
Sabrina Cox
Technological University Dublin, sabrina.cox@tudublin.ie

Nissreen Abu-Ghannam
Technological University Dublin, nissreen.abughannam@tudublin.ie

Shilpi Gupta
Technological University Dublin, shilpi.gupta@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/schfsehart

Part of the [Food Chemistry Commons](https://arrow.tudublin.ie/schfsehart), [Food Microbiology Commons](https://arrow.tudublin.ie/schfsehart), and the [Food Processing Commons](https://arrow.tudublin.ie/schfsehart)

Recommended Citation

This Article is brought to you for free and open access by the School of Food Science and Environmental Health at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://creativecommons.org/licenses/by-nc-sa/3.0/)
Effect of processing conditions on phytochemical constituents of edible Irish seaweed

Himanthalia elongata

Sabrina Cox, Nissreen Abu-Ghannam* and Shilpi Gupta

Journal of Food Processing and Preservation.

Accepted: 25/04/11

School of Food Science and Environmental Health,

Dublin Institute of Technology, Cathal Brugha St.,

Dublin 1, Ireland.

Corresponding author: Dr. Nissreen Abu-Ghannam

Tel: +35314027570; Email: nissreen.abughannam@dit.ie
Abstract

Seaweed is well recognised as an excellent source of phytochemicals. This study was a preliminary screening to investigate the effects of various food processing methods on the phytochemicals of *Himanthalia elongata*. Hydrothermal processing was carried out until an edible texture was achieved. The total phenolic content (TPC) of fresh *H. elongata* was 175.27 mg GAE/100 g fresh weight (FW) while boiling significantly reduced the TPC to 25.4 mg GAE/100 g FW (p < 0.05). A drying pre-treatment before boiling reduced the cooking time therefore leading to less leaching of antioxidants upon boiling. In terms of extract, drying of *H. elongata* followed by boiling had the most significant effect on the phytochemicals as TPC increased by 174%. Boiled extracts had the most effective DPPH scavenging activity (EC₅₀ of 12.5 µg/ml). As a comparison, seaweed subjected to the same treatments were studied in terms of antimicrobial activity. Overall, extracts from fresh *H. elongata* achieved the highest inhibition.

Keywords: Seaweed, *Himanthalia elongata*, processing, antioxidants, antimicrobials.

1. Introduction

In recent years, many marine resources have attracted attention in the search for bioactive compounds to develop new drugs and health foods (Kuda *et al*., 2005). Seaweeds are a known source of bioactive compounds as they are able to produce a great variety of secondary metabolites characterized by a broad spectrum of biological activities (Bansemir *et al*., 2006). Compounds with antiviral, antifungal, antimicrobial and antioxidant activities have been detected in green, brown and red algae (Vairappan *et al*., 2001; Bansemir *et al*., 2006; Duan *et al*., 2006; Chandini *et al*., 2008; Cox *et al*., 2010). Antioxidant activity of marine algae may arise from pigments such as chlorophylls and carotenoids, vitamins and vitamin precursors including α-tocopherol, β-carotene, niacin, thiamine and ascorbic acid, phenolics such as polyphenolics and hydroquinones and flavonoids, phospholipids particularly phosphatidylcholine, terpenoids, peptides, and other antioxidative substances, which directly or indirectly contribute to the inhibition or suppression of oxidation processes (Shahidi, 2009). The environment in which seaweeds grow is harsh as they are exposed to a
combination of light and high oxygen concentrations. These factors can lead to the formation of free radicals and other strong oxidizing agents but seaweeds seldom suffer from any serious photodynamic damage during metabolism. This fact implies that their cells have some protective antioxidative mechanisms and compounds (Matsukawa et al., 1997).

Reactive oxygen species (ROS) such as hydroxyl, superoxide and peroxyl radicals are formed in human cells by endogenous factors and result in extensive oxidative damage which can lead to age related degenerative conditions, cancer and a wide range of other human diseases (Reaven and Witzum, 1996; Aruoma, 1999). Phenolic compounds can act as antioxidants by chelating metal ions, preventing radical formation and improving the antioxidant endogenous system (Al-Azzawie and Mohamed-Saiel, 2006). These phenolic compounds are commonly found in plants, including seaweeds (Duan et al., 2006). Polyphenols represent a diverse class of compounds including flavonoids (i.e. flavones, flavonols, flavanones, flavononols, chalcones and flavan-3-ols), lignins, tocopherols, tannins and phenolic acids (Shukla et al., 1997).

Interest in new sources of natural antioxidants has increased in recent years in order to reduce the use of synthetic forms such as Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT). Natural antioxidants from plant origin can react rapidly with these free radicals and retard or alleviate the extent of oxidative deterioration (Akoh and Min, 1997). Furthermore, antioxidants from natural sources can also increase the shelf life of foods. Phenolic phytochemicals inhibit autoxidation of unsaturated lipids, thus preventing the formation of oxidized low-density lipoprotein (LDL), which is considered to induce cardiovascular diseases (Amic et al., 2003). Therefore, the consumption of foods with high levels of these phytochemicals or addition of such extracts could protect the body as well as the foods against these events (Chandini et al., 2008).
Marine algae have been consumed in Asia since ancient times, but to a much lesser extent in the rest of the world. Many plant-based foods can be eaten raw or after cooking. Cooking can be performed in various ways but, for vegetables, most common are steaming, boiling and microwaving. These cooking processes would bring about a number of changes in physical characteristics and chemical composition of the vegetables (Zhang and Hamauzu, 2004). Reports on the effects of cooking on the antioxidant compounds in vegetables have been inconclusive. There are reports demonstrating an enhancement or no change in antioxidant activity of vegetables (Gahler et al., 2003; Turkman et al., 2005) while others have indicated a deterioration of activity after thermal treatment (Ismail et al., 2004; Zhang and Hamazu, 2004).

The presence and diversity of phytochemicals in vegetables are important factors for human health. The phytochemical contents in untreated vegetables have been the most studied. Since a large part of ingested vegetables are generally thermally processed prior to consumption, it is also important to investigate how the processing affects the levels of these compounds (Volden et al., 2009). Processing of vegetables for consumption exposes the phytochemicals present to detrimental factors that may lead to alterations in concentrations and health related quality. For example wet-thermal treatment causes denaturation of enzymes that can catalyse breakdown of nutrients and phytochemicals. On the other hand, processing by heat can result in reduction of constituents by leaching or due to thermal destruction (Rungapamistry et al., 2007). Turkmen et al. (2005) revealed that different cooking methods (boiling, steaming and microwaving) caused losses of phenolics from squash, peas and leek. However, under similar conditions, an increase in the phenolic content of vegetables such as green beans, peppers and broccoli was reported (Turkman et al., 2005). Watchtel-Galor et al. (2008) found that steaming and microwaving led to losses in the total phenolic content of broccoli, choy-sum
and cabbage, although steaming had significantly less loss than microwaved samples. Volden et al. (2009) also reported loss of phytochemicals in steamed cauliflower (19%).

The traditional process to preserve seaweeds is by sun drying (Lim and Murtijaya, 2007) as several seaweeds are perishable in their fresh state and could deteriorate within a few days after harvest. Drying is one of the most common food processing methods that can be used to extend the shelf-life and to achieve the desired characteristics of a food product. Reducing the water activity (a_w) of food via this process can minimize deterioration from chemical reactions and microbial activity (Chiewchan et al., 2010). Dried seaweeds are rehydrated by various methods such as boiling before consumption, therefore in the present study drying was considered as a pre-treatment before cooking.

Food poisoning is a concern for both consumers and the food industry despite the use of various preservation methods. Food processors, food safety regulators and regulatory agencies are continuously concerned with the high and growing number of illness or outbreaks caused by some pathogenic and spoilage microorganisms in foods. Recently, consumers are demanding foods which are fresh, natural and minimally processed. Along with this, consumers are also concerned about the safety of foods containing synthetic preservatives. This has put pressure on the food industry and has fuelled research into the discovery of alternative natural antimicrobials (Shan et al., 2007).

Being rich in phytochemicals responsible for antioxidant and antimicrobial activity, there have been many studies conducted on seaweeds to quantify these compounds (Duan et al., 2006; Chandini et al., 2008 and Cox et al., 2010), however little information is available on the effect of hydrothermal treatment on these phytochemicals in seaweeds. The purpose of this study was a preliminary screening to investigate the effect of different processing methods on the phytochemical constituents present in an Irish edible brown seaweed, *Himanthalia elongata*. The effect was studied in terms of both the extract of *H. elongata* and
as a whole food. The aim was on one hand, to study the effect of common cooking treatments on the phytochemicals of the brown seaweed. At the same time, the effect of drying as a pre-treatment on the cooking time and phytochemical content was also assessed. Moreover, the antimicrobial properties of *H. elongata* extracts against common food pathogenic and food spoilage bacteria was also investigated after varied processing treatments.

2. Methods

2.1 Chemicals

2, 2-Diphenyl-1-picrylhydrazyl (DPPH), ascorbic acid, Folin-Ciocalteu’s phenol reagent, gallic acid, sodium carbonate (Na\(_2\)CO\(_3\)), sodium benzoate, vanillin, hydrochloric acid (HCl), (+)-catecin, aluminium chloride (AlCl\(_3\)) and quercetin were purchased from Sigma Aldrich Chemie (Steinheim, Germany). Tryptic Soy Broth (TSB) was purchased from Sparks (Dublin, Ireland).

2.2 Seaweed material

H. elongata (Phaeophyta) was purchased from Quality Sea Veg., Co Donegal, Ireland. Samples were collected in September and November 2009, washed thoroughly with freshwater to remove epiphytes and stored at 4°C until analysis.

2.3 Preparation of samples

H. elongata was washed thoroughly with tap water, dried with absorbent paper and then cut into 3 cm long pieces before processing. The effect of processing on *H. elongata* in terms of antioxidant and antimicrobial activity was evaluated by drying, boiling, steaming, microwaving, and combinations of drying as a pre-treatment before boiling and steaming until an edible texture was achieved as described in section 2.4.
Determination of cooking time and texture evaluation

Cooking time of seaweed was selected from preliminary experiments and was determined by the tactile method. To overcome the subjectivity of the tactile method, a combination of tactile and instrumental textural methods were used in order to decide the cooking time of seaweed. Edible texture was determined by a sensory panel consisting of 6 judges. At 5 min cooking time intervals, seaweed samples were removed to undergo tactile and instrumental texture analysis. Shear tests were performed using an Instron Universal Testing Machine (Model 4301, Canton MA, USA) attached to Bluehill 2 version 2.14 analysis software for materials testing. A Warner Bratzler cutter was used in the shear tests. An aluminium plate with dimensions of 10 x 6 cm2, thickness 1.3 cm with an opening of 3 mm in the centre was supported in the Instron base. Seaweed samples (5 g) were sheared at a speed of 200 mm/min. The cutting implement was allowed to travel the depth of the seaweed, cutting through the sample and seaweed hardness was defined as the peak of force-deformation curve recorded in Newtons per mm (N/mm). Ten replications of each sample were carried out.

2.5.1 Drying pre-treatment

Seaweed samples were placed in 5 g lots on a drying tray in a single layer. Drying of seaweed was investigated in a drier (Innova 42, Mason Technology, Ireland) at 25°C air drying temperature over a period of 12 - 24 hours. Air velocity was 2.0 ± 0.1 m s$^{-1}$ measured with VWR Enviro-meter digital anemometer (VWR, Ireland).

2.5.2 Boiling

The seaweed samples (dried or fresh) were boiled by immersion in 2 L of distilled water kept at the specified boiling temperatures (80 and 100°C) using a water bath (Lauda, Aqualine AL5, Mason Technology, Ireland) until an edible texture was achieved (30 – 32 N/mm) as
described in section 2.4. After boiling, the cooked seaweeds were drained using a wire mesh strainer and placed on ice to cool before the extraction procedure.

2.5.3 Steaming

Regular steaming was performed on dried and fresh seaweeds using an atmospheric steam cooker (Kenwood, FS360, United Kingdom). The seaweed samples (5 g), were placed in the centre tray of the steam cooker, covered with the lid and steamed over 2 L of boiling water. Steaming time was selected according to preliminary experiments, in which steaming time was determined when an edible texture was achieved (30 – 32 N/mm) as described in section 2.4. After the steaming process, the cooked seaweeds were drained and placed on ice to cool before the extraction procedure.

2.5.4 Microwaving

Fresh seaweed samples (5 g) were placed in a pyrex bowl, covered with a plastic film to prevent water loss and microwaved in a domestic microwave oven (Sharp Platinum Collection, R-957, United Kingdom) at 450 and 900 watts (W) for 30 and 20 seconds (s), respectively. Cooking time was selected according to preliminary experiments, in which microwaving time was determined when an edible texture was achieved (30 – 32 N/mm) as described in section 2.4. After microwaving, the seaweeds placed on ice to cool before the extraction procedure.

2.6 Extraction of phytochemicals

Seaweed samples after respective processing (5 g original weight) were powdered in liquid nitrogen using a mortar and pestle, then extracted with 50 ml of methanol (60%) under nitrogen atmosphere for 2 hours. Liquid nitrogen was used as it can reduce the particle size of
a large amount of seaweed in a short period of time. The extraction was carried out at 40°C at 100 rpm in a shaker incubator (Innova 42, Mason Technology, Ireland) as optimised in our previous work (Cox et al., 2010). Samples were filtered using Whatman Number 1 filter papers (Sigma Aldrich Chemie, Steinheim, Germany) and centrifuged at 10,000 rpm for 15 min (Sigma 2K15, Mason Technology, Ireland). Resulting extracts were evaporated to dryness using vacuum polyevaporator (Buchi Syncore Polyvap, Mason Technology, Ireland) at 60°C. A pressure gradient program was designed for evaporation of the solvents with vacuum conditions of 337 and 72 mbar for methanol and water, respectively.

2.7 Total phenolic content

The total phenolic content of seaweed samples (concentration 1 mg/ml of extract in water) was measured using the Folin-Ciocalteau method as reported by Taga et al. (1984). The total phenolic contents of the whole seaweeds were expressed as mg gallic acid equivalent per 100 gram fresh weight (mg GAE/100 g FW) and as mg GAE/g for extracts.

2.8 DPPH radical scavenging activity

Free radical scavenging activity was measured by 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) according to the method of Yen and Chen (1995) with some modifications. Briefly, a 100 µl aliquot of test sample was placed in a 96-well microtitre plate and 100 µl of 0.16 mM DPPH methanolic solution was added. The mixture was shaken and incubated for 30 min in darkness at 25°C. Changes in the absorbance of the samples were measured at 517 nm using a microplate reader (Powerwave, Biotek, VT, USA).

The ability to scavenge the DPPH radical was calculated using the following equation given by Duan et al. (2006):
Scavenging effect (%) = \left[1 - \left(\frac{A_{\text{sample}} - A_{\text{sample blank}}}{A_{\text{control}}} \right) \right] \times 100

Where: A_{control} is the absorbance of the control (DPPH solution without sample), A_{sample} is the absorbance of the test sample (DPPH solution plus test sample) and $A_{\text{sample blank}}$ is the absorbance of the sample only (sample without any DPPH solution). DPPH results were interpreted as the “efficient concentration” or EC$_{50}$ value which is the concentration of substrate that causes 50% loss of the DPPH activity.

2.9 Total flavonoid content

Total flavonoid contents were determined according to the method of Zhishen et al. (1999). Quercetin was used to prepare the standard curve and results were expressed as mg quercetin equivalents (QE)/100 gram fresh weight (mg QE/100 g FW) for whole seaweeds and as mg QE/g for extracts.

2.10 Total condensed tannin content

Total condensed tannin contents were determined according to the method of Julkunen-Titto (1985). (+)-Catechin was used to prepare the standard curve and results were expressed as mg catechin equivalents (CE)/100 gram fresh weight (mg CE/100 g FW) for whole seaweeds and as mg CE/g for extracts.

2.11 Antimicrobial activity

2.11.1 Microbial culture

Two species of common food pathogenic and two species of food spoilage bacteria selected for this study were *Listeria monocytogenes* ATCC 19115, *Salmonella abony* NCTC 6017, *Enterococcus faecalis* ATCC 7080 and *Pseudomonas aeruginosa* ATCC 27853, respectively.
(Medical Supply Company, Dublin, Ireland). All cultures were maintained at -70°C in 20% glycerol stocks and grown in Tryptic Soy Broth (TSB) at 37°C; apart from *P. aeruginosa* which was incubated at 30°C to obtain sub-cultures. Working cultures were prepared from sub-cultures and grown at optimal conditions for each bacterium for 18 hours before analysis. Bacterial suspensions were then prepared in saline solution (NaCl 0.85%, BioMérieux, France) equivalent to a McFarland standard of 0.5, using the Densimat photometer (BioMérieux Inc, France) to obtain a concentration of 1×10^8 colony forming units (CFU)/ml. This suspension was then diluted in TSB to obtain a working concentration of 1×10^6 CFU/ml.

2.11.2 Antimicrobial activity assay

The influence of varying concentrations of extract on efficacy was assessed against *L. monocytogenes*, *S. abony*, *E. faecalis* and *P. aeruginosa* using 96-well microtitre plates (Sarstedt Ltd., UK). Seaweed extracts after respective processing (5 g original seaweed weight) were dissolved in 2.5 ml of TSB and 200 µl was added to the first row of each plate. All other wells were filled with 100 µl of TSB and 100 µl from the first well was serial diluted two-folds along each column. Finally, 100 µl of bacterial suspension containing 1×10^6 CFU/ml was added to the wells. The last column was used for bacterium and media controls and sample blanks were prepared for all of the extracts. Absorbance readings were then taken at 0 and 24 hours at 600 nm using a microplate spectrophotometer (Powerwave, Biotek) with 20 seconds agitation before each optical density (OD) measurement. Analysis of growth over time was also performed on most effective extracts. OD measurements were taken every three hours for 24 hours. Sodium benzoate and sodium nitrite were used as controls. Percentage inhibition was calculated as follows:
Bacterial inhibition (%) = \left(\frac{O - E}{O} \right) \times 100 \quad \text{Equation 2}

Where: \(O \) is (OD of the Organism at 24 h - OD of the Organism at 0 h) and \(E \) is (OD of the Extract at 24 h – Blank at 24 h) – (OD of the Extract at 0 h - Blank at 0 h).

Results were interpreted by categorising percentage inhibitions based on inhibition intensity according to Dubber and Harder (2008).

2.12 Statistical analysis

All experiments were performed in triplicate and replicated twice. All statistical analyses were carried out using STATGRAPHICS Centurion XV. Statistical differences between different processing treatments were determined using ANOVA followed by Least Significant Difference (LSD) testing. Differences were considered statistically significant when \(p < 0.05 \).

3. Results and Discussion

3.1 Effect of processing on total phenolic content

Increased intake of vegetables is generally associated with a reduced risk of cancer and cardiovascular disease (Kris-Etherton et al., 2002). Processing and preparation of vegetables, especially thermal treatment, which are applied prior to consumption may affect the phytochemicals. Heat applications such as boiling, steaming or microwaving are common practices in the processing of food products in order to render them palatable and microbiologically safe. Since seaweed would need to undergo some heat treatment prior to usage, it was relevant to assess the effects of heat treatment on the stability of seaweed antioxidant properties. In the present study, cooking of \(H. elongata \) was carried out by three commonly used procedures and the antioxidant properties of the cooked product were
evaluated and compared with fresh. It is a well known fact that cooking time as well as
cooked texture, appearance and flavour are important cooking quality characteristics (Xu and
Chang, 2008). Firmness or softness is one of the most important criteria in determining the
acceptability of foods. Acceptable texture parameters are outlined in the literature for various
foods such as legumes (Xu and Chang, 2008) but there are no such values previously outlined
for seaweed. Because sensory evaluation is based on human senses which detect myriad
characteristics of material properties simultaneously, it is difficult to find a good correlation
between orally perceived texture and instrumentally measured texture (Nishinari, 2004).
Therefore, in the present study the cooking time of fresh seaweed boiled at 100°C was
calculated using a tactile and instrumental texture measurement based on the length of time it
took the seaweed to become edible. Samples were taken every 5 minutes and edibility was
judged based on the hardness and chewiness of the samples until an acceptable edible texture
was achieved. From these methods, it was found that softening of fresh *H. elongata* from 45
N/mm to 30 – 32 N/mm was an acceptable edible texture as can be seen in Table 1.
The total phenolic content (TPC) of processed *H. elongata* can be seen in Fig. 1 (A). In order
to achieve an edible texture, it was necessary that *H. elongata* was boiled for 40 and 35 min
at 80°C and 100°C, respectively. This resulted in almost 82.31 and 85.5% loss in TPC,
respectively as compared to fresh seaweed. A reduction of TPC from 175.27 to 25.4 mg
GAE/100 g FW was observed. Similar results were obtained with steaming although it was
not as detrimental as boiling. The seaweed was steamed for 45 min which resulted in a loss of
32.06% TPC. The reason for such high reduction during boiling could be due to leaching of
nutrients in water which was proved by a reduction in the amount of extract obtained also.
Fresh *H. elongata* had a 3.14% yield of extract whereas steaming or boiling resulted in a
significant (p < 0.05) reduction in the yield of extract to as low as 0.26% (Table 2). The
reduction of vitamin levels during processing and cooking can vary largely depending on the
cooking method and type of food (Leskova et al., 2006). Studies have shown that phenolic compounds are sensitive to heat, whereby boiling of vegetables for few minutes could cause a significant loss of phenolic content which can leach into boiling water (Amin et al., 2006). Xu and Chang (2008) reported a 40 – 50% loss in the TPC of legumes due to leaching of phenolics in boiling water whereas Oboh (2005) found up to 200% increase in the phenolic content of boiled tropical green leafy vegetables. Reduction in TPC was also found in other vegetables such as broccoli, kale and spinach (Zhang and Hamauzu, 2004; Ismail et al., 2004). These authors stated the probable reason was due to dissolution of polyphenols into cooking water which could be the case with H. elongata as it requires long cooking times to become edible. Although microwave cooking has been reported to be the most deleterious with respect to the antioxidant properties of vegetables (Sultana et al., 2008), the results in the present study were encouraging as microwaving increased the TPC by 22.49% (450 W) and 36.58% (900 W), as compared to fresh. In order to reduce the cooking time and eventual loss of phytochemicals, drying was used as a pre-treatment. The process of drying in itself was not detrimental as a drying period of 12 h and 24 h retained 80.1 and 85.96% of the original phenolic content as compared to fresh seaweed. Possible losses could be attributed to stressing the plant during the drying process due to loss of water through the cell walls. Moreover, drying for 12 and 24 h before boiling not only reduced the cooking time but also the loss in TPC. Drying for 24 h before boiling at 100ºC decreased cooking time by 15 mins and reduced the loss of total phenols by 8.83%, as compared to boiling at 100ºC without a drying pre-treatment. Drying as a pre-treatment was not effective for steaming as 44.19% reduction in TPC was seen when seaweed was dried for 24 h followed by steaming (p < 0.05). Microwaving was not carried out on dried seaweeds as it was not a hydrothermal process and therefore re-hydration would not take place.
Although heat processing seriously degraded the quality of seaweed, an interesting observation was an increase in the potency of the extract (Fig. 1 (B)). When the activity of the heat processed extract was compared in terms of per gram dried extract, it was found that boiling at 80°C and 100°C resulted in an increase of 104.03% and 71% TPC per g of dried extract, respectively, as compared to fresh (p < 0.05). Fresh *H. elongata* contained 55.75 mg GAE/g of extract. Drying for 12 and 24 h led to a significant decrease in TPC up to 22.42% as compared to fresh (p < 0.05). Drying pre-treatment for 12 h followed by boiling at 80 and 100°C for 30 and 25 mins, respectively, had a 161.43 and 125.11% increase per g of extract as compared to fresh samples (p < 0.05). Samples pre-treated by drying for 24 h followed by boiling at 100°C for 20 min increased the TPC by 165.32% as compared to fresh. Drying of *H. elongata* for 24 h followed by boiling at 80°C for 30 mins had the most significant effect (p < 0.05) on the TPC of all treatments resulting in 173.99% increase in TPC. Steaming for 45 mins had a 36.62% decrease in TPC per g of extract while a drying pre-treatment before steaming for 50 mins had a 40% decrease. Microwaving at 450 W caused no significant increase in the TPC per g of extract as compared to fresh (p < 0.05), while microwaving at 900 W increased the TPC to 82 mg GAE/g of extract (47.08% increase). As the TPC of *H. elongata* per g of extract was increased due to processing, a lower concentration of the extract would be required to have a potential effect on preventing oxidation in food products which is a promising finding.

3.2 Effect of processing on DPPH radical scavenging activity

The results of the DPPH free radical scavenging ability of the seaweed processed under different conditions are shown in Table 2. DPPH reagent has been used extensively for investigating the free radical scavenging activities of compounds (Shon *et al.*, 2003). The results indicated that free radical scavenging ability of the processed seaweeds ranged from...
52.51 to 100% (concentration 100 µg/ml extract) with extracts from seaweed dried for 12 h followed by boiling at 100°C being most effective. Significant differences (p < 0.05) in DPPH values were found for all processing treatments. At 100 µg/ml extract concentration, drying led to slight decrease in DPPH radical scavenging activity from 75.5% to 74.69% (12 h) and 67.87% (24 h) while boiling led to a significant increase (p < 0.05). Boiling at 100°C increased DPPH scavenging by 23.89%, from 75.5 to 93.54%. Drying of *H. elongata* for 12 h followed by boiling at 100°C had the most significant increase in antioxidant activity as 100% inhibition of the DPPH radical was achieved with 100 µl/ml of extract. Steaming significantly reduced the DPPH radical scavenging activity (p < 0.05) to 52.51%. Extracts from *H. elongata* given drying pre-treatments followed by steaming had 53.79% (12 h) and 53.5% (24 h) scavenging of the DPPH radical. Seaweed microwaved at 450 W had 76.29% activity against DPPH radical while microwaving at 900 W had 75.35% activity.

DPPH results are often interpreted as the “efficient concentration” or EC$_{50}$ value, which is defined as the concentration of substrate that causes 50% loss of the DPPH activity (Molyneux, 2004). The EC$_{50}$ values of DPPH radical scavenging activity from dried methanolic extracts of seaweeds are also presented in Table 2. Processing of *H. elongata* resulted in significantly different EC$_{50}$ values (p < 0.05), depending upon treatment. The EC$_{50}$ levels ranged from 12.5 to 100 µg/ml of extract with all treatments in which boiling was found to have the most effective EC$_{50}$ values (12.5 µg/ml of extract). Extracts from fresh seaweed had an EC$_{50}$ of 25 µg/ml. Drying of seaweed led to a significant (p < 0.05) reduction in the DPPH radical scavenging activity of the extract to 50 µg/ml (12 and 24 h). Steaming had the most detrimental effect on the DPPH radical scavenging activity of the extract as 100µg/ml was required to reduce the DPPH radical by 50% and activity at 100 µg/ml concentration was almost half that of the most effective processed seaweed (53.5 and 100%,...
respectively). There was no significant difference between microwaved seaweed extracts compared to fresh (p > 0.05) as all had an EC$_{50}$ value of 25 µg/ml.

3.3 Effect of processing on total flavonoid content

The bioavailability of phytochemicals is influenced by the matrix and microstructure of the food they occur in, the storage conditions (light, oxygen, and temperature regime) and thermal processing they are subjected. As a consequence, knowledge of the content and stability of phytochemicals in foods after processing is essential to evaluate the nutritional value of foods rich in these phytochemicals, like seaweed (Parada and Aguilera, 2007).

The total flavonoid content (TFC) of processed whole *H. elongata* is presented in Fig. 2 (A). The TFC of fresh *H. elongata* was 53.18 mg QE/100 g FW. Drying for 12 and 24 h had no significant effect on the TFC as there was only a slight increase of 0.72 and 0.25%, respectively (p > 0.05). All treatments which included boiling significantly reduced the TFC, within a range of 88.86 to 90.18%. This highest reduction was seen in fresh seaweed boiled at 100°C which led to a 90.18% reduction in TFC (p < 0.05). Flavonoids commonly accumulate in epidermal cells of plant organs, being found as glycosides and in non-glycosidic forms (aglycones) (Sakihama *et al.*, 2002). Release of flavonoids and increased chemical extraction of these compounds could be induced by the effect of boiling (Olivera *et al.*, 2008). This release of flavonoids coupled with contact and leaching into water could have resulted in high reduction in TFC for boiled samples. The results of the present study are similar to Olivera *et al.* (2008) who found that boiling decreased TFC in brussels sprouts. Steaming also led to a significant reduction in TFC compared to fresh but this was significantly less as compared to boiled seaweeds (p < 0.05). Steaming retained 17.4% more TFC than boiled samples as compared to fresh samples. This could be due to the fact that steamed seaweeds were not in direct contact with water which resulted in considerably less leaching of flavonoids. Microwaving at 450 W had a 12.69% increase in TFC while microwaving at 900 W raised
the TFC by 10.65% in whole *H. elongata* (*p* < 0.05). These results are in line with Francisco *et al.* (2010) and Rodrigues *et al.* (2009) who also reported significant losses of flavonoids up to 67% in cooked conventional vegetables.

Total flavonoid content of processed *H. elongata* extracts are presented in Fig. 2 (B). Extracts from fresh *H. elongata* contained 42.29 mg QE/g of extract. All treatments significantly changed the TFC content as compared to fresh (*p* < 0.05). Simple drying for 12 and 24 h significantly reduced (*p* < 0.05) the TFC in the range of 2.45% to 9.35% whereas boiling at 80°C and 100°C resulted in an increase up to 15.76%. However, a combination of drying pre-treatment followed by boiling had the most significant effect on the TFC of *H. elongata*. Drying for 12 h followed by boiling at 80°C and 100°C resulted in 18.72 and 21.67% increase in TFC, respectively (*p* < 0.05). Drying for 24 h followed by boiling at 100°C for 20 mins had a 26.6% increase in TFC. The most significant increase of 32.02% was seen in samples dried for 24 h followed by boiling at 80°C for 30 mins. Steaming alone and in combination with 12 and 24 h drying pre-treatments resulted in 14, 11.43 and 11.98% increase in TFC, respectively. The increase in the case of microwaved samples ranged from 8.72% to 14.29%.

3.4 Effect of processing on total condensed tannin content

Phlorotannins are a group of phenolic compounds which are restricted to polymers of phloroglucinol and have been identified from several brown algae. Many studies have shown that phlorotannins are the only phenolic group detected in brown algae (Jormalainen and Honkanen, 2004; Koivikko *et al.*, 2007). Total condensed tannin content (TTC) of processed *H. elongata* can be seen in Fig. 3 (A). Condensed tannins of the studied seaweeds ranged from 70.61 to 5.5 mg QE/100 g FW. Fresh *H. elongata* contained 70.05 mg CE/100 g FW while drying for 12 and 24 h reduced the TTC by 2.92 and 4.73%, respectively.
Similarly to total flavonoid contents, TTC was significantly reduced upon boiling (p < 0.05). Boiling at 80°C for 40 mins significantly reduced the TTC from 70.05 to 6.22 mg CE/100 g FW (91.11% reduction). The most significant reduction of 92.13% in TTC was seen in *H. elongata* boiled at 100°C for 35 mins (p < 0.05). Similar to TFC, steaming had a lower reduction of TTC as compared to boiling. Steaming retained 40.5% more TTC than boiled samples as compared to fresh (p < 0.05). Microwaving at 450 and 900 W had a 20.27 and 22.54% reduction in TTC, respectively (p < 0.05). The basis of the significant decrease in cooked seaweeds could also be attributed to the possible break-down of tannins present in the seaweed to simple phenol (Akindahunsi and Oboh, 1999). Khandelwal *et al.* (2010) and Somsub *et al.* (2008) also found decreases in tannin levels of cooked legumes and vegetables. In contrast to TPC and TFC, a significant reduction in the total condensed tannins of processed *H. elongata* extracts was observed as compared to fresh (Fig. 3 (B)). Extracts from fresh *H. elongata* contained 55.7 mg CE/g, while drying for 12 and 24 h had 7.73 and 8.65% reduction in TTC, respectively. Boiling at 80°C for 40 mins led to a 58.97% reduction in TTC while 62.89% reduction was seen in *H. elongata* boiled at 100°C for 35 mins. Drying pre-treatment followed by boiling also had significant losses of TTC but less than that of boiled seaweed. Drying for 12 h before boiling at 80 and 100°C had 53.52 and 53.78% reduction respectively. Drying for 24 h followed by boiling at 80°C for 30 min caused a loss of TTC by 55.71% while drying for 24 h in combination with boiling at 100°C for 20 mins had a 55.91% reduction from 55.7 to 24.55 mg CE/g of extract. Steaming resulted in 18.91% reduction while in combination with a drying pre-treatment there was a 28% reduction as compared to extracts from fresh *H. elongata*. Microwaving at 450 and 900 W for 30 and 20 s had a 19.14 and 16.88% reduction in TTC, respectively (p < 0.05).

3.5 Antimicrobial activity of processed *H. elongata* extracts against *L. monocytogenes*
Consumers are concerned about the safety of foods containing synthetic preservatives. This has put pressure on the food industry and has fuelled research into the discovery of alternative natural antimicrobials (Shan et al., 2007). Antimicrobial activity of processed seaweed extracts was studied in order to analyse the effect of food processing on their activity. The entire yield of extract from 5 g original weight of each of the processed seaweeds were dissolved in 2.5 ml TSB and utilized in the assay. Therefore, different concentrations were achieved at each dilution level as can be seen in Table 3. In the present study antimicrobial activity was tested against common food spoilage (E. faecalis and P. aeruginosa) and food pathogenic (L. monocytogenes and S. abony) bacteria. These organisms were studied after discussions with the Food Safety Authority of Ireland because they have been identified as being problematic in the Irish food industry. The entire spectrum of inhibitory effects is reported as outlined by Dubber and Harder (2008).

L. monocytogenes is a Gram-positive pathogenic bacterium commonly isolated from foods in many countries including Ireland (Chitlapilly-Dass et al., 2010). The percentage inhibition of the processed seaweed extracts against *L. monocytogenes* are presented in Table 4 and the concentrations of extract for each dilution of processed *H. elongata* are outlined in Table 3.

At highest extract concentrations, extract from fresh seaweed and those dried for 12 and 24 h (31.44, 32.47 and 34.77 mg/ml, respectively) had 100% inhibition against *L. monocytogenes*. Any processing treatment which included boiling of *H. elongata* had weak activity against *L. monocytogenes* (< 25% inhibition), however extract concentrations were lower most likely due to leaching of phytochemicals during the boiling procedure. Extracts of steamed seaweed had strong activity against *L. monocytogenes* at the highest dilution tested (96.34% inhibition at 34 mg/ml). However when drying was used as a pre-treatment before steaming there was less than half the inhibition against *L. monocytogenes*; 43.25% (31 mg/ml) and 43.85% (29.3 mg/ml) for 12 and 24 h dried samples, respectively. Microwaving at 450 and 900 W
produced extracts with strong inhibition against *L. monocytogenes* in the first dilution (97.24 and 97.26% inhibition at 37.56 and 43.37 mg/ml extract, respectively). As the yield of microwaved *H. elongata* extract was higher than other treatments, this would suggest that the extract is in fact slightly less potent than those of fresh seaweed. Extracts from fresh *H. elongata* at the first concentration tested (31.44 mg/ml) were the most effective of the processed seaweeds overall.

There was no significant difference (p > 0.05) between the first and second dilutions of fresh *H. elongata* extract tested against *L. monocytogenes* (15.72 mg/ml) which again had 100% inhibition in the second dilution. An inhibition activity of 89.88 to 92.99% was obtained by dried extracts whereas extracts from boiled seaweeds had completely lost the antimicrobial activity. Drying pre-treatment before boiling seemed to maintain weak antimicrobial activity of the extracts in the range of 9.81 to 15.89% in the second dilution as compared to 0%.

Extracts from steamed seaweed at the second dilution of 17 mg/ml had strong activity against *L. monocytogenes* giving 96.24% inhibition. Seaweeds which received a drying pre-treatment (12 and 24 h) before steaming had significantly less antimicrobial activity against *L. monocytogenes* in the second dilution with inhibition levels of 34.14 and 34.15% at 15.5 and 14.65 mg/ml, respectively (p > 0.05). Extracts from the second dilution of microwaved seaweed had 82.9% (450 W) and 81.45% (900 W) inhibition against *L. monocytogenes* at 18.78 and 21.74 mg/ml extract concentrations, respectively. At the third and fourth dilutions; although fresh seaweeds still had 98% activity, all processed seaweeds had significantly less inhibition (p < 0.05).

3.6 Antimicrobial activity of processed *H. elongata* extracts against *S. abony*

Salmonella is a Gram-negative food-borne pathogenic bacterium and has become one of the most important causes of acute enterocolitis throughout the world. Salmonellosis is caused by
any of over 2300 serovars of *Salmonella* (Wong *et al*., 2000; Lee *et al*., 2001). Fresh *H. elongata* had the highest activity against *S. abony* as can be seen in Table 5. However, overall, the processed extracts were least effective against *S. abony*, and no processing treatment achieved 100% inhibition of the bacteria. A potential cause is that *S. abony* is Gram-negative, as there are significant differences in the outer layers of Gram-negative and Gram-positive bacteria. Gram-negative bacteria possess an outer membrane and a unique periplasmic space which is not found in Gram-positive bacteria (Nikaido, 1996; Duffy and Power, 2001). Antibacterial substances can easily destroy the bacterial cell wall and cytoplasmic membrane and result in a leakage of the cytoplasm and its coagulation (Kalemba and Kunicka, 2003).

Fresh *H. elongata* extracts had activity which ranged from 87.03 to 37.18% in the first to fourth dilutions. Seaweed which had been dried for 12 and 24 h had moderate activity against *S. abony* in the first dilution of extract but had weak activity from the second dilution onwards (< 50% inhibition). Any processing treatment which included boiling had weak activity against *S. abony* with a maximum of 22.11% inhibition. Extracts from steamed *H. elongata* had strong activity in the first and second dilutions (> 90%) and moderate activity thereafter. Drying of seaweed before steaming led to a significant reduction (p < 0.05) in antimicrobial activity as compared to steaming alone against *S. abony* (44% inhibition) in the first dilution and weak activity in subsequent dilutions. Activity of microwaved *H. elongata* extracts at 450 and 900 W ranged from strong (≤ 94.4%) to weak (< 50%) against *S. abony*.

3.7 Antimicrobial activity of processed *H. elongata* extracts against *E. faecalis*

The Gram-positive bacterium *E. faecalis* is a natural member of the human and animal gastrointestinal flora. This bacterium is an indicator of faecal contamination and has been detected in food, milk and drinking water (Rincé *et al*., 2003). Antimicrobial activity of
processed *H. elongata* extracts against *E. faecalis* are outlined in Table 6. Fresh *H. elongata* extracts had more than 99% antimicrobial activity until the second dilution and moderate activity in the third and fourth dilutions (87.03 and 78.02%, respectively). Dried seaweed extracts had very strong (100%) and strong (95.4%) activity in the first dilution for 12 and 24 h, respectively, however this level was halved in the second dilution with 39.24% (12 h) and 53.01% inhibition (24 h). Extracts from boiled seaweeds had less than 10% activity in the first two dilutions and was completely lost in lower dilutions. A drying pre-treatment before boiling retained more of the bioactivity (p < 0.05) of the extract, for example extracts of *H. elongata* processed by drying for 12 h followed by boiling at 80°C for 30 mins had 51.45% inhibition. Extracts from steamed *H. elongata* had strong activity in the first and second dilutions (≤ 95.21%) and moderate activity thereafter. Drying of seaweed before steaming led to a significant reduction (p < 0.05) in antimicrobial activity as compared to steaming alone against *E. faecalis* also (≤ 44.57% inhibition). Extracts of microwaved *H. elongata* had strong activity in the first dilution (≤ 95.81%) while extracts from the second dilution onwards were significantly less effective with activity below 53.07%.

3.8 Antimicrobial activity of processed *H. elongata* extracts against *P. aeruginosa*

P. aeruginosa is a ubiquitous Gram-negative food spoilage bacterium with great adaptability and metabolic versatility. *P. aeruginosa* can attach onto a variety of surfaces and in a variety of niches including the food processing environments by forming biofilms, which are more resistant to environmental stresses, host-mediated responses, sanitizing agents, and antimicrobial agents (Bremer *et al.*, 2001). Antimicrobial activity of processed *H. elongata* extracts against *P. aeruginosa* are presented in Table 7. Similar to Gram-negative *S. abony*, there was also no processed seaweed extract which gave 100% inhibition against *P. aeruginosa*. Antimicrobial activity of extracts from fresh *H. elongata* were strong in the first
dilution with 96.39% inhibition and moderate in the subsequent dilutions. Seaweed which
had been dried for 12 and 24 h achieved a maximum activity of 94.05%. Boiling led to a
significant reduction in antimicrobial activity of extracts against *P. aeruginosa*. Activity of
steamed *H. elongata* extracts ranged from 95.32 to 77.54% in the first to fourth dilutions.
Extracts from seaweed given a drying pre-treatment followed by steaming had less than half
the level of activity as compared to steaming alone. The antimicrobial activity of microwaved
extracts ranged from strong to weak (95.73 to 33.16%). In the present study, extracts from
fresh seaweeds had strong antimicrobial activity at a concentration as low as 3.93 mg/ml. In
the majority of reports on antimicrobial activities of seaweed extracts, bacterial growth
inhibiting activities were investigated using standard agar disc diffusion assays (Bansemir *et
al*., 2006; Kuda *et al*., 2007; Shanmugapriya *et al*., 2008). There have been few quantitative
reports on antimicrobial activity of seaweed extracts, however from those available; the
results of the present study have been shown to be more effective than reported by Dubber
and Harder (2008). These authors found extracts of *Ceramium rebrum* and *Laminaria
digitata* had strong activity at 10 and 31 mg/ml, respectively, which is less potent than those
of fresh seaweeds in the present study.

4. Conclusion
The findings of the present study indicate that the method of processing significantly
influences the concentrations of phytochemicals, antioxidant and antimicrobial parameters in
H. elongata. Consumption of *H. elongata* is dependant on some heat treatment in order to
achieve an edible texture. Since cooking invariably leads to a loss of antioxidant properties, a
compromise must be reached between palatability and nutrition. It was found that a
combination of drying followed by boiling reduced cooking time and led to less leaching of
phytochemicals. In terms of antioxidant activity of extract, a drying pre-treatment followed

24
by boiling enhanced the phenolic content per gram of extract and as a result less amount of
the extract would be required to have a significant effect in food products. Processing
significantly affects the antimicrobial activity of extracts from *H. elongata*. Extracts from
fresh *H. elongata* had the highest antimicrobial activity against *L. monocytogenes*, *S. abony*,
E. faecalis and *P. aeruginosa* with good inhibition as low as 4.16 mg/ml extract. A better
knowledge of how these processing conditions affects the phytochemical compounds of
interest is of pivotal importance. Reduction in the moisture content and cooking time also
could have benefits in reducing transport and energy costs. Losses of health-related
phytochemicals are thus likely to be a function of drying and cooking parameters such as
time, temperature and degree of wounding stress to the plant during these processes.

Acknowledgements

The authors acknowledge funding from the Dublin Institute of Technology under the
ABBEST Programme. The authors thank Denis Benson and Noel Grace from the Dublin
Institute of Technology for their technical support and Manus Mc Gonagle for the supply of
fresh seaweed.
References

Table 1. Instrumental and sensory texture evaluation to determine edible texture level of cooked *H. elongata*

<table>
<thead>
<tr>
<th>Cooking time (mins)</th>
<th>Instrumental texture (N/mm)</th>
<th>Sensory panel judgements*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45.33±1.30</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>5</td>
<td>40.47±2.31</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>10</td>
<td>37.38±1.93</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>15</td>
<td>35.89±0.98</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>20</td>
<td>34.62±1.61</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>25</td>
<td>33.98±0.79</td>
<td>Too hard and chewy</td>
</tr>
<tr>
<td>30</td>
<td>32.40±0.15</td>
<td>Edible</td>
</tr>
<tr>
<td>35</td>
<td>32.11±0.74</td>
<td>Edible</td>
</tr>
<tr>
<td>40</td>
<td>30.42±1.05</td>
<td>Edible</td>
</tr>
<tr>
<td>45</td>
<td>30.22±0.95</td>
<td>Edible</td>
</tr>
<tr>
<td>50</td>
<td>30.09±1.02</td>
<td>Edible</td>
</tr>
</tbody>
</table>

*Sensory panel judgements were based on the hardness and ease of chew of the seaweed.

Each value is presented as mean ± SD (n = 6).

Seaweeds were boiled at 100°C
Fig. 1 (A) Total phenolic content of processed *H. elongata* (mg gallic acid equivalents/100 g FW)

![Graph showing total phenolic content for different processing methods.]

Each value is presented as mean ± SD (n = 6).
Means above each bar with different letters (a-m) differ significantly (p < 0.05)

Fig. 1 (B) Total phenolic content of processed *H. elongata* extract (mg gallic acid equivalents/g extract)

![Graph showing total phenolic content for different processing methods applied to the extract.]

Each value is presented as mean ± SD (n = 6).
Means above each bar with different letters (a-j) differ significantly (p < 0.05)

Where each abbreviation is as follows. Fr: fresh; D 12h: Dried 12 hours; D 24h: Dried 24 hours; B 80°C: Boiled 80°C; B 100°C: Boiled 100°C; D 12h B 80°C: Dried 12 hours and Boiled 80°C; D 12h B 100°C: Dried 12 hours and Boiled 100°C; D 24h B 80°C: Dried 24 hours and Boiled 80°C; D 24h B 100°C: Dried 24 hours and Boiled 100°C; St: Steamed; D 12h St: Dried 12 hours and Steamed; D 24h St: Dried 24 hours and Steamed; M 450w: Microwaved at 450 Watts; M 900w: Microwaved at 900 Watts.
Table 2. Yield of total extract (as % w/w of seaweed on fresh weight basis), DPPH radical scavenging activity (%) of processed *H. elongata* extracts (concentration 100 µg/ml) and EC$_{50}$ (µg/ml)* of each extract

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Total methanol extract (%)</th>
<th>DPPH radical scavenging activity (%)</th>
<th>EC$_{50}$ (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>3.14±0.19a</td>
<td>75.50±2.30a</td>
<td>25.00±1.81a</td>
</tr>
<tr>
<td>Dried 12h</td>
<td>3.25±0.20a</td>
<td>74.69±2.31b</td>
<td>50.00±3.31b</td>
</tr>
<tr>
<td>Dried 24h</td>
<td>3.48±0.29ab</td>
<td>67.87±1.05c</td>
<td>50.00±2.55b</td>
</tr>
<tr>
<td>Boiled 80°C - 40 min</td>
<td>0.27±0.09c</td>
<td>92.96±1.55d</td>
<td>12.50±1.12c</td>
</tr>
<tr>
<td>Boiled 100°C - 35 min</td>
<td>0.26±0.06c</td>
<td>93.54±1.24e</td>
<td>12.50±2.00f</td>
</tr>
<tr>
<td>Dried 12h and boiled 80°C - 30 min</td>
<td>0.28±0.05c</td>
<td>95.33±0.80f</td>
<td>12.50±1.00f</td>
</tr>
<tr>
<td>Dried 12h and boiled 100°C - 25 min</td>
<td>0.28±0.06c</td>
<td>100.00±0.00e</td>
<td>12.50±1.02c</td>
</tr>
<tr>
<td>Dried 24h and boiled 80°C - 30 min</td>
<td>0.24±0.02c</td>
<td>88.50±1.24h</td>
<td>12.50±1.21c</td>
</tr>
<tr>
<td>Dried 24h and boiled 100°C - 20 min</td>
<td>0.27±0.02c</td>
<td>89.04±1.85i</td>
<td>12.50±1.00c</td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>3.37±0.21a</td>
<td>52.51±0.56j</td>
<td>100.00±0.98d</td>
</tr>
<tr>
<td>Dried 12h and steamed - 50 min</td>
<td>3.31±0.19a</td>
<td>53.79±1.88k</td>
<td>100.00±1.99d</td>
</tr>
<tr>
<td>Dried 24h and steamed - 50 min</td>
<td>3.30±0.20a</td>
<td>53.50±0.97l</td>
<td>100.00±0.96d</td>
</tr>
<tr>
<td>Microwaved 450w - 30 s</td>
<td>3.75±0.55b</td>
<td>76.29±1.57m</td>
<td>25.00±1.52a</td>
</tr>
<tr>
<td>Microwaved 900w - 20 s</td>
<td>4.34±0.56d</td>
<td>75.35±2.00n</td>
<td>25.00±1.88a</td>
</tr>
</tbody>
</table>

Each value is presented as mean ± SD (n = 6).

Means within each column with different letters (a-n) differ significantly (p < 0.05).

*EC$_{50}$ value is defined as the amount of extract necessary to decrease the initial DPPH radical concentration by 50%.
Fig. 2 (A) Total flavanoid content of processed *H. elongata* (mg quercetin equivalents/100 g FW)

![Graph of total flavanoid content of processed *H. elongata*](image)

Each value is presented as mean ± SD (n = 6).

Means above each bar with different letters (a-f) differ significantly (p < 0.05)

Fig. 2 (B) Total flavanoid content of processed *H. elongata* extract (mg quercetin equivalents/g extract)

![Graph of total flavanoid content of processed *H. elongata* extract](image)

Each value is presented as mean ± SD (n = 6).

Means above each bar with different letters (a-k) differ significantly (p < 0.05)

Where each abbreviation is as follows. Fr: fresh; D 12h: Dried 12 hours; D 24h: Dried 24 hours; B 80°C: Boiled 80°C; B 100°C: Boiled 100°C; D 12h B 80°C: Dried 12 hours and Boiled 80°C; D 12h B 100°C: Dried 12 hours and Boiled 100°C; D 24h B 100°C: Dried 24 hours and Boiled 100°C; St: Steamed; D 12h St: Dried 12 hours and Steamed; D 24h St: Dried 24 hours and Steamed; M 450w: Microwaved at 450 Watts; M 900w: Microwaved at 900 Watts.
Fig. 3 (A) Total condensed tannin content of processed *H. elongata* (mg catechin equivalents/100 g FW)

Each value is presented as mean ± SD (n = 6).

Means above each bar with different letters (a-l) differ significantly (*p* < 0.05)

Where each abbreviation is as follows. Fr: fresh; D 12h: Dried 12 hours; D 24h: Dried 24 hours; B 80°C: Boiled 80°C; B 100°C: Boiled 100°C; D 12h B 80°C: Dried 12 hours and Boiled 80°C; D 12h B 100°C: Dried 12 hours and Boiled 100°C; D 24h B 80°C: Dried 24 hours and Boiled 80°C; D 24h B 100°C: Dried 24 hours and Boiled 100°C; St: Steamed; D 12h St: Dried 12 hours and Steamed; D 24h St: Dried 24 hours and Steamed; M 450w: Microwaved at 450 Watts; M 900w: Microwaved at 900 Watts.

Fig. 3 (B) Total condensed tannin content of processed *H. elongata* extract (mg catechin equivalents/g extract)

Each value is presented as mean ± SD (n = 6).

Means above each bar with different letters (a-n) differ significantly (*p* < 0.05)
Table 3. Concentration of *H. elongata* extracts (mg/ml) from different processed seaweeds (5 g original seaweed) for each dilution tested

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Dilution 1 (mg/ml)</th>
<th>Dilution 2 (mg/ml)</th>
<th>Dilution 3 (mg/ml)</th>
<th>Dilution 4 (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>31.44</td>
<td>15.72</td>
<td>7.86</td>
<td>3.93</td>
</tr>
<tr>
<td>Dried 12h</td>
<td>32.47</td>
<td>16.23</td>
<td>8.12</td>
<td>4.06</td>
</tr>
<tr>
<td>Dried 24h</td>
<td>34.77</td>
<td>17.39</td>
<td>8.69</td>
<td>4.35</td>
</tr>
<tr>
<td>Boiled 80°C - 40 min</td>
<td>2.73</td>
<td>1.36</td>
<td>0.68</td>
<td>0.34</td>
</tr>
<tr>
<td>Boiled 100°C - 35 min</td>
<td>2.67</td>
<td>1.33</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>Dried 12h and boiled 80°C - 30 min</td>
<td>2.80</td>
<td>1.40</td>
<td>0.70</td>
<td>0.35</td>
</tr>
<tr>
<td>Dried 12h and boiled 100°C - 25 min</td>
<td>2.82</td>
<td>1.41</td>
<td>0.70</td>
<td>0.35</td>
</tr>
<tr>
<td>Dried 24h and boiled 80°C - 30 min</td>
<td>2.42</td>
<td>1.21</td>
<td>0.61</td>
<td>0.30</td>
</tr>
<tr>
<td>Dried 24h and boiled 100°C - 20 min</td>
<td>2.77</td>
<td>1.38</td>
<td>0.69</td>
<td>0.35</td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>34.00</td>
<td>17.00</td>
<td>8.50</td>
<td>4.25</td>
</tr>
<tr>
<td>Dried 12h and steamed - 50 min</td>
<td>31.00</td>
<td>15.50</td>
<td>7.75</td>
<td>3.88</td>
</tr>
<tr>
<td>Dried 24h and steamed - 50 min</td>
<td>29.30</td>
<td>14.65</td>
<td>7.33</td>
<td>3.66</td>
</tr>
<tr>
<td>Microwaved 450w - 30 s</td>
<td>37.56</td>
<td>18.78</td>
<td>9.39</td>
<td>4.69</td>
</tr>
<tr>
<td>Microwaved 900w - 20 s</td>
<td>43.47</td>
<td>21.74</td>
<td>10.87</td>
<td>5.43</td>
</tr>
</tbody>
</table>
Table 4. Percentage inhibition of methanolic extracts of *H. elongata* processed under different conditions against *L. monocytogenes*

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Dilution 1</th>
<th>Dilution 2</th>
<th>Dilution 3</th>
<th>Dilution 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>100.00±0.00<sup>aw</sup></td>
<td>100.00±0.00<sup>aw</sup></td>
<td>99.37±1.24<sup>ax</sup></td>
<td>98.09±3.81<sup/ay</sup></td>
</tr>
<tr>
<td>Dried 12h</td>
<td>100.00±0.00<sup>aw</sup></td>
<td>89.88±1.70<sup>bx</sup></td>
<td>43.89±1.43<sup>by</sup></td>
<td>31.68±2.08<sup>by</sup></td>
</tr>
<tr>
<td>Dried 24h</td>
<td>100.00±0.00<sup>aw</sup></td>
<td>92.99±8.16<sup>ax</sup></td>
<td>29.84±2.19<sup>cz</sup></td>
<td>26.98±6.72<sup>cz</sup></td>
</tr>
<tr>
<td>Boiled 80°C - 40 min</td>
<td>27.05±0.60<sup>bw</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
</tr>
<tr>
<td>Boiled 100°C - 35 min</td>
<td>46.45±3.42<sup>cw</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
</tr>
<tr>
<td>Dried 12h and boiled 80°C - 30 min</td>
<td>24.95±3.51<sup>dw</sup></td>
<td>10.00±1.71<sup>ex</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
</tr>
<tr>
<td>Dried 12h and boiled 100°C - 25 min</td>
<td>21.02±2.54<sup>ew</sup></td>
<td>14.00±0.25<sup>fx</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
</tr>
<tr>
<td>Dried 24h and boiled 80°C - 30 min</td>
<td>10.48±3.23<sup>fw</sup></td>
<td>9.81±1.15<sup>gx</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
</tr>
<tr>
<td>Dried 24h and boiled 100°C - 20 min</td>
<td>23.20±2.54<sup>gw</sup></td>
<td>15.89±1.68<sup>hx</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>96.34±3.64<sup>hw</sup></td>
<td>96.24±1.56<sup>ix</sup></td>
<td>81.54±5.56<sup>ey</sup></td>
<td>77.88±5.54<sup>ez</sup></td>
</tr>
<tr>
<td>Dried 12h and steamed - 50 min</td>
<td>43.25±3.23<sup>iw</sup></td>
<td>35.14±0.25<sup>jx</sup></td>
<td>29.57±1.77<sup>fy</sup></td>
<td>20.45±0.78<sup>fz</sup></td>
</tr>
<tr>
<td>Dried 24h and steamed - 50 min</td>
<td>43.85±0.23<sup>jw</sup></td>
<td>34.15±1.12<sup>kJx</sup></td>
<td>28.89±1.89<sup>ey</sup></td>
<td>19.55±0.98<sup>gkz</sup></td>
</tr>
<tr>
<td>Microwaved 450w - 30 s</td>
<td>97.24±0.05<sup>kw</sup></td>
<td>82.90±5.90<sup>lx</sup></td>
<td>48.73±1.57<sup>hy</sup></td>
<td>29.41±5.45<sup>hz</sup></td>
</tr>
<tr>
<td>Microwaved 900w - 20 s</td>
<td>97.26±1.25<sup>ew</sup></td>
<td>81.45±3.07<sup>kx</sup></td>
<td>74.20±1.84<sup>jy</sup></td>
<td>72.86±3.10<sup>iz</sup></td>
</tr>
</tbody>
</table>

Each value is presented as mean ± SD (*n* = 6).

Means within each column with different letters (a-m) differ significantly (*p* < 0.05).

Means within each row with different letters (w-z) differ significantly (*p* < 0.05).
Table 5. Percentage inhibition of methanolic extracts of *H. elongata* processed under different conditions against *S. abony*.

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Dilution 1</th>
<th>Dilution 2</th>
<th>Dilution 3</th>
<th>Dilution 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>87.03±3.91<sup>aw</sup></td>
<td>78.80±1.41<sup>ax</sup></td>
<td>65.13±4.60<sup>ay</sup></td>
<td>37.18±5.71<sup>az</sup></td>
</tr>
<tr>
<td>Dried 12h</td>
<td>77.29±1.26<sup>bw</sup></td>
<td>39.24±2.27<sup>bx</sup></td>
<td>26.83±3.75<sup>by</sup></td>
<td>11.01±2.06<sup>bz</sup></td>
</tr>
<tr>
<td>Dried 24h</td>
<td>83.52±4.23<sup>cw</sup></td>
<td>49.01±3.08<sup>cx</sup></td>
<td>27.17±4.02<sup>cy</sup></td>
<td>10.99±1.07<sup>cz</sup></td>
</tr>
<tr>
<td>Boiled 80ºC - 40 min</td>
<td>10.37±3.97<sup>dw</sup></td>
<td>5.50±0.12<sup>dx</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dz</sup></td>
</tr>
<tr>
<td>Boiled 100ºC - 35 min</td>
<td>16.56±4.11<sup>ew</sup></td>
<td>0.00±0.00<sup>ex</sup></td>
<td>0.00±0.00<sup>dy</sup></td>
<td>0.00±0.00<sup>dx</sup></td>
</tr>
<tr>
<td>Dried 12h and boiled 80ºC - 30 min</td>
<td>13.73±1.09<sup/fw</sup></td>
<td>10.34±0.80<sup>fx</sup></td>
<td>0.00±0.00<sup>fy</sup></td>
<td>0.00±0.00<sup>fz</sup></td>
</tr>
<tr>
<td>Dried 12h and boiled 100ºC - 25 min</td>
<td>13.87±1.69<sup/fw</sup></td>
<td>6.01±1.29<sup>gx</sup></td>
<td>0.00±0.00<sup>gy</sup></td>
<td>0.00±0.00<sup>gz</sup></td>
</tr>
<tr>
<td>Dried 24h and boiled 80ºC - 30 min</td>
<td>22.11±2.98<sup/hw</sup></td>
<td>10.61±1.68<sup/gx</sup></td>
<td>0.00±0.00<sup>gy</sup></td>
<td>0.00±0.00<sup/gz</sup></td>
</tr>
<tr>
<td>Dried 24h and boiled 100ºC - 20 min</td>
<td>15.54±1.75<sup/iw</sup></td>
<td>11.02±4.87<sup/hx</sup></td>
<td>0.00±0.00<sup>gy</sup></td>
<td>0.00±0.00<sup/hz</sup></td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>93.23±2.51<sup/jw</sup></td>
<td>93.04±2.51<sup/ix</sup></td>
<td>82.45±4.25<sup/iy</sup></td>
<td>77.12±4.45<sup/iz</sup></td>
</tr>
<tr>
<td>Dried 12h and steamed - 50 min</td>
<td>44.21±3.78<sup/kw</sup></td>
<td>35.78±0.29<sup/jx</sup></td>
<td>29.87±2.51<sup/ly</sup></td>
<td>20.12±2.58<sup/ly</sup></td>
</tr>
<tr>
<td>Dried 24h and steamed - 50 min</td>
<td>44.12±2.53<sup/kw</sup></td>
<td>36.15±1.25<sup/kx</sup></td>
<td>28.78±1.88<sup/gy</sup></td>
<td>19.70±1.80<sup/gz</sup></td>
</tr>
<tr>
<td>Microwaved 450w - 30 s</td>
<td>93.00±0.98<sup/hw</sup></td>
<td>58.65±1.29<sup/ix</sup></td>
<td>48.62±1.58<sup/hy</sup></td>
<td>30.64±1.35<sup/hz</sup></td>
</tr>
<tr>
<td>Microwaved 900w - 20 s</td>
<td>94.40±1.58<sup/mw</sup></td>
<td>64.09±2.26<sup/mx</sup></td>
<td>53.07±5.98<sup/my</sup></td>
<td>31.28±3.78<sup/mz</sup></td>
</tr>
</tbody>
</table>

Each value is presented as mean ± SD (n = 6).

Means within each column with different letters (a-m) differ significantly (p < 0.05).

Means within each row with different letters (w-z) differ significantly (p < 0.05).
Table 6. Percentage inhibition of methanolic extracts of *H. elongata* processed under different conditions against *E. faecalis*

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Dilution 1</th>
<th>Dilution 2</th>
<th>Dilution 3</th>
<th>Dilution 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>100.00±0.00aw</td>
<td>99.61±0.66ax</td>
<td>87.03±1.41ay</td>
<td>78.02±0.98az</td>
</tr>
<tr>
<td>Dried 12h</td>
<td>100.00±0.00aw</td>
<td>39.24±2.27bx</td>
<td>36.30±6.50by</td>
<td>33.89±5.10bz</td>
</tr>
<tr>
<td>Dried 24h</td>
<td>95.40±0.72bw</td>
<td>53.01±3.08cx</td>
<td>42.28±0.08cy</td>
<td>29.96±1.38cz</td>
</tr>
<tr>
<td>Boiled 80°C - 40 min</td>
<td>7.31±1.25w</td>
<td>5.50±0.12dx</td>
<td>0.00±0.00dy</td>
<td>0.00±0.00dy</td>
</tr>
<tr>
<td>Boiled 100°C - 35 min</td>
<td>10.52±2.54dw</td>
<td>0.00±0.00ex</td>
<td>0.00±0.00dx</td>
<td>0.00±0.00dx</td>
</tr>
<tr>
<td>Dried 12h and boiled</td>
<td>49.45±1.26sw</td>
<td>10.34±0.89fx</td>
<td>0.00±0.00dy</td>
<td>0.00±0.00dy</td>
</tr>
<tr>
<td>80°C - 30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried 12h and boiled</td>
<td>22.11±4.32fw</td>
<td>6.01±1.29dx</td>
<td>0.00±0.00dy</td>
<td>0.00±0.00dy</td>
</tr>
<tr>
<td>100°C - 25 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried 24h and boiled</td>
<td>16.67±2.46gw</td>
<td>10.61±1.68gx</td>
<td>0.00±0.00dy</td>
<td>0.00±0.00dy</td>
</tr>
<tr>
<td>80°C - 30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried 24h and boiled</td>
<td>33.72±3.92hw</td>
<td>11.02±4.87gx</td>
<td>0.00±0.00dy</td>
<td>0.00±0.00dy</td>
</tr>
<tr>
<td>100°C - 20 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>95.21±1.29iw</td>
<td>93.54±2.51hx</td>
<td>81.47±1.58ey</td>
<td>76.42±2.57ez</td>
</tr>
<tr>
<td>Dried 12h and</td>
<td>42.32±5.29iw</td>
<td>35.78±0.29ix</td>
<td>28.74±2.50fy</td>
<td>19.99±1.54fz</td>
</tr>
<tr>
<td>steamed - 50 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried 24h and</td>
<td>44.57±0.98kw</td>
<td>36.15±1.25lx</td>
<td>29.87±1.75ey</td>
<td>18.78±1.24gz</td>
</tr>
<tr>
<td>steamed - 50 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwaved 450W - 30 s</td>
<td>90.12±2.54lw</td>
<td>48.62±1.29kx</td>
<td>31.13±2.01by</td>
<td>23.48±2.06hz</td>
</tr>
<tr>
<td>Microwaved 900W - 20 s</td>
<td>95.81±4.58mvw</td>
<td>53.07±2.26cx</td>
<td>43.61±3.39iy</td>
<td>24.42±5.14iz</td>
</tr>
</tbody>
</table>

Each value is presented as mean ± SD (n = 6).
Means within each column with different letters (a-m) differ significantly (p < 0.05)
Means within each row with different letters (w-z) differ significantly (p < 0.05)
Table 7. Percentage inhibition of methanolic extracts of *H. elongata* processed under different conditions against *P. aeruginosa*

<table>
<thead>
<tr>
<th>Processing treatment</th>
<th>Dilution 1</th>
<th>Dilution 2</th>
<th>Dilution 3</th>
<th>Dilution 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>96.39±2.55</td>
<td>89.11±3.31</td>
<td>74.63±6.64</td>
<td>51.11±5.84</td>
</tr>
<tr>
<td>Dried 12h</td>
<td>72.80±5.22</td>
<td>48.77±5.26</td>
<td>17.71±3.02</td>
<td>1.93±0.72</td>
</tr>
<tr>
<td>Dried 24h</td>
<td>94.05±4.03</td>
<td>41.19±5.8</td>
<td>22.88±7.57</td>
<td>12.16±0.18</td>
</tr>
<tr>
<td>Boiled 80ºC - 40 min</td>
<td>6.45±2.00</td>
<td>5.46±1.23</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Boiled 100ºC - 35 min</td>
<td>34.74±1.52</td>
<td>5.03±5.27</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Dried 12h and boiled 80ºC - 30 min</td>
<td>22.94±2.34</td>
<td>22.92±1.56</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Dried 12h and boiled 100ºC - 25 min</td>
<td>23.09±1.20</td>
<td>12.19±1.15</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Dried 24h and boiled 80ºC - 30 min</td>
<td>24.21±1.60</td>
<td>10.21±1.07</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Dried 24h and boiled 100ºC - 20 min</td>
<td>34.12±3.24</td>
<td>20.98±3.24</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Steamed - 45 min</td>
<td>95.32±2.99</td>
<td>85.66±1.58</td>
<td>83.45±1.89</td>
<td>77.54±3.45</td>
</tr>
<tr>
<td>Dried 12h and steamed - 50 min</td>
<td>44.14±4.54</td>
<td>34.21±0.98</td>
<td>27.89±2.14</td>
<td>19.78±2.54</td>
</tr>
<tr>
<td>Dried 24h and steamed - 50 min</td>
<td>43.25±1.24</td>
<td>36.47±0.16</td>
<td>28.77±2.12</td>
<td>19.10±2.88</td>
</tr>
<tr>
<td>Microwaved 450w - 30 s</td>
<td>93.44±5.48</td>
<td>70.25±7.30</td>
<td>46.73±3.56</td>
<td>33.16±2.31</td>
</tr>
<tr>
<td>Microwaved 900w - 20 s</td>
<td>95.73±4.84</td>
<td>70.21±1.77</td>
<td>46.85±5.84</td>
<td>37.73±4.11</td>
</tr>
</tbody>
</table>

Each value is presented as mean ± SD (n = 6).

Means within each column with different letters (a-n) differ significantly (p < 0.05)

Means within each row with different letters (w-z) differ significantly (p < 0.05)