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Abstract  

Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial 

and spectral information from a specimen. This technique enables investigators to analyze the 

chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers 

significant potential for the detection, visualization, identification and age estimation of forensic 

traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical 

tool for forensic science. This paper provides an overview of the principles, instrumentation and 

analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI 

technology motivating forensic science applications, e.g. the development of portable and fast image 

acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, 

such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of 

possible future applications.  
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Introduction 

The detection and identification of forensic traces are crucial in crime scene investigations. For this 

purpose a wide range of techniques is available, including chemical enhancement techniques and the 

use of light sources with 15 to 30 nm bandwidths, which increase the contrast between a trace and 

its background. Many of these techniques are, however, either destructive or subject to human 

interpretation. Hyperspectral imaging (HSI) is suitable for the non-contact identification of evidence, 

thus minimizing the risk of contamination and destruction of traces. HSI integrates conventional 

imaging and spectroscopy to obtain a three dimensional data set containing both spatial and spectral 

information of a specimen. In addition, analysis of the temporal behavior of spectra can give insight 

in the chemical changes within the specimen, which can be used for age estimation purposes. 

Estimation of the age of forensic traces provides investigators with valuable information, which can 

assist the reconstruction of the timeline of events.  

HSI was originally developed for remote sensing applications utilizing satellite imaging data of 

the earth [1] but has since found application in such diverse fields as food science [2], 

pharmaceuticals [3] and medical diagnostics [4]. Hyperspectral images are analogous to a stack of 

images, each acquired at a narrow spectral band. Like spectroscopy, HSI can be applied in different 

parts of the electromagnetic spectrum, e.g. ultraviolet (UV), visible (Vis), near infrared (NIR), mid 

infrared (IR) or even the thermal infrared range. In these regions reflectance, transmission, 

photoluminescence, luminescence or Raman scattering can be recorded by hyperspectral cameras 

with a spectral resolution similar to miniature spectrographs. Spatial resolutions can be adapted to 

the application, which range from microscopic to landscapes. Advantages of HSI include speed of 

data acquisition, reduction of human error, no destruction of traces, no specimen preparation, and 

the ability to illustrate the results. 

HSI is a powerful emerging tool for the analysis of forensic traces. Latent traces can be 

detected and visualized by using spectral differences to obtain optimal contrast between a trace and 

its background. Individual spectra give information about the chemical composition of the specimen, 



 3 

which is useful for identification and quantification purposes, and the spatial distribution of traces is 

simultaneously recorded. In the last decade, HSI has proven to be a valuable technique for the 

imaging of latent fingermarks and the detection of trace materials within these prints. HSI is also 

emerging in other fields of forensic science and has shown its value in comparative research of 

materials including fibers, paint chips, or inks, where the question arises whether two traces share 

common origin. The possibility of viewing spectral and spatial information side by side is 

advantageous in these cases.  

Recent developments in HSI technology offer added potential for forensic science 

investigations. Because HSI systems are becoming increasingly portable, they may be used at the 

scene of investigation, where traces can be viewed and interpreted in the original context. The 

development of fast scanning systems enables investigators to scan a complete scene, which reduces 

the workload in forensic laboratories and quickly provides investigators with valuable information 

which can lead the investigation.  

This paper gives an overview of the principles, instrumentation and analytical techniques 

involved in HSI, followed by a review of recent forensic science applications. We limited our scope to 

HSI applications using reflectance, photoluminescence, transmission or Raman scattering. Because 

forensic traces are typically encountered in many different environmental circumstances, their 

analysis brings specific challenges, which are also addressed. To conclude, possible future 

applications are summarized.  

 

Hyperspectral imaging  

Interaction of light and matter 

The interaction between light and a specimen is determined by the optical properties of the 

specimen and the incident light. As hyperspectral imaging measures such interaction, it may be used 

to characterize the material. In practice this involves illumination of the object under investigation. 
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Commonly, the first interaction will be on the specimen surface where part of the light will be 

reflected (Figure 1a). This part contains no to little information from within the medium but is 

governed by the index of refraction difference between media. Upon entering the material, the light 

can be scattered or absorbed.  

Scattering is the process by which light interacts with structures in a specimen and causes a 

change in direction of propagation, depending on the wavelength, size of the particle and index of 

refraction differences (Figure 1b). The majority of light is scattered at the identical wavelength of the 

incident light, a process referred to as elastic scattering. There may also be a small fraction that will 

be inelastically scattered (Raman scattering) which will cause wavelength shifts corresponding to the 

vibrational states of the molecules in the specimen (Figure 1c). Raman scattering can be measured to 

chemically analyze the scattering specimen.  

The absorption properties of a chemical compound are wavelength dependent. Absorption in 

the visible wavelength range corresponds to the electronic states of the molecule, while absorption 

in the NIR and IR is determined by the vibrational modes. Upon relaxation, return to the ground 

state, the energy will be released in the form of radiation (heat or photoluminescence) or by transfer 

to another molecule. So both the spectral absorption and, if present, the induced photoluminescence 

can be measured to identify the chemical contents of a specimen using hyperspectral cameras in 

reflectance, or transmission mode (Figure 1d/e). Quantitative analysis, however, is complicated 

because the length of the path travelled by the detected light depends on the optical properties of 

the specimen [5].  

Hypercube formation 

Hyperspectral images are analogous to a stack of images, each acquired at a narrow spectral band. 

The resulting data set is a three-dimensional block of data, the so-called hypercube, with two spatial 

(x,y) dimensions and one wavelength (λ) dimension (Figure 2). This hypercube provides images for 

each wavelength (λi) and a spectrum can be obtained from each individual pixel (xj,yk), as depicted in 

Figure 2.  
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Obtaining information in all three dimensions of a hypercube simultaneously is currently not 

feasible; instruments can only capture two dimensions at a time. Temporal scanning is needed to 

create a three-dimensional hypercube by stacking the two-dimensional data in sequence. There are 

three ways of acquiring a hypercube (Figure 3), commonly known as point scanning (or whiskbroom), 

line scanning (or pushbroom), and area scanning (or staredown). These descriptive names refer to 

the hardware methodology used to acquire the hypercubes:  

• In a point scanning system, a complete spectrum is acquired at a single point. Light 

originating from this point enters the objective lens and is separated into different wavelengths by a 

spectrometer and detected by a linear array detector. Once spectral acquisition is completed, the 

spectrum of another point can be recorded. Scanning has to be performed in both spatial directions 

to complete the hypercube.  

• In the case of line scanning systems, the spectra of all pixels contained in one image line are 

acquired simultaneously. The light is dispersed onto a two dimensional charge coupled device (CCD) 

detector. This way, a two dimensional data matrix with the spectral dimension and one spatial 

dimension is acquired. The second spatial dimension of the hypercube is achieved by scanning across 

the specimen surface in a direction perpendicular to the imaging line. This means that relative 

movement between the object and detector is necessary, which may be achieved either by moving 

the specimen (e.g. using a translation stage or a conveyor belt) and keeping the hyperspectral 

camera in a fixed position or by moving the camera and keeping the specimen fixed.   

• An area scanning system also acquires a two-dimensional data matrix but in this case the 

data represent a more conventional image with two spatial axes. A complete hypercube is obtained 

by collecting a sequence of these images for one wavelength band at a time. The wavelength of 

incoming light in this configuration is typically modulated using a tunable filter.  

System optimisation for forensic science applications 

Typical hyperspectral imaging systems contain the following components: objective lens, wavelength 

modulator, detector, illumination, and acquisition system (Figure 4). All these components can be 
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adjusted to the requirements of the application. The forensic environment of analysis may range 

from laboratory to field conditions, whereas the areas of interest may range from the microscopic to 

landscapes. As for conventional imaging, different objective lenses can be chosen to obtain the right 

spatial resolution for each application, e.g. macroscopic lenses, zoom lenses, wide angle lenses etc. 

For analysis on a microscopic scale, the HSI system can be coupled to a microscope.  

Acousto-Optic Tunable Filters (AOTFs) [6] and Liquid Crystal Tunable Filters (LCTFs) [7] are the 

two most common wavelength modulators employed. Major drawbacks of these filters are their size 

and costs. Recently, HSI systems have been developed and commercialised using Fabry-Pérot filters 

(Innopharmalabs, Ireland). Another recent innovation employs the use of a tunable laser system 

based on Optical Parametric Oscillator (OPO) technology [8]111111111111111111111111111111111111111111, which 

replaces the broadband light source, thus removing the need for a wavelength modulator. The 

benefits of Fabry-Pérot filters and tunable lasers compared to tunable filters are their small size and 

weight, speed of wavelength tuning and high optical throughput. The development of these new 

technologies offers potential for low cost, hand held, portable HSI with the desired resolution for 

trace analysis in forensic science applications.  

After the light is separated into different wavelengths the detector, e.g. a charge coupled 

device (CCD), measures the intensity of the collected light. The pixels in the CCD sensor can be 

arranged in one-dimensional or two-dimensional arrays, resulting in line detectors and area 

detectors [9]. Detectors for the mid-infrared region are also available, such as lead selenide (PbSe), 

indium antimonide (InSb), and mercury cadmium telluride (MCT). To ensure sensitivity of the 

detector to low light intensities in the infrared regions, the detector may have to be cooled. The 

CMOS image sensor is another detector that has the potential to compete with CCD. Typical 

advantages as high speed, low cost, low power consumption, and small size for system integration 

make them prevail in the consumer electronics market (e.g. low-end camcorders and cell phones). 

However, the dynamic range and the sensitivity are lower than those of CCD detectors [9]. 
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The choice of the light properties (broadband vs monochromatic, specular vs diffuse, etc.) 

and consequently the illumination source (halogen, LED, laser, etc.) and lighting arrangement are 

crucial for the performance and reliability of the system. Halogen lamps, commercially available in 

various forms, are most common broadband illumination sources used in hyperspectral applications. 

Halogen lamps can be used directly to illuminate the target (like room lighting) or can be delivered 

through an optical fiber. Light emitting diode (LED) technology has advanced rapidly during the past 

few years, and both narrowband and broadband light generators are currently available in the 

market. This technology is a relatively inexpensive, robust and reliable alternative to halogen lighting, 

and its use for hyperspectral imaging is likely to expand in the near future, with particular benefits 

for portable systems. Unlike broadband illumination sources, lasers are powerful directional 

monochromatic light sources, which make them interesting candidates for photoluminescence and 

Raman applications. The use of aforementioned tunable light sources is still limited in hyperspectral 

imaging applications but they offer promising scope for specific applications including trace analysis. 

The implementation of digital micro-mirror devices (DMDs) is another recent development in HSI 

[10]. In this setup, only the region of interest is illuminated. Such systems reduce variations in the 

spectra arising from scattered light from the background and nearby objects. 

Finally, the image acquisition system can be optimized for the application. The desire for on-

line monitoring within the process industries has seen the emergence of real-time online systems 

typically employing line-scanning approaches. This line scanning setup also offers potential for large-

scale forensic science applications, where instead of using a moving stage or conveyor to pass a 

specimen or product past the detector, the detector itself is moved over a large stationary area of 

interest such as a wall, a floor or an entire scene of investigation (see Figure 5). 

 

Data analysis 

Upon detection, analysis of the data provided in the hypercube is required. Grahn and Geladi detail 

the types of treatment that can be applied [11]. A summary of processing steps is given below.  
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Calibration 

The raw data in a hypercube not only result from the chemical composition of a specimen, but also 

from the illumination intensity, the sensitivity of the detector and the transmission of the optics [12]. 

The influence of these factors is a function of wavelength, but may also show spatial variations. 

Spectral and spatial calibration is required to compensate for this. Calibration measurements 

typically performed for reflectance measurements consist of acquisition of the dark response of the 

system, measured while covering the lens and dimming the light source, and the response of a 

uniform, high reflectance reference. Using these data, the reflectance (R) can be calculated as 

follows: 

R = (Ispecimen – Idark)/(Ireference – Idark),  

where Ispecimen is the intensity of the reflectance measurement of the specimen, Idark the intensity of 

the dark response, and Ireference the intensity of the uniform reference.  

It is considered good practice to carry out calibration on a daily basis, as small changes in electrical 

power sources, illumination, detector response and system alignment may result in changes in the 

detected response. Inclusion of internal reference standards in each hyperspectral image acquired is 

also recommended, which allows monitoring the performance of the system over time. 

Spectral pre-processing 

Spectral information can be used to gain knowledge about the chemical composition of a specimen. 

However, several non-chemical origins cause systematic variations between spectra, unrelated to the 

chemical composition of a specimen, including specular reflections, scattering effects due to surface 

inhomogeneities, varying object – illumination distances and random noise. A number of spectral 

pre-processing techniques can be applied to reduce these variations, e.g. smoothing, offset 

correction, normalization, mean centering, standard normal variate (SNV) correction [13], 

multiplicative scatter correction (MSC) [14], and Savitzky-Golay differentiation [15]. The effect of 

MSC and differentiation is demonstrated in Figure 6; MSC removes variation resulting from scattering 
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effects, first and second order differentiation eliminate a constant offset or linear baseline, 

respectively, and can be used to resolve overlapping peaks originally appearing as shoulders.  

Spectral analysis 

Spectral data analysis attempts to address what different components are present in the hypercube, 

in which concentration and how they are distributed. In some cases the intensity at a single 

wavelength, the integrated intensity (area) under a spectral peak, or ratios of intensities at different 

wavelengths can be sufficient for the analysis. However, using these methods, the large amount of 

spectral information available is not completely exploited. To reduce the amount of variables, while 

keeping the maximum of variation in the data, Principal Component Analysis (PCA) can be applied, 

which is a popular multivariate chemometric method.  

  In general, spectra are compared to other spectra in the hypercube or to reference spectra 

from an external library using a similarity measure, e.g. the Euclidean distance, Pearson’s correlation 

coefficient or the spectral angle [16]. Spectral unmixing can be applied to decompose a measured 

spectrum into a collection of constituent spectra [17-19]. Clustering and classification techniques use 

the spectral information contained in the hypercube and identify regions with similar spectral 

characteristics. Clustering techniques are unsupervised methods, e.g. k-nearest neighbors [20], which 

require no a priori information about the dataset to achieve clustering. Supervised classification 

methods, including partial least squares discriminant analysis [21], and spectral angle mapping [22], 

require the selection of well-defined and representative calibration and training sets for classifier 

optimization. On the other hand, hyperspectral image regression enables the prediction of 

constituent concentrations at the pixel level, thus enabling their spatial distribution in a specimen to 

be visualized. Numerous approaches are available for the development of regression models (e.g. 

partial least squares regression, principal components regression [14]) . 
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Image processing 

Image processing is performed to convert the contrast developed by the previous steps into a picture 

showing the component distribution. Additionally, a single wavelength image can be selected 

showing the highest contrast between different components. Grayscale or color mapping with 

intensity scaling is frequently used to display compositional contrast between pixels in an image. 

False color mapping, in which two or more images at different wavebands are combined to form a 

new color image may be employed to enhance apparent contrast between distinct regions of a 

specimen. 

 An interesting other approach for presenting the results was demonstrated by Alsberg et al 

[23], who projected the results of HSI analysis back onto the scene to highlight chemical differences 

otherwise invisible to the naked eye. This non-destructive technique provides information similarly 

to traditional forensic methods, e.g. the use of luminol to highlight blood stains at a scene of 

investigation, and can be useful to guide investigators in their search for traces.  

 

Forensic science applications  

Although hyperspectral imaging has mainly been used for the analysis of fingermarks, studies are 

also reported on several other forensic traces, including drugs, hair, dentin, bruises, blood stains, 

condoms, inks, tapes, firearm propellants, paints and fibers. These applications are summarized in 

Table 1 and described in more detail below.  

Fingermarks 

Latent fingermarks are a complex mixture of eccrine deposits from the finger and sebaceous deposits 

resulting from touching other body parts, such as the face [24]. Eccrine deposits mainly consist of 

amino acids, inorganic compounds, and proteins, while sebaceous material consists primarily of fatty 

acid esters [25]. The chemistry of these residues varies among individuals and it shows increasing 
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amounts of sebaceous deposits with age [26,27]. Fingermark detection techniques aim to create 

contrast between the ridge details of a latent fingermark and the background on which it is located. 

Detection and enhancement of untreated fingermarks 

Several authors recently evaluated the possibility of detecting untreated latent fingermarks using 

HSI. Exline et al used visible reflectance and photoluminescence HSI to detect untreated latent 

fingermarks on plastic and paper [28]. Resulting images were compared to images created with a 

conventional forensic imaging system, in which different excitation and observation wavelengths 

could be chosen. While both methods succeeded in visualizing latent fingermarks on plastic, HSI 

showed enhanced contrast on paper surfaces. Processing tools used included background division, 

offset correction, normalization and PCA. In a further study Payne et al optimized this visualization 

technique by using different processing tools to achieve an improved image [29].  

Unlike visible HSI, NIR and IR HSI yield information about the vibrational modes of a 

molecule, and thus give additional information about the chemical composition of the material being 

studied. Bartick et al were the first to show the application of NIR and IR HSI for imaging latent 

fingermarks, using spectral bands indicative of the chemical components of the deposited material 

[26]. They successfully visualized fingermarks deposited on aluminum coated microscope slides.  

Crane et al demonstrated the ability of IR HSI to detect latent untreated fingermarks on 

various porous backgrounds (copier paper, cigarette butt paper, U.S. dollar bill, postcard) and non-

porous backgrounds (trash bags, a soda can, tape) [27]. Fingermarks on the soda can and a black 

trash bag were clearly visible when viewing the intensity band image at 9842 nm (asymmetric O-C-C 

stretch ester) (see Figure 7). On other backgrounds, more complicated processing tools were 

required, like PCA, and second derivatives. Processing with these tools rendered most prints clearly 

visible, even on paper-based porous surfaces. However, the position of the fingermarks was known 

before collecting the images.  

In two papers, Tahtouh et al also described the application of infrared HSI to the visualization 

of untreated fingermarks 2,3. Results indicated that the infrared spectra of many untreated 
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fingermarks show peaks due to C-H stretching vibrations around 3333 nm, mainly due to fatty acid 

residues. These peaks are common to most organic compounds, but they can be used to visualize 

fingermarks against some backgrounds, like metals, minerals, and ceramics, that do not contain C-H 

bonds. For fingermarks on other backgrounds, they stated that some type of chemical enhancement 

technique is required prior to hyperspectral imaging. 

Bhargava et al described an approach to use IR HSI to reveal latent fingermarks overlaid on 

top of one another, each made under different hand washing conditions [32]. Differences observed 

in the absorbance of the C-H stretching mode and other vibrational modes in the spectra indicated 

that the two prints had different chemical compositions. Because of this variation, linear unmixing 

applied to the spectral content of the data could be used to provide images revealing both 

superimposed fingermarks. 

 

Detection and enhancement of treated fingermarks 

Conventionally, fingermarks are treated with chemicals to increase sensitivity and/or contrast with 

the background. On porous surfaces such as paper, ninhydrin  and DFO (1,8-diaza-9-fluorenone) are 

often applied, which both react with amino acids present in fingermark ridges, causing a purple color 

or photoluminescence respectively [33]. On non-porous surfaces such as glass and plastic, 

cyanoacrylate (superglue) is the most widely used method [33]. Cyanoacrylate fumes polymerize in 

the presence of moisture and greasy component of the fingermark. The contrast of fingermarks 

treated with cyanoacrylate can be further enhanced by various methods including luminescent 

staining [28].   

Exline et al [28] and Payne et al [29] investigated the potential of HSI to increase the contrast 

and visual quality of treated fingermarks compared to traditional methods of detection. Using visible 

HSI they investigated fingermarks treated with ninhydrin, DFO, cyanoacrylate, and fluorescent dyes. 

In some cases, HSI showed significant enhancement over the traditional method, which was mainly 

due to the suppression of a highly fluorescent background or isolation of the developed latent 
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impression. Hence, the minutiae details were visible using HSI where they were not with the 

traditional method. Such examples were examined and compared to the original donor’s prints by a 

certified fingermark examiner. This process verified that the enhanced detail coincides with actual 

naturally occurring detail. The added information brought by HSI could sometimes be sufficient for 

exclusion purposes, whereas the traditional examination would lead to an inconclusive result. In a 

similar study Miskelly and Wagner used HSI to image chemically treated fingermarks deposited on a 

newsprint and an aluminum soda can [34]. They showed that background correction is an important 

step in the visualization of fingermarks on difficult backgrounds.  

Although visible HSI is an improvement compared to traditional techniques, it is not always 

possible to obtain acceptable fingermark images, for example when the background is highly 

fluorescent, colored or patterned. However, most dyes that absorb or fluoresce strongly in the visible 

region are reflective in the NIR [35]. This means that background interferences from dyed surfaces 

should be reduced when working in the NIR, compared to visible imaging. Maynard et al 

systematically imaged latent fingermarks on porous, non-porous and semi-porous surfaces [35]. Next 

to a wide variety of conventional chemical and physical treatments, NIR laser dyes were tested for 

their ability to produce NIR photoluminescence. Both absorption and photoluminescence properties 

of the treated marks were examined using NIR HSI. The most suitable enhancement techniques 

depend on the type of surface. Fingermarks on colored, printed or watermarked surfaces were 

imaged in the NIR region without interference from the background color, both in absorbance and in 

photoluminescence modes. In these cases, imaging in the NIR region provided advantages over 

imaging in the visible region. 

Background interference problems in the visible region can also be solved by showing 

differences in chemical composition of the print and the background using mid-infrared HSI, as 

shown by Tahtouh et al 2,3. Infrared HSI of chemically treated fingermarks was carried out on several 

challenging backgrounds. It was found that infrared HSI gives high quality images of cyanoacrylate-

fumed fingermarks on polymer banknotes and aluminum drink cans, regardless of the printed 
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background. Attempts to acquire images of fingermarks on paper-based porous surfaces treated with 

established reagents such as ninhydrin were all unsuccessful due to the swamping effect of the 

cellulose constituents of the paper.  

In addition to the chemicals commonly used to create contrast between fingermarks and 

backgrounds, Tahtouh et al tested four novel chemicals which can be visualized with IR HSI [36]. 

These were chosen for their potential to produce a strong, isolated infrared spectral band. Each 

chemical polymerized selectively on fingermark ridges and high quality images were obtained of 

fingermarks on difficult backgrounds.  

Detection and identification of trace contaminations in fingermarks 

Next to eccrine and sebaceous deposits, fingermarks may be contaminated by exogenous substances 

of various sources. These substances might include drugs of abuse, traces of explosives or gunshot 

residue. Traces found at the scene of investigation can be directly related to an individual by its 

presence in the fingermark. Many of the approaches involved in collecting traces are destructive. For 

example, swabbing objects destroys fingermark deposits within the area. Because of its non-

destructiveness, hyperspectral imaging can be used to simultaneously image a latent fingermark and 

detect trace information contaminating it. 

In 2005, Grant et al had volunteers handle a mixture of common materials before giving 

fingermarks [37]. When looking at the fingermarks under a visual light microscope, it was impossible 

to distinguish particles from different materials. However, by using infrared HSI, vibrational spectra 

of individual particles were obtained and identified by comparison with a spectral library.   

In a similar study, Bhargava et al examined traces of explosives within a latent print, using an 

infrared HSI system [32] (Figure 8). They used spectral subtraction to eliminate the effects of latent 

material on traces. Unique spectral features of the traces were used to provide images of the 

distribution of these traces. From pixels dominated by the material the full spectrum of the traces 

was obtained and compared to databases for identification.  
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Ng et al tested different spectral searching algorithms for their efficacy in finding targeted 

substances deposited within fingermarks [24]. Out of a range of algorithms which included 

conventional Euclidean distance searching, the spectral angle mapper and correlation algorithms 

gave the best results when used with second-derivative image and reference spectra. Aspirin, 

diazepam, caffeine, and explosive components were successfully detected and located in a 

fingermark. 

Emmons et al used Raman HSI to examine fingermarks contaminated with traces of 

explosives (532 nm excitation) [38]. To determine if explosives were present in the fingermarks 

measured, the resulting spectra of each pixel were compared to a spectral library of pure reference 

specimens of explosives. A false color picture was created which indicated the possible presence of 

explosives. Significant differences in the spectra could be used to differentiate between different 

types of explosives.  

Chen et al applied IR HSI and principal component analysis to distinguish between 

overlapping fingermarks based on exogenous compounds [39]. After creating a blank fingermark 

containing natural secretions, a second finger contaminated with an explosive solution was printed 

on top of it. Although trace residues of the explosives trapped between the fingermark ridges could 

be clearly detected, it was not evident which fingermark these chemicals belonged to in cases with 

overlapped prints. 

All the above studies examined fingermarks left on surfaces, which are ideal for infrared 

reflection analysis. In a forensic science scenario, reflective substrates such as a doorknob, knife 

blade, or handle should be relatively straightforward for analysis similar to the laboratory situation 

[24]. However, surfaces such as glass, plastic, wood, paper, cloth, etc., will all have their own 

(sometimes strong) infrared absorptions. These IR absorptions of the underlying surface will mask 

some parts of the spectrum, rendering these regions unusable for spectral identifications. The 

effectiveness of finding foreign materials within latent fingermarks in these cases will be dependent 

on having enough identifying spectral features outside these spectral regions [37].  
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Other traces 

Apart from the analysis of fingermarks, the benefits of HSI can be exploited for the analysis of many 

other traces of importance in forensic science. Latent traces can be detected and visualized by using 

spectral differences to obtain optimal contrast between a trace and its background. Individual 

spectra give information about the chemical composition of the specimen, which is useful for 

identification, quantification, or age estimation. The possibility of viewing spectral and spatial 

information side by side is an advantage in comparative research of e.g. fibers, paint chips, or inks, 

where the question arises whether two traces share common spectral features. Several applications 

described in literature are reviewed below.  

Kalasinsky et al were the first to 444444444444444444444444444444444444444444demonstrate the value of 

infrared HSI for determining drugs of abuse in hairs [40]. By examining only the interior portion of 

the hair, drugs exclusively resulting from human ingestion were measured and distinguished from 

drugs that made contact with the outside of the hair. After microtoming the hair, IR hyperspectral 

images were obtained of the cortex and the medulla. Drug free hairs of different sources all 

correlated with standard spectra of proteins. A hair of a chronic drug abuser of hydromorphone was 

analyzed similarly. Subtraction of the drug free reference spectra yielded a strong indicative band at 

5824 nm, which was also present in reference hydromorphone spectra. An intensity band image at 

5824 nm showed that the drug was concentrated in the center of the hair. This way, relative drug 

concentrations across the hair could be successfully determined and visualized. In a further study, 

Kalasinsky showed the distribution of drugs in human hairs, which is critical information to validate 

drug testing data [41]. IR HSI on hairs doped with 6-acetyl morphine (a metabolite of heroin) and 

cocaine, showed that hydrophobic drugs tend to bind to the medulla of the hair while hydrophilic 

drugs tend to be spread throughout the cortex of the hair.  

Hair color is basically determined only by eumelanin and phaeomelanin, whose varying ratios 

produce the observed color. In forensic science casework, hair color is normally classified through 
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visual comparison with standardized plates. Birngruber et al investigated the possibility to objectively 

distinguish hairs from different persons using hyperspectral imaging in the Vis-NIR range [42]. They 

demonstrated an extreme intra-individual variability in the spectra of single hairs from an individual. 

Because of this, hairs undistinguishable on the basis of morphology could not be distinguished based 

on the hyperspectral images.   

The chemical composition of the dentinal part of the tooth evolves with increasing age. 

Tramini et al measured 30 human teeth with Raman HSI (with 632 nm laser excitation) and were able 

to identify a very small quantity of dental material coming from skeleton debris or biological remains, 

and determine which kind of tissue it was [43]. They created a PLS regression model to predict the 

age of an individual based on Raman spectra of his teeth. The model was tested on four teeth, and 

an age estimation was obtained with a mean error of 5 years.  

The analysis of bruises, or aging of bruises in particular, can give important evidence in cases 

of domestic violence or child abuse. Several studies have been performed as initial steps towards the 

aging of bruises using HSI. A bruise is formed after blunt trauma, which results in blood being present 

in the skin. In time, hemoglobin in the blood is degraded into other products, including bilirubin. Both 

hemoglobin and bilirubin have typical spectral features in the visible region  [44]. Payne et al  showed 

the possibility to use HSI to differentiate pure blood from blood with bilirubin based on these 

spectral features [45]. Randeberg et al presented hyperspectral images of bruises on porcine and 

human skin [46]. They used minimum noise fraction transform, a statistical method similar to PCA, to 

classify the injuries. Stam et al described how HSI can be used to accurately determine the areas 

covered by hemoglobin and bilirubin in the bruise, by fitting pixel spectra with a combination of 

reference spectra of chromophores present in bruises [47].  

Similarly, reflectance spectra of blood stains can be spectrally unmixed to derive the relative 

amounts of oxyhemoglobin, methemoglobin and hemichrome within the blood stains, as 

demonstrated by Edelman et al [17,18]. By comparison of spectra derived from hyperspectral 

imaging data with a non-linear least squares fit of the theoretical spectra of the hemoglobin 
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derivatives, blood stains were identified in a simulated crime scene and could be distinguished from 

similarly colored substances [17]. Additionally, the temporal behavior of the amount of  hemoglobin 

derivatives provided insight in the chemical changes occurring in time, and could be used to estimate 

the age of blood stains [18]. Figure 9 shows a simulated crime scene in which fresh and older blood 

stains were distinguished using this method.  

Important evidence pertaining to sexual assault cases can be provided by the identification of 

condom lubricant components. In an exploratory study, Wolfe and Exline showed that some of the 

most common materials found in condom lubricants can be accurately characterized by Raman HSI 

(with 532 nm laser excitation) without the extensive specimen preparation inherent to other 

analytical methods [48]. Using the CH stretching region of the Raman spectrum, they were able to 

generate contrast based on spectral differences.  

To demonstrate the potential of HSI in forensic investigations, Payne et al compared HSI to 

point measurements performed with traditional spectrometers [49]. They used Vis/NIR HSI to 

differentiate between a set of tapes and adhesives, a set of inks (Figure 10) and two brands of 

firearm propellants, based on reflectance and photoluminescence properties. They conclude that HSI 

offers significant advantages, mainly because a large number of specimens can be analyzed at once. 

This makes comparisons of different specimens easier and reduces the analysis time. In the same 

paper photoluminescence spectra of two multi-layered paint specimens were compared using HSI 

[49]. Because both spectral and spatial data were gathered, differences in paint layers could easily be 

highlighted visually, as an alternative to a spectral comparison. This was also shown by Flynn et al 

who analyzed more multi-layered paint specimens using IR HSI [50]. They presented several ways to 

display hyperspectral data, which make chemical differences and similarities between heterogeneous 

specimens easy to visualize and understand for the layperson (such as a juror). The same applies to 

the visualization of differences in bicomponent fibers, as described in [51]. This study showed that 

infrared HSI can provide spatially resolved chemical information for those bicomponent fibers where 

it is possible to detect spectral differences between the two components present. As well as yielding 
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characteristic IR spectra of each component, the technique also provided images clearly illustrating 

the side-by-side configuration of these components in the fiber. However, in 5 of 11 bicomponent 

fibers no spectral differences were found using integrated peak intensities. Multivariate statistical 

analysis may improve these results. Markstrom and Mabbott also demonstrated the advantages of 

using HSI for the comparison of fibers [52] and addressed that the ability to compare fibers 

simultaneously in one measurement minimizes the chance for errors.  

Miskelly and Wagner attempted to improve the visualization of chemically treated soil shoe 

marks using HSI [34]. The standard chemical enhancement technique for such marks is an acidic 

thiocyanate solution which reacts with iron (III) oxides in the soil to form a colored iron (III) 

thiocyanate complex. Unfortunately, this complex has a broad absorption band in the visible 

spectrum. They point at the necessity of enhancement chemicals with narrow absorption bands, as 

these can often be readily enhanced relative to the underlying background.  

A forensic science application of remote sensing technology was demonstrated by Kalacska 

et al [53], who used airborne HSI for the detection of mass graves. Analysis of the spectra using 

Minimum Noise Fraction transform showed a clear separation between an experimental grave, a 

refilled empty grave, grass and forest. This indicates that airborne HSI can be used to detect the 

existence of suspicious decomposition properties, i.e. mass graves, which lead to differences in soil 

chemistry and vegetation. 

 

Typical challenges 

As demonstrated above, the application of HSI in forensic science casework brings specific 

challenges. In contrast to pure specimens usually analyzed in the laboratory, traces from casework 

can consist of complex contaminated mixtures. Next to this, the chemical composition of biological 

traces may change in time. Although these changes can be used for age estimation purposes [43,54], 

the influence of environmental conditions like temperature, humidity, precipitations and light should 
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be studied. For example the influence of temperature and humidity on the aging of blood stains is 

shown by Bremmer et al [55].  

Also, traces are typically not found on ideal neutral reflecting backgrounds used in 

laboratories (see Figure 9). In casework, all possible backgrounds can be encountered (e.g. different 

materials, porous, non-porous, colored, patterned, etc.) which may complicate the measurements 

[27-31,35]. Comparison of spectra on different backgrounds typically requires advanced system 

calibration and data analysis. Miskelly and Wagner and Tahtouh et al examined the spectral 

properties of enhancement chemicals and experimented with new chemicals for the visualization of 

shoe marks [34] and fingermarks [36] respectively dedicated for the use of HSI. Although the use of 

chemicals is not preferred, this may help finding evidence.  

 The above mentioned challenges are not just characteristic for HSI, but are also valid for 

conventional spectroscopy. The transition from spectroscopy to HSI, however, is not straightforward. 

While specimen optical properties are independent of the spectral measurement system, the 

transition from spectroscopy to spectral imaging involves a drastic change in the illumination–

collection geometry of the measurement system. Gebhardt et al showed that this change in 

measurement setup results in a disparity between measured spectra, which is dependent on the 

optical properties of the specimen and the optical path length [56]. Spectral data bases created for 

the identification of forensic traces like fibers or printer toners [57,58] may therefore need to be 

adapted to HSI applications.  

Moving HSI from the laboratory to the scene of investigation brings further complications. 

Advances in wireless technology and sealed operating units are desirable to prevent contamination. 

Investigating scenes where chemical, biological, radiologic, or nuclear (CBRN) events have occurred 

poses dangers to investigators. In these cases, a remotely controlled robotic HSI system could 

provide important information instantly. However, these scenes have even more decontamination 

requirements.  
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The complex nature of crime scenes makes for challenging image analysis. Next to this, 

sunlight, external light sources, shadows and reflections from nearby objects all change the apparent 

illumination on an object. This variation can cause large variability in the measured spectra for a fixed 

object, a problem regularly encountered in remote sensing [59]. Algorithms are needed to distinguish 

this spectral variability due to non uniform illumination from spectral variability between objects.  

 

Future applications 

Despite the challenges, HSI offers great potential for providing new, valuable information in forensic 

science casework. HSI can be applied to detect traces by optimizing the contrast between a trace and 

its background, or to differentiate between traces, based on spectral differences. To create contrast 

between a trace and its background, crime scene investigators traditionally use commercially 

available light sources with different excitation and barrier filters to isolate regions of the spectrum 

where traces of interest have high absorption or photoluminescence. This way, e.g. semen and blood 

traces can be detected [60]. For laboratory purposes, dedicated forensic imaging systems are 

available with different light sources, excitation and barrier filters. These systems are mainly used in 

document analysis, e.g. for differentiating inks [61,62], but can also be applied in other fields, e.g. the 

visualization of gunshot residue patterns on dark clothing [63]. For all these purposes HSI can be used 

instead. Because HSI systems filter the light in many small bandwidths, maximum spectral differences 

can be calculated automatically and the choice of one specific filter is no longer necessary, which 

reduces the risk of human errors.   

  Many applications currently performed with conventional spectroscopy may also be 

enhanced with a spatial component using HSI, similar to the way presented for the identification 

[17,64,65], and age estimation of blood stains [18,54,65-68], as shown in Figure 9. In these 

applications, the added spatial information is crucial, as the blood stain pattern may reveal useful 

information for the reconstruction of a crime [69]. The spectroscopic identification of other body 

fluids [70] will also benefit from HSI, as the traces can then be interpreted in their original context. 
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The spatial distribution of components may be less important in fields like illicit drug analysis. 

However, using HSI instead of spectroscopic point measurements for the identification of drug 

components [71] may speed up the process, as many specimens can be imaged at once. The 

improved speed of HSI compared to spectroscopy, is particularly of advantage in hazardous 

environments. In explosives investigations especially, the ability to measure specimens without 

contact or specimen preparation is beneficial, as many accidents occur even when trained personnel 

handle explosives [72].  

 In 2000, Malkoff and Oliver proposed some interesting applications in forensic medicine 

which are not yet put into practice, like the analysis of patterned injuries (e.g. a tire print on the body 

of a victim), scanning of body and clothes for toxins, the aging of wounds through the spectral 

evaluation of local inflammation and repair, and the estimation of the time of death of a victim [73]. 

They also draw the attention to the need for crime scene reconstruction for operational planning, 

hazard identification, training etc. Crime scenes are often digitally captured using photography, and 

panoramic and 3D scanning techniques. These data can be used for a virtual crime scene 

reconstruction. The addition of HSI data to this reconstruction can give information about the 

chemical composition of traces and their distribution in the scene. Malkoff and Oliver claimed, this 

may help in body localization and retrieval, or the characterization of biological or chemical threats 

[73]. Using HSI, the chemical properties of the scene of investigation can be captured quickly without 

much disturbance to the scene and analysis can be performed afterwards in the original context. 

 

Conclusion 

Recent technological developments in HSI components have opened up the approach to forensic 

science applications. Fast acquisition, portable, high resolution systems are emerging facilitating the 

transfer of HSI from the laboratory to the field. Several forensic science applications of hyperspectral 

imaging were recently explored successfully. Challenges typically encountered in forensic science 

casework, e.g. contaminated traces found on non-ideal backgrounds in varying environmental 
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circumstances, emphasize the necessity to modify existing techniques and instrumentation. Key 

steps in the research process are refining and validating the data to meet the needs of the legal and 

scientific communities. When introduced in forensic science casework, hyperspectral imaging can 

help investigators detecting, visualizing and identifying useful traces non-destructively.  
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Figure 1. The interaction of light with a specimen may lead to a) specular reflection, b) elastic 

scattering followed by diffuse reflection, c) inelastic scattering followed by emission of Raman 

shifted light (dotted lines), d) absorption, and e) absorption followed by photoluminescence 

emission (dashed lines). 
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Figure 2. Hypercube of a blood stain, with two spatial (x,y) and one wavelength (λ) dimension.  

From the hypercube an image plane is shown for one wavelength (λi) and a spectrum is obtained 

from one pixel (xj,yk). 
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Figure 3. Methods for acquiring three-dimensional hypercubes: (a) point scanning, (b) line 

scanning, and (c) area scanning. Hypercubes contain two spatial (x,y) and one spectral (λ) 

dimension. Blue areas represent data acquired by one scan. Red arrows represent temporal 

scanning required to complete the hypercube. 

 

 

Figure 4. Schematic showing components of a HSI system, resulting in a hypercube of the 

specimen. 
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Figure 5. Hyperspectral imaging system at a simulated crime scene. 
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Figure 6. Spectra of several blood stains of the same age before and after pre-processing: a) 
absorbance spectra, b) spectra after applying multiplicative scatter correction (MSC), c) first 
derivative spectra, d) second derivative spectra.  
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Figure 7. Cut and flattened Dr. Pepper’s soda can with fingermark deposit. (A) Soda can imaged by 

a document scanner. B) Infrared image of the outlined area obtained by plotting the band intensity 

at 9842 nm (1016 cm-1). Reprinted from Journal of Forensic Sciences, 52/1, Nicole J. Crane, Edward 

G. Bartick, Rebecca Schwartz Perlman, Scott Huffman, Infrared Spectroscopic Imaging for 

Noninvasive Detection of Latent Fingerprints, 48-53, Copyright (2012), with permission from John 

Wiley and Sons [27].  
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Figure 8. Images of a latent fingermark developed by using different vibrational modes to highlight 

different aspects of the chemical composition of the deposited material. a) Print image developed 

by the absorbance magnitude at 2,920 cm−1. and b) print image developed by absorbance 

magnitude at 1,568 cm−1. c) Example spectra from the oil-rich region (top, dark line) and flake rich 

region are shown. Reprinted from Analytical and Bioanalytical Chemistry, 394/8, Rohit Bhargava, 

Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by 

infrared spectroscopic imaging, 2069–2075., Copyright (2012), with permission from Springer. 
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Figure 9. Simulated crime scene, in which fresh and older blood stains were automatically detected 

and distinguished (left) based on their reflectance spectra (right).   

 

 

Figure 10. Third principal component of blue ink set, indistinguishable with the human eye. 

Reprinted from Talanta, 67/2, Gemma Payne et al, Visible and near-infrared chemical imaging 
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methods for the analysis of selected forensic specimens, 334–344 Copyright (2012), with 

permission from Elsevier [50]. 
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Table 1. List of applications reviewed in this paper. For each application, the measurement mode, 
wavelength range, wave number range and reference is given. Wavelength and wave 
number ranges are copied or converted from information available in the references.  

 

Application Mode Wavelength range 

(nm) 

Wave number range (cm
-

1
) 

Reference 

Untreated fingermarks Reflectance 2500-11111 900-4000 [26] 

 Reflectance 2500-14285 700-4000 [27]  

 Reflectance 400-720  13888-25000 [28] 

 Reflectance 400-720 13888-25000 [29] 

 Reflectance 2500-11111 900-4000 [30]  

 Reflectance 2500-11111 900-4000 [31]  

 Reflectance 2500-11111 900-4000 [32]  

Treated fingermarks Reflectance, 

Luminescence 

400-720  13888-25000 [28] 

 Reflectance, 

Luminescence 

400-720 13888-25000 [29] 

 Reflectance 2500-11111 900-4000 [30]  

 Reflectance 2500-11111 900-4000 [31]  

 Reflectance, 

Luminescence 

400-700 14285-25000 [34] 

 Reflectance, 

Luminescence 

650 – 1100 9090-15384 [35]  

 Reflectance 2500-11111 900-4000 [36] 

Traces in fingermarks Reflectance 2500-11111 900-4000 [37] 

 Reflectance 2500-11111 900-4000 [32] 

 Reflectance,  

Transmission 

2500-11111 900-4000 [24] 

 

 Raman, 

Photoluminescence 

546-590 

400-720 

16950-18300, 

13888-25000 

[38] 

 Reflectance 2500-14285 700-4000 [39] 

Drugs in hair Reflectance 2500-11111 900-4000 [40] 
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 Reflectance 2500-11111 900-4000 [41] 

Hair Transmission 450-1000 10000-22222 [42] 

Dentin Raman  645-800  12522-15472 [43] 

Bruises Reflectance 410-550 18181-24390 [45] 

 Reflectance  400-1000 10000-25000 [46] 

 Reflectance 440-700 14285-22727 [47] 

Blood stains Reflectance 500-800 12500-20000 [17] 

 Reflectance 500-800 12500-20000 [18] 

Condoms Raman  625-640 15650-16000 [48] 

Inks Reflectance,  

Photoluminescence 

400-720 13888-25000 [49] 

Tapes Photoluminescence 400-720 13888-25000 [49] 

Firearm propellants Reflectance,  

Photoluminescence 

400-720 13888-25000 [49] 

Paints Reflectance,  

Photoluminescence 

400-720 13888-25000 [49] 

 Transmission 2500-11111 900-4000 [50] 

Fibers  Transmission 2500-11111 900-4000 [51] 

 Reflectance 400-720 13888-25000 [52] 
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