 Bar plots with the semi-quantitative concentration of benzoic acid in mushroom tissues at 
different damage levels in day one samples.  A similar trend was found in day zero samples 

 

The fatty acids pentadecanoic acid, linoleic acid and hexadecanoic acid were identified as 

important variables by the model for detecting damage. Linoleic acid is the most abundant 

fatty acid found in Agaricus bisporus (Yilmaz et al., 2006) and is the precursor of the 
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mushroom alcohol 1-octen-3-ol, which is considered to be responsible for the characteristic 

flavour obtained by the physical disruption of the edible mushroom. The biosynthesis of 1-

octen-3-ol is due to aerobic oxidation (Holtz and Schisler, 1971) by lipoxygenase (LOX) of 

linoleic acid into regio- and stereo-specific hydroperoxides (HPODs), followed by an 

enzymatic cleavage by hydroperoxide lyase (HPL) of the corresponding HPODs to 

produce 1-octen-3-ol (Tressl et al., 1982; Chen and Wu, 1984; Mau et al., 1992; Assaf et 

al., 1995). The enzymatic pathway in which linoleic acid is converted into 1-octen-3-ol and 

10-oxo-trans-8-decenoic acid by Agaricus bisporus has been reported (Wurzenberger and 

Grosch, 1984; Combet et al., 2006). 

 Lipids afford the means for fundamental metabolic processes and provide the basic 

composition for cell membranes. The primary function of fatty acids is as an energy 

reserve (Karlinski et al., 2007) and they also play an important role in storage since most 

lipids are in the cell envelope which undergoes change as the mushroom deteriorates, 

either by damage or over time.   

The significance of the Damage factor for each metabolite (Table 5.7) indicated that the 

difference in metabolite concentration between damaged and undamaged samples was 

significant and therefore these important metabolites, as indicated by RF models, may be 

markers of damage in mushrooms. 

Table 5.7 ANOVA table of the effect of damage on individual metabolites 

Metabolite Factor P-Value Significance Level 
Linoleic acid Damage 2.0 x 10-6 *** 
Myo-inositol Damage 5.2 x 10-4 ** 

Pentadecanoic acid Damage 1.7 x 10-9 *** 
Benzoic acid Damage 1.5 x 10-9 *** 

Hexadecanoic acid Damage 9.7 x 10-3 ** 
Significance levels at 95% (*), 99% (**), 99.9% (***) 

 
Tukey tests were carried out on the five important variables to determine which means 

among a set of means differ from the rest. The different samples ages (day zero and day 

one) were examined separately and the Tukey plots (Figure 5.21) showed that there were 
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significant differences in mean levels of damage for myo-inositol after day one. This trend 

was seen for all identified metabolites.   
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Figure 5.21 Tukey multiple comparison test plots comparing differences in mean levels of damage in 
(a) Day zero samples and (b) Day one samples (myo-inositol) 

0: Undamaged 
20: 20 min damage 
40: 40 min damage 

 

5.2.4.1.1. Random Forests (models 2-6) 

RF models were produced separately for both day zero and day one samples. As before the 

model tried to predict damage in samples using the metabolites identified and separated by 

GC/MS and a variable indicating the tissue from which each sample came from as 

explanatory variables. The RF model for day zero samples (model 2) produced an OOB 

error rate of 10% and the variables identified by the model as being the most important for 

detecting damage were the following metabolites; linoleic acid, nonanoic acid, diphenyl 

ether, hexadecanoic acid and pentadecanoic acid.   

The RF model for day one samples (model 3) produced an OOB error of 6.67% with the 

VIP plot indicating the following metabolites as the most important variables in the model 
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to discriminate between damage and undamaged mushrooms; phthalic acid, myo-inositol, 

pentadecanoic acid, glucitol and linoleic acid. 

It has been previously reported that the metabolic response in the form of enzyme 

expression in mushrooms to both age (Mohapatra et al., 2008) and damage (O'Gorman et 

al., 2010) is delayed in time and it takes at least one day to develop.  Therefore metabolite 

identification with day one samples is important in the sense of examining indicators of 

damage/aged metabolism, whereas the analysis of day zero samples will be useful for 

finding early indicators of damage (before it is perceived by the consumer). 

Individual tissues were then subjected to RF modelling. Each tissue (model 4-6) was 

examined once (day zero and day one) to determine which metabolites were important in 

the model. A summary table of the OOB error rates for the tissues and VIPs are shown in 

Table 5.8 including previous models for damage. 
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Table 5.8 Summary of all RF models for predicting damage, including OOB error rates, variables of 
importance and associated metabolic pathways 

OOB: Out of bag error rate 
 

5.2.4.2. Patrial Least Squares (PLS) 

A PLS-DA model was developed to discriminate between the three levels of damage 

including all data i.e. all tissue types and mushroom ages (day zero & day one). Accuracy 

was used to select the optimal model i.e. appropriate number of latent variables to be used 

in the model and the number used was 4 (Figure 5.22). 

 

RF Model OOB (%) Important variables 
(top five) 

Metabolic pathways involved 

Model 1 (all 
samples) 

11.11 Pentadecanoic acid 
Linoleic acid 
Myo-inositol 
Benzoic acid 

Hexadecanoic acid 

β-oxidation 
Lipoxygenase pathway (LOX) 

Isomerisation of glucose 
 

β-oxidation 
Model 2 
(day zero 
samples ) 

10 Linoleic acid 
Nonanoic acid 
Diphenyl ether 

Hexadecanoic acid 
Pentadecanoic acid 

LOX 
β-oxidation 

 
β-oxidation 
β-oxidation 

Model 3 
(day one 
samples) 

6.67 Phthalic acid 
Myo-inositol 

Pentadecanoic acid 
Glucitol/Mannitol 

Linoleic acid 

 
Isomerisation of glucose 

β-oxidation 
Polyol metabolism 

LOX 
Model 4 

(Cap) 
8.33 Linoleic acid 

Hexadecanoic acid 
Heptadecanoic acid 

D-mannose 
Glycerol 

LOX 
β-oxidation 
β-oxidation 
Glycolysis 
β-oxidation 

Model 5 
(Gills) 

13.33 Myo-inositol 
Glucitol/Mannitol 

Citric acid 
Benzoic acid 

D-Ribo hexitol 

Isomerisation of glucose 
Polyol metabolism 

Product of TCA cycle 
 

Polyol metabolism 
Model 6 
(Stipe) 

9.17 Benzoic acid 
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Figure 5.22 Evolution of bootstrap resampling accuracy as a function of latent variables 

 
 

The initial PLS model built used all the data i.e. all tissues, damage levels and days to 

evaluate if it could differentiate between damaged and undamaged samples with high 

sensitivity and specificity. The results are presented in the Table 5.9 which shows the 

values of sensitivity (i.e. percentage of samples correctly classified as such) and specificity 

(i.e. percentage of samples from the other classes that are well classified by the model). 

The overall model performed with an accuracy of 55%. The training set performed with an 

accuracy of 53% and the test set with an accuracy of 63%. 

Table 5.9 Summary of results for mushroom discrimination on the basis of damage (all data) 

Damage Level 
(Minutes) 

Sensitivity 
(%) 

Specificity 
(%) 

0 86a 
93b 

46a 
53b 

20 44a 
48b 

89a 
96b 

40 29a 
48b 

93a 
95b 

a Training set, b Testing set 
 

The overall models for both the training and testing models performed well for predicting 

undamaged samples (0 min damage) with high sensitivities (specificities were average). 

However, the models did not perform as well in classifying D20 and D40 samples. Models 

were then developed to differentiate between the different damage levels for each tissue 
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type. A summary of results is shown in Table 5.10. The models were able to detect 

undamaged samples quite well, particularly for cap tissue with high sensitivity and 

specificity. The RF model produced for cap tissue performed very well with an OOB error 

rate of 8.3%, which suggests that cap tissue alone could be used to predict damage in 

mushroom samples using PLS-DA and RF modelling. 

There was misclassification of samples between D20 and D40 seen for all tissues. 

However, lower error rates were seen for cap tissue (training and testing models). 

Although the models did not perform as well for differentiating between the damage levels 

(D20/D40) they did perform well for differentiating undamaged samples from damaged 

ones, making  PLS-DA an important tool for detecting damage in mushrooms.  

Table 5.10 Performance statistics of PLS-DA models built using GC/MS data 

Damage Level 
(Minutes) 

#LV Tissue Sensitivity 
(%) 

Specificity 
(%) 

0 4 Cap 
Gills 

Stipes 

92a, 97b 

74a, 69b 

76a, 81b 

76a, 81b 

78a, 60b 

85a, 82b 
20 4 Cap 

Gills 
Stipes 

69a, 71b 
56a, 61b 

62a, 54b 

66a, 72b 

79a, 74b 

71a, 67b 
40 3 Cap 

Gills 
Stipes 

65a, 75b 

36a, 54b 

45a, 51b 

80a, 85b 

89a, 81b 

75a, 80b 
a Training set, b Testing set 

#LV: Number of latent variables 
 
Modelling damage in mushrooms has been reported in literature in recent time (Gowen et 

al., 2008a; Esquerre et al., 2009; O'Gorman et al., 2010; Taghizadeh et al., 2010) using 

different techniques including fourier transform infrared spectroscopy, hyperspectral 

imaging and near infrared spectroscopy coupled with chemometrics.  

These studies yielded models with low error rates for predicting damage in mushrooms 

highlighting the usefulness of imaging and spectroscopy for detecting physical damage in 

mushrooms, with the possibility of using these tools to develop classification systems for 

the industry. 
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The use of GC/MS and chemometrics also produced models with low error rates for 

detecting damage. RF models indicated the important variables for discriminating damage 

i.e. specific metabolites that could be used as metabolic markers for damage in mushroom 

samples. The ability to detect specific metabolites for damage allows the ability to gain 

understanding into metabolic pathways associated with the specific metabolites identified.  

Metabolomics (GC/MS) coupled with chemometrics has not to the authors knowledge 

been used to detect damage in mushrooms. However, it has been used as a tool in the food 

industry for similar use e.g. identification of volatile quality markers for ready to use 

lettuce and cabbage (Lonchamp et al., 2009). Metabolic profiling using GC/MS to profile 

metabolic changes in sound and brown pears was investigated using a PLS-DA 

multivariate statistical approach (Pedreschi et al., 2009). GC/MS profiling has also found a 

function in determining phytochemical diversity in tubers of potatoes (Dobson et al., 

2008). 

These examples highlight the usefulness of GC/MS profiling and when coupled with 

chemometrics the ability to develop models to predict damage with low error rates, making 

it an invaluable tool for the mushroom industry. 

5.2.4.3. Metabolic Pathways  

A general overview of metabolism is given in Figure 5.23. Metabolites that were found in 

GC/MS analysis of mushroom samples are highlighted in red in the diagram. 
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Figure 5.23 A general overview of metabolism adapted from KEGG (KEGG, 1995) 
ATP: Adenosine triphosphate, ADP: Adensoine diphosphate, NADPH: nicotinamide adenine dinucleotide 
phosphate, PPP: pentose phosphate pathway, Acetyl-Co-A: Acetyl co-enzyme A, Pi: phosphatidylinositol, 
TCA: Tricarboxylic acid cycle, Asp: aspartic acid, Asn: asparagine, Phe: phenylalanine, Tyr: tyrosine, Val: 

valine, Ile: isoleucine, Met: methionine, Thr: threonine 
 

5.2.4.3.1. Lipoxygenase Pathway (LOX) 

Linoleic acid was identified by RF models (1-4) as being an important variable for 

predicting damage in mushrooms. Day zero samples found levels of linoleic acid to be at 

their highest for cap and gill tissue in D40 samples. Stipe samples also had high levels of 

the compound (although the trend in stipe tissues was unusual). This shows that levels of 
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linoleic acid increased with damage. Day one samples showed levels that were found to be 

highest for gill and stipe tissue (D20). Levels in cap tissue were very low across all damage 

levels. It has been reported that the compound is found in higher concentrations in the gill 

tissue, particularly when damaged (Holtz and Schisler, 1971; Mau et al., 1992; Cruz et al., 

1997). The trend for day one samples (Figure 5.24b) indicated that after 20 min damage 

linoleic acid levels decreased (gills and stipes).  This suggests that over time and after a 

certain level of damage linoleic acid underwent oxidation to produce volatile components 

and therefore levels found in day one samples became depleted after D20. 
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Figure 5.24 Bar plots with the semi-quantitative concentration of linoleic acid in mushroom tissues at 
different damage levels in (a) Day zero samples and (b) Day one samples 

 

(a) 

(b) 
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Linoleic acid levels may also be higher in damaged samples due to the degree of cellular 

disruption, as this could induce the release of fatty acids from membrane lipids. 

As stated in section 5.2.1.1.2 and discussed in section 5.2.4.1 linoleic acid is the precursor 

of the mushroom alcohol 1-octen-3-ol. This aliphatic alcohol is the principal compound 

that contributes to the unique fungal aroma and flavour (Murahashi, 1938).  Together with 

1-octen-3-one, 3-octanol, 3-octanone and octanol it makes up the main eight-carbon 

volatile compounds present in mushrooms (Flegg et al., 1985) (Figure 5.25). 

 

OH

1-octen-3-ol

O

1-octen-3-one

O

3-octanone

OH

3-octanol

HO

octanol  

Figure 5.25 Structures of the main eight-carbon volatiles.  Structure in red was identified by GC/MS 

 
Eight-carbon volatile formation is unique to fungi and is likely to involve a fungal specific 

pathway. It is evident in literature that lipid and fatty acid metabolism has been under 

investigated in the fungal kingdom, with few genes and enzymes yet identified. This lack 

of knowledge adds to the difficulty in understanding unique systems such as eight-carbon 

compound production, having to depend on animal and plant resources, for sequence 

information to model biochemical pathways, complicating the characterisation of such 

unique systems (Combet et al., 2006). 
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The lipoxygenase pathway is described in Figure 5.26. Linoleic acid is oxidised to form the 

eight carbon volatile 1-octen-3-ol, which is then cleaved to form a ten-carbon oxoacid (10-

ODA) (Wurzenberger and Grosch, 1984).  

It has been recently reported that 1-octen-3-ol may only be produced due to cellular 

damage, and the small amount detected from whole sporophores could be result of damage 

caused by the separation from mycelial cells upon harvest. The study indicated that tissue 

damage had a major effect on volatile formation. Mushrooms that had been sliced resulted 

in 10 times more volatiles being produced in comparison to whole sporophores indicating 

that the enzymic machinery was not operating maximally in whole mushrooms. This could 

possibly due to substrate limitation e.g. oxygen, or substrates in different intracellular 

locations. Damage also increased the range of volatiles (Combet et al., 2009). 

3-octanol was the only volatile identified in this study. There are two possible reasons for 

this. The first being that the mushroom is sliced into its three tissue types prior to 

extraction, causing damage (wounding). The second is the mushroom samples were 

subjected to mechanical damage (D20 and D40). These sources of damage could lead to 

the decline in volatile levels due to the reaction substrate(s) available, fatty acid and/or 

molecular oxygen, may rapidly become expended or that compartmentalisation reoccurs 

after wounding, preventing the access of enzyme to the substrate (Combet et al., 2009). 
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Figure 5.26 Formation of 1-octen-3-ol (Wurzenberger and Grosch, 1984) 
Metabolite in green was identified as an important variable by RF models 

 

5.2.4.3.2. β-oxidation Pathway (fatty acid metabolism) 

The saturated fatty acids identified as important variables by RF models were 

pentadecanoic acid (model 1, 2 & 3), hexadecanoic acid (model 1, 2 & 4), heptadecanoic 

acid (model 4) and nonanoic acid (model 2). The unsaturated fatty acid ricinoleic acid was 

an important variable in model 6. The compound glycerol was present in mushroom 

samples and identified in RF model 4 as an important variable for detecting damage in 

mushroom caps. Lipases hydrolyse triglycerides releasing glycerol and fatty acids. The 

subsequent breakdown of glycerol (after phosphorylation) through glycolysis releases 
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energy (Chang and Miles, 2004). β-oxidation is the principal means by which fatty acids 

are metabolised by cells. The mechanism (Figure 5.23) involves a set of four consecutive 

reactions catalysed by four major enzymes in the process of fatty acid oxidation: acyl-CoA 

oxidase, 2-enoyl-CoA hydratase, 3-hydroxacyl-CoA dehydrogenase and 3-ketoacyl-CoA 

thiolase.  Through this four-step pathway, a two-carbon unit is split from each fatty acid in 

the form of an acetyl-CoA unit, which can then be fed into the glyoxylate cycle or be 

degraded in the TCA cycle to produce CO2 and H2O. There are many other enzymatic 

activities such as cis-enoyl-CoA isomerise, which are necessary for the degradation of 

unsaturated fatty acids (Wang et al., 2007).   

A trend was found in damaged samples for day zero and day one samples. In day one 

samples levels of fatty acid were low in undamaged (UD) samples, increasing in D20 

samples and even higher in D40 samples. The common trend seen in day one samples was 

as follows: low levels in UD samples, increasing in D20, with a decrease seen in D40 

samples. A recent study reported that pentadecanoic acid, hexadecanoic acid and nonanoic 

acid levels decreased postharvest (Combet et al., 2009). This suggests that these 

metabolites are affected by damage and could be used as markers of damage. 

The cellular disruption caused by mechanical damage could induce the release of free fatty 

acid from membrane lipids and lipid globules, as well as breaking down the cellular 

compartments, increasing the levels of fatty acids. This suggests that when damaged or 

under stress the mushroom produces higher levels of fatty acids, releasing its reserves in a 

possible protective capacity or to do with a possible repair function. However, after certain 

levels of stress (i.e. D40) and after a certain length of time the levels of fatty acids begin to 

decrease. 
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5.2.4.3.3. Isomerisation of Glucose (myo-inositol) 

The polyol myo-inositol was identified in RF models (1, 3 & 5), making it an important 

marker for damage particularly in the overall model, modelling damage in day one samples 

and in gill tissue samples. Myo-inositol can occur in the free form and in compounds such 

as inositol phospholipids (Ikawa et al., 1968). Myo-inositol was synthesised by 

isomerisation of glucose-6-phosphate and dephosphorylation (Figure 5.27) (Loewus and 

Murthy, 2000) and is utilised by several pathways including phosphatidylinositol 

phosphate pathways. 
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Figure 5.27 Formation and structures of myo-, neo- and scyllo-inositols.  Metabolite highlighted in 
green was identified as an important variable by RF models 

 

 

Levels of myo-inositol were slightly higher in damaged samples (D40) for day zero 

samples and levels were also higher in damaged day one samples (D20) indicating that this 

metabolite increased in damaged samples and may be a useful marker for damage.   
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5.2.4.3.4. Glycolytic Pathway (D-mannose) 

D-mannose was identified as an important metabolite for modelling damage in mushrooms 

(RF model 4). This particular model was built using cap data only and it gave a very good 

OOB error rate of 8.33%. Mannose (Figure 5.28) undergoes glycolysis i.e. converts 

glucose-6-phosphate or fructose-6-phosphate to pyruvate and is phosphorlyated by 

hexokinases. Glycolysis occurs in the cytosol and is the ubiquitous means to convert 

glucose into pyruvate, providing the cell with energy, precursors and NADH (Van Laere, 

1995; Arraes et al., 2005). 

O

HO OH

HO OH

HO

D-mannose  

Figure 5.28 Structure of D-mannose 

The bar plot below (Figure 5.29) shows that the highest levels of D-mannose were in 

samples after D20. This suggests that after a certain amount of damage, D-mannose enters 

glycolysis and therefore levels become depleted and is an indicator of damage. 
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Figure 5.29 Bar plot with the semi-quantitative concentration of D-mannose in mushroom cap tissues 
at different damage levels in day zero samples and day one samples 

 



  Chapter 5. GC/MS 
   
     

134 

5.2.4.3.5. TCA Cycle (Krebs cycle) 

Citric acid was indicated in RF model 5 (gill tissue) as an important variable for 

discriminating damage in the gill tissue of mushrooms. The biochemical pathways related 

to citric acid accumulation and the role of the tricarboxylic acid cycle (TCA) (Figure 5.23) 

in fungi has been well established. Citric acid accumulation can be divided into three 

processes: 

1. The breakdown of hexoses to pyruvate and acetyl-CoA by glycolysis 

2. Formation of oxaloacetate 

3. Condensation of acetyl-CoA and oxaloacetate to citric acid (Kubicek, 1988) 

Succinic acid was also detected in mushroom samples and is a product of the TCA cycle, 

although it was not identified as an important metabolite by RF models. 

Levels of citric acid were at their highest in day zero samples after 40 minutes of damage. 
 

5.2.4.3.6.   Polyol Metabolism (glucitol/mannitol & hexitol) 

The sugar alcohol glucitol was identified as an important metabolite for modelling damage 

in models 3 & 5 (day one samples and gill samples) and D-ribo-hexitol was identified in 

models 5 & 6 (gills and stipe tissue). As mentioned previously in section 5.2.2.2 glucitol 

and mannitol are isomers. A limitation of mass spectral libraries is the inability to 

differentiate between structural isomers. Because mannitol is the main polyol found in 

Agaricus bisporus (Beecher et al., 2001; Tsai et al., 2007), it is recommended that mannitol 

was detected by mass spectrometry. Mannitol and hexitol together with myo-inositol and 

glycerol were detected by mass spectrometry, with mannitol and hexitol identified as 

important metabolites by RF models. Hexitols are synthesised from glucose by the routes 

shown in Figure 5.30. 
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Glucose Fructose Mannitol

Glucitol  

Figure 5.30  Hexitol synthesis 

 
Overall levels of mannitol were found to be higher in day one samples, with concentrations 

increasing with damage levels i.e. D40 samples had the largest concentrations of mannitol, 

and this trend was also found in gill tissues. Hexitol levels decreased over time in gill and 

stipe tissues indicating the use of this metabolite as a useful marker for damage in these 

tissues. 

Harvested mushrooms continue to have high rates of respiration linked to a switch from 

nutrient import to the breakdown of storage compounds (Hammond and Nichols, 1975). It 

has been reported that mannitol levels decrease postharvest while levels of cell wall and 

urea increase (Hammond, 1979; Eastwood et al., 2001). In contrast mannitol levels were 

found to be higher in day one samples and samples that had been damaged. This indicates 

that mannitol could be used as a marker of damage in mushrooms as its levels increased 

with damage. Trehalose and mannitol are thought to act as storage carbohydrates for 

sporophores production and reserves, under conditions of water stress (Wells et al., 1987; 

Burton et al., 1994). Trehalose may be converted to glucose and then mannitol in the upper 

stipe and/or in the cap and transported to the upper stipe. This conversion of trehalose 

could be the reason mannitol levels increase over time and damage and also the reason 

trehalose is not identified by mass spectrometry. 

Research has revealed over-expressed sugar transporter genes in A. bisporus cell 

membranes between stage 2 and 4 mushroom sporophores (Beecher et al., 2001). This over 

expression may also occur when a mushroom becomes damaged, however further studies 

would be required. 
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5.2.4.4. Correlation of Metabolites (correlation matrices) 

Polar and non-polar metabolite groups were examined. Polar extract metabolites included 

the amino acids and sugars/polyols whilst non-polar metabolites were the fatty acids and 

phenolic compounds. Pair-wise correlation analysis was performed on the response ratios 

of all metabolites. This approach can identify both synthetically related (Steuer et al., 

2003) and co-ordinately regulated metabolites. Correlations between metabolites were 

examined at for each damage level (0, 20, and 40), each tissue type and each day (day 

zero/day one) respectively. Two metabolites were considered to be highly correlated if the 

coefficient had a value of ≥0.9, and on this basis there were 132 highly positively 

correlated pairs for day zero samples and 121 medium correlated metabolites (≥0.7-0.9). 

Of the highly correlated metabolites 93 were between fatty acids, 21 between amino acids, 

13 between sugars and 5 between phenolics. Day one samples gave 39 highly correlated 

and 74 medium correlated metabolites. Of the highly correlated metabolites 13 were 

between fatty acids, 13 between amino acids, 11 between phenolics and 2 between sugars.   

5.2.4.4.1. Correlation Matrices (polar metabolites) 

In the following sections only highly correlated metabolites will be discussed (i.e. 

coefficient values ≥0.9). Correlation matrices for polar metabolites (day zero samples) of 

cap tissue are shown in Figures 5.31, 5.32 and 5.33. A striking feature of the data was the 

extent of correlation within amino acids in D20 cap tissue (Figure 5.32). There were a 

number of high correlations between amino acids and sugars/polyols such as glucitol with 

alanine and myo-inositol with glycine (Figure 5.31). Examples can also be seen in D40 

samples: glycerol with alanine, glucitol/mannitol with tyrosine and myo-inositol with 

proline etc (Figure 5.33). Amino acids play important roles as basic substrates and as 

regulators in many metabolic pathways (Brosnan, 2003).   
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Figure 5.31 Correlation matrices of polar metabolites in day zero cap tissues at 0 min damage 
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 
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Figure 5.32 Correlation matrices of polar metabolites in day zero cap tissues at 20 min damage 
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 
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Figure 5.33 Correlation matrices of polar metabolites in day zero cap tissues at 40 min damage 
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 
 

The correlation matrix (Figure 5.31) for undamaged day zero caps showed a number of 

correlations between the same groups of metabolites and also a number of inter-

correlations for e.g. alanine with myo-inositol. Metabolites that were highly correlated 

produced plots with linear relationships (Figure 5.34). The highly correlated metabolites 

between amino acids and sugars/polyols were not seen in D20 cap tissues.  A number of 

amino acid metabolites with high correlations were seen. The matrix for D40 samples had 

fewer amino acid metabolite correlations with an increase of inter-correlations found, 

similar to the correlation matrix for undamaged cap tissue.     
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Figure 5.34 Selected plots of response ratios of highly correlated metabolites seen in undamaged cap 
tissue 

Ala: alanine, Gly: glycine, Tyr: tyrosine 
R=correlation value 

 
Correlation matrices were also examined for gill and stipe tissues (Day zero samples).  The 

following observations were made: No pairs of metabolites were highly correlated in UD 

and D20 matrices for gill tissue, with 5 pairs found in D40 samples: glycerol with sucrose, 

glycerol with myo-inositol, mannose with aspartic acid, mannose with tyrosine and sucrose 

with myo-inositol. Stipe tissues had the following trends: UD samples had 3 highly 
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correlated pairs of metabolites. D20 contained no correlated pairs, D40 samples had a 

number of correlation pairs and followed the same trend as cap D20 samples i.e. highly 

correlated pairs were found amongst amino acids only (Figure 5.32).   

The observation of correlations shows that the metabolite concentrations are dependent on 

each other and therefore must be strongly connected to the underlying biophysical system. 

Cell metabolism constitutes a complex dynamical system, which is continuously subject to 

fluctuations. These fluctuations arise from a continuously changing environment and also 

from complex patterns of regulation, generated by the network itself. These fluctuations 

induce variability in certain metabolites, propagate through the network and generate an 

emergent pattern of correlations (Steuer et al., 2003). The strong correlations between 

amino acids and sugars/polyols particularly in UD and D40 cap samples suggests the 

possibility that amino acid synthesis might be controlled, at least partly, by carbohydrates 

or associated factors. 

Correlation matrices (polar metabolites) for day one cap samples (Figures 5.35, 5.36 and 

5.37) gave 3 highly correlated pairs of metabolites in UD samples; glucitol/mannitol with 

alanine, glucitol/mannitol with tyrosine and tyrosine with alanine. D20 gave 1 pair of 

highly correlated metabolites; glucitol/mannitol with fructose and finally D40 samples had 

the following pairs; myo-inositol and glycine, mannose with alanine, tyrosine and alanine 

and glycine and alanine.  The appearance of new correlations in the damaged samples in 

comparison to undamaged samples indicate the activation of new metabolic pathways 

through the effect of damage, affecting the ratios/relationships between the different 

metabolites and imply de novo enzyme production. Correlations of cap tissue (day one) 

show the adaption of mushroom metabolism to the mechanical damage (Figures 5.35, 5.36 

and 5.37). 
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Figure 5.35 Correlation matrices of polar metabolites in day one cap tissues at 0 min damage 
Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 

Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 
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Figure 5.36 Correlation matrices of polar metabolites in day one cap tissues at 20 min damage 

Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 
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Figure 5.37 Correlation matrices of polar metabolites in day one cap tissues at 40 min damage 

Tyr: tyrosine, Ser: serine, Val: valine, Try: tryptophan, Threo: threonine, Pro: Proline, Aspartic: aspartic acid, 
Gly: glycine, Glu: glutamine, Asp: asparagine, Ala: alanine 

 
 
Day one gill samples had no highly correlated pairs for UD samples. The following pairs 

of metabolites were highly correlated in D20 samples; tyrosine with glycine and threonine 

with aspartic acid. The following were seen in D40 samples; glycerol with myo-inositol, 

threonine with aspartic acid, glycine with alanine. 

Day one stipe samples had no highly correlated pairs for UD samples. For D20 there were 

a number of highly correlated metabolites seen, however, they were between amino acids 

only.  D40 samples contained no highly correlated metabolites. 

There was no trend seen that could be used to differentiate between damaged samples and 

undamaged ones. However, correlation matrices are useful in understanding metabolic 

pathway interactions between metabolites. It seems that pathways controlling carbon and 

amino acid metabolism should cross-link, since amino acids are based on carbon skeletons 

(Morcuende et al., 1998) and therefore correlations between these groups can be seen in 

the correlation matrices. 
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5.2.4.4.2. Correlation Matrices (non-polar metabolites) 

Non-polar metabolites included the fatty acid and phenolic compounds. The highest 

number of highly correlated metabolites was found for cap tissue after 40 min damage. 

There were high correlations seen between saturated fatty acids with expected correlations 

between fatty acids with even carbon numbers (e.g. octadecanoic acid and eicosanoic acid) 

and between those with odd carbon numbers (e.g. pentadecanoic acid and heptadecanoic 

acid), the members of each series being biosynthesised sequentially from the same starting 

unit by addition of a C2 unit from malonyl-CoA (O'Hara et al., 2002) (Figure 5.38).   
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Figure 5.38 Correlation matrices of non-polar metabolites in day zero cap tissues at 40 min damage 

 

Only a few correlations were seen between fatty acids and phenolic compounds in day zero 

cap samples. However, a number were found in day one samples that had been extensively 

damaged (D40). There were a total of 8 fatty acid and phenolic pair-wise correlations. 
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Interestingly high correlations were seen between pentadecanoic acid and linoleic acid in 

day zero caps (D20 & D40), day zero gills (D20, D40), day one gills (D20 & D40) and day 

zero stipes (D20, D40), which were identified in the first RF model as variables of 

importance for modelling damage in mushrooms. A correlation between these two 

metabolites was not significant in cap, gill or stipe undamaged tissue, for both day zero and 

day one samples. This suggests that a metabolic pathway (related to fatty acids and 

possibly membrane regeneration) becomes switched on when a mushroom becomes 

damaged. 

These metabolites were also identified in a number of RF models as being important 

variables for predicting damage. Figure 5.39 shows the response ratios of linoleic acid and 

pentadecanoic acid for gill tissue at each day and damage level.  
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Figure 5.39 Plots of response ratios for linoleic and pentadecanoic acid (gill tissue) at each damage 
level and day 

D0: Day zero; D1: Day one 
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A high correlation for these two metabolites was seen at damage levels D20 and D40 for 

both days. These metabolites were not highly correlated for undamaged gills and therefore 

may be used as indicators of damage. This pattern was also seen for cap and stipe tissue. 

 

5.3. CONCLUSIONS 

One hundred and five metabolites were identified by GC/MS analysis. These metabolites 

included fatty acids, phenolics, sugars and polyols.  

PCA found patterns of clusters in UD and D20 samples for both day zero and day one cap 

tissues, indicating that damage had an effect on metabolite levels. Patterns were not so 

clear in gill and stipe tissues. 

An overall RF model was developed using all the samples, a variable indicating the tissue 

from which the metabolite originated (cap, gill or stipe) and the age of the mushroom (day 

zero/day one) as explanatory variables. This model gave a good OOB error rate of 11.11%. 

A second model was produced removing the explanatory variables resulting with an OOB 

error rate of 11.39%. The two models identified the following five metabolites as 

important variables for predicting damage: pentadecanoic acid, linoleic acid, myo-inositol, 

benzoic acid and hexadecanoic acid. Univariate analysis confirmed that the difference in 

concentrations of these metabolites was significant between damaged and undamaged 

samples. 

RF models were then built for the different days (day zero/day one) and the different tissue 

types (cap, gills or stipes). OOB error ranges were between 8-14% with model 3 (day one 

samples only) having the best prediction with an OOB error rate of 6.67%. Out of the total 

RF models produced (i.e. 6 models Table 5.8) 17 metabolites were identified (top 5 for 

each) as important variables for detecting damage, with a number of the same metabolites 

identified in different models. The RF models produced could be used as classifiers of 
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mushroom damage as they all resulted with good prediction models (OOB >14%) and can 

identify specific metabolic markers of damage. 

The overall PLS-DA model did not perform as well in comparison to the RF models. 

However, the model was able to classify correctly undamaged samples from damaged 

samples very well in both training and testing sets. Models were then developed separately 

for each tissue type. All the tissue types produced models with low error rates for 

discriminating between undamaged and damaged samples. Gill and stipe tissues had the 

highest levels of misclassification in their ability to discriminate D20 and D40 samples. 

Cap tissue produced the best models (training and testing) for classifying correctly each 

damage level. 

Correlation matrices were produced for non-polar and polar metabolites, with each tissue 

and age of sample examined separately. Correlation matrices yielded 171 highly correlated 

metabolites (≥0.9), which were mainly within each metabolite group. However, a number 

of inter-correlated correlations were also identified.  

Non-polar correlation matrices indicated that linoleic acid and pentadecanoic acid were 

highly correlated within damaged samples. These metabolites were also highlighted by RF 

models as important indicators of damage. 



   
       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. EVALUATING METABOLOMIC TECHNOLOGIES FOR 
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6. Evaluating metabolomic technologies for identifying markers of 
damage in mushrooms (Agaricus bisporus) 

 
This study evaluated damage in mushrooms using a metabolomic approach. Three different 

metabolomic techniques (FTIR spectroscopy, NMR spectroscopy and GC/MS) were used 

coupled with chemometric methods (PCA, RF and PLS). The following chapter will aim to 

describe and examine the stages of sample preparation, analysis and results in each of the 

metabolomic trials. 

6.1. SAMPLE PREPARATION 

6.1.1. FTIR Spectroscopy 

FTIR spectroscopy is a technique used to obtain a spectral fingerprint of biological 

samples which represents a snap-shot of the biochemistry at a given time. Sample 

preparation was minimal, no extraction procedure was involved and samples did not 

require chemical derivatisation. FTIR spectroscopy enables reagentless analysis and is 

comparatively inexpensive. The technique also facilitated high-throughput analysis in 

terms of both sample preparation and analysis time (less than 1 min per sample). 

6.1.2. NMR Spectroscopy 

In NMR analyses sample preparation was a straightforward procedure, which involved a 

simple extraction (chloroform/methanol/water) in order to separate the polar and non-polar 

mushroom extracts. A suitable deuterated solvent was needed for each phase to allow for 

locking of the signal. Derivatisation of analytes was not required. Like FTIR spectroscopy, 

NMR spectroscopy is also as a high-throughput technique (2-3 min per sample) and non-

destructive, permitting subsequent analysis by other methods (Fan, 1996). 
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6.1.3. GC/MS 

In GC/MS analyses sample preparation was more extensive in comparison to FTIR and 

NMR spectroscopy. It required sample drying, which can result in loss of volatile 

metabolites. Subsequent two-stage chemical derivatisation was required to induce volatility 

and thermal stability (Roessner et al., 2000). Oxime/silylation derivatisations which were 

used in the protocol are time consuming (1-2 h) and the stability of derivatised samples is 

an issue. 

6.2. ANALYSIS 

6.2.1. FTIR Spectroscopy 

FTIR spectroscopy results in an absorption spectrum that provides a characteristic 

fingerprint of the sample. Five major regions have been highlighted within the 4000 to 600 

cm-1 (MIR) region. These are broadly termed as the fatty acid region (3100-2800 cm-1), the 

amide region (1700-1500 cm-1), which can be divided into the amide I and amide II bands, 

the polysaccharide region (1200-1250 cm-1) and a mixed region containing a variety of 

weak features.  

The fingerprint region of the mushroom spectra was examined (2000-400 cm-1). This 

region was information rich and a number of peaks were attributed to functional groups. 

Spectra were highly reproducible. 

6.2.2. NMR Spectroscopy 

1H NMR analyses of samples was carried out on polar and non-polar extracts to 

discriminate low levels of damage in mushrooms. NMR spectroscopy is a specific and yet 

non-selective technique. This meant that each separate resonance observed in an NMR 

spectrum was specific to a particular compound, providing a wealth of structural 
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information regarding the components of a sample. NMR spectroscopy did not require pre-

selection of the analysis conditions, such as ion source conditions for mass spectrometry or 

chromatographic operating conditions (stationary phase, mobile phase, temperature). 

Manipulation of spectra was difficult as they contained thousands of signals relating to 

metabolites which made identification very difficult. However, it was possible to see 

visible differences between the spectra of damaged and undamaged mushrooms, prior to 

chemometric analysis. Non-polar extracts gave information rich spectra with more visible 

differences seen between damaged and undamaged samples compared to polar extracts. 

Polar phase spectra were not as information rich as expected compared to other NMR 

studies of mushrooms (Cho et al., 2007). A reason for this could be that there are a range 

of polar compounds extracted, but individually they are present in very small amounts and 

are below the detection limit. Another reason could be that polar compounds are not too 

soluble in methanol and therefore were not extracted efficiently. 

6.2.3. GC/MS 

In GC/MS analyses samples were analysed with small sample injection volumes (1 µl) on 

a high resolution capillary column, allowing sensitive analyses, which is one of the most 

important requirements for metabolomics (Sumner et al., 2003). An electron impact 

spectrometer was used to provide molecular ion fragmentation to produce a mass spectrum 

indicative of the metabolites structure. Metabolites were detected with good sensitivity and 

spectra were highly reproducible. 

The analysis of raw data was carried out using deconvolution software which verified 

individual analytes and deconvoluted co-eluting peaks. Identification of metabolites was 

achieved using commercially available libraries (NIST), standards and literature data. 

There are a number of commercially available MS libraries e.g. NIST, EPA and NIH 

which are extensive. However, they do not contain a large number of metabolites possibly 
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perceived when studying metabolic pathway networks. There is a need for metabolite 

specific libraries which are being produced within the community but are limited to the 

metabolites commercially available or those that can be identified from mass spectral 

interpretation (Dunn et al., 2005). 

GC/MS sample preparation was a lengthy procedure and together with the run time for 

each sample (90 min per sample) this makes the technique a much longer process in 

comparison to FTIR and NMR spectroscopy. 

GC/MS analysis of mushrooms resulted in a library of 105 metabolites being built. A range 

of metabolites including amino acids, fatty acids, carbohydrates, polyols and organic acids 

were detected in high probabilities. 

An overview of the three techniques is shown in Table 6.1. 

Table 6.1 Comparison of analytical platforms used for detecting damage in mushrooms 

Method Advantages Disadvantages 
FTIR • High-throughput 

• No sample preparation 
• Inexpensive 
• Reproducible 
• Requires no 

derivatisation 

• Low sensitivity 
• Requires larger samples 
• Qualitative rather than 

quantitative 
 

NMR • Non-destructive 
• High throughput 
• Little or no sample 

preparation requirement 
• Robust, mature 

technology 
• Requires no 

derivatisation 
• Quantitative 

• Relative low sensitivity 
• Expensive 

instrumentation 
• Requires larger samples 

(0.5 ml) 
• Limited metabolites 

coverage 
• Relative poor selectivity 

(signal overlap) 
GC/MS • Robust, mature 

technology 
• Relatively inexpensive 
• Quantitative (with 

calibration) 
• Modest sample size 
• Good sensitivity 
• Excellent separation 

reproducibility 

• Sample not recoverable 
• Requires derivatisation 
• Sample bias (volatile & 

stability) 
• Standards or data base 

dependence 
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6.3. RESULTS 

Principal component analysis (PCA), random forests (RF) and partial least squares (PLS) 

were used to extract information from each metabolomic technique in order to develop 

models for predicting damage in mushrooms.  

6.3.1. FTIR Spectroscopy 

In FTIR spectroscopy RF models had the ability to discriminate between damaged and 

undamaged samples with low error rates (5.9% and 9.8%). The models produced VIP plots 

(variables of importance) which identified specific wavenumbers that were important for 

detecting damage. The wavenumbers identified were 1868, 1870, 1845 and 1560 cm-1. The 

wavenumbers 1868, 1870 and 1845 cm-1 are unassigned. However, they are all located 

along the shoulder for the peak located at 1650 cm-1, which is attributed to amide II. The 

wavenumber 1560 cm-1 was identified as an important variable and is attributed to an 

amide I group. Univariate statistical analysis of these important variables showed that 

damaged samples have higher absorbancies at these wavenumbers, indicating that amide 

peaks are important for detecting damage using FTIR spectroscopy.  

PLS-DA produced models with low error rates. Misclassification errors associated with all 

models were low, particularly in the case of gills and stipes. Correct classification ranged 

from 92-99% (different tissues), highlighting the usefulness of this technique to identify 

mushrooms that had been physically damaged. 

6.3.2. NMR Spectroscopy 

In NMR spectroscopy RF models were produced for both non-polar and polar samples, and 

for each tissue type and day i.e. day zero and day one. Non-polar samples produced RF 

models with low error rates (10%) and indicated signals in the lipid and aromatic regions 
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as being important variables for determining whether samples were damaged or not. Polar 

samples resulted with models having large error rates and therefore it may be a useful tool 

for modelling damage in non-polar samples only. 

PLS-DA models resulted with low error rates for predicting damaged samples using both 

non-polar and polar samples. However, non-polar samples were slightly more successful in 

their discrimination ability. 

NMR spectroscopy coupled with chemometric tools was successful for modelling damage 

in mushroom samples that had been subjected to low levels of damage. The method did not 

prove successful for profiling metabolites, although further extraction procedures may 

yield more conclusive results. 

6.3.3. GC/MS 

In GC/MS analyses an overall model to predict damage using all data produced an RF 

model with an OOB error rate of 11.1%. Further models were produced for the samples 

ages (day zero and day one) and for each tissue respectively. Model errors ranged from 

6.67 (day one samples) to 13.33% (gill tissue). VIP plots identified important metabolites 

as being the most informative for discriminating between damage and undamaged samples. 

Fatty acids were the most important variables for detecting damage, with linoleic acid 

being identified in four out of six models.  

This study identified a number of fatty acids as being important metabolic markers of 

damage in mushrooms, suggesting that lipid membranes were affected by physical 

damage, thereby changing the mushrooms physiology in some way. GC/MS allowed the 

identification of specific metabolites, therefore enabling a more extensive understanding 

into the metabolic pathways affected by damage. 
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GC/MS metabolic profiling also allowed a library of metabolites to be built. A total of 105 

metabolites were separated and identified by this analysis, including a number of fatty 

acids, carbohydrates, amino acids, polyols and organic acids. 

PLS-DA was applied to the GC/MS data, producing models with acceptable error rates. 

Misclassification was seen between the different levels of damage (D20 & D40). However, 

the models were ultimately able to differentiate between damage and undamaged samples 

(low error rates) for both days. 

An overview of chemometric results for the three methods used is given in Table 6.2 

 

Table 6.2 Summary of metabolomic techniques and the best models used to evaluate damage in 
mushrooms 

Technique RF (%) PLS-DA 
FTIR 5.9 Low misclassification 

NMR 9.97 Low misclassification 

GC/MS 6.67 Low misclassification 
 

6.4. CONCLUSIONS 

FTIR spectroscopy produced the model with the lowest error rate for predicting damage in 

mushrooms in comparison to the other metabolic techniques used, with amides identified 

as important variables for predicting damage using the random forest method. PLS-DA 

also resulted with low errors of misclassification. The method was rapid with many 

samples being analysed per day. The prospect of using ATR-FTIR would allow non-

destructive analysis with even more samples being analysed per day.  

However, in order to profile the metabolites in mushrooms, GC/MS was the most useful in 

terms of its ability to separate and identify specific metabolites with over 100 metabolites 

identified. Models for discriminating damage were also low (6.67%) with specific 

individual metabolites being identified as possible markers for damage. This allowed an 
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insight into which metabolites were affected by mechanical damage and which metabolic 

pathways were involved. 

NMR spectroscopy also proved a useful tool for modelling low levels of damage in 

mushrooms (9.97%) with signals identified in the lipid and aromatic regions highlighted as 

important variables for discriminating damage. Further work would need to be carried out 

in this area in terms of extraction in order to successfully profile individual metabolites. 

In conclusion there is no single analytical technique that has the ability to profile all of the 

metabolome and therefore a combination of techniques is useful and complimentary. This 

was found for NMR and GC/MS analyses with lipids being identified by RF models as 

important metabolites for detecting damage in mushrooms.  
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7. Conclusions 
 

7.1. OVERALL CONCLUSIONS 

This study employed metabolomic profiling and fingerprinting techniques (FTIR and NMR 

spectroscopy and GC/MS) for the detection and discrimination of mechanical damage in 

mushrooms. Mushrooms subjected to various levels of mechanical damage (from 

mushrooms with low damage levels and general good acceptable colour to mushrooms 

unacceptable for sale) were studied.  

In summary, this study draws the following conclusions: 

• The metabolic fingerprinting techniques (FTIR and NMR spectroscopy) proved to 

be the more efficient methods in terms of sample preparation and sample analysis.  

• Employment of FTIR spectroscopy and chemometric tools was successfully 

applied to investigate the chemical changes induced by mechanical damage to 

mushrooms. RF and PLS-DA had the ability to model damage in mushrooms with 

low error rates. RF models identified specific wavenumbers (for amide vibrations) 

as being important variables for indicating damage. The absorbance values for 

these wavenumbers increased in the spectra of damaged samples and could be 

therefore used as markers for damage. 

• FTIR spectroscopy was also used with chemometric tools to investigate whether 

the age of the mushrooms could be predicted. Models did not predict age in 

mushroom samples very well. 

• NMR spectroscopy and chemometric tools were successfully employed to detect 

low levels of damage in mushrooms. Non-polar phase spectra yielded predictive 

models of damage with low error rates. RF models identified signals in the lipid 
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and aromatic region of the 1H NMR spectra as being important variables for 

detecting damage. Polar phase spectra were not as successful for modelling damage 

in mushrooms with high error rates produced using RF models. PLS-DA models 

were however, successful for predicting low levels of damage. 

• Identification and assignment of individual metabolites for qualitative purposes 

proved extremely difficult in NMR analysis. 

• The metabolic profiling tool GC/MS was employed in order to build a library of 

mushroom metabolites. Over 100 metabolites were separated and identified 

including carbohydrates, fatty acids, phenolic compounds, amino acids, polyols and 

organic acids. 

• Chemometric tools were successfully applied to GC/MS data to predict damage in 

mushrooms. RF models identified specific fatty acids as important markers of 

damage. PLS-DA models were also able to predict damage in an acceptable 

manner. 

Overall the results from this study showed different metabolomics techniques had the 

potential to differentiate between mushrooms that had been mechanically damaged and 

those that were undamaged. These techniques could be used in the mushroom industry 

replacing older slower methods, reducing time and labour costs. 

 

7.2. FUTURE INVESTIGATIONS 

The work presented in this thesis could be extended and improved taking the following 

recommendations into consideration: 

• A study using ATR-FTIR spectroscopy as opposed to pellet sampling to evaluate 

its ability to model damage using the same chemometric methods. If successful this 
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would enable non-destructive analysis of fresh mushrooms. This would reduce 

sample preparation time and allow analysis of fresh samples as opposed to freeze-

dried samples. 

• Further analysis needs to be carried out using NMR spectroscopy in terms of 

extractions and solvents used. A targeted metabolomics approach may be required 

in order to identify and assign individual metabolites. This would involve further 

extraction and purification procedures coupled with 2D NMR analysis for a more 

detailed profile of the metabolome.  

• Increasing the number of mushroom metabolites indentified in the library and a 

further study of the relationship of these metabolites variation with different traits 

(i.e. variety, diseases, agricultural practices) will provide a much more precise 

knowledge of the mushroom metabolome and contribute to the general 

improvement of its cultivation and production. 

• Investigating the use of these metabolomic techniques for the detection and 

discrimination of other types of damage to mushrooms such as microbial damage 

e.g. brown blotch disease and viral damage e.g. mushroom virus X. 
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