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Abstract — A 433 MHz antenna is proposed for integration 

with the insole of footwear for a body area network. The folded 

dipole design with an asymmetric groundplane radiates from its 

edges and considers the close proximity of the human foot and 

ground surfaces. It functions for different ground conductivity 

conditions and an on-body communication link with an 

Inverted-F Antenna in the upper body area was evaluated on a 

static and dynamic human subject. The antenna solution was 

compliant with Specific Absorption Rate requirements, remains 

matched and links with upper-body nodes regardless of the 

body posture and node location. 

 
Index Terms— Footwear antenna, Body Area Network, ISM 

433 MHz, Propagation Channel 

I. INTRODUCTION 

Emerging opportunities for wearable electronics include 

sensors for footwear [1-3] and associated communications 

[4] to enable medical [5], occupational [6] and leisure [7] 

applications. The volume and rigidity of footwear can 

contain low-profile and conformal components without 

undue impact on the flexibility of a subject‟s foot or natural 

gait. Without awkward wires, wireless footwear nodes will 

link with upper-body, off-body or combinations of on/off-

body nodes [8], including full-fabric antennas [9]. Lower 

wavelength antennas offer increased propagation range. 

Larger dimensions support better radiation efficiencies and 

footwear can comfortably accommodate larger antennas that 

would otherwise be more noticeable higher up the body. 

Integrated ergonomic footwear antennas will have to 

support sustainable radio channels in electromagnetic 

environments with various material loads due to human 

tissues, footwear and ground surfaces with varying 

proximities and that may have high water content [10, 11]. 

Additionally, footwear nodes are furthest from upper body 

nodes and their relative positions can change rapidly during 

leg movement with associated variations in path loss. 

Resilient devices require mechanical stability and protection 

from scuffing that occurs on outer surfaces.  
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A 2.3-2.65 GHz wireless pedometer, using a printed 

inverted-F antenna with parasitic elements, was reported 

with basic measurements for integration between the 

footwear insole and sole [12]. An RFID tag in the form of a 

commercial brand logo used a 433 MHz dipole on the 

external sides of a sports shoe [13]. The simulated radiating 

pattern and the measured matched impedance varied notably 

with/without the foot. Similarly, a 900 MHz / 2.4 GHz dual-

band monopole, shaped as another brand logo and fed with a 

50 Ω microstrip line, had a limited range [14].  

Alternatively, short-range radar detection of buried 

anti-personnel mines using a shoe toe-cap was proposed with 

a single-sided CPW-fed 1.7 GHz / 2.9 GHz dual-band 

bow-tie slot antenna printed on 0.9 mm thick leather [15].  

Ultra Wideband (UWB) performances for a monopole 

antenna and a Vivaldi antenna printed on 0.2 mm thick FR4 

were reported for footwear toe-cap, heel counter (rear) and 

lateral-quarter (side) positions [10]. E-field plots illustrated 

the performance for several full-body postures and the 

ground surface influence for the heel-mounted Vivaldi.  

The first reported channel link-reliability for footwear to 

upper body nodes demonstrated the need to consider system 

performance [4]. In addition, a 2.4-11.0 GHz spline-shaped 

monopole antenna printed on 0.2 mm flexible FR4 assessed 

toe-cap to wrist nodes links [16]. While ground proximities 

influences were excluded, the path-loss measurements for 

indoor walking scenarios fitted a Rician channel distribution.  

Compared with higher frequencies, the 69 cm wavelength 

of the ISM 433 MHz channel offers lower propagation loss 

and an improved link budget. In proximity with human 

tissue, it offers reasonable off-body link range and channel 

resilience to variations in posture, physiology and ground 

conductivity. However, for on-body links at sub-GHz 

frequencies, shadowing effects due to body movement were 

reported as dominant over multipath fading [17].  

Upper body antenna designs tend to be narrowband due to 

restricted dimensions [18-22]. Furthermore, the impact of 

tissue loading on the reflection coefficient in dipoles [23], 

loops, helix antennas [18, 22], patch antennas [19] were 

reported without link analyses to other body area antennas. 

While static posture on-body antenna links have been 

reported [20, 21], dynamic systems are under-reported. 

A large 433 MHz antenna is proposed to be inserted 

between a footwear sole and insole. Printed on single-sided 

0.2 mm FR4, it radiated along the lateral edges to minimize 

loss into the foot. Matched impedance modeling for different 

ground surface conductivities and propagation links with 

upper body areas were validated using indoor measurements 

of subjects in static and dynamic postures. Specific 

absorption rate was also modeled. 

Insole Antenna for On-Body Telemetry 
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II. ANTENNA  

A. Antenna Design 

In order to maximize link performances, while avoiding 

discomfort or distraction to the subject, a larger antenna was 

integrated under a footwear insole. Insole antennas would 

easily fit within different types of footwear, along with 

various biometric sensors. The system should function 

despite loading by human foot tissues and ground surfaces 

with different electrical properties, or as the foot lifts up into 

quasi freespace conditions. In this case, the 2 mm thick 

insole was 275 mm long and varied from 60 mm to 90 mm 

in width. The footwear sole underneath was 25 mm thick. 

CST Microwave Studio was used to simulate the 

electromagnetic environment. The simulated heterogeneous 

anatomical foot and shoe model is shown in Fig. 1, with 

material properties listed in Table I [24]. 

 
 

Fig. 1. CST model of antenna under heterogeneous voxel foot in shoe over 

reinforced concrete ground 

 

TABLE I 

ELECTRICAL PROPERTIES OF BODY, SHOE MATERIAL AND GROUND 

 ε' σ tan δ 

Muscle 56.88 0.80 - 

Skin 46.10 0.70 - 

Fat 5.57 0.04 - 

Bone 13.10 0.09 - 

Upper Shoe 1.4 - 0.04 

Sole 3.0 - 0.06 

Reinforced Concrete 6.0 0.00195 - 

PEC - ∞ - 

 

 
 

Fig. 2. Antenna inserted without insole cover. 

  

Fig. 2 shows the prototype antenna installed in the shoe 

without the insole overlay. It was inserted through a 

horizontal slot between the heel and the upper area, with the 

connector accommodated in a cavity in the sole. 

A 0.2 mm thick single sided FR4 substrate was used for 

the antenna, shown in Fig. 3. The unbalanced feed drives a 

folded dipole antenna with a ground plane at the edges and 

within the folded element. The coplanar waveguide feed was 

stimulated with an SMA connector from under the dielectric; 

with a CPW transition required due to the proximity of the 

connector flange.  

The antenna was optimized using CST‟s Trust Region 

Framework algorithm. The input impedance was refined by 

allowing groundplane length to vary, 90 ≤ GP2 ≤ 150 mm. 

The matched impedance bandwidth was varied with S5 and 

the longer length L lowered the resonance frequency. The 

overall dimensions of the antenna were 243 mm × 51 mm, 

summarised in Table II. While the dimensions were critical 

to the resonance bandwidth, they established insensitivity to 

variations due to material loading. 

 
Fig. 3. Geometry of the antenna 

 

TABLE II 

INSOLE ANTENNA DIMENSIONS 

Parameter Dimension 

[mm] 

Parameter Dimension 

[mm] 

W 51.0 S5 1.50 

L 243.61 GP1 8.00 

W1 1.04 GP2 130.00 

W2 2.50 GP3 11.75 

S1 0.73 L1 7.87 

S2 1.83 L1 1.00 

S3 2.00 D1 5.00 

S4 3.12  

B. Antenna Performance  

Indoor ground surfaces include concrete or timber, often 

covered with various low permittivity materials. For 

outdoors, permittivity can range from 5 ≤ εr ≤ 100 and 

conductivity from 10
-4

 ≤ ζ ≤ 1 S/m [25]. While walking or 

running, the foot can lift off the ground into semi-freespace. 

Sample underfoot conditions were simulated for freespace, 

reinforced concrete [26] and Perfect Electrical Conductor 

(PEC), where PEC represents high conductivity associated 

with a running treadmill or bridge structure. The antenna 

performance was optimized for proximity with ground 

surfaces but with resilience to foot lift conditions.  

The antenna was designed to radiate from the edges and 

the current distribution was dominant on the outer layers of 

the ground plane and on the transmission line, with small 

concentration at the centre ground plane, as shown in Fig. 4. 

This is due to the asymmetric groundplane dimensions, S3 

and S4 which control the coupling with the external 

groundplane. 

 
Fig. 4. Maximum amplitude of the current at 433 MHz. 
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Simulated and measured S11 data for the freespace case 

and for the foot-shoe model with different types of ground 

are shown in Fig. 5.  

 

 
(a) 

 
(b) 

Fig. 5. Simulated and measured S11 for (a) freespace and in a shoe in 

freespace, (b) in a shoe over reinforced concrete and PEC. 

 

The correlation between the simulated and measured data 

validates the static model. Table III summarizes the matched 

impedance bandwidth results for S11 (-6 dB) and S11 (-10 dB). 

Differences between simulated and measured values of 

the lower edge frequencies were attributed to proximity 

variations between the foot anatomy and the antenna and 

discrepancies between the foot anatomical model and the 

actual electrical properties in the measured environment. 
 

TABLE III 

COMPARISON BETWEEN SIMULATED AND MEASURED ON-BODY DATA 

 
Simulated [MHz] Measured [MHZ] 

f low f high f low f high 

Freespace 
-10 dB  443 634 448 607 

- 6 dB  418 668 413 697 

No 

Ground 

-10 dB  319 534 322 526 

- 6 dB  306 570 306 564 

Reinforced 

Concrete 

-10 dB  341 539 336 502 

- 6 dB  310 574 328 540 

 

PEC 

-10 dB  308 322 300 360 

-10 dB  456 554 432 540 

- 6 dB  298 582 294 568 

 

Both simulations and measurements met requirements for 

the ISM 433 MHz bandwidth at -6 dB and -10 dB. The 

-10 dB measured fractional bandwidth for the footwear 

No Ground case was 48%. Standing on Reinforced 

Concrete, the bandwidth reduced to 39% and to 22% for 

standing on PEC. The PEC degrades the S11 (-10dB) mid-band. 

It is anticipated that for outdoor conditions where the 

footwear is partially immersed in water, the radiating fields 

would attenuate in the lossy material.   

C. Evaluation of Specific Absorption Ratio (SAR) 

A Specific Absorption Rate (SAR) calculation was used 

to assess electromagnetic deposition in the foot. The 

European Union [27] and United States [28] limits for local 

peak SAR in limb extremities is 4 W/Kg averaged over 10 g, 

normalized to a 1 W input power. The SAR was simulated 

using the anatomical voxel foot over the three ground 

scenarios. The antenna was 25 mm over the ground due to 

the footwear sole thickness. At the closest point, the antenna 

was 2 mm from the voxel model, offset by the thickness of 

insole, with greater gaps near the foot arch and toes. The 

SAR distributions over different grounds are shown in 

Fig. 6, with maximum values in Table IV.  

 
Fig. 6. Simulated foot SAR: (a) no ground, (b) reinforced concrete, (c) 

PEC. 

TABLE IV 

433 MHZ SIMULATED SAR (10 g [W/KG]) 

No Ground 2.55 

Reinforced Concrete 2.08 

PEC 1.87 

 

In general, the SAR was greater in the foot sole where the 

lateral quarter was closest to the radiating element and near 

the feed point under the heel. The peak SAR position and 

pattern was consistent for the different grounds types. The 

lower value of SAR in the presence of the ground was due to 

a greater power absorption in the shoe sole. 

III. ON-BODY COMMUNICATION LINK 

A. Measurement Setup 

The performance of the transmission link from the 

433 MHz insole antenna to the upper body nodes was 

investigated with S21 measurements with a smaller antenna. 

The small antenna was designed for a perpendicular 

polarization to minimize coupling with the body and to 

enable equivalent comparisons between 14 different on-body 

positions to represent complete coverage, as shown in Fig. 7: 

Front Head; Left and Right Upper Arm; Left, Right, Front 

Upper Chest; Cervical Spine; Front Chest; Lumbar Spine; 

Left, Right and Front Waist; Left and Right Upper Leg.  

 

It is envisaged that this work will inform design strategies 

for more ergonomic and proprietary antennas for the upper 

body nodes at positions that correspond with potential 

on-body sensors. Measurements were performed for a 

stationary subject with the arms hanging alongside the torso 

and for a walking subject. 
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Fig. 7. Hubs and nodes positions for S21 measurements. 

 

B. Design of receiving antenna 

The small 433 MHz Inverted F antenna designed for the 

upper-body is shown, unfolded, in Fig. 8. The antenna 

substrate was Taconic RF-35 (εr = 3.5, tan δ = 0.0018) with 

a thickness of 6.2 mm. The ground plane was on 0.2 mm 

FR4 substrate to stabilise mounting on the upper body 

surface. The overall dimensions without the ground plane 

were 70 × 25 mm
2
. The matching impedance was controlled 

with the position of a transmission line than short circuit the 

feed to the ground. To cover the 433 MHz frequency, the 

edge metal strip was side-fed and wrapped onto the substrate 

top edge and opposite side edge. The final fold was onto the 

front face. An SMA connector was used to feed the antenna 

without any balun. The groundplane dimensions, 

70 × 60 mm
2
 were a trade-off between maximising the 

groundplane and minimizing body coupling with the 

antenna.  

The antenna dimensions were optimized when located on 

the front waist of the Gustav voxel model. The antenna was 

smaller than λ0/9. The antenna was oriented perpendicular to 

the body surface to ensure a perpendicular polarization with 

respect to the body positions [29], as shown in Fig. 9. The 

antenna polarization was chosen to excite surface waves 

with capacity to creep around the body surface and 

overcome some of the body shadowing effects [30]. 
1 mm 

10 mm 

24 mm 

8mm 

5 mm 

5 mm 

10 mm 

40 mm 

70 mm 

25 mm 

6.2 mm 
70 mm 

 
Fig. 8. Extended geometry with dimension of the 433 MHz antenna. 

 

 
 

Fig. 9. 433 MHz node antenna, (a) in 3D, and (b) on the front of the waist 
 

 

For the upper arm positions, where the dielectric load was 

lower than the other locations, the resonant frequency was 

higher. The S11 minimum was within the 426 MHz and 

450 MHz frequency range. In all the measured locations, the 

small antenna S11 was better than -7.8 dB. Discrepancies in 

frequencies between 433 MHz and minimum S11 were 

always less than 17 MHz.  

The impact on antenna performance by the body was 

minimized by the groundplane. The simulated radiation 

pattern was omnidirectional, when the antenna was located 

on the body, with a maximum realized gain of 6 dBi. 

C. On-Body measurements for immobile subject 

With the lower frequency over short distances, the antenna 

near field links can prevail. Instead of radiation patterns, 

performances were assessed with S21 measurements to a 

probe antenna. S21 measurements of footwear links with the 

14 upper-body nodes were performed on a subject (70 kg, 

1.75 m tall). The immobile subject was in a laboratory, 

8.1 × 7.9 m
2
 area, with metallic furniture and reinforced 

concrete in the floor and ceiling, illustrated in Fig. 10. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. 3D room layout with partition panels, computer desks, seating  

and shelving 

 

 
TABLE V 

S21 PEAK VALUE AND FREQUENCY FOR DIFFERENT ON-BODY LOCATIONS 

 S21 (433 MHz) 

[dB] 

Peak S21  

[dB] 

Peak Frequency 

[MHz] 

Front Head -42.28 -41.57 436 

Left Upper Arm -46.45 -38.03 452 

Right Upper Arm -43.09 -36.61 448 

Upper Left Chest -46.93 -45.57 438 

Upper Right Chest -46.40 -45.83 426 

Upper Front Chest -44.17 -42.10 440 

Cervical Spine -40.78 -40.35 438 

Front Chest -32.60 -32.55 432 

Lumbar Spine -44.90 -44.47 428 

Left Waist -38.46 -38.26 436 

Right Waist -42.53 -40.92 438 

Front Waist -36.41 -35.86 430 

Left Leg -30.04 -29.55 430 

Right Leg -34.90 -34.00 430 

Maximum -30.04 -29.55 452 

Minimum -46.93 -45.83 426 

Average -40.71 -38.98 436 

7.9 m 

8.1 m 
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The S21 results are summarized in Table V. The range of 

frequencies for peak S21 values was attributed to some body 

loading on the small antenna, with 433 MHz being the 

target. The S21 for the foot to left leg was the strongest given 

that it was the shortest distance between the antennas. At 

433 MHz, the range of S21 values was 16.9 dB, which takes 

account of the channel differences between the Foot-to-

Left_Leg and Foot-to-Upper_Left_Chest. The antennas 

enable links to the footwear from the various body areas 

with an S21 ≥ -47 dB.  Comparative measurements in a more 

open, less-reflective indoor environment showed similar 

performance. 

D. Antenna performance for mobile subject 

Performance of the footwear-embedded antenna was also 

investigated for a mobile subject walking in the laboratory, 

illustrated in Fig. 10. As a subject walks, the foot stride 

sequence is characterized by six phases: Heel Strike, Flat 

Foot, Mid-Stance, Heel-Off, Toe-Off and Mid-Swing. On 

left-foot toe-off, the left arm is forward of the body and can 

shadow between the trailing foot and the front of the body. 

To extend the analysis from the immobile case, the mobile 

S21 measurements were performed at 433 MHz for the 

footwear to left waist configuration.  

S21 values at 433 MHz were recorded continuously for the 

subject walking back and forth repeatedly for a 60 second 

period. The subject turned 180° to reverse direction every 

5 seconds and each sample taken every 0.1 seconds. 

640 measurements were obtained for each experiment. This 

was repeated 5 times to establish how consistent the setup 

was. The results of one set of measurements are shown in 

Fig. 11 as a function of time. 

0 10 20 30 40 50 60
-60

-50
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-20

-10
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2
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Fig. 11. Measured S21 walking subject  

 

While walking, the proximity of the footwear antenna to 

the reinforced concrete ground varied naturally with foot lift. 

Similarly, the alignment of the probe antenna varied slightly 

with the body movement. The S21 did not change 

significantly when the subject turned direction every 

5 seconds. Similar to the immobile case, the signal strength 

variation was limited and complied with the IEEE 802.15.6 -

 2012 Standard for WBAN [31]. Fading in Fig. 11 was 

attributed to multipath interference but limited by the short 

distances between on-body antennas. Fourier analysis of the 

data sets indicted that the forward arm-swing shadow 

contributed to some signal delay as the foot lifted (toe-off) 

from behind the subject.  

The distribution of the path loss of each set of 

measurements was compared with the Rician, Nakagami and 

Rayleigh distribution using the maximum likelihood criteria. 

The distribution parameters are summarized in Table VI. 

The Nakagami μ parameter and the Rician K factor 

indicated a high multipath environment. The low 

Nakagami Ω value indicated a small spread for each set of 

measurements. The Rayleigh distribution was a good fit to 

each of the measurements, with a constant scaling factor.  
 

TABLE VI 

CUMULATIVE DISTRIBUTION FUNCTION OF MEASURED PATH LINKS 

          Measurement: 1 2 3 4 5 

Rician K [dB] -1.0 -20.0 0.56 -24.0 -2.0 

Nakagami 
μ 1.03 0.9 1.13 0.76 1.01 

Ω 0.005 0.003 0.003 0.004 0.004 

Rayleigh b 0.05 0.04 0.04 0.04 0.04 

 

The cumulative distribution function (CDF) of the 5 sets 

of measurements of the left waist setup is represented in 

Fig. 12.  
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Fig. 12. CDF for 5 measurements of a walking subject with the receiving 

antenna on the left waist compared to Rayleigh (b = 0.04) distribution. 

 

Inspection of the CDF data indicates that 90% of the 

observed cases are characterized by an S21 greater than -

35 dB. The horizontal spread was slightly greater than 

44 dB. Considering the IEEE 802.15.6 - 2012 Standard for 

WBAN, for a data rate of 187.5 Kbps, the receiver 

sensitivity was equal to -84 dBm [29].  

IV. CONCLUSION 

Footwear can accommodate electronic components and 

antennas that are low-profile and conformal without undue 

impact on the flexibility of a subject‟s foot or their natural 

gait. Integrating biomedical sensors with wireless body area 

networks necessitates reliable links, particularly in the lower 

limb area, where the electromagnetic environment can 

change with rapid leg movements over different ground 

surfaces.  

A large 433 MHz footwear antenna, for improved 

efficiency at a longer wavelength, was integrated with the 

insole improved footwear connections with upper body 

areas. It was designed to radiate from the lateral edges to 

minimize energy loss in the human foot and body shadowing 
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during leg strides. The simulated SAR, for 1 W equivalent 

input, was smaller than the limit defined in the standard for 

all analyzed cases. 

Footwear link performances with 14 body areas were 

initially assessed with a probe antenna at node positions for 

a static posture. This included upper head to foot links 

across the body. In all cases, reliable links were 

demonstrated with S21 values greater than -46.9 dB, which 

complies with the IEEE 802.15.6 - 2012 Standard on 

WBAN.  

To take account of movement and body shadowing in a 

realistic office scenario, a measured link between the 

footwear antenna and a probe antenna on the left waist was 

studied for a walking subject. The S21 measurements were 

greater than 58.76 dB, and in 90% of the cases, greater than 

-35 dB.  

The 433 MHz footwear antenna was shown to be a viable 

solution for footwear links with a body area network. Given 

the good connectivity with multiple upper body areas, it is 

also suited supporting a body area network hub.  
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