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Abstract 

Current methods for the evaluation of cellular interactions with nanoparticles 

are non-specific, relatively slow and invasive to the cell. Raman spectroscopy 

is a non invasive technique whose potential in the biosciences has already 

been demonstrated and has been used in the investigation of cell interactions 

with various external agents. The main focus of this study is to employ Raman 

spectroscopy to investigate the interaction of A549 human lung cells with 

single walled carbon nanotubes. Carbon nanotubes have attracted 

considerable interest not only for their outstanding physical and electronic 

properties, promising a potentially vast number of applications, but also for 

their potential toxicological risks as nanoparticles. Determination of their toxic 

response using classical cyto-toxicological assays has proven problematic 

due to their interaction with colorimetric assay methods. In this work, in vitro 

samples were prepared similar to samples used for clonogenic assays and 

were examined using Raman spectroscopy. The acquired spectra of the 

treated and untreated cells were analysed for spectral changes in the 

fingerprint region to try to establish correlations between changes to the 

cellular spectra and the results of the clonogenic assay. Peak area ratio 

analysis suggests a dose dependent response which correlates to previous 

toxicological studies. Multivariate techniques such as principal component 

analysis were employed to further classify cellular response as a function of 

dose and to examine differences between spectra as a function of carbon 

nanotube concentration. It is thus shown that the exposed and unexposed 

cells can be well differentiated on the basis of Raman spectral features. The 

project is basically divided into four sections, each of them assesses one 
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aspect of the toxic effects of SWCNTs and the investigation of those by 

Raman spectroscopy. The responses of cells in the presence of 

nanoparticles, the effect of oxidant production and medium depletion on the 

Raman spectral response and toxicology of the cell are examined 

independently. In all cases the changes to the spectral response will be 

correlated with literature data from classical assays. These spectral data build 

knowledge on the effects of the individual response mechanisms, on the 

overall spectral content of the cell in the presence of SWCNTs, and allow the 

interpretation of subsequent measurements of spectral content after exposure 

to a wider range of concentrations of SWCNTs. As the development of Raman 

spectroscopy, for the analysis of cellular toxicity, is a key feature of this work, 

the development of applicable processing methods is a crucial part. 

Multivariate analysis (e.g. independent component analysis (ICA) partial least 

squares regression PLS regression and principal component analysis PCA) 

are employed to analyse these aspects differentially and to classify and model 

the cellular responses. Finally a comprehensive demonstration of the ability of 

Raman spectroscopy to characterise the cellular response of A549 cells to the 

presence of Carbon nanotubes is made, demonstrating it to be a realistic 

alternative to classical cytotoxicological techniques though highlighting the 

increased demands to experimental designs while employing nano particles. 
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Chapter 1 : Nanotechnology and Nanomaterials 

1.1 Introduction 

Nanomaterials, structured components with at least one dimension less than 

100 nm (US National Institute for Occupational Safety and Health) [1], are 

considered to be a new class of materials with unusual characteristics, not 

only due to the chemistry of the materials themselves, but because their 

dimensions have a significant impact on their chemical properties [2]. In 

addition, chemical modifications or functionalisation can change the optical, 

magnetic or electric properties of these materials [3]. Thin films and surface 

coatings used as features on computer chips or self cleaning glass are 

examples of nano materials with only one dimension in the nano scale. 

Examples of nano materials which have nano-scale extent in two dimensions 

are nanotubes and nano wires, while quantum dots and fullerenes are nano 

scale in three dimensions. Commonly, nanomaterials are produced and 

manipulated in one of two ways, either “top-down”, starting from a bulk 

material mechanically or chemically downsized to a certain shape, or bottom-

up, aggregated from smaller subunits to larger structures. Nano materials 

typically exhibit physical characteristics which are significantly different to their 

larger scale counterparts, due to the changed ratio of surface to volume and 

the increasing contribution of quantum effects [4]. Their chemical activity 

increases and renders them suitable for example as catalysts and optical 

coatings, as probes for the bio detection of chemicals, and as magnet 

resonance imaging (MRI) contrast agents [5]. All of these applications arise as 

the presence of quantum effects enhances the chemical, optical, magnetic or 

electrical properties of these materials. Nanomaterials have already seen an 
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extraordinary range of applications in industry to date and are likely to find 

wide ranging applications in nano- science, -medicine and -engineering. 

Currently, nano-particles are used as composites and additives to cosmetics, 

clays and other convenience materials [6]. For example, titanium oxide nano-

particles are used in sunscreens and in self-cleaning surfaces [7]. It is 

predicted that they will soon be commonly used in paints, fuel cells, additives, 

and other long-term applications as, for example, lubricants, medical implants 

and as nano engineered membranes [8]. In particular, zero-dimensional nano-

particles such as Buckminster fullerenes or quantum dots are starting to play 

a key role in future medicine and science [9, 10]. Given potential or current 

applications, in drug delivery systems, reinforcements or coatings in implants 

or prosthetics, in chemical and molecular imaging [11], nanomaterials promise 

to become an essential part in the area of bio nano-technology and nano 

medicine. 

1.2 Carbon Nanotubes 

Carbon nanotubes, in both their multi- and single-walled forms, have attracted 

significant attention since their first emergence in 1991, having been first 

observed by Sumio Iijima [12]. They are one dimensional macro molecules of 

rolled graphene sheets, differentiated into single or multi walled forms, with 

diameters of the order of nanometers, and a length up to several centimetres. 

Single walled carbon nanotubes (SWCNTs) basically consist of a singular 

graphene cylindrical wall with a diameter of 0.8 to 1.6 nm [13] (Figure 1-1) and 

lengths up to four centimetres [14], whereas multi walled carbon nanotubes 

have multiple cylindrical walls of graphene in a coaxial alignment. The 

diameter of these multi walled carbon nanotubes is dependent on the number 
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of graphene layers (Figure 1-1). Simplistically, they can be described as 

elongated Buckminster Fullerenes. 

 

Figure 1-1 Schematic illustration of Single & multi walled Carbon nanotubes, capped with 
halves of Buckminster fullerenes (http://mavimo.org/chimica/nanotubi) 
 
The way the graphene sheet is wrapped is described by the chiral vector (Ch), 

determined by a pair of indices (n, m). The scalars n and m denote the 

number of unit vectors along two directions in the honeycomb crystal lattice of 

the graphene sheet. If m equals 0, the nanotubes are called "zigzag" because 

of the circumferential zigzag structure. Similarly, if n equals m, the nanotubes 

are called "armchair". Otherwise they are called "chiral" (Figure 1-2). Due to 

the symmetry and the unique electronic structure of graphene, the structure of 

a nanotube strongly affects its electrical properties. For a nanotube of given 

(n, m), if n - m is a multiple of 3, then the nanotube is metallic, otherwise the 

nanotube is a semiconductor. Therefore all “armchair” (n=m) nanotubes are 

metallic, and otherwise, the nanotubes (5,0), (6,4), (9,1), etc. are 

semiconducting.  
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Figure 1-2 Scheme of coordinates of a CNT, (T) describes the tube axis , a1 and a2 describe 
the unit vector of the planar graphene honeycomb. 
(http://en.wikipedia.org/wiki/Carbon_nanotube) 
 

 Theoretically, metallic nanotubes can have an electrical current density more 

than 1.000 times greater than conventional metals such as silver and copper 

[15]. Various methods for the synthesis of carbon nanotubes have been 

developed. These methods range from electric arc discharge, laser ablation, 

and catalytic decomposition of hydrocarbons to high pressure carbon oxide 

conversion [12, 16-18]. Every method produces nanotubes of various 

dimensions and physical properties [19, 20]. As produced, a given volume of 

carbon nanotubes usually contains production specific impurities (e.g. traces 

of the catalytic materials required for production), and the SWCNTs are 

aggregated as bundles. At present, purification processes are not fully 

effective, adding further variation to the content of nanotube samples. Even 

after purification, the trace level of impurities cannot be ignored [21]. The 
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separation of single tubes from these bundles, also after optimal purification, 

is problematic [22-24].  

Nevertheless, because of their outstanding properties, a huge number of 

novel applications for carbon nanotubes is envisaged. Nanotubes are 

extremely light weight and very strong mechanically. Their elastic modulus is 

over 1 TPa [25], giving them the stiffness of diamond [26, 27]. They have 

excellent physical, thermal and chemical stability and conduct electricity very 

well [26]. According to the helicity of the rolled graphene sheet, carbon 

nanotubes display semiconductor or metallic properties and thereby offer a 

diverse range of applications in electronics and aviation or aerospace 

technologies [8], either as part of a molecular switch [28] or as a unit in 

quantum computers [29]. Due to the electrical conductivity of carbon 

nanotubes, electrically conducting polymers and tissue engineering constructs 

become feasible [30] Carbon nanotubes have opened other major research 

areas in the field of biomedical devices, including as the basis of nano-

particle-based molecular and chemical imaging techniques [31, 32] and as 

nano sensors [33]. Single walled carbon nanotubes conjugated with single 

strand DNA fragments can possibly detect the presence of complementary 

DNA sequences by changing the conductivity of small sequences [34]. 

Nanotubes have also been used as the basis for the invention of nano devices 

facilitating biological functions. They are employed as repair mechanisms of 

macromolecules such as DNA, or as scaffolding materials for osteoblast 

proliferation to potentially replace lost biological functions [35]. Nanometer 

scaled carbon fibre composites have been shown to alter the selective 

adhesion of osteoblasts and change nerve cell functions and astrocyte 



6 

adhesion [36]. They can be exploited as molecule transporters delivering 

agents directly into cells [37]. In order to improve the mechanical properties of 

existing materials, single walled carbon nanotubes can be used as nano sized 

filler compounds creating anisotropic nano composites [38]. As a result of all 

these potential applications, they are anticipated to see mass production in 

the near future, which naturally raises concern about their potential human 

and environmental impacts [39]. 

1.3 Toxicology of Nanoparticles 

The same potential advantages of nano materials in terms of their relative size 

compared to single cells gives rise to fears of their potential harmful 

interaction with biological systems [40]. Although particle size and structure as 

a source of toxicity is not completely new (cf. asbestos), the EU takes an 

incremental approach in adapting the relevant regulations [41]. No mechanism 

is currently in place to limit the use of nanomaterials [42]. Ideally, however, 

before including these materials into new or existing devices and 

technologies, the toxicity and biocompatibility needs to be investigated [2]. 

Potential occupational hazards have to be investigated along with 

implementing the use of nanomaterials on a large scale [42]. Thus the field of 

‘nano-toxicology’ can be defined as “The science of engineered nano devices 

and nano structures that deals with their effects on living organisms” [1]. Due 

to their increased reactivity and their nearly unlimited mobility, nanoparticles 

can be toxic even if the main constituent material (e. g. carbon or graphite in 

the case of carbon nanotubes) is considered harmless [1]. One of the 

dominating effects in the toxicity of nanoparticles is the induced generation of 

reactive oxygen species (ROS) [43], not only extracellularly, but also 
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intracellularly. ROS is a global term given to a variety of species that are 

either neutral radicals, radical ions, or bound radicals of oxygen, nitrogen and 

other species. Neutral radicals (e.g. hydrogen peroxide) do not necessarily 

react by the radical-mediated pathways but have the potential to generate free 

radicals through Fenton reactions [44] and are therefore commonly employed 

to induce oxidative damage. Despite the fact that ROS are a chemical hazard, 

they play a major role in cell signalling and cell metabolism [45, 46]. 

Therefore, in cellular metabolism the handling of ROS is a well balanced 

process [47]. As soon as this equilibrium is changed the cellular metabolism is 

under oxidative stress, which can result in short and long term damage to 

exposed cells [48]. The possible damage mechanisms range from lipid 

peroxidation, conformational changes in proteins, enzymes and membranes 

of cellular organelles to nuclear factor activation, gene transcription and 

protein expression [45, 49, 50] and finally in the longer term, to pro 

inflammatory cytokine release [51] and mediated cell death.  

Secondly, it is not necessarily the nano-particle itself which has a toxic 

influence on the organism. Secondary effects or indirect toxicity can play a 

major role in the overall toxic impact [52]. Nano-particles have several 

demonstrated secondary effects on organisms, which potentially block certain 

pathways or intervene in metabolic cycles [53, 54]. They may cause the 

overloading of the capacity of the organisms to tolerate their presence [55]. In 

vitro, they can interfere with the environment and limit the availability of 

nutrients by adsorbing them [52, 56]. The latter effect has been shown to 

virtually deplete the cell culture medium in vitro and thereby starve the 

exposed cells [52]. This starvation, a secondary effect, or termed here as 
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indirect toxicity, finally could lead to a reduced viability or reduced proliferative 

capacity [57].  

Therefore, the consequences of primary and secondary toxicity of the 

exposure to nano particles can be manifold. This complexity increases 

considering the  impurities contained in the produced nano particles as 

another source for nano toxicity in terms of occupational exposure, and the 

possible interaction of primary and secondary effects between nanoparticles 

and their impurities. 

1.4 How are we exposed? 

Depending on the method of production or their application, nanoparticles can 

enter the body either by inhalation, ingestion or even by penetration of the 

skin. In therapeutic applications, nanoparticles might be directly injected into 

the body or presented to the digestive system [1]. It seems unlikely that 

humans will be exposed to manufactured nano-particles in doses detrimental 

to health, for example by pollution, but they might be inhaled in significant 

doses in certain environments [58], during production or during exposure to 

particles released from wear of coatings etc. [2, 40, 59]. The human lung, an 

organ that exchanges 10-20 m3 of air on average per day [60], is likely to 

receive a much larger dose than any other organ. Therefore the lungs 

represent the primary channel of exposure for nano-particle dusts, resulting in 

their deposition in the airway on alveolar epithelium, mucus or epithelial lining 

fluid [1, 61]. These nano-particles on the one hand may be cleared by 

macrophages or by mucus exchange, or on the other hand could enter the 

intracellular space coming in contact with fibroblasts, endothelial cells or cells 

of the immune system [42, 55]. The skin, as the largest human organ, 
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represents a further major route for both occupational and environmental 

exposure, in particular during the process of production of nanoparticles. 

Occasionally, particles that lodge within the avascular epidermis may not be 

removed by phagocytosis and could penetrate the stratum corneum [1].  

Finally, through medical investigations it has been proven that some 

nanoparticles are phagocytosed in the human lung, liver and spleen, 

depending on their solubility and functionalisation, whereby they then may be 

excreted through the kidneys [61-63]. 

1.5 Assessment of toxicity of CNTs to date 

The dominant reason for the toxicity of nano-particles is based on their 

physico-chemical properties. The chemical activity of a nanoparticle is not 

only determined by the bulk material itself. The dimensions and thus the 

relative surface area also play an important role in their chemical reactivity 

[64]. An increased surface area results in greater cellular interfacing 

opportunities and a larger bonding area for possible toxic interactions [1]. 

Nanoparticles have also been observed to increase reactive oxygen species 

(ROS) production themselves [65]. The physical dimensions and properties of 

the nano-particle themselves dictate the limitation of uptake  in cells and 

organs and the possibility of phagocytosis [66]. Depending on the size of the 

nano-particle, they might pass the natural defences of the body, or might be 

just too big to be phagocytosed [55]. The retention time in the organism is 

dependent on their solubility and polarity, and therefore the longer the particle 

interacts with cellular membranes, the more intense are the toxic reactions 

and associated effects [67-69]. In studies to date, a whole battery of 

toxicological assays has been employed in order to assess the toxicity and 
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toxicological endpoints of biological materials exposed to carbon nanotubes. 

As particle inhalation is considered to be one of the highest risk potential 

exposure scenarios, many studies have focussed on simulating lung 

exposure. The epithelial surface area of the lung is predominantly made up of 

alveolar type I cells. Lacking a reliable human in vitro model for this cell type, 

alveolar epithelial type II cell lines such as the A549 cell line are often used as 

a substitute for in vitro models [70]. Individual aspects of SWCNT exposure, 

like the reactive oxygen species production by carbonaceous aggregates [71, 

72], translocation of nano-particles [73] and immune-reactivity [74] have 

already been studied on this cell line alone. In exposures to minimally 

processed SWCNTs, simulating occupational exposure to dust,  no cellular 

internalization of the nanotubes was observed, indicating that the SWNT 

samples do not elicit a primary toxic response [75]. It has furthermore been 

shown that during cell viability studies of A549 human alveolar carcinoma 

cells, the carbon nanotubes interact with commonly used indicator dyes like, 

Coomassie Blue, Alamar Blue™, Neutral Red, MTT and WST-1 [76]. 

Spectroscopic analysis of the nanotube interactions demonstrated 

conclusively the interaction with the colorimetric dyes, compromising the 

associated optical activity commonly used to evaluate particle toxicity [76]. 

A549 cells have also been employed for clonogenic assays, to assess viability 

post exposure to nano particles [77]. The clonogenic assay has proven to be a 

valid alternative to assess cell viability and proliferative capacity [78], 

assessing the toxic response by monitoring colony number and size, thereby 

giving an overall response to exposure [79]. The application of the clonogenic 

assay in viability studies of epithelial lung cells exposed to single wall carbon 
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nanotubes reveals significant results. The clonogenic endpoints of colony size 

and colony number have demonstrated an overall toxic response as a result 

of exposure to carbon-based materials. It is notable that the colony number, 

normally an endpoint associated with viability, was not significantly influenced, 

whereas the colony size, an indication of proliferative capacity, was 

significantly reduced compared to controls. The influence on the proliferative 

capacity has been associated with a secondary effect due to the depletion of 

the medium as a result of the adsorption of medium components onto the 

surface of the carbon-based nano materials [80]. This adsorptive nature of the 

nanotubes and the reduced colony size suggest that the cells were more likely 

starved due to depletion of the nutrient medium. In terms of toxicity, this 

reveals a secondary effect, already known from nutrient deficient 

environments [77, 81]. Although this technique provides accurate results, the 

assay is very time and resource-consuming in terms of setup and analysis 

and provides only information about the growth of cell cultures [82] rather than 

more specific intracellular mechanisms of response. 

1.6 Why Spectroscopy? 

Raman spectroscopy is explored in this project as a potential toxicity 

screening method to overcome the difficulties experienced in the application 

of classical toxicological assays for the assessment of nanoparticles [76]. 

Ultimately, it can potentially revolutionise the screening techniques, providing 

details of cellular response at a molecular level, with subcellular resolution. It 

is a cost effective method that requires little effort in sample preparation and 

no additional assay to measure an effect. Raman spectroscopy is a very 

versatile analytical tool, known for its strengths in the physical and chemical 
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characterization of materials and systems [83-85]. The modality potentially 

offers analytical and diagnostic information at a high sub cellular spatial 

resolution [86]. It derives an additional benefit from the minimal need for 

processing of biological materials. For example, one can perform Raman 

measurements in solution, whether that solution is opaque or translucent, or 

contains strongly reflecting or strong absorbing materials [87-89]. It has 

already been shown to be a viable tool for disease diagnosis [90] as well as 

for the detection of extracellularly mediated changes in the chemical content 

of the cell [91]. The Raman spectrum of a cell also contains chemical 

information regarding its constituents, providing a complete biochemical 

fingerprint of the cell, and ultimately exhibiting signatures that may be 

indicative of cell state, e.g. proliferation, apoptosis, necrosis, etc. [90, 92-94]. 

Though changes to single spectral features, as a result of any changes to the 

state of the cell or a molecule, are possible, it is more often a complex effect 

that is exhibited by a number of dependent and independent spectral features. 

Since the molecular content of the cell is so complex, the Raman spectra of 

cells and tissues are complex convolutions of the vibrational signatures of 

each of the components. Therefore, multivariate analysis (MVA) of 

spectroscopic data is required to analyze the complex spectral changes 

resulting from changes in the state of the cell after exposure to external 

agents. MVA delivers a detailed view of the overall response [95, 96] and 

allows for example the classification of pathologically altered tissues. 

Multivariate analysis can quantify the response of biological materials to 

external stimuli. Depending on the method used, it is possible to model the 

spectral features for characterization of biological effects [97, 98]. 
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1.7 Aim of the Study 

The aim of this study is the development of Raman spectroscopy with 

advanced signal processing technologies and to explore its application as a 

tool to assess the toxicity responses, or more generally the biological 

responses, in cells exposed to potentially toxic nanomaterials. In particular, 

the study aims to develop and elucidate methodologies for the analysis of the 

toxic effects of carbon nanotubes on human lung cells in vitro. The study 

specifically duplicates previous toxicological assessments with the aim of 

correlating spectroscopic signatures with established gold standard 

techniques. The SWCNTs samples are minimally processed, with the 

objective of mimicking the real occupational exposure of human epithelial lung 

cells to airborne carbon nanotube dusts. The goal is to comprehensively 

characterize the possible toxic effects by evaluating aspects of the primary or 

secondary toxicity with Raman spectroscopy. It is expected that this technique 

can overcome the existing problems of common toxicological assays in terms 

of informative value, rapidity, ease of sample preparation, and thus cost of 

application. In the initial study presented in chapter 3, A549 cells were 

exposed to various doses of minimally processed SWCNT’s, according to the 

exact protocol previously employed for clonogenic studies [99]. The results 

are compared and correlated with the results of this clonogenic study using 

both uni and multi variate analyses in order to establish the robustness of the 

technique. Although clonogenic endpoints are employed as the gold standard 

of toxicological assays [78, 82, 100] they are non-specific, and consequently 

in chapter 4 the study is extended to explicitly monitor secondary effects due 

to medium depletion, caused by the adhesion of the nutrients to the SWCNTs. 
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As already demonstrated by Casey et al. [101], employing colorimetric and 

clonogenic methods, carbonaceous nano particles reveal significant 

cytotoxicity, due to alteration of cell culture medium, at high exposure doses 

only.  

Induced immuno responses have also been observed as a result of exposure 

the SWCNTs and are characterised by the release of cytokines. In 

inflammatory responses of A549 lung cells, ROS are known to be an 

aggressive mediator. Single wall carbon nanotubes on the other hand, have 

been demonstrated to be a significant source of oxidative stress [1] and 

therefore primary toxicity.. Therefore, in an attempt to determine the 

spectroscopic signature of this primary toxicity and the influence of ROS on 

the cell viability, in chapter 5, A549 cells are exposed directly to medium 

enriched with reactive oxygen species as a result of exposure to hydrogen 

peroxide.  

The results of all spectroscopic studies are compared directly with 

conventional assays published in the literature [45, 52, 76, 102-104]. 

Spectroscopic signatures of a range of specific toxicological responses are 

ascertained. As a bonus, it is expected that, with extensive two-dimensional 

spatial recordings of exposed cells, the localization of carbon nanotubes and 

their toxicological impact can be elucidated. 

1.8 Summary  

Nano-particles are already common constituents of modern technology. They 

may be used not only in technical but also in medical applications in the 

future. Their reactivity is disproportionally higher than bulk carbon and it has 

already been shown that they can have a huge biological impact. Thus, it is 
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vitally important to analyze the toxicological aspects of exposure to nano-

particles. The targeted tissue and therefore the in vitro cell line should match 

the route of exposure. The means of analysis should be influenced as little as 

possible by the nano-particle itself, however. The common cyto-toxicological 

assays have been shown to be problematic in terms of assessing the results 

of exposure to carbon nanotubes whereas the clonogenic assay seems to be 

a more reliable standard to compare to the expected results. It is, however, 

non specific in terms of mechanisms of interaction and Raman spectroscopy 

is proposed as an alternative. Raman spectroscopy is established as a 

versatile tool in materials sciences. This technique is now being adapted to 

the analysis of the effects of exposure in biological materials. The advantage 

is the minimal requirement for sample preparation and the rapidity of 

measurement combined with high spectral and spatial resolution. It enables 

more realistic experimental conditions to mimic the real exposure of human 

epithelial lung tissue to carbon nanotube dust. Within this thesis, studies 

demonstrating a correlation of the non-specific toxicological response with 

conventional cyto-toxicological methods are described. The overall aim of the 

study is to establish the spectroscopic responses associated with more 

specific responses. 
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Chapter 2 : General Materials & Methods 

2.1 Introduction 

In this chapter, the general spectroscopic, sample preparation, data pre 

processing and data analysis techniques employed in this work are outlined. 

The physics of Raman spectroscopy and its chemical and physical 

applications are elucidated. The influences of the substrate employed, the 

exposed cell line, and the test materials on the experiment will be discussed. 

The methods of exposure, preparation of the samples, storage and the actual 

measurements are described. Parallel to considerations of linearity, noise, 

and baseline, aspects of the derived spectra and corresponding pre 

processing methods, the data processing techniques used are outlined. 

Mathematical data processing is introduced to cover univariate and 

multivariate methods. Finally, chemical imaging in Raman spectroscopy 

based on the previously described techniques is introduced and a sample of 

the current studies is given. 

2.2 Raman Spectroscopy 

Upon interaction with a material, light can be absorbed, reflected or scattered. 

Rayleigh scattering (elastic scattering) occurs when the scattered light is of 

the same frequency as the incident light. Raman scattering (inelastic 

scattering) is a result of light that is scattered by a material (molecule in the 

case of the current study) whereby its frequency differs from that of the 

incident light as a result of the interaction of the photon with the molecular 

vibrations (Figure 2-1). In Raman scattering, the energy increase or decrease 

from the excitation is related to the vibrational energy spacing in the ground 
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electronic state of the molecule and therefore the Raman shift of the Stokes 

and anti-Stokes lines are a direct measure of the vibrational energies of the 

molecule. In Stokes Raman scattering, the molecule starts out in a lower 

vibrational energy state and after the scattering process ends up in a higher 

vibrational energy state. Thus, the interaction of the incident light with the 

molecule creates a vibration in the material, and the scattered photon is 

reduced in energy. 

 
Figure 2-1 Schematic virtual energy level diagram of Rayleigh and Raman scattering (Stokes 
& anti Stokes) (http://en.wikipedia.org/wiki/Raman_scattering) 
 

In anti-Stokes scattering, the molecule begins in a higher vibrational energy 

state and after the scattering process ends up in a lower vibrational energy 

state. Thus a vibration in the material is annihilated as a result of the 

interaction and the scattered photon has an increased energy. The frequency 

differences between the Raman lines and the exciting line are characteristic of 

the scattering substance and are independent of the frequency of excitation. 

The Raman-effect arises from the coupling of the induced polarisation of 

scattering molecules which is caused by the interaction of the electric field 

vector of the electromagnetic radiation with the molecular vibrational modes.  
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Light of frequency ωL produces a polarization in a material given by Equation 

2-1. 

tCosEP LLL ωωχω 0)()( =  Equation 2-1 
 

where P is the polarisation, ωL is the frequency of incident light, E is the 

electric field and χ(ωL) is the polarizability or susceptibility, normally 

considered a constant of the material associated with its electronic properties. 

However, at a finite temperature, a material is not at equilibrium and atoms 

will vibrate about their equilibrium positions, R, along the normal coordinates, 

with frequency ωK in accordance with a simple harmonic oscillator 

approximation. The displacement from equilibrium can be represented by 

Equation 2-2. 

( ) ( )tRtR KωcosΔ=Δ  Equation 2-2 
 

The susceptibility to polarisation thus oscillates about its equilibrium value 

χ0,and can be represented by Equation 2-3; 

( ) ( )tt kkk ωχχχ cos0 Δ+=  
Equation 2-3 

 
 
The polarisation now has the form as illustrated in Equation 2-4;  

( ) ( ) ( ) ( )KKLKLLKL ttP δωωχωωχωω −ΕΔ+Ε= coscoscos, 000  Equation 2-4

where δK takes into account any phase difference between the molecular 

vibration and the electric field oscillation. This may be written as Equation 2-5: 

( ) ( ) ( )( ) ( )( ))(2/1, 000 KKLKKLKLLKL tCostCosEtCosEP δωωδωωχωωχωω +++−−Δ+=  Equation 2-5

Thus the polarization has the form: 

( ) ( ) ( )KK PPPP ωωωωω ++−+= 000  Equation 2-6

An oscillating polarization will reradiate at the oscillation frequency and thus 

the scattered light has three components. P(ω0) gives rise to Raleigh 
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scattering. P(ω0-ωK) corresponds to the subtraction of a vibrational quantum 

from the photon energy and the creation of a vibration and gives rise to the 

“Stokes lines” of a Raman spectrum. P(ω0+ωK) corresponds to the addition of 

a vibrational quantum to the photon by the annihilation of a vibration and 

results in the “anti-Stokes lines” of a Raman spectrum. 
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Equation 2-7 
 

 

In Raman spectroscopy, each vibration can couple to the laser generating a 

vibrational spectrum on both Stokes and anti-Stokes sides. The Stokes shift is 

normally measured, as at room temperatures it is easier to create a phonon 

than to annihilate one, in accordance with the Boltzmann population 

distribution. The ratio between the Stokes and anti Stokes scattered 

intensities, as represented in Equation 2-7, can be used as a measure of the 

temperature of a material under irradiation. In Raman spectroscopy, the 

parameter of interest is the frequency shift as a result of the coupling to the 

vibrations and thus the incident frequency is set to zero and the Stokes line 

shift is represented as a positive shift.  For comparison with infrared 

spectroscopy, frequency shifts are usually given in wavenumbers. Figure 2-2 

shows for example the Raman spectrum of a Silicon crystal. Its sharp peaks 

are often used for calibration purposes in Raman spectroscopy. The Stokes 

(positive) and anti-Stokes (negative) Raman lines can be seen symmetrically 

shifted from the incident laser line by a frequency of 520.7cm-1. 
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Figure 2-2 Raman spectrum (Stokes & anti-Stokes) of a silicon crystal (nonimmersed, exited 
with 514.5 nm for one second with ~0,6mW and 1800l/mm grating)  
 

The selection rule for Raman activity dictates that there must be a change in 

the polarizability of a molecule during the vibration. For example, the 

symmetric stretch of CO2, although IR inactive, is Raman active and the peak 

occurs at 1351cm-1 in its Raman spectrum. Therefore, although Raman 

spectroscopy is very similar to the more frequently used IR spectroscopic 

technique, the two vibrational spectroscopic techniques are complementary. 

For polar molecules, some vibrations give rise to strong bands in the IR 

spectrum since they cause large changes in the dipole moment, but they give 

weak Raman signals since it is difficult to induce a change in the polarizability 

of such molecules. Like-wise, for non-polar molecules, vibrations that give 

very strong Raman bands usually result in weak infrared signals. For 
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example, hydroxyl or amine stretching vibrations, or the vibrations of carbonyl 

groups, are usually very strong in an IR spectrum, and usually weak in a 

Raman spectrum [105]. However, the stretching vibrations of carbon double or 

triple bonds and symmetric vibrations of aromatic groups are very strong in 

the Raman spectrum. Raman spectroscopy has the advantage of minimal 

interference from the polar OH vibrations of water so it is a good choice for 

biological samples with a view towards in vivo measurements. Also, as 

Raman is usually carried out using visible wavelengths, higher spatial and 

spectral resolutions can be achieved.  Currently vibrational spectroscopy 

utilizing Raman spectroscopy for the characterization of biological specimens 

has a large number of demonstrated applications. Since the year 2000, more 

than 1980 articles dealing with Raman spectroscopy for the purposes of 

characterization of biological specimens have been listed in Pub MED Central 

(PMC) alone and the number increases annually. A large number of in vitro 

and in vivo applications have been developed to date [86, 94, 106]. The 

development of the modality as a means of assessing the cyto-toxicological 

impact in biological specimens is therefore a natural progression [95, 107, 

108]. 

2.3 Raman Instrumentation 

The Instruments SA Labram 1B and Horiba Jobin Yvon Labram HR800 UV 

utilised in this work are confocal Raman imaging microscope systems. Both 

have motorised XY sample stages for automated Raman imaging. The 

Labram1B has both Helium-Neon (632.8nm/11mW) and Argon ion 

(514.5nm/130mW), lasers available as excitation sources. The Labram 

HR800 UV is equipped with four sources (488nm 532nm, 660nm, 785nm). 
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They are polarised, enabling measurement of depolarisation ratios and 

studies of orientation within materials. The light is projected to a diffraction 

limited spot of ~1μm via a x100 water immersion objective lens of an Olympus 

microscope (other objectives available on the microscope carousel include 

x10, x20, and x50). The backscattered light is collected by the objective lens 

in a confocal geometry, and is dispersed onto an air cooled CCD detector 

(1024x256 pixels) by one of two interchangeable gratings, 1800 lines/mm or 

600 lines/mm in the case of the Labram 1B and 900 lines/mm or 300 lines/mm 

for the Labram HR800 UV, allowing the range from 150cm-1 to 4000cm-1 to be 

covered in a combination of measurement windows. The dispersion of the 

system operating with the 1800 lines/mm at 514.5 nm excitation (Labram 1B) 

is ~1.65cm-1/pixel with an intensity resolution of 16 bit per pixel and therefore 

a maximum count of 65535 units. The confocal microscopic system allows the 

measurement of powdered samples with no further sample preparation, and 

direct measurement of solids, liquids and solutions. Spectral X-Y Raman 

mapping can be performed and using the confocality option, a Z stack can be 

measured. The systems can be equipped with a remote head (with the use of 

a fibre optic extension) coupled to the spectrometer. Figure 2-3 shows a 

photograph of the Horiba Jobin Yvon Labram HR800 UV system. 
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Figure 2-3 Image of Horiba Jobin Yvon SA Labram Raman Spectrometer HR 800 UV 
 

2.4 Materials & Methods 

2.4.1 Substrate 

The choice of substrate for Raman spectroscopy of in vitro cell cultures is a 

crucial consideration in the experimental design. On the one hand, the 

substrate should be biocompatible in order to achieve good attachment of the 

cells. On the other hand, the substrate should ideally contribute negligible or 

at least well defined at the applied excitation wavelength, thus substrate 

spectra can vary with a changed excitation wavelength, and therefore 

contribute with a de-convolvable Raman spectrum. Common culture 

substrates such as glass slides and transparent plastics produce either 

undesirable spectral peaks or variable spectra, while slides made of quartz 

have been shown to give rise to a constant and mathematically removable 
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spectrum [109]. However, cell culture directly on the spectroscopic substrate 

has proven to influence the chemical content of the cell and its morphology 

[91, 109]. Even the surface morphology can influence the cell adherence, and 

culture on biocompatible coatings, such as gelatine or specifically treated 

surfaces is required. Such coatings have been proven to have negligible 

influence on the Raman spectrum itself [91]. For in vitro studies, a potential 

candidate biocompatible coating for the cell culture model ideally should 

reflect the characteristics of the targeted tissue that is supposed to be 

mimicked. Recent work suggests that the use of 3D-collagen gels outperforms 

other substrates [110]. However, this being introduced after the experiments 

in this work, gelatine coated or polished quartz substrates were used 

throughout. 

2.4.2 Cell line 

A549 cells (CCL-185, American Type Culture Collection, Manassas, VA), a 

Caucasian human lung carcinoma epithelial cell line, with dimensions 

between 35-50 µm, were employed for this study (Figure 2-4). The A549 cell 

type is used as a model for primary human pulmonary alveolar type II (ATII) 

cells of the pulmonal epithelial barrier. This cell type secretes a choline based 

phospholipid lung surfactant (e.g. Dipalmitoylphosphatidylcholine (DPPC)), 

stored in the membrane bound organelles termed lamellar bodies or 

keratinosomes [111]. ATII type cells are able to differentiate spontaneously 

into type I cells within 1-2 weeks  [112]. A549 cells are commonly used as a 

model for pulmonary toxicity assessment induced by biochemical toxins [113, 

114]. However recent studies indicate that A549 cells are a better model for 

alveolar type I cells [112]. 
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Figure 2-4  Microscopic Image of CCL-185 A549 human alveolar, cancerous lung cells of the 
American type culture collection. 

2.4.3 Cell Culture 

The cells were cultured in Dulbecco’s modified minimum essential medium. 

(DMEM, Cambrex) The medium contains a number of components including 

amino acids, vitamins, phenol red and was supplemented with 10% foetal 

bovine serum (FBS), 45 μg /ml penicillin and 45 μg / ml streptomycin at 37oC 

in a 5% CO2 humidified incubator.   

2.4.4 Nano-particles 

HiPco® derived SWCNT were purchased from Carbon Nanotechnologies, Inc. 

(Houston, TX).  This material contained ~10-wt % iron, as specified by the 

manufacturer. The diameter distribution of these HiPco® tubes was previously 

determined to be 0.8-1.2 nm via Raman spectroscopy by calculation, 

employing the RBM profiles of the SWCNT mixture [115], and TEM [13] in our 

laboratory. This material, unpurified, has previously been used in parallel 
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studies for colorimetric and clonogenic assays to assess their toxicity to 

biological material [52, 75, 77, 102]. 

2.4.5 Exposure 

Multiple samples were prepared by harvesting approximately 2.5×104 - 2×106 

cells, depending on the experiment. They were incubated for 24 to 48 h on 

either gelatine coated or polished quartz slides to facilitate attachment to the 

substrate. Afterwards, the unattached cells were rinsed off with phosphate 

buffered saline (PBS) and the exposure agent suspensions were applied to 

the samples for up to 96 hours, depending on the experiment. The exposure 

strategy for the direct exposure experiments matched exactly that used by 

Herzog et al. [99]. The exposure strategy for the medium depletion study 

matched exactly the one used by Casey et al. [77, 101]. Exposure 

concentration, time intervals, and preparation parameters were kept similar to 

deliver exactly comparable data. After exposure, the agent suspensions were 

then thoroughly rinsed off with PBS and subsequently the exposed cells were 

fixed in 4% formalin in PBS solution for 10 minutes. As the final step, the 

samples were washed three times with deionized water (dH2O). Until 

spectroscopic measurements were taken, the samples were stored in dH2O at 

4°C in Para film© sealed six well plates. 

2.4.6 Experimental measurement setup 

Raman Spectroscopy was carried out using either a 514.5 nm (Argon ion) or 

532 nm (frequency doubled Nd3+:YAG) laser source and a grating of 300 or 

1800 lines/mm, providing a spectral dispersion of about 1.43cm-1 or 1 cm-1 per 

pixel (Labram HR 800) . The spectra were recorded using a water immersion 
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lens (Olympus Lum-Plan FL x100) from substrates immersed in dH2O in a 

sealed immersion vessel to avoid desiccation of the samples and to prevent 

possible overheating of the sample. The immersion reservoir was constructed 

by inserting a quartz window into the bottom of a Petri dish. The x100 water 

immersion objective gave a spatial resolution of approximately 1µm at the 

sample. All recorded spectra were acquired as an average of three repetitive 

measurements at one point to reduce the influence of spectral noise. The 

system was previously calibrated to the phonon of crystalline silicon, at 520.7 

cm-1, and depending on the experiment, intensity corrected [116]. The 

measurements were taken at a constant room temperature of 21°C to match 

the optimum operating range of the spectrometer. The measurement range 

was set to an interval of ~250-1750 cm-1 with respect to the excitation line. 

This area covers the fingerprint region of biological samples [76] and in the 

case of SWCNT as external agent, many of the characteristic SWCNT 

spectral features [102]. After a series of spectral measurements on a 

particular slide, the spectral background of the substrate was acquired for 

reference. The laser power was set to 23-37 mW, depending on experiment 

and spectrometer, at the sample and the integration time was set to 90 s 

throughout which delivered reasonable spectra. 

2.4.7 Data Analysis platform 

The data were recorded with NGS-Labspec version 5 and individually stored 

in the proprietary Labspec file format to maintain full information content. 

Every step of the data analysis was then performed using MATLAB 

(MathWorks, USA) version R2008b and in-house code developments, 

supported by a High Performance multicore distributed computing cluster of 
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12 nodes equivalent to 12 personal computers with the total calculatory 

capability of ~3.5×105 million Instructions per second [MIPS].  

2.5 Data Processing 

2.5.1 Data Preprocessing 

2.5.1.1 General Considerations 

In Raman spectroscopy, data processing plays an important role in terms of 

pre- and post- processing. In terms of preprocessing, calibration scales the 

intensity and frequency axes to a standard, whereas, among other processes, 

background correction removes unwanted features in the signal [117].  Some 

of the routines developed and implemented throughout this work are 

introduced in this section and are attached in the appendix. Thus several 

approaches were considered, the most promising though was always the one 

with the least preprocessing and therefore the least impact on the recorded 

data. Though several methods were developed and scrutinised, from the 

second experiment on, no filtering and noise correction methods were applied. 

2.5.1.2 Intensity Calibration 

Intensity calibration is necessary to ensure that the results from different 

instruments and laser sources are comparable. To this end, the system 

intensity response was recorded. The use of Standard Reference Material 

(SRM) No. 2243 of the National Institute of Standards, Boulder, Colorado, 

USA (NIST SRM 2243, 2242, 2241) provides a means to correct Raman 

spectra for relative intensity on a day-to-day basis. The application of this 

standard requires measurements of its luminescence spectrum on the Raman 

instrument employed. Subsequent mathematical treatment of both the 
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observed luminescence spectrum of the intensity standard and the observed 

Raman spectrum of the measured sample create the intended comparability 

of data between spectrometer and excitation lines. The relative intensities of 

measured Raman spectra are corrected for instrument specific response 

employing computational methods using a correction curve. These curves are 

generated with certified polynomials and pre-recorded fluorescence spectra of 

the SRM glass (a manganese doped borate matrix glass).  Accordingly, the 

spectral range of certification which covers the Stokes area of the Raman 

spectrum between 200 and 4800 cm-1 can be corrected to relative spectral 

intensity with the following polynomial (Equation 2-8). 
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Equation 2-8

where ( υΔ ) relates to wavenumbers in cm-1 and An represents coefficients 

listed in Table 2-1 (e.g. for 514.5 nm excitation wavelength). 

Table 2-1 Coefficients of the certified polynomial for 514.5 nm intensity calibration 
Polynomial Coefficient of the 

relative +/- 2σ confidence Curves 

Polynomial 

Coefficient 

Certified Value

Polynomial 

Coefficient 

20 to 25°C 

+2 σ CC -2 σ CC 

A0 -0.0244612  0.0284858 -0.0284858

A1 3.17690E-04 -3.17886E-05 3.17886E-05

A2 -4.84706E-07 1.08168E-08 -1.08168E-08

A3 4.90077E-10 -1.49980E-12 1.49980E-12

A4 -1.70340E-13 1.93433E-15 -1.93433E-15

A5 2.38545E-17 -7.06238E-19 7.06238E-19

A6 -1.16921E-21 6.87758E-23 -6.87758E-23
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By applying Equation 2-8 to the corresponding spectral window used for the 

acquisition of the luminescence spectrum of the SRM and the sample, the 

elements of ISRM( υΔ ) are obtained. ISRM( υΔ ) is normalized to unity over the 

spectral window and is expressed in terms of photons sec-1 cm-2 (cm-1)-1. For 

the intended application of the luminescence standard, the measured 

datasets of the SRM luminescence spectrum, SSRM( υΔ ), and the measured 

Raman Spectra of the samples, SMEAS( υΔ ), have to be presented in units of 

Raman shift (cm-1).  The correction curve ICORR( υΔ ) is defined by Equation 

2-9. Its elements are obtained from ISRM( υΔ ) and of the glass luminescence 

spectrum SSRM( υΔ ). 
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Equation 2-9 
 

The data points of the intensity corrected Raman spectrum SCORR( υΔ ) are 

calculated by multiplication of the data points of the measured Raman 

spectrum, SMEAS( υΔ ) of the sample, with the elements of the correction curve 

as described by Equation 2-10.  

)()()( υυυ Δ×Δ=Δ CORRMEASCORR ISS  Equation 2-10 
 

In measurements employing a dispersive spectrometer, the units of the x-axis 

(cm-1) are directly related to the wavelength (nm) of the measured spectrum. 

The calculated spectrum of the SRM for 514.5nm excitation results in the 

distinctive curvature (Figure 2-5) and with the difference to the measured 

spectrum the calibration can be achieved.  
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Figure 2-5 Sixth-order certified polynomial for SRM 2243. The x-axis is expressed in Raman 
shift (cm-1) relative to 514.5 (19435.18 cm-1) 
 

Due to the lack of noise in the calculated reference spectrum, the noise of the 

measured calibration spectrum is consequently conveyed into each, in this 

manner, calibrated spectrum. Therefore it was found unsuitable after the first 

experiment. Due to the inhomogeneity in application of existing references, 

and the capability of the induction of massive noise, this calibration method 

was only used in the direct exposure experiment. 

2.5.1.3 Linearization 

In dispersive multichannel Raman spectrometers employing a CCD sensor, 

the data point spacing during acquisition can be irregular not only due to the 

use of different gratings. It may change from day to day due to different 

calibration settings. This leads to recordings with different abscissa and 

abscissa-linearity therefore induces variance in the x-axes which can be 

understood as x-noise in the x-direction as described later. Figure 2-6 shows 

the oscillation of the abscisse-interval of a measured spectrum, possibly as a 

result of rounding errors induced by the limitation of the spectrometer and the 
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latent under sampling of the CCD due to its digital character. The distance of 

each datapoint to each neighbour in the x-direction varies around 1.425 cm-1 

±.025 cm-1, dependent on the spectral resolution employed. For successful 

calibration and continuity of the spectral data, this influence can be overcome 

by interpolation between each data point and subsequent re-sampling of the 

spectrum. Figure 2-7 shows the linearised spectrum with constant abscissa 

interval.  
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Figure 2-6  oscillation of abscissa-interval of a recorded signal  
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Figure 2-7  Zoomed spectrum of a quartz substrate background, original spectrum (blue), 
linearized spectrum (red)  
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Although it is difficult to notice the linearization change even when zoomed in, 

the linearization leads to a loss in variance in x-direction. 

2.5.1.4 Cross correlation offset correction 

Offsets in day to day calibrations and possible laser drift over the time period 

of the measurements can cause a varying shift in the recorded spectra that 

has to be compensated for in order to reduce the variance along the 

abscissae. In signal processing, cross-correlation gives a measure of the 

overlap of two signals [118, 119]. Essentially the compared signals are 

systematically offset from each other, whilst calculating their product for each 

offset, which can be employed for Raman spectroscopy, to detect linear shifts 

in between samples. The highest intensity of the cross correlation function 

between two spectra denotes their shift relative to each other. Ideally, this shift 

or lag should be close to zero in unshifted signals.  
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Figure 2-8 Shift detection via cross correlation (shifted spectrum (red) +10, top), cross-
correlation intensity maximum at 10, bottom. 
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Figure 2-8 shows the artificially shifted spectrum of an A549 cell, and the 

cross correlation results, identifying the induced shift with the maximum at a 

lag of 10. 

2.5.1.5 Noise reduction 

2.5.1.5.1 General considerations 

Generally, a recorded spectrum can be understood as the sum of the desired 

and the undesired contributions to the data. The desired contributions should 

emerge after appropriate preprocessing, and the unwanted contributions such 

as baseline, substrate or electronic noise should be removed. Noise in 

general can be used to describe undesired contributions, i.e. the two 

dimensional variation in intensity in the y-direction and an induced variation in 

the x-direction.  

In theory, a spectrum can be described by a given vector y with i observations 

of spectral intensities (Equation 2-11), 

},...,,{ 21 iyyyy =  Equation 2-11

and it is possible to model it by the sum of an ideal spectrum s and the 

background b convolved by a blurring function p, any applicable function, 

which basically is a function that induces various shifts or broadening of 

features along the x axis, plus the added noise n which only influences the y 

axis. (Equation 2-12). The convolution is denoted by * [117]. This is an 

extension of the standard model generally used in signal processing [120]. 

npbsy ++= *)(  Equation 2-12

It is clear that, without additional knowledge, Equation 2-12 is difficult to solve 

for the desired spectrum. The noise n is usually assumed to be statistically 
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constant and thus its mean contributes to the baseline and its variance 

constitutes the noise [117, 121]. Usually one can get an impression of the 

baseline by recording without a sample in place (yb) but this results in a 

similarly complex function,  Equation 2-13.  
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Equation 2-13 
 

In an ideal situation, only the signal of the baseline sb might be free of any 

additional baseline (bb=0), no blurring function would exist (pb=[ ]= empty) and 

no noise (nb=0). Thus the blurring function of the ideal spectrum (yg) would 

become (pg), - the baseline itself (Equation 2-14) therefore showing the 

relation to the standard model. 
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Equation 2-14 
 

This spectral model should be solved intrinsically, ideally with the subtraction 

of elements that are neither signal nor noise. Common practice is to subtract 

recorded reference spectra of major background contributors (e.g. substrate, 

dark-current, intensity response, medium) following the principle of 

superimposition [122]. But also in this case, each spectrum follows the same 

equation (Equation 2-11) and unfortunately the recorded correction spectra 

are not free of noise. Therefore, with every subtraction, the noise, which is not 

stationary or, of predictable intensity, is introduced into the resulting signal. 

Alternatively, the complex noise can be understood as a blurring function 

itself, shifting peak positions on sharp edged signals. Therefore, these two 

kinds of noise, as mentioned previously, have to be overcome. Electronic 

noise, consisting of flicker noise, shot noise and thermal noise is an 
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unpredictable and constant occurrence primarily in the y-direction, and can 

have a huge impact on the quality of any signal [123]. To reduce the influence 

of electronic noise, it is important to increase the signal to noise ratio in the 

experimental setup itself. An effective way to reduce the electronic noise of a 

spectral signal is the exploitation of the full detection range of the CCD 

sensor, by either increasing the collection time or excitation energy. The laser 

beam has to be focused precisely on the point of interest and the spectra of 

this point have to be recorded multiple times to statistically remove random 

noise. Nevertheless, every electronic element in the data collection chain, 

even the resolution of the A/D converter behind the CCD sensor and the 

calculation precision of the (commonly used) computer system adds noise, or 

uncertainties, to the real signal. In this work, the variations in the y-direction 

are predominantly addressed as noise whereas the variations in the x-

direction are addressed by substrate and baseline removal.  

2.5.1.5.2 Moving Average and Savitzky-Golay filtering 

Smoothing of data is commonly employed to reduce the electronic noise 

contributions to a signal. Linear moving average filters (MA) (Equation 2-15) 

are among the simplest smoothing filters. 

∑
−=

+=
p

pj
jijnewi ycy ,  

Equation 2-15 
 

 

Over the window of [-p, p] data points, the signal is averaged. In the case of a 

linear moving average filter, cj =1/(2p-1) is constant. The number of points in 

the filter or filter interval is often referred to as the filter window. The more 

points used in the filter window, the higher the noise reduction becomes, but 
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at the same time the probability of blurring (distorting) the signal increases. 

With linearity of the filter comes the disadvantage of approximation of signals. 

Signal peaks are better approximated by curves, and in a linear model the 

peak maximum will always be underestimated [120]. Models of higher order 

usually provide a better approximation. Nonlinear approximated moving 

average filters are the extension to the classical moving average filters. Each 

window [-p p] is regressed with a function of higher order and the central value 

of this window is replaced by the closest estimate. This tedious process was 

simplified by Savitzky & Golay in 1964 [124], by expressing these regression 

calculations for a certain window and order as a sum of coefficients also 

referred as weights. For example, in a quadratic SG-filter with seven points, 

the coefficients c = [-2, 3, 6, 7, 6, 3, -2]. Therefore the first SG-filtered 

datapoint will be calculated according to Equation 2-16.  
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Equation 2-16 
 

 

Although this moving average-filtering involves higher order approximations, it 

is still a linear model. Each filtered point is a linear combination of the original 

data. Nevertheless, the Savitzky-Golay smoothing algorithm has proven to be 

useful for reducing the noise levels of spectroscopic data [125]. However, it is 
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less effective in cutting out noise than normal finite impulse response filters 

(FIR). A problem is the preservation of high frequency impulses that can be 

noise [126] and the possibility of induced variance by the far window weight 

on the local, to be smoothed, signal value. Therefore, it is possible to induce 

shifts of peaks of low intensity. Figure 2-9 shows the influence of order and 

window size of Savitzky-Golay filters for noise reduction used in literature [91, 

127-129]. One can easily observe that sharp features broaden and decrease 

with increased window size, (see Phenylalanine peak at 1003 cm-1) whereas 

the peak position is influenced by the combination of order and window size. 

Therefore both effects can induce additional variance in a multivariate 

approach.  
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Figure 2-9 Influence of S/G filter settings used in literature on a cellular spectrum of A549 in 
the region 970cm-1-1070 cm-1 

2.5.1.5.3 Moving Median Smoothing 
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The running median smoothing (RMS) approach is likely to smooth features of 

the distribution in a data window, whilst rejecting extreme outliers. The window 

size determines the degree of smoothing, similar to the moving average filter. 

The broader the window, the more features removed and their intensity and 

slew rate drops. Figure 2-10 shows the influence of different running median 

filters on a sample spectrum. 
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Figure 2-10 Influence of RMS filter settings on a cellular spectrum of A549 in the region 
970cm-1 - 1070 cm-1 
 

With increasing window size, the intensity of the sharp features (e.g. 

Phenylalanine) is reduced, whereas small, rather broad features (e.g. C-H in 

plane bending at 1033cm-1 and the C-O stretching at 1046cm-1), are not 

blurred as can be seen with a MA smoothing with a narrower window of seven 

points (Figure 2-9). In regions of the spectrum where the feature intensity 

comes close to the noise level, the information of the x-location becomes 

blurred. In direct comparison, the RMS filter is closer to the real signal 
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whereas with the moving average filter the definition of the phenylalanine 

peak is lost (its base widens) (Figure 2-11).  
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Figure 2-11 Comparison between SG, MA (1st order window 5 points) and RMS (window 5 
points) filters on a cellular spectrum of A549 in the region 970cm-1 - 1070 cm-1 
 

An alternative, self developed, way of employing a running median smoothing 

function with improved performance is to focus on a RMS with a three point 

window. As Figure 2-10 shows, the RMS with a window size 3 or 5 comes 

closest to the original signal and rejects a substantial amount of noise. 

Assuming, on a very noisy signal, a 5 point window can be understood as two 

3 point windows shifted by two points, the median between these five points 

can be, in a worst case scenario, described as the median between only local 

maxima and local minima of five points. By extending this scheme, the ideal 

median can then be understood as the median between the local maxima and 

local minima only, because a curve (or signal) of any kind is described 

predominantly by its minima and maxima [130]. This assumption was adopted 
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to construct a different median based filter that interpolates between all local 

minima, the bottom margin of trust region, and all local maxima, the top 

margin of trust region, independently over the whole abscisse of the spectrum. 

Therefore it returns the median between both. It builds on the assumption that 

the signal to noise ratio is high in areas of signal which narrows the distance 

between bottom and top margin of trust region due to the lack of noise spikes. 

Therefore it doesn’t influence the actual signal features but removes the noise 

only (Figure 2-12).  
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Figure 2-12 DRMS Filter applied to an A549 spectrum  between 870 cm-1 - 1070cm -1, original 
(blue),1.run (green), 2.run (red), 3.run (cyan) 
 

It basically takes advantage of the signal dynamics (i.e. sharpness of the 

features) and is therefore termed Dynamics-assisted RMS (DRMS). Every 

time the signal is passed through this filter it estimates the reliable area of a 

signal and calculates a median through this band. The first and second 

iteration give a reasonably good result, with good noise removal, while 

preserving all features and not inducing any broadening or flattening. The third 
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pass induces some broadening by noise in certain low frequency areas (1036 

cm-1) but still preserves the dominant features to their full extent.  

The sum of the absolute residuals after subtraction of the smoothed from the 

original signal is shown in Table 2-2.for variations of all methods explored. 

The smallest absolute residual indicates the best filter performance. Therefore 

the DRMS is expected to deliver the best performance, by returning the most 

realistic spectrum after noise filtering. 

Table 2-2 Noise Reduction Performance of common and proprietary noise filters 
Smoothing Filter Smoothing Parameter Σ(Absolute(Residual)) 

MA-SG order : 1   window : 5 22,268 

MA-SG order : 1   window : 31 59,435 

MA-SG order : 2   window : 5 12,645 

MA-SG order : 2   window : 7 17,872 

MA-SG order : 2   window : 21 29,630 

MA-SG order : 5   window : 7 10,927 

MA-SG order : 5   window : 17 22,267 

RMS Window : 3 9,993 

RMS Window : 5 16,113 

RMS Window : 7 19,344 

DRMS pass : 1 6,390 

DRMS pass : 2 8,621 

DRMS pass : 3 12,788 
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2.5.1.5.4 Histogram filtering or data binning 

Histogram based filtering, also known as data binning, is a technique also 

used for data pre-processing and noise reduction [131]. Assuming that the 

unwanted signal, or noise, is only of a sinusoidal nature, it can be filtered with 

a low-pass filter [132] or each peak on top of the baseline can be binned and 

replaced by its mean as shown in the simulated dataset of Figure 2-13. Both 

strategies would remove the artificial recurring noise equally well. The 

histogram as such shows in this setup a very dense distribution of 23 nearly 

similar area occurrences, indicating the artificial nature of the simulated 

dataset, a single overlayed sine function. 
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Figure 2-13 Histogram and binning result (binned features =23, outside of the histogram) of a 
baseline overlaid with a sine function representing noise 
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In Raman Spectroscopy, the noise is usually not entirely of a systematic 

nature. Therefore a different binning algorithm was developed that bins signal 

features according to their area as a measure of the power of the feature. It is 

assumed that every feature is superimposed on a baseline that is described 

by an interpolation between all local minima of the spectrum. The number of 

bins is then calculated from the number of similar area peaks. Further, it is 

assumed that the signal part is significantly different to the noise. Signal is 

understood as broad and high in amplitude but relatively rare, whereas noise 

is understood as sharp and shallow, but of frequent occurrence. Therefore, a 

histogram of a real spectrum should show an exponential decline in 

occurrence of peak area sizes as seen in Figure 2-14. The high frequency 

noise contribution is represented on the left and the low frequent signal 

contribution on the right.  
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Figure 2-14 Histogram and binning result (binned features = 300) of a spectrum of A549 
(850cm-1 -1170cm-1) 
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Depending on the binning level, the spectral features are not distorted and an 

absolute residual in this example can be calculated to be 18.556. Thus, this 

method is comparable to the performance of the MA & RMS filter techniques 

Table 2-2 whilst removing a higher amount of noise than the best DRMS.  As 

a rule of thumb it was found that the best binning level (rejected peak area 

above baseline) is correlated to the sharpest feature that has to be resolved 

(e.g. Phenyl ring breathing mode at 1003cm-1 for biological samples in Raman 

Spectroscopy). Therefore, a combination of a single run DRMS filter and a 

histogram binning filter for analysis is proposed instead of MA filters in the 

case that the recorded and corrected spectra are very noisy, due to the 

influence of the applied background and baseline correction (shown later). 

2.5.1.6 Baseline correction methods 

2.5.1.6.1 General considerations 

In Raman spectroscopy, recorded spectra usually contain chemical features 

and others which originate in spurious or constant physical effects occurring 

during the measurement. These features are usually of low-frequency, broad 

and are generally described as ‘baseline’ and/or ‘back-ground’ [117]. They are 

commonly removed by one of numerous algorithms [133, 134] e.g. one 

automated approach is the implementation of the so-called EMSC (extended 

multiplicative scatter correction) algorithm, originally developed for IR 

spectroscopy [135]. Common semi-automated computational methods of 

background subtraction are the subtraction of a polynomial of certain order 

[136-138], a slope and/or an offset fitted to each spectrum. The use of 

derivatized data instantly removes the baseline and increases the spectral 
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resolution, but the amount of sharp noise related features is duplicated and 

the information gained is more difficult to interpret [139]. In this work, the 

baseline removal strategies focus on the integration of previous knowledge, 

separating the substrate and the baseline and its effects on the signal as such 

are treated separately. 

2.5.1.6.2 Manual baseline removal 

In manual baseline removal, commonly the baseline is removed by a 

semiautomatic subtraction of a manually selected set of nodes that support 

the baseline. Certain points of background contributed nodes in the 

measurement window that apply to every spectrum are defined. These points 

are then interpolated for each spectrum individually by a linear or higher order 

function and then subtracted. This strategy is based on the nonnegative 

subtraction of the integrated area described by the spectral curve with the 

trapezoidal rule [140]. It is strongly dependent on the node selection and the 

knowledge of the curvature of the baseline of a spectrum. It is very labour 

intensive on large datasets, due to the requirement of individually processing 

of each spectrum and can interfere with the substrate removal. Manual 

baseline removal induces signal variance between sample and measurement. 

It is subjective and is not explicitly suitable for automated baseline removal or 

comparison [121, 139]. 

2.5.1.6.3 Rubberband baseline removal 

This baseline removal strategy addresses the influences of the spectral 

features outside the recording window that leak into the recorded spectrum 

(e.g. Rayleigh scattering [141]). It was programmed for the Matlab 
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environment, mimicking an available, but here automatic, preprocessing 

option in the commercially available “Opus” software package commonly used 

on Bruker FTIR spectrometers. This function stretches linear segments of 

baseline between the local minima of the signal along the spectrum, starting 

from the lowest local minima to both endpoints of the spectral window, while 

always staying below or equal to the spectral value. In the case where the 

slope of the stretched segment does not touch the signal at the next node, the 

slope is automatically increased until it matches. It is capable of removing 

linear to concave baseline contributions. It was preferred over the squared 

exponential baseline subtraction suggested by Bulmer et al.[133], due to its 

ability to exactly fit the real data on both sides of the spectrum with a line 

shape that can be anything between linear and exponential up to a polynomial 

of second order. 
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Figure 2-15 Baseline removal with the rubberband method. Original spectrum (top), baseline 
removed spectrum (bottom) 
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In Figure 2-15, the application of the rubberband baseline removal algorithm 

to a spectrum of an A549 cell is demonstrated. The signal to noise ratio (SNR) 

given by Equation 2-17 [142] can be used to estimate the improvement (gain) 

of the signal after processing. For automatic SNR estimation, the signal (S) 

used is the strongest spectral feature between local minima, whereas the 

noise (N) is represented by the smallest.  
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Equation 2-17 
 

 

The SNRdB changes due to rubberband removal are only from 25.78 dB to 

25.05 dB, indicating only a tiny increase in noise, which is caused by the 

reduced power (Ps) of the signal feature in comparison to the power of the 

noise (Pn). Furthermore, no negative values are created and all features are 

preserved at the original spectral location. Therefore the rubberband method 

qualifies as an appropriate method for baseline subtraction. 

2.5.1.7 Substrate removal methods 

2.5.1.7.1 General considerations 

Although in confocal Raman spectroscopy the contribution of the underlying 

substrate of each sample is minimal, contributions of the substrate are 

nevertheless omnipresent. Depending on the opacity and thickness of the 

sample, the amount of backscattered light by the substrate contributes to the 

background or offset in the spectra differently. Therefore the substrate 
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spectrum, embedded in the analyte spectrum, will alter accordingly. It is 

common practice to record reference substrate spectra, in order to subtract 

them from the analyte [91, 93]. In the following section strategies developed 

over the course of this work are introduced to demonstrate the optimal 

solution for quantitative and qualitative substrate removal. 

2.5.1.7.2 Subtraction of reference background 

The subtraction of the reference from the real signal as a substrate removal 

strategy has two implications. The first is the qualitative implication – for 

example, are the abscissae of the two spectra completely identical? The 

second is the scale, the quantitative implication - is the intensity of the 

substrate spectrum alone relatable to its contribution to the spectrum? 

Assuming the principle of superimposition, the substrate can be scaled to its 

contribution before subtraction, as shown in Figure 2-16. 
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Figure 2-16 Substrate (B) removal by subtraction of a recorded substrate (C, SNRdB 24.88) 
from a Cellular A549 spectrum(A, SNRdB 21.73), and a recorded substrate scaled to the 
signal (D, SNRdB 23.79) 
 

The direct subtraction of the recorded quartz spectrum in water immersion 

from a cellular spectrum of an A549 cell (A-B=C) results in a slightly higher 

signal to noise ratio of the result, due to the removal of the statistically 

constant but contrary noise. Unfortunately, a large number of negative 

features are introduced into the result, which renders the advantage of 

increased SNR irrelevant. Ratioing, or scaling of the background before 

subtraction is a common method in spectroscopy [121, 143]. By scaling the 

substrate intensity to the signal (A-(S*B)=D) the SNR is increased and the 

amount of negative features induced is significantly lower. The disadvantage 

is the possibility of altering the intensity of the noise by multiplying it by the 

scaling factor according to Equation 2-18.  
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Equation 2-18 
 

 

This may shift  the scaled noise of the substrate cns to a different order of 

magnitude than the noise of ng. Therefore this method can induce variance 

due to reduced auto annihilation of opposing noise variations. This auto 

annihilation is commonly used in the averaging of measurements during 

recording. In those circumstances the noise is of equal magnitude therefore 

auto annihilation occurs. In the case that auto annihilation does not occur the 

noise adds up and creates spectral features which are still caused by noise. 

This effect is commonly addressed by extensive filtering of the substrate prior 

to subtraction. By doing this the disadvantage shown in the noise filtering 

section earlier, can appear. An ideal approach is subtracting a substrate 

signal that is noise free [121, 126].  

2.5.1.7.3 Subtraction of modelled background 

This alternative substrate subtraction method takes the idea of noiseless 

subtraction onboard and consists of two interlinked parts. The first part is the 

characterisation of the substrate spectra in order to create a quantitative 

model. The second part consists of the application of this noise free model to 

the spectra. To achieve this, the substrate spectra are scaled after baseline 

removal with the rubberband method to the characteristic Raman feature of 

the substrate, in this case, quartz, at 486 cm-1 [2, 144], by scaling the signal 

maximum ±5 cm-1 around this feature to 100 percent. The spectra that contain 

significant quartz features are averaged and the peaks are selected by 

analysing the first, second and third derivative. After identifying 120 peaks of 
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the substrate spectrum, each substrate spectrum (yg) was fitted with 120 

weighted Gaussian and Lorenzian functions (Equation 2-19, representing 

99.5% of the substrate variance) simultaneously, using the “trusted regions 

methods”, provided by MatLab’s curve fitting toolbox. 
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Equation 2-19 
 

The optimal fit, with a maximal standard deviation of 5% per spectrum, is 

obtained without any other boundary definition than peak position (xp(n)) and 

weight (gp) limit (gn=[0 1.1]) with 106 iterations per peak, excluding the H2O 

feature at 1643 cm-1 , in the case of immersion measurements, returning the 

width (cp) and the amplitude (ap) and the calculated weight (gp). The entire fit 

parameters were then used to rebuild the calculated spectrum of weighted 

Gaussian and Lorentzian functions. The peak parameters that describe the fit 

to 99% are employed to build the substrate model in order to reduce the 

number of parameters. The standard deviation, per parameter, delivers the 

boundary definition for the final fit - model of the substrate to be subtracted 

from recorded cellular spectra, measured on top of the modelled substrate, as 

shown in Figure 2-17. The characterisation parameters thus obtained are 

given in Table 2-3. Surprisingly, the feature taken for scaling turns out to be 

shifted by about 3 cm-1. 
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Figure 2-17 Boundaries of the fit parameters above (red) and below (blue) the mean substrate 
signal (green) 
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Table 2-3 List of the selected peaks to fit the substrate with their fit parameters. 
Peak upper fitting limits lower fitting limits Area

position amplitude width weight position amplitude width weight 7871.2
409 409.65 6.01 8.94 1.01 409.32 2.58 3.79 0.99 31.1
426 426.28 31.12 18.34 1.00 426.09 24.55 16.88 1.00 597.9
434 434.37 15.93 20.81 1.00 433.73 7.54 19.43 1.00 292.0
449 448.98 30.81 14.93 1.07 448.94 20.76 11.16 0.81 435.2
459 459.60 5.62 26.39 1.01 458.73 -1.53 17.61 0.72 56.3
462 462.37 24.23 10.87 1.06 462.37 17.89 9.01 0.60 292.3
468 468.10 34.47 34.22 1.10 467.71 25.20 25.94 0.82 1135.0
489 489.44 83.27 16.07 1.00 489.25 72.67 15.27 0.96 1539.7
602 602.30 15.66 16.28 1.08 602.02 14.81 14.26 0.79 301.2
635 635.16 0.70 40.99 0.97 634.55 0.04 24.69 0.66 14.1
727 727.15 1.31 25.19 0.97 726.56 0.14 17.71 0.92 18.8
731 731.57 1.52 22.36 0.98 730.66 0.00 15.91 0.92 17.0
742 742.86 2.27 14.41 1.05 741.91 1.18 10.30 0.83 27.6
749 749.85 1.64 28.68 1.08 748.63 0.17 8.63 0.56 15.6
757 757.31 0.56 36.81 0.98 756.55 -0.08 27.35 0.94 10.2
790 790.03 34.50 23.03 1.00 790.03 28.66 21.91 1.00 882.6
794 794.40 5.20 27.58 1.00 794.33 1.81 24.81 0.99 114.1
807 807.53 3.66 36.32 1.05 806.94 0.07 30.75 0.88 80.2
817 817.48 6.87 21.91 0.76 815.92 4.68 13.05 0.02 190.1
829 829.12 22.24 25.41 1.00 829.10 17.95 23.75 1.00 615.0
880 879.99 0.28 30.22 0.95 879.10 0.09 15.84 0.70 5.7
887 886.96 0.36 29.17 1.03 886.23 0.01 19.11 0.84 5.2
902 902.88 0.39 30.53 0.95 901.98 0.02 25.56 0.86 7.5
910 910.12 0.37 31.43 0.90 909.23 0.06 24.41 0.85 7.7
914 914.35 0.23 32.72 0.88 913.51 0.04 23.74 0.84 5.1
921 921.36 0.31 32.20 0.87 920.64 0.07 21.81 0.82 6.6

1001 1001.02 0.93 18.58 0.98 1000.71 0.17 13.03 0.62 12.2
1004 1003.81 0.73 18.98 0.93 1003.23 0.17 13.36 0.76 9.6
1014 1013.82 0.75 26.26 0.95 1013.40 0.14 20.24 0.92 13.0
1040 1040.14 4.93 23.60 1.00 1039.95 3.53 21.05 0.99 118.5
1050 1050.16 2.07 29.97 0.99 1049.97 1.41 26.58 0.98 61.4
1053 1053.17 1.77 30.66 1.00 1052.82 1.34 28.35 0.97 57.5
1058 1057.90 1.76 31.40 1.00 1057.53 1.25 29.90 0.97 57.9
1062 1061.76 1.74 31.54 1.01 1061.44 1.16 29.90 0.96 56.0
1072 1071.74 2.03 29.41 1.00 1071.72 0.98 26.73 0.98 53.0
1076 1076.02 6.34 27.64 1.01 1075.95 4.54 25.37 0.96 180.7
1108 1108.49 1.87 18.50 0.90 1107.44 1.08 11.26 0.32 34.9
1112 1112.23 1.26 28.31 0.83 1111.76 -0.03 16.99 0.41 17.5
1118 1117.94 0.21 29.90 0.94 1117.55 0.15 26.54 0.85 6.7
1129 1128.88 0.18 29.87 1.01 1128.49 0.11 25.96 0.93 5.2
1135 1135.05 0.31 28.10 1.00 1134.19 0.16 21.21 0.73 7.7
1158 1158.41 3.26 27.46 0.98 1158.21 2.11 23.37 0.95 86.5
1163 1162.71 0.46 28.97 0.97 1162.49 -0.03 25.32 0.94 7.7
1167 1167.04 0.68 30.16 0.97 1166.84 0.16 25.26 0.94 15.1
1170 1169.84 0.84 30.48 0.97 1169.65 0.41 25.78 0.94 22.5
1174 1174.51 0.74 30.20 0.97 1173.99 0.42 25.20 0.87 20.8
1183 1183.75 0.94 28.19 0.99 1182.92 0.57 20.86 0.81 24.0
1188 1188.39 2.25 24.40 1.00 1188.09 1.04 18.61 0.96 42.7
1198 1198.32 2.04 24.63 0.99 1198.11 0.69 21.58 0.89 41.2
1208 1208.25 1.92 27.37 0.96 1207.60 0.86 20.22 0.89 41.1
1212 1212.54 1.41 28.51 0.97 1211.78 0.50 21.06 0.92 29.7
1222 1222.58 0.94 28.62 0.96 1222.27 0.66 24.02 0.92 26.8
1227 1226.92 0.95 27.73 0.99 1226.71 0.60 24.19 0.85 26.1
1231 1231.27 0.94 27.08 0.98 1231.03 0.50 24.01 0.83 24.1
1237 1237.01 1.29 26.14 0.95 1236.75 0.49 21.74 0.89 27.3
1251 1251.00 1.15 25.13 0.92 1250.70 0.57 18.73 0.88 24.2
1269 1269.43 0.67 25.78 0.97 1268.81 -0.09 19.44 0.60 8.9
1311 1311.05 0.80 30.34 0.85 1310.88 -0.06 23.73 0.76 7.1  

2.5.1.7.4 Water immersion compensation 

In Raman spectroscopy in an immersion setup, the contribution of water to the 

spectral features of the cell cannot ignored [110]. The vibrational spectrum of 
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water comprises of two major features, the dominant one having origin in the 

antisymmetric OH stretching vibration at ~3400 cm-1, the minor bending 

modes occurring at ~ 1640 cm-1. While recording Raman spectra in a confocal 

configuration, the influence of the environment surrounding the focal spot can 

be reduced, but due to the relatively thin sample (~ 10μm at the thickest 

location), the contribution of the immersion liquid and the substrate to the 

confocal volume becomes considerable, especially during experiments with 

long acquisition times. To account for these influences, in this work the 

spectral window in all studies was limited to a maximum of 1750 cm-1 in order 

to prevent detector saturation by the high frequency water features, whilst 

maintaining the full detector range. The tailing wing of the water feature at 

3400 cm-1 was found to be minimal in this region and was successfully 

removed with the above described rubber band method. Only the feature at 

1640 cm-1, proved to be a problem, as it is close to the Amide I band at 1656 

cm-1, and due to its intensity, can shift its position. Because water can be 

found inside and outside of the cell, and due to the variance in thickness of 

the sample at the point of acquisition, the actual amount of water measured is 

unpredictable. Therefore, it was decided to fit the whole Amide I peak area 

after substrate and baseline removal with a series of Gaussian and Lorentzian 

peaks, similar to the process employed in modelling the substrate spectrum, 

and finally the characteristic feature at 1640 cm-1, originating from the water 

was subtracted  (Figure 2-18).  
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Figure 2-18 Example of the removal of the water feature at ~1640 cm-1 from a cellular 
spectrum of an A549 cell 

2.5.2 Univariate Data analysis 

2.5.2.1 Spectra Interpretation  

In common spectroscopic analyses, the information evident in spectra is 

extracted by qualitatively analyzing peak intensities, peak areas, peak shapes, 

shoulder formation and their changes due to external agents (e.g. Amide I 

band at 1656 cm-1) (Table 2-4). This is usually done in the derivatized, double 

derivatized data or the plain spectrum [145, 146]. The peak positions, usually 

examined, are determined by their correlation to biological functions and 

metabolic relations. The information so-gained is usually put into context with 

biological evidence solely, employing references of a number of well defined 

peak assignments. This univariate approach attempts to address the complex 

biological reactions of the sample by changes of single or a small number of 

peak positions and/or intensities (e.g. Perna et al used 1302 cm-1, 1338 cm-1, 

and the Amide III band for peak ratio analysis) (Table 2-4). Univariate results 
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(the peak information) are commonly analyzed statistically with respect to a 

certain observation, in order to explain the supposed effect [91, 107]. 

Therefore this method focuses on a small number of peaks to analyse 

biological impact.  

Table 2-4 common peak assignments [91, 105, 147] 
Wavenumber (cm -1) Assignment 

1656 – 1690 Amide I band 

C=O stretching of amide,NH2 in plane bending, 

C=C stretch (lipids), Amide I (-helix, protein)   

1583 – 1605 G-Band of CNT’s 

1485 – 1660 amino acids, amino acid hydrohalides 

~1451 CH2 scissoring v. , CH3 bending v. 

1330 – 1390 D-Band of CNT’s 

~1345 Adenine , Guanine activity 

~1336 Adenine , phenylalanine CH deformation v. 

1295 – 1304 C-O vibrations 

~1302 CH2 deformation modes 

1238 – 1290 Amide III band  

CN stretching v., NH bending v., CO stretching, 

O=CN bending v. 

~1267 Amide III (-helix, protein) 

~1250 Amide III (-sheet, protein) 

~1170 Weak CO-O-C stretching v. 

1030 – 1060 C-O-P stretching vibrations, CO-O-C symmetric 

stretching v.; lipid related 
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~1056 RNA ribose C–O vibration 

~1003 Phenylalanine (ring breathing) 

930 – 960 RNA ribose C-O vibration 

~965 CN asymmetric stretching v. 

 

2.5.2.2 Signal Deconvolution 

To analyze the spectral information, the spectra need to be de-convolved, 

revealing the actual contribution (a) of each peak at a specified location (xp).  

The unique position of a convolved peak can be mathematically determined 

by double derivatization of the spectrum. A common method to de-convolve a 

spectrum is to fit the signal in certain areas with combined, weighted (g) 

Gaussian and Lorenzian functions described by Equation 2-20. 
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Equation 2-20

This function is also described as a centred pseudo-Voigt function, 

approximating the Voigt profile of spectroscopic line shapes, generally found 

in spectroscopy, in which the spectral lines are broadened by a variety of 

effects, one of which alone would cause a Gaussian distribution of the 

otherwise Lorentzian or Cauchy distribution [148, 149]. 

2.5.2.3 Peak area ratio calculation 

Peak area ratio calculations are commonly employed to give relative 

information between two, or a small number of peaks, in order to evaluate 

mixed or overlaid information quantitatively [150]. Ratioing the area of a peak 



59 

versus another gives the advantage of the reduced influence of background 

variations, due to the self-normalization. It is a common method in 

pharmacology, chemistry and biology, [151] employing spectroscopic data for 

analysis [152].  It can be either applied to de-convolved or convolved 

spectroscopic data. The area of each peak of interest can be calculated by the 

formal integration of the deconvolution function (Equation 2-21) with the 

integration area in the limits between x0 as the lower and xe as the upper limit 

of the integral, or approximated by the sum of the intensities of the data points 

y(x) in the selected area Equation 2-22. [130]. 
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2.5.3 Multivariate Data Analysis 

2.5.3.1 Principal Component Analysis 

Principal component analysis (PCA) is a method of multivariate analysis 

widely used with datasets of multiple dimensions. It allows the reduction of the 

number of variables in a multidimensional dataset, although it retains most of 

the variation within the dataset. To achieve this reduction, p variables (x1, 

x2,…, xp) are taken and the combinations of these produce the principal 

components (PCs), PC1,PC2,…, PCp, which are not correlated to each other 

and are sometimes called eigenvectors. This lack of correlation means that 

the PCs represent valuable different ‘dimensions’ in the data. The order of the 
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PCs denote their importance to the dataset. PC1 describes the highest 

amount of variation, PC2 the second highest and so on. Therefore, var (PC1) ≥ 

var (PC2) ≥ var (PCp), where var (PCi) represents the variance of PCi in the 

considered data set. Var (PCi) is also called the eigenvalue of PCi. With 

successful application of PCA, the number of PC’s is reduced to a small 

number of eigenvectors or dimensions which describe the largest amount of 

variance in the dataset.. In a given dataset of p variables, which in this case 

are wavenumbers, and n samples, the squared covariance or correlation 

matrix can be calculated using the following equation (Equation 2-23). 
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Equation 2-23 
 

The covariance matrix is applied when the variables of the dataset are on a 

comparable level. As soon as the variables of a dataset are in different units 

or have different scales, the correlation matrix is applied to standardized 

variables. PCA itself is the calculation of the eigenvalues and eigenvectors of 

the samples’ correlation matrix, which can be calculated in an iterative 

process. 

The first principal component (PC1) is therefore a linear combination of the 

original variables x1, …, xp, varying according to the individual feature, in this 

case the wavenumber, as much as possible, while the sum of the squared 

coefficients equals one. These coefficients a11, …, a1p are assigned to the 

original p variables of the PC1 (Equation 2-24).  
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Thus, the eigenvalue of PC1 is as large as possible with the constraint of the 

constant a1j, this constraint being necessary to avoid an increasing eigenvalue 

of PC1 just by increasing one of the coefficient values a1j. The actual number 

of PCs that feed into further analysis is dependent on the variance explained 

by the eigenvalue of a PC, visualized by a Scree plot, and the threshold one 

applies, in order to give a satisfactory representation of the original dataset, 

explaining most of the variance within it [120]. The slope of the declining 

eigenvalues of the first few PCs gives an additional indicator of the quality of 

the PCA. PCA results, after the mathematical transformation of the original 

data matrix, in the data matrix taking the form X=T.P+E, where T are the 

scores of the sample in the PCs and P are the loadings of the variance per 

variable over the whole dataset. E represents an error matrix which is usually 

not considered (Figure 2-19). 

 

Figure 2-19 Schematic Illustration of PCA 
 

Thus the scores of a sample in PCs are orthogonal to each other and are 

therefore uncorrelated. They represent coordinates along the dimensions of 

the PCs e.g. a three dimensional space for 3 PCs, used to access possible 

separation of certain groups within samples. Analysing the loadings of a PC 

can give information regarding the variables that are the source of variance in 

a given PC. Positive values of loadings are generally considered as indicating 

variables which contribute positively to the variance described by a given PC, 
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while negative values contribute inverse to the variance described by the PC, 

and are therefore harder to explain. The PC’s can be understood as abstract 

dimensions on which a sample can score, similar to the cartesian coordinate 

system though not being linear. Principal component analysis finds application 

in spectroscopy due to its ability to compress multivariate data into a number 

of variables of significance. It is capable of reducing the dimensionality of 

spectroscopic data which makes it easier represent them. PCA is a 

fundamental method in chemometric analysis used for example in the 

toxicological evaluation of pharmaceuticals [95] and monitoring processes 

during fermentation [153].  

2.5.3.2 Partial Least Squares Regression 

First described by Wold in 1960, partial least squares (PLS) regression is a 

popular and well known tool in the field of chemometrics [97, 154, 155]. The 

aim of PLS regression is the construction of a model to describe the response 

variables (i.e. analyte concentration) in terms of the observed variables 

(spectra) from a set of training data. The least squares model is given by: 

Y XB E= +  Equation 2-25 
 

where Y=n x m are the dependant variables (e.g. concentration), X=n x p  are 

the independent variables (e.g. Raman spectra), B=p x m is the matrix of 

regression parameters for each component in Y and E is the matrix of 

residuals (differences between measured and predicted variables). PLS 

regression is similar to that of principal component analysis (PCA). PCA 

produces factors based on variance solely on the X matrix where the PLS 

regression algorithm considers both the X and Y matrices ensuring the factors 

correlate the X matrix to the (correlation) target. PLS regression differs from 
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similar techniques such as multiple linear regression (MLR) and principal 

component regression (PCR) in the way that the X and Y variables are 

decomposed simultaneously maximizing the covariance between both 

matrices and allowing direct correlation between the spectra and a [155] 

classifier or descriptor for an expected behaviour of the sample. Commonly, 

these classifiers are termed targets. In addition to the scores and loading 

matrix, a series of weight vectors are calculated which enhance the variables 

with high correlation to the targets. The initial weight vector is calculated as 

follows: 

( )yXyXw TT /1 =  Equation 2-26 
 

The initial scores vector is calculated as:  

1 1t Xw=  
Equation 2-27

and the loadings as: 

( )1 1 1 1/T Tp X t t t=
 

Equation 2-28

The regression parameters are calculated as follows: 

( )1 1 1
ˆ /T Tb y t t t=

 
Equation 2-29 

 

The residual matrix is calculated as: 

1 1 1
TE X t p= −  

Equation 2-30 
 

The algorithm continues for each factor using E1 instead of the weight matrix 

to calculate the second set of weights. When presented with an unknown 

spectrum, y is determined using W and P to compute scores for the unknown 

spectrum along with the regression parameters allowing the concentration of y 

to be determined from Equation 2-25. PLS regression has been applied in a 

wide range of spectroscopic analyses, predicting various attributes of 
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biological and non-biological materials [98, 122, 135, 156]. For example, this 

method has been used to predict the concentration of plasma glucose and 

lactic acid concentrations in the supernatant culture medium of human glioma 

cells [157]. It has also found application in the assessment of relative 

concentrations in mixtures of oral bacteria [158]. 

2.5.3.3 GA - Genetic Algorithm  

Calibration models are known to be greatly improved through the application 

of efficient feature selection methods, increasing the predictive ability and 

reducing model complexity. One such method is the adaptive search 

technique known as the genetic algorithm (GA). In the first experiment, a GA 

based variable selection procedure is used to reduce the original spectra to a 

subset of wavenumbers to correlate Raman spectra to response. The first 

generation for evaluation is a random population consisting of a number of 

individuals or “chromosomes”, each containing a subset of the original 

variables. Each chromosome is composed of a vector of 1s and 0s, 

corresponding to the wavenumbers in the X matrix, (1 if selected and 0 if not) 

where each wavenumber is termed a “gene”. The performance of models 

resulting from each chromosome is determined by means of a fitness function 

(here the root mean square error of cross validation is used). Once each 

generation is evaluated, a new set of chromosomes is produced by retaining 

and “crossing” over the fittest individuals from the previous generation. 

“Mutations” are also produced which force the evaluation of new combinations 

avoiding saturation with similar sets of events and can further lower the 

number of variables and fitness values. The process continues until the 

difference in mean fitness levels between successive generations is below a 
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certain threshold, whereupon the GA is terminated to avoid over-training and 

avoid over fitting risk in the PLS regression model [159-161]. Feature 

selection in this work was achieved using GA optimisation (with the genpls 

MATLAB toolbox by Ledardi) over 100 runs requiring approximately 60 

minutes depending on the computational speed. 

Table 2-5 Genetic Algorithm parameters 
Parameter Value

Chromosome size 30 

Max. genes per chromosome 30 

Mutation probability 0.01 

Crossover probability 0.5 

Preprocessing None 

Max LV 15 

#runs 100 

  

Each calibration model was evaluated using root mean squared error of cross 

validation (RMSECV) and root mean squared error of calibration (RMSEC) 

performed on the calibration set. The root mean squared error of prediction 

(RMSEP) of the independent testing set was also calculated (40% of the 

dataset).  

2.5.3.4 HCA – Hierarchical Cluster Analysis 

Hierarchical clustering groups data over a variety of scales by creating a 

cluster tree, usually displayed as dendrogram or tree [162, 163]. The tree is 

not a single set of clusters, but more likely a multilevel hierarchy, where 

clusters at one level are joined with clusters at the next level. This allows a 
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decision of which level or scale of clustering is most appropriate. Hierarchical 

clustering builds (agglomerative), or breaks up (divisive), a hierarchy of 

different clusters. In the representation as a dendrogram (Figure 2-20) 

individual elements (a, b, c, d, e, f, leafs) are located at one end and a single 

cluster containing every single element at the other (a,b,c,d,e,f, …root). 

Agglomerative algorithms begin at the leaves of the tree, whereas divisive 

algorithms begin at the root. In Figure 2-20 (right) the arrows indicate an 

agglomerative clustering. Truncating the tree at a certain height will give a 

clustering at a selected precision, e. g. after the second row will give the 

clusters (a), (b c), (d e) and (f). Cutting behind the third row gives the clusters 

(a), (b c) and (d e f) resulting in a coarser clustering, with a reduced number of 

larger clusters. This method creates the hierarchy from the individual 

elements (leaves) by progressively merging clusters to the root. In this 

example six elements (a), (b), (c), (d), (e) and (f) are employed. The first step 

is to determine which elements to merge in a cluster. Usually, the closest 

elements are taken, according to the chosen distance. Optionally, one can 

also construct a distance matrix, where the number in the ith Row, jth. column 

is the distance between the ith. and jth. elements. Then, as clustering 

progresses, rows and columns are merged as the clusters are merged and 

the distances are updated. This is a common way to implement this type of 

clustering, and has the benefit of matching distances between clusters. In the 

application to data from PCA analysis, commonly the Euclidean distance 

between incidents (e.g. the scores of the PC’s) along the dimensions of the 

principal components is employed for determination of the hierarchical 

conformation. 
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Figure 2-20 Scattered dataset (left) and dendrogram of a hierarchical clustering with 
Euclidean distance as distance metric (right) (http://en.wikipedia.org/wiki/Cluster_analysis) 
 

2.5.3.5 Independent Component Analysis 

Independent component analysis (ICA) is a powerful statistical tool. Its main 

field of application is on the one hand feature extraction and on the other hand 

blind source separation (BSS). In BSS, multiple linearly mixed signals are 

separated without knowledge about the mixing process, in order to extract the 

source signal. For example, two recordings of data measure the same 

incident from a different perspective x1(t), x2(t). These two recordings are 

equal to the weighted sums of the source signals s1(t), s2(t) and a set of 

linear equations is obtained Equation 2-31. 

2221212

2121111

sasa(t)x
sasa(t)x

+=

+=
 

Equation 2-31 
 

Normally, to solve the equation system to yield s1(t) and s2(t), the parameters 

a11…a22 must be known. These parameters depend on the difference in 

projection direction of the recordings. Thus one only has recorded signals x1(t) 

and x2(t) so one can only solve it with broad statistical assumptions.  For 
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independent component analysis it is sufficient to assume that both recordings 

are stochastically independent. 

Assuming x and s are independent of time but random variables, x1 and x2 

become random samples. Additionally it can be assumed that x and s have 

the expectation value zero, which can be achieved by appropriate 

normalization. As in principal component analysis, the data set can be 

presented in the matrix form. 

sAx ⋅=  Equation 2-32 
 

To calculate s with the knowledge of A it would be necessary to calculate 

W=A-1. Without knowledge of A, W has to be calculated differently. 

xW S ⋅=  Equation 2-33

Because the components of x are usually highly correlated, it is possible to 

choose W from the principal component analysis in such a way that the 

correlation would have been lost. Thus, while principal component analysis 

uses the covariance matrix and second moment statistics, independent 

component analysis uses all moments. Therefore, independent component 

analysis not only removes correlations but it establishes the most possible 

statistical independence between components. Since s and A are unknown, 

any scalar value of the source sj can be equalized by division of column ai in 

the matrix A by this factor. Thus, as the variance E is not important for ICA, it 

usually is scaled E=1 [164]. Unfortunately, it is not possible to predict the 

order of the independent components. A and s are unknown and therefore the 

values in s can be swapped, leading to a new matrix A. Formally the 

permutation matrix P can be introduced. Together with its inverted form, 

Equation 2-33, changes to x=A P-1P.s. The elements of P.s are the former 
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components sj in a different order. The matrix A.P-1 is a new matrix generated 

by the ICA algorithm. The major constraint for application of ICA is that the 

Independent components must not be distributed normally. As previously 

mentioned, ICA has some similarities to PCA. In PCA the data are expressed 

in an orthogonal basis, whereas ICA expresses the data on a non-orthogonal 

basis. Therefore ICA is capable of capturing the data more efficiently. (Figure 

2-21) 

 

Figure 2-21 Comparison between PCA and ICA (Apo Hyvärinen, 2000) 
 

Independent component analysis has been applied to spectroscopic data in 

the classification of tissue from human coronary arteries in vitro [165], and 

used for “de-waxing” tissue samples computationally [166]. For the present  

work, independent component analysis is expected to extract the individual 

toxic influences of each agent from the measured spectra in chapter 5.  The 

extracted components may then aid the multivariate model of the overall toxic 

response, with reduced variance in partial least squares regression. 



70 

2.5.3.6 Hyper spectral Imaging 

Spectral imaging is the simultaneous measurement of spatially encoded 

spectral information and the recording of the spatial location within a cell or 

tissue The images so generated are referred to as hyper-spectral or multi 

spectral images [167, 168]. They can be used to image and analyze individual 

cells and microscopically invisible nano structures e.g. single carbon 

nanotubes [169]. In Raman spectroscopy spectral measurements are 

recorded by rastering the laser focal spot over the sample as defined by its 

visual image. This creates a hyper cube of data that can be visualised and 

treated as a series of spectrally resolved images with each plane of the 

hypercube corresponding to a spatial image of the biochemical information at 

that wavenumber. . Alternatively, the selected plane may highlight a certain 

distribution of the sample compound given that the spectral signatures are a 

feature at the selected wavelength. Therefore, this imaging technology can be 

applied to univariate or multivariate analysis, delivering an optical impression 

comparable to microscopically visible image. 

2.6 Summary 

This chapter detailed the experimental aspects of the exposure of human 

epithelial lung cells to carbon nanotubes that will be assayed by Raman 

spectroscopy. It is emphasised that the study design is based on previous 

cytotoxicological studies, such that the application of Raman spectroscopy 

can be validated against gold standard techniques. The background theory 

and practical use of the equipment employed has been described and the 

mathematical methods for pre-processing of spectral data and univariate and 

multivariate analysis were introduced. In the forthcoming experimental 
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sections of this work, in parallel with the experimental components, 

continuous progress was made towards optimisation of the signal 

preprocessing and analysis protocols using the techniques outlined in this 

chapter. Therefore each experimental section will detail which protocol was 

employed. Surprisingly, given certain constraints, e.g. the lack of 

comparability between spectrometers, and therefore the omission of SRM 

calibration, the necessity of noise filtering was reduced. Furthermore, by 

modelling the substrate in a noise free fashion, the requirements for noise 

reduction is further reduced. Not surprisingly, over the course of this work, it 

became evident that optimal results were obtained from signals of relatively 

high SNRdb which required minimum processing.  

 

Chapter 3 : Exposure Study 

3.1 Introduction  

In this chapter, the effects of direct exposure of A549 cells to SWCNT 

dispersed in culture medium, monitored by Raman spectroscopy, are 

presented and analyzed. The study has been published as “Raman 

spectroscopy -- a potential platform for the rapid measurement of carbon 

nanotube-induced cytotoxicity“ in the Analyst 2009 [170]. An initial attempt is 

made to correlate the acquired data with results from the clonogenic 

endpoints of a previous study [99] using univariate analysis. In order to 

corroborate the potential of Raman spectroscopy as a toxicity probe, 

correlations of toxic responses to spectral features identified in literature for 

exposure to mercury [107] are performed, based on fitted peak area ratios. 
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Certain aspects of these results seem to fit well to the clonogenic endpoint of 

reduced proliferative capacity expressed by reduced colony size, as a function 

of exposure concentration. The results from multivariate analysis show a clear 

picture of dose dependent separation either in the pre processed plain data or 

doubly derivatized datasets. 

3.2 Materials and Methods 

3.2.1 Cell culture 

Square Quartz slides (24.5mm x 24.5mm, UQG Optics Ltd.) were coated for 

24 h at 4°C with a sterile solution of 2% gelatine (Type-B from bovine skin) in 

deionised water (dH2O) solution. Such substrates have previously been 

shown to be optimal for cell growth and subsequent spectral analysis [91]. 

A549 cells were cultivated as previously described in 2.4.3 and harvested at 

85% confluence. The reseeded cells were allowed to attach to prepared 

quartz substrates at a concentration of approximately 2 × 106 cells per slide 

for 24h. After the 24h incubation period, the unattached cells were rinsed off 

with PBS. The SWCNT were dispersed with an ultrasonic tip in four exposure 

suspensions (0 mg/l (control), 1.56mg/l, 6.25mg/l, 25.0 mg/l, 100mg/l) in 

supplemented medium. HiPco Carbon Nanotubes (Carbon Nanotubes Inc.) at 

these concentrations were employed for the study for consistency with 

previous studies [75, 99, 102, 171]. The ultrasonic tip was operated at a 

medium level of output for a total time of 30s in 10s sequential intervals to 

prevent sample heating [101]. The cells were then exposed to 3 ml of each of 

the different SWCNT suspensions for 96 hours. After the exposure period, the 

slides were rinsed with PBS and fixed in 4% formalin in PBS solution for 10 
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minutes, rinsed once again in dH2O, and finally stored in dH2O at 4°C prior to 

conducting the spectral measurements. 

3.2.2  Spectroscopy 

Raman Spectroscopy was carried out with the Instruments SA Labram 1B 

Raman confocal microscope using a 514.5 nm laser excitation with a grating 

of 1800 l/mm, providing a spectral dispersion of about ~1.65 cm-1/pixel. 

Spectra were recorded using a water immersion lens (Olympus Lum-Plan FL 

100x) from substrates immersed in water to prevent desiccation of the 

samples. The immersion reservoir was constructed by inserting a quartz 

window into the bottom of a Petri dish filled with dH2O. The x100 water 

immersion objective produced a spot size of approximately 1µm in diameter at 

the sample. 

All recordings were performed as an average of three individual 

measurements of one point to reduce the influence of spectral noise. The 

system was calibrated to the spectral line of crystalline silicon at a constant 

room temperature of 21°C. The measurement range was set to an interval of 

~250-1750 cm-1 in order to detect spectra within the fingerprint region of the 

cell samples [91] and the characteristic SWCNT features [3]. Before spectral 

acquisition, the dark current of the system and the system intensity response 

were recorded. After recording a number of spectral measurements per slide, 

the spectrum of the substrate was acquired. The laser power was set to 23 

mW at the sample and the acquisition time was set to 90 s. In total, ca. 75 

spectra (25 per sample in triplicate) were recorded from the nuclear portion of 

multiple cells at each concentration.  
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Principal component analysis was employed to identify outlier spectra [172]. 

Cells across the whole area of the sample slide were chosen for 

measurement in an attempt to ensure a true representation of the sample in 

order to limit variability that might occur due to the spatial position of the laser 

focal spot within the nuclear portion of cells, and biological variability that 

could occur between samples of the cell line. It was noted, however, that even 

after repeated washing with PBS, some single wall carbon nanotube 

aggregates could be visibly observed attached to the cells, although no 

SWCNTs were observed inside the cells themselves [75]. All measurements 

reported here were taken away from regions where large aggregates were 

visible (Figure 3-1 ). 

 

Figure 3-1 Micrograph of A549 exposed to 100 mg/l SWCNT with clearly visible aggregates 
(indicated by the arrows, the squares indicate the manually selected measurement acquisition 
points) 
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3.2.3 Data analysis 

In total, 321 valid spectra were acquired for the 5 distinct concentrations 

(Table 3-1) with a spectral range from 248 to 1751 cm-1. The raw spectra were 

imported into Matlab 7.3 for pre-processing and analysis. Every spectrum was 

corrected for system intensity response, according to the guidelines of NIST 

(see Section 2.4.8.2) [173]. Prior to the subtraction of the underlying substrate 

(quartz) signature, each spectrum was scaled to the characteristic quartz 

feature at 486 cm-1 [144] and the background was subtracted manually. 

Finally, the spectra were cropped to a spectral window of 599-1700 cm-1 to 

isolate the fingerprint region. In order to minimise the noise the spectra were 

smoothed using the Savitzky Golay algorithm [124] with a 15 point window 

and a polynomial order of 3 prior to further analysis. 

Table 3-1 Sample numbers after recording the measurements and outlier removal 
Sample 

Concentration 

Recorded 

Replicates 

Validated 

Replicates 

 I II III I II III 

0.0 mg/l 25 25 25 22 21 20 

1.56 mg/l 25 25 25 19 21 23 

6.25 mg/l 25 25 25 22 20 21 

25.0 mg/l 25 25 25 22 24 21 

100.0 mg/l 25 25 25 21 23 21 
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3.3 Results 

3.3.1 Univariate Analysis 

The Raman spectrum of a SWCNT sample (suspended in water at 

concentrations similar to those used during this study) exhibits characteristic 

radial breathing modes (RBM) in the region of 100-300cm-1 [84] (Figure 3-2). 

These features describe the synchronous oscillation of the atoms of the 

nanotube in the radial direction and can be used to define structural 

characteristics of SWCNTs such as their diameter, metallicity, and helicity 

[148]. The so called “disorder-induced” D band appears at 1330-1390 cm-1 

and is reputedly an indicator for disorder in the graphene sheet. The 

tangential mode, or G-Band, originating from tangential oscillations of the 

carbon atoms in the nanotubes, appears at 1583-1605cm-1 [85, 148, 174].  

 

Figure 3-2 Raman Spectrum of SWCNT with characteristic features (RBM’s at ~180-300 cm-1, 
D-Line at ~1350 cm-1, G-line at~1590 cm-1) 

RBM’s D-Line G-line 
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Spectra of A549 cells, (Figure 3-3 (b)) exhibit classic features associated with 

cellular material within the Amide I band area of 1656-1690 cm-1, consisting of 

~80% of CO stretching,, ~10% CN stretching and ~10% NH bending vibration 

modes, indicating protein based α-helix, random coil and β-sheet structures 

[105]. In the Amide III area at about 1238 cm-1, β-sheet and random coil 

structures are indicated by ~30% CN stretching and ~30% NH bending 

vibrations, as well as ~10% CO stretching and ~10% O=C-N bending 

vibrations. Vibrational features of amino acids and amino acid hydro halides 

appear in the area of 1485 - 1660 cm-1 (NH deformation vibrations and α-form 

C=O stretching of polypeptides). Characteristic signals of lipids appear at 965 

cm-1 (CN asymmetric stretching vibrations), 1170 cm-1 (weak CO-O-C 

symmetric stretching) and 1451 cm-1 (CH2 scissoring and CH3 bending 

vibrations) [93, 105, 106, 175]. As the samples were rinsed before fixing as 

described in section 2.4.7., it is assumed that all features are of cellular in 

origin.  
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Figure 3-3 Raman Spectra of A549 exposed Cells (25 mg/l SWCNT) (a) and A549 control 
cells (b), filtered with Savitzky Golay Filter order 3, 15 points. 
 
 

In Figure 3-3 (a), an average spectrum of a cellular sample exposed to a 

relatively high dose of SWCNTs (25mg/l) is shown. Strong contributions of the 

G-Line and D-Line features of SWCNTs as well as common cellular spectral 

features are clearly visible, although the SWCNT were washed off thoroughly 

and were not visible microscopically. In a previous study, in samples prepared 

under identical conditions, no SWCNTs could be observed internalized in the 

cells although small bundles or ropes were observed adhered to the cell 

surface [75]. The strongest peak of the typical SWCNT spectrum, the G-line at 

~1585 cm-1 [148], overlaps strongly with the Amide I and water feature in this 

region of the cellular spectrum (1637,1656-1690 cm-1) [105, 176]. This makes 

it difficult to utilize this band for analysis of cellular response to the SWCNT 

exposure without deconvolution. After background subtraction, the region of 

Phenylalanine Amide IG-Line Amide III D-Line CH2
, CH3 RNA 
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1502-1700 cm-1, was extracted and fitted with a series of mixed 

Gaussian/Lorentzian functions to extract the relative contributions of the 

SWNT G-line and the cellular Amide I band. Figure 3-4 (left) shows the 

intensity of the SWCNT G-line as a function of exposure dose in terms of 

concentration (mg/l). Although the Raman intensity is approximately linear as 

a function of dose up to ~30mg/l, the maximum dose of 100mg/l shows 

significant deviation from this. This apparent saturation of the response may 

be a result of over dosage, due to the nanotubes not being effectively 

dispersed throughout the sample, and/or an effect of the increased optical 

density of the residual carbon nanotubes which are resonant at the Raman 

wavelength, causing limited penetration of the light into the sample and also 

scattering of light by the sample. In Figure 3-4 (right) the intensity of the 

Amide I Raman band as a function of SWCNT dosage is shown. The intensity 

is seen to be only weakly dependent on dosage, indicating that the reduced 

intensity of the SWCNT G-line has origin primarily in saturation of dosage 

rather than optical effects, although the slight reduction at large doses points 

towards some optical effects. A direct visual comparison of the cellular Raman 

spectra demonstrates clearly that several individual peaks are altered as a 

result of exposure. Examination of the spectra reveals changes to the 1030-

1060 cm-1 lipid bands caused by C-O-P stretching~ and C-O-O-C symmetric 

stretching ~vibrations [106, 175], an observation which correlates well with the 

work of Davoren et al. [75], which, using Transmission Electron Microscopy 

(TEM), demonstrated an increase of surfactant storing lamellar bodies in A549 

cells after exposure to SWCNTs. This observation supports the assumption of 

a change in the overall lipid content in the exposed cells. Although the 
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nucleus is primarily targeted, and the confocal volume of the laser spot has a 

depth of ~2-3 µm, some of the overlaying cytoplasm will be picked up. 

Changes to the RNA ribose C-O vibration at 930-960 cm-1 and 1295-1304 cm-

1, as well as changes to the adenine and guanine activity at ~1345 cm-1 [105, 

176, 177] are also observed. It is possible, however, that the D-Line of the 

SWCNTs may be masking the response in this latter region, but changes to 

the cellular spectra are clearly visible after deconvolution of the Amide III band 

area, far from the spectral features of the SWCNTs, with its different 

conformations at approximately 1238 cm-1, 1258 cm-1, 1271 cm-1 by a 

combined Gaussian and Lorentzian fit, known as a pseudo-Voigt function 

[149, 178] to approximate the Voigt profile, with a total of nine individual 

centred peaks, given by the second derivative of the unfitted region [107].  

 

Figure 3-4 Intensity of G-Line at 1598cm-1 versus concentration (left), Intensity of Amide I at 
1656cm-1 versus concentration (right) 
 

Although it is difficult to precisely assign the many overlapping bands, the ratio 

of Raman peak heights for CH2 deformation modes at ~1302cm-1, DNA bases 

guanine, adenine and thymine at 1287 and 1338cm-1 versus the Amide III 

band at 1238cm-1 has previously been used for estimation of cellular toxicity 

[107]. Figure 3-5 shows the dose dependent response of these peak ratios. 
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The three ratios exhibit a general trend of an overall increase with dose with 

the exception of the largest exposure dose of 100mg/ml which has been 

shown to have a saturated spectral/exposure response (Figure 3-5a). All 

spectral features, with the exception of the 1338cm-1 band are far from any 

SWNT bands, and the fact that the 1338cm-1 band exhibits the same trends 

indicates that there is minimal interference from the underlying tail of the 

SWNT D-line. Figure 3-5 D shows an approximately linear relationship 

between the ratio of 1338 cm-1/Amide III as a function of G-line intensity which 

should more accurately represent the actual SWNT dose.  

 

Figure 3-5 Peak ratios of 1287/Amide III (A), 1302/Amide III (B), 1338/Amide III (C),versus 
concentration and  1338/Amide III (D) versus the G-line intensity 
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The ratios of bands previously identified as cytotoxic markers clearly show a 

dose dependent response. This dose dependence correlates well with that 

previously observed for colony size in clonogenic assays on the same 

samples [77]. The dose dependent response of the colony size endpoint of 

the clonogenic study is plotted in Figure 3-6. A monotonic decrease in colony 

size with increasing dose up to ~100mg/l is observed. This toxic response has 

been attributed to a reduced proliferative capacity as a result of medium 

depletion caused by adsorption of components of the cell growth medium to 

the SWCNTs. Figure 3-6 demonstrates a clear correlation of the dose 

dependent ratio 1287cm-1 / Amide III with toxic response, as determined by 

the colony size endpoint of reference [77]. 

 

Figure 3-6 Correlation of the 1287cm-1/Amide III peak ratio with colony size endpoint. 
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The results clearly indicate that dose dependent spectral markers can be 

identified in the Raman spectra of cellular samples exposed to SWCNTs. 

However, the intrinsic influences of inhomogeneity of the spatial dispersion of 

SWCNTs in e.g. cell culture medium [102] and the SWCNT residues adhering 

to the cells, as well as the complex changes to the spectral response of the 

cells, demand more elaborate data analysis methods, moving from the 

univariate approaches described above to the analysis of the spectral data by 

multivariate analysis. Principal component analysis will thus be employed as a 

more powerful classification tool, potentially elucidating a more detailed 

signature of the cellular response. 

3.3.2 Multivariate Analysis 

The loadings from the PCA of the spectral data (Figure 3-7) are used to 

monitor the spectral features according to their contribution to the variance in 

the dataset. The highest variance, describing 68.2 % of the overall variance, is 

seen in PC1 which is dominated by the strong features of the SWCNTs. The 

next largest variances seen in PC2 and PC3 are postulated to be related to 

biological responses associated with exposure to CNTs, although they only 

represent a further 25% of the total variance. Within the first five components, 

component three has positive loadings associated with some the main 

features of the control spectrum (see Figure 3-3a), and those positive loadings 

seen at ~1030, ~1300,~1450 cm-1 are all associated with lipid vibrations, 

corroborating the peak ratio analysis of Figure 3-5. Also, loadings in the region 

1230cm-1 to 1350cm-1 which are associated with the Amide III band, those at 

1287 cm-1 and 1338cm-1 associated with DNA bases guanine, adenine and 
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thymine, and lipid deformation modes at 1302cm-1, feature strongly positive in 

PC3 and PC5. 

 

 
Figure 3-7 Individual principal component loadings plot of the first 5 components, (PC1-PC5 
with explained variance of 68.2%, 20.3%, 4.5%, 2.5%, 1.6%) 
 

D-Line G-line 

Phenylalinine CH2,CH3 Amide I 

Lipid Vibrations

Amide  III

D-Line 

Lipid deformationDNA G/A
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The loading of PC2 is very similar to an inverted cellular spectrum. By 

understanding the PC’s as dimensions along which the samples score, the 

negative loading of PC2 (as it is the dimension along which the exposed and 

unexposed samples separate) explains how different the exposed samples to 

average control samples are. The PCA scores plot, Figure 3-8, shows a 

degree of separation into two classes between exposed and unexposed 

populations where the separation is caused basically by scoring positive or 

negative along PC2.  

 

Figure 3-8 Principal component score plot of PC2-PC3 for every exposed (red) and control 
population (blue) 
 

 

It is clear from visual observation at high concentrations [75] and the variability 

of the contribution of the G-line as shown in Figure 3-5 (D), that the spatial 

distribution and thus local concentration of the SWCNTs varies considerably 
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from point to point in the sample at each dose. The separation or distinction 

between the five different exposure doses is not therefore very clear and a 

continuous variation of dosages as measured using the high spatial resolution 

of the laser is inferred. A clear distinction between exposed and non-exposed 

is however evident. By doubly derivatizing the data, the scores plot of the PCA 

shows distinct separations down to the level of exposure concentration of the 

samples, giving a defined cellular response and spatially denser co-

localization of each group Figure 3-9. The plot demonstrates a well defined 

dose dependent response but again highlights the difficulties of establishing 

completely homogeneous exposure doses.  

 

Figure 3-9 Principal Component Score Plot of PC2-PC4 for every spectrum of exposed 
concentration (control, 1.56, 6.25, 25.0, 100.0 mg/l) after being doubly derivatized 

For illustration purposes, a PLS regression model was constructed. The 

training data for construction of the PLS regression model was formed by 60% 
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of the full spectral dataset. The remaining 40% formed the test data set to 

evaluate the model. A GA was applied to reduce the number of wavenumbers 

required for prediction. The aim of the genetic algorithm was to minimize the 

RMSECV for the calibration model in predicting the clonogenic endpoints of 

CNT induced toxicity. The GA was performed over 100 runs. The fittest 

individuals used 178 variables, reducing the original dataset by 559 

wavenumbers. In order to choose the optimum number of LV’s to be retained 

‘leave-one-out’ cross validation was carried out on the calibration set. (Figure 

3-11) shows the results of the cross validation. Ten LV’s were retained for 

model construction as the RMSECV did not decrease significantly after this 

point. 

 

Figure 3-10 Cross validation results, the lowest RMSECV was observed at 10 latent variables 
(RMSECV = 2.53). 
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Table 3-2 shows the performance of the GA PLS regression.  

 
Table 3-2 Performance of GA optimised PLS regression. 

 
#wave-

numbers 
LVs retained RMSECV RMSEC RMSEP 

PLS 

regression 
737 10 4.31 3.17 

3.37 (R2 

= 0.99) 

GA-PLS 

regression 
149 10 2.53 2.10 

2.78 (R2 

= 0.99) 

 

Using 10 latent variables, the GA PLS regression clearly outperforms 

multivariate calibration using the entire wavelength range, showing a 

decrease in all RMSE values. The independent testing set held back from 

training was used to determine if over fitting had occurred. Upon presentation 

of the testing set, the RMSEP was calculated to be 2.78 indicating an 

accurate model, and furthermore no over fitting was observed. Therefore, an 

accurate GA optimised PLS regression model has been created correlating 

Raman spectra to clonogenic endpoints (Figure 3-11) thereby reducing 

toxicity analysis time and the cost of analysis by negating the need for post 

exposure cell culture. While the RMSE values observed in this study are 

encouraging, a further reduction in these values would be beneficial.  
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Figure 3-11 GA optimised PLS regression model correlating Raman spectra to clonogenic 
endpoints 
 

3.3.3 Results from hyper spectral Imaging 

In a trial study, spectral imaging of spectroscopic measurements was 

performed over an area of the samples where bundles of carbon nanotubes 

were, despite thorough washing, clearly visible (Figure 3-12 ). Over an area of 

1720 µm², 1936 spectra were taken. Each spectrum consisted of the spectral 

range of 1500 cm-1 (200-1750cm-1). In comparison to the visual image, two 

main features of CNT’s are displayed, colour coded, representing their 

spectral intensity at certain planes. These spectral ‘slices’ of the hypercube at 

~1331cm-1 (D-Line) and ~1590cm-1 (G-Line) display the distribution of CNT’s 

within areas which were not visually conspicuous (Figure 3-13). It is important 

to highlight that the acquired data (2D) were recorded over a significantly 

reduced measurement time of 10s and much lower laser energy (3mW) at the 
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sample to avoid saturation of the CCD detector of the spectrometer due to the 

strength of the CNT’s signal. 

 

Figure 3-12 Phase contrast micrograph (200x) of A549 cells following 24 h exposure to 800 
µg/ml SWCNT with 5% serum showing aggregates (arrows) on cell surface. These 
aggregates were still observed on the cell surface after several washes with PBS [Davoren et 
al. 2006] 
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Figure 3-13 Spatial distribution map of CNT influence on A-549 as measured by Raman 
spectroscopy at indicated by the D-line feature (1331.79cm-1) top row and the G-Line feature 
(1590.77 cm-1)bottom row 

 

3.4 Conclusions 

The potential of Raman spectroscopy as a viable tool to assess toxicology is 

demonstrated. Raman spectroscopy can be considered as a suitable 

technique for monitoring CNT induced biochemical changes at the cellular 

level. A good correlation is seen between markers of toxicity identified by a 

previous study and the exposure dose. A more refined control of cellular 

exposure coupled with other multivariate analytical techniques [178, 179] 

could extend this study to a truly quantitative assessment of the toxic 

response. The present study uses the same cell populations described in 

Herzog et al. [77] and the cells under investigation here were identical in 
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exposure to those used in the previous work. A similarly good correlation 

between the spectral markers and the clonogenic endpoint of proliferative 

capacity is observed, indicating that the technique can overcome the 

previously identified problems with colorimetric assays in determining the 

cytotoxicity of carbon nanotubes. The changes in the spectra are visibly 

observable, dose dependent, and throughout are well related to cytological 

data, emphasizing that Raman spectroscopy is a potential analytical method 

for the examination of chemical and biological properties of cells. Principal 

Component Analysis as such shows good dose dependent separation of 

spectra. The combination seems to deliver a promising starting point for 

establishing a new kind of toxicological analysis, with the overall objective 

being the understanding and prediction of biological responses non-invasively 

with vibrational spectroscopy. 

The study demonstrates the capabilities of Raman spectroscopy to detect cell 

alterations to A549 lung that were directly exposed to single wall carbon 

nanotubes. It was shown that key features of those CNTs can dominate 

spectroscopic results, but still, biological responses were notable. The 

difficulty of single wall carbon nanotube dispersion was highlighted. In a 

multivariate approach, the clear dose dependent response was utilised to 

build a predictive model for the exposure. A correlation could be established 

between spectroscopic markers and the overall toxicity of single wall carbon 

nanotubes. Though no single marker could be found and the response 

appeared to be more than one dimensional, the toxicity of SWCNT was 

classified in primary, direct, and secondary, indirect, toxicity. It was pointed 

out that for a multivariate modelling the application of a genetic algorithm for 
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feature selection is beneficial. Furthermore the high sensitivity of Raman 

spectroscopy was demonstrated. 
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Chapter 4 : Secondary toxic responses as a result of medium 

depletion 

4.1 Introduction 

Previous studies have indicated that the toxic response of cells to the in vitro 

exposure to SWCNT is not only induced by primary, direct toxic influences, 

but that secondary or indirect toxic effects are apparent [102]. One of these, 

medium depletion, is a result of the adsorption of components of the cell 

culture medium by the SWCNTs, resulting in a cell growth environment which 

is deficient in essential nutrients. In the study by Casey et al. [101], 

colorimetric and clonogenic assays were employed to determine the influence 

of this depletion on cell viability. The depletion was created by the preparation 

of real exposure concentrations, which were then centrifuged and filtered to 

remove the SWCNTs and the adsorbed components. The cell cultures were 

exposed to these filtered solutions in order to mimic the concentration 

dependent medium depletion while eliminating any primarily toxicity due to 

direct exposure of the cells to the SWCNTs. Both colorimetric and clonogenic 

assays indicated that medium depletion effectively resulted in starvation of the 

cell cultures, compared to controls, resulting in a reduced cellular viability and 

proliferative capacity [2]. As colorimetric assays have proven to be 

problematic in the analysis of SWCNT toxicity [171], and clonogenic assays 

do not provide any direct evidence of underlying cellular mechanisms, Raman 

spectroscopy seems a promising alternative as a toxicological probe [170].  

In this chapter, an identical exposure protocol to the experiments of Casey et 

al., is employed to explore the capabilities of Raman spectroscopy as a probe 
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for such indirect toxic responses. Mirroring the comparison study of the 

previous chapter, univariate and multivariate analyses are again employed to 

correlate the spectroscopic data with the given colorimetric endpoints derived 

from the original cytotoxicological study. Significant improvement in the quality 

and reliability of the spectral data is achieved by evolving the methods of pre 

and post processing as described in chapter 2, in comparison to the study 

described in chapter 3. Although the resulting correlation of spectral data with 

colorimetric endpoints is poor, due to identifiable difficulties in the exposure 

protocol, indicators for the depletion dependent cell death and proliferation 

can be identified and the sensitivity of Raman spectroscopy is emphasized. 

4.2 Materials and Methods 

4.2.1 Sample preparation 

A549 cells were cultivated as described in section 2.4.3 and harvested at 

~85% confluence. As substrates for spectroscopic measurement, polished 

uncoated quartz slides (Crystran Ltd. Poole, UK) were used to remove any 

possible variance due to changes in coating thickness. The substrates were 

washed with ethanol, air dried under laminar flow, then loaded into six well 

plates (Nunc A/S, USA), and then were covered with 3 mL cell culture medium 

as described in section 2.4.5. The prepared chambers then received ~2.5 

x104 cells each in the center of the quartz substrate and the cultures were 

incubated for 48 hours to allow the cells to attach to the substrates. 

Afterwards, the medium was removed and the samples were washed with 

PBS three times before exposure to the toxicants. Single walled carbon 

nanotubes were dispersed in cell culture medium with an ultrasonic tip for 30 

seconds in a 10-second on-off interval, preventing heating of the SWCNT 
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solutions, for the preparation of the stock solutions as described in section 

3.1.2.1. HiPco Carbon Nanotubes (Carbon Nanotubes Inc.) were employed 

for the study for consistency with previous studies [75, 99, 102, 171]. From an 

initial concentration of 0.8 mg/ml, the exposure suspensions were serially 

diluted into seven different concentrations (0.00156, 0.00312, 0.0625, 0.25, 

0.1, 0.4, 0.8) mg/ml. After preparing the SWCNT suspensions, they were 

stored for 24 hours at 4°C. Prior to application, these suspensions were 

centrifuged at 3000 rpm/1800 G for 20 minutes. Finally, to remove the 

dispersed nano particles, the SWCNT suspensions and cell culture medium 

were filtered using sterile cellulose acetate filters with a pore diameter of 

0.2µm (Anachem ALG422A). This protocol is replicated from Casey et al. 

[101] and has been demonstrated to produce a medium in which the SWCNTs 

have been effectively removed, and furthermore has been depleted of much 

of its molecular components, which have adsorbed to the SWCNTs. For 

comparison, a sample of control, unexposed medium, was centrifuged and 

filtered using the same protocol. A further control of unfiltered medium was 

employed. The cells were then exposed to these filtered, depleted, media for 

96 hours at 37.5°C (5% CO2). After the exposure period, the slides were 

rinsed with PBS and fixed in 4% formalin in PBS solution for 10 minutes, 

rinsed three times with deionised water and finally stored immersed in dH2O 

at 4°C until spectroscopic measurement. 

4.2.2 Spectroscopy 

Raman Spectroscopy was carried out with the Horiba Jobin Yvon Labram 

HR800 Raman confocal microscope, using the second harmonic (532 nm) of 

a Nd3+:YAG laser as source, with a grating of 300 l/mm, providing a spectral 
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dispersion of approximately 1.43 cm-1 per pixel. Cellular spectra were 

recorded using a water immersion lens (Olympus Lum-Plan FL x100) from 

substrates immersed in water in a sealable Petri dish with an opening for the 

lens to prevent evaporation of deionised water. The x100 water immersion 

objective produced a spot size of approximately 1µm in diameter at the 

sample. The system was calibrated to the spectral line of crystalline silicon at 

a constant room temperature of 21°C. The measurement range was set to an 

interval of ~245-1755 cm-1 in order to produce spectra within the fingerprint 

region of the cell samples [91]. Each measurement was integrated over 90 

seconds using a  laser power of 37 mW at the sample. Initially, 2 mL of each 

depletion medium concentration was measured in a quartz cuvette, to ensure 

that the filter strategy successfully removed all carbon nanotubes from the 

depleted medium. The substrate spectrum per slide was measured before and 

after acquiring the cellular spectra, in order to provide an indicator of any 

possible spectral drift during the measurement. The locations of 11 acquisition 

positions per cell were evenly spread along a straight line across the nucleus 

and adjacent cytoplasm. All recordings were performed as an average of 

three individual measurements of each point to reduce the influence of 

spectral noise. Four cells per sample were mapped in this way and the 

process was repeated in triplicate. 

4.2.3 Data pre processing  

The preprocessing protocol employed comprised of the following steps. 

Firstly, data were loaded into Matlab 7.3. The background of all spectra was 

removed with the rubberband function as described in section 2.4.8.6.3. 

Afterwards, all spectra were linearised as described in section 2.4.8.3. All 
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spectra were then scaled to the characteristic quartz feature at 486 cm-1 [144]. 

Any potential drift between spectral measurements was analysed by cross 

correlating the pre- and post- recorded substrate spectra per slide. In the 

cases where drift was apparent, it was linearly interpolated over the time 

between the measurements and then integrated into the sample spectra by 

shifting the abscissae accordingly. The substrate spectra then were 

deconvoluted using a number of combined Gaussian and Lorentzian functions 

in order to model the substrate as described in section 2.4.8.7.3. The 

contribution of this model substrate was then calculated for each spectrum 

and subtracted. As all measurements were recorded in water immersion and 

the contribution of water inside the confocal volume might be variable, it was 

decided to deconvolute the Amide I region at ~1656 cm-1 with a series of 

combined Gaussian and Lorentzian functions to remove the water contribution 

at about 1640 cm-1, as described in section 2.4.8.7.4. Finally, the spectral 

window was cropped to 600 - 1744 cm-1, to remove any substrate residues 

caused by the variance of the quartz feature and the influence of the varying 

Rayleigh scattering. Outlier detection was performed manually after the 

preprocessing of the spectra by analysing each mean spectrum per cell and 

957 spectra were deemed valid for analysis (Figure 4-2).  

Table 4-1 Sample numbers (depletion study) after recording the measurements and outlier 
removal 

Recorded 

Replicates 

Validated 

Replicates 

Sample 

Concentration 

I II III I II III 

0.0 mg/l (control) 44 44 44 44 33 33 

0.0 mg/l (filtered control) 44 44 44 44 44 33 
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1.56 mg/l 44 44 44 33 33 44 

3.12 mg/l 44 44 44 33 33 33 

6.25 mg/l 44 44 44 33 33 44 

25.0 mg/l 44 44 44 33 33 33 

100.0 mg/l 44 44 44 33 33 33 

400.0 mg/l 44 44 44 33 33 33 

800.0 mg/l 44 44 44 44 33 33 

 

4.3 Results 

4.3.1 Influence on the medium 

The influence of the carbon nanotubes on the exposure medium was visually 

apparent after filtration. The higher the concentration of carbon nanotubes 

before filtration, the more colourless the filtered medium (conc > 25mg/L) 

becomes (Figure 4-1). The higher concentrations of 400 mg/L and 800 mg/L 

resulted in a completely (visually) colourless medium. The characteristic pink 

colour is caused by the pH indicator, phenol red, within the medium. However, 

the pH level is not changed by filtration as already reported [101]. This is one 

of the first indicators of the depletion of the medium by single wall carbon 

nanotubes. In addition, Raman spectroscopic analysis confirmed that no 

measurable amount of carbon nanotubes, or their aggregates, had passed the 

filtering process. The spectra of the depleted medium do not show any 

evidence of the characteristic sharp G-line feature of SWCNT’s (Figure 4-2). 

This G-Band, or tangential mode, usually appears at 1583-1605cm-1 (Figure 

3-2) and originates from tangential oscillations of the carbon atoms in the 

nanotubes [85, 148, 174]. Remarkably, besides the actual spectral content, 
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the spectra looked very smooth even without any pre-processing and 

therefore no smoothing was applied. 

 

Figure 4-1 Photo of depleted media samples at a range of concentrations (notation in mg/L) 
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Figure 4-2 Raman spectra of filtered medium depleted by a series of SWCNT concentrations. 
  

Amide I G-Line Phenylalinine CH2,CH3 Amide III 
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The Amide I band at 1656 cm-1 is a common indicator of protein in biological 

spectra as described in section 2.4.9.1. In this spectral region, among others, 

the spectra of the exposure media display a clear trend of reduced intensity 

with increased SWNT concentration (Figure 4-2), indicating protein adhesion 

to the SWCNT, and subsequent removal by the filtering protocol. The 

reduction in protein content is not a result of the filtering process alone, as the 

filtered control has Amide I features of similar strength to the control (Figure 

4-3). Thus, as the SWCNT were not detectable spectroscopically, it is 

assumed that the SWCNT adsorbed a nutrient corona similar to other 

nanoparticles [180] and these and other aggregates are accumulated in the 

discarded filters. Remarkably, at high concentrations above 100mg/L, it 

seems that no further decline in signal intensity takes place. This observation 

is in good agreement with the results of Casey et al. [101], which indicate that 

significant changes in cell viability are notable only at very high 

concentrations. However, it is also noted that the total reduction of protein 

content of the medium, even at high SWNT loading concentrations, is ~30% 

and so the depletion is only fractional. 
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Figure 4-3 Reduced Amide Intensity with increased concentration of SWCNT (n=3 per 
concentration) 
 

4.3.2 Impact of medium depletion on the cells 

4.3.2.1 Univariate Analysis 

Figure 4-4 shows mean spectra per line map of cells grown in unfiltered 

medium (control), filtered medium (filtered control) and the filtered media 

previously loaded with varying concentrations of SWCNTs. Notably, no 

features of single walled carbon nanotubes are detectable, further confirming 

that only indirect exposure to SWCNT took place.  
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Figure 4-4 Mean spectra of A549 lung cells exposed to medium depleted by different 
concentrations of SWCNT (n > 33) 
 

Although there are no striking differences between the mean spectra in terms 

of the dominant characteristic peaks, some smaller features do seem to be 

altered. For example, the feature at about 830 cm-1, observable in the SWNT 

exposed media but not in the control or filtered control, suggests a slightly 

altered intensity of the O-P-O backbone and symmetric stretching vibration of 

DNA and RNA. The neighbouring feature at about 853 cm-1, characteristic of 

the C-C stretching vibration of the amino acids proline and tyrosine, becomes 

more prominent in comparison to the control and filter control. Furthermore, 

the peak ratios in the cluster between 1019 cm-1 – 1145 cm-1 change with 

depletion, in particular the relative intensities of the C-O stretching vibration of 

RNA ribose at about 1056 cm-1 and the adjacent C-C chain vibration at about 

1065 cm-1. Whereas this cluster has only a small feature at about 1060 cm-1 in 

the control and filter control samples, this feature becomes notable in SWCNT 
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depleted medium exposed samples. Corroborated by previous results which 

attributed a change in this spectral region to an alteration in the lipid 

contribution to the cellular composition [106, 175], this spectral region seems 

to be promising for further analysis as a possible co indicator for increased 

vesicularisation of the cell membrane, a lipid double layer, prior to cell death. 

The next cluster of interest is the spectral region between 1200 cm-1 and 1400 

cm-1, containing the Amide III band between ~1238 cm-1 and ~1284 cm-1, which 

has in previous studies already functioned as a marker for toxicity in direct 

exposure to toxins, and which was employed in the study of the direct toxic 

effects of SWCNTs in the previous chapter [107]. It contains a strong CH2 

twisting vibration attributed to DNA, RNA and lipids at about 1302 cm-1 and a 

stretching vibration of CH at about 1342 cm-1 attributed to proteins, DNA and 

RNA. The next features of interest are the CH2 deformation vibration 

attributed to lipids and proteins at about 1450 cm-1 [93, 105, 106, 175] and a 

DNA attributed feature at about 1580 cm-1, the C=C bending vibrations of 

proteins at about 1610 cm-1, and the Amide I peak at about 1656 cm-1. The 

last region of interest is the very small feature at about 1743cm-1 at the 

extreme of the recorded spectral window, representing the C=O vibration of 

ester bondings in lipids, sometimes employed as an apoptotic marker in 

connection with the width of the Amide I band [181]. Overall, the filter control 

cells look very similar to the controls, probably indicating no or little change to 

the medium by filtration. 

Despite the visually apparent variations in the spectral profiles of Figure 4-4, 

the markers for toxicity employed in chapter 3 (the ratio of 1287 cm-1, 1302 

cm-1 and 1338 cm-1 to the Amide III band at 1238cm-1) indicate that no 
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systematic dose dependent toxic response has taken place (Figure 4-5). The 

standard deviation of each point is however larger than the expected range of 

variation. 
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Figure 4-5 Peak ratios of 1287/Amide III (A), 1302/Amide III (B), 1338/Amide III (C), versus 
concentration 
 

All filtered spectra were then normalised to the CH2 feature at ~1450 cm-1, a 

common means in spectroscopy to compare spectra [93]. This feature may be 

attributed to bending and scissoring vibrations in proteins and phospholipids 

[105, 182], and as CH and CH2 are the most common groups in biological 

compounds [183], the feature can be used to normalize the spectra for their 

overall biological content [93]. The CH2 feature at ~1450 cm-1 itself seems not 
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to vary as a function of medium exposure (Figure 4-6), although, again, the 

standard deviation of the intensity measurement at each dose is very large. 

No obvious dose dependence, (filter control set to 100%) of identified 

cytotoxicity markers within the normalised spectra, was apparent, however, 

although the intensity of the Amide III band at 1238 cm-1 appears to be 

somewhat systematically and significantly reduced with increasing 

concentration. Similarly, the feature at 1234 cm-1 seems reduced significantly 

at the highest exposure concentration (Figure 4-7). The strong variation of the 

standard deviation per ratio can be explained by the partially covariant nature 

of the features with the intensity of the CH2 feature. 
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Figure 4-6 Variation of the CH2 feature at ~1450 cm-1 versus depletion concentration as a 
measure for overall lipid and protein content (error bars indicate the SD per datapoint). 
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Figure 4-7 Extracts (I) of peak intensity ratios versus CH2 (1450 cm-1) with the filter control (0 
mg/L SWCNT depletion) set to 100 %. 
 

Remarkably, in comparison to the intensity of the filter control (100%), the 

feature at 853 cm-1 remains significantly below 100%. It denotes a reduced 
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presence of the C-C stretching vibration of the amino acids proline and 

tyrosine. Similarly, the DNA/RNA phosphate backbone stretching vibration at 

830 cm-1 and a feature of the Amide III band at 1284 cm-1, denote the CH 

deformation of proteins and lipids remain below the 100% mark. Investigating 

the third and fourth region of interest, a similar trend is notable (Figure 4-8). 

The CH2 twisting vibration in DNA / RNA and lipids at 1302 cm-1 is 

consistently lower than the control, although no systematic concentration 

dependence is observable. The CH stretching vibration at 1342 cm-1 displays 

a similar behaviour. Within these two regions of interest, only the Amide one 

band at 1656 cm-1 is consistently below 100%. The other peak positions vary 

strongly around and above the intensity of filter control.  
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Figure 4-8 Extracts (II) of peak intensity ratios versus CH2 ( 1450 cm-1) with the filter control (0 
mg/L SWCNT depletion) set to 100 % 
 

Overall, the simplistic analysis of the peak intensity of these regions of interest 

does not conclusively reveal a response consistent with dose dependent 

depletion of the cell culture medium. There are some indications of cellular 
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starvation, visibly manifest in some features that are relatable to the overall 

protein content of the cells, but these do not exhibit systematic concentration 

dependences. Generally, the markers for cytotoxicity used for the analysis of 

mercury exposure by Perna et al. seem to correlate only with primary or direct 

toxicity, also observable in chapter 3. Secondary, or indirect, toxicity of 

SWCNT, as studied here, essentially is an effect of the depletion of cell 

culture medium, leading to starvation of the exposed cells, possibly resulting 

in more subtle effects. For example, medium depletion is a common method 

to synchronize cells to G0/G1 [184, 185] prior to cell death and does not result 

in a true toxic effect as such. It should be noted that, 96 hours of cell growth in 

unreplenished medium leads naturally to nutrient depletion [186], suggesting 

that even in an unfiltered control, the cells may not be very healthy. 

The clonogenic assay, although a gold standard in radiation biology, does not 

really tell anything specific about the health of a cell or cell colony. It quantifies 

colony growth in comparison to an unexposed control, which is interpreted as 

relative viability without any mechanistic support. In the study of Casey et al. 

[101] little change in the colony number as a function of SWCNT exposure of 

the medium was observed. The secondary effect was notably manifest in the 

colony size, however, which was interpreted as a change in the proliferative 

capacity of the cells. Thus, rather than being directly toxic the depleted 

environment results in reduced metabolic activity of the cells. Alamar Blue 

(Resazurin), also employed within the medium depletion study of Casey et al. 

[101], is more specific, as it indicates proliferative capacity on a metabolic 

level, although essentially only the redox cascades inside a cell are monitored 

by this assay [187]. Therefore, no detailed mechanistic response is 
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represented by either assay. In both cases, however, it was seen that 

significant responses were only apparent at high exposure concentrations 

[101]. Furthermore, recent studies credit the formation of oxidative stress to 

resazurin itself, which makes AB further questionable as a reliable marker for 

the analysis of cytotoxicity [187]. Raman spectroscopic analysis potentially 

provides a more detailed and noninvasive chemical analysis of local cellular 

changes and thus multivariate analysis of the spectroscopic data was 

employed to explore the possibility of modeling the broader cellular response 

caused by starvation due to medium depletion. 

4.3.2.2 Multivariate Analysis 

The previously recorded data were fed into the principal component analysis, 

and analysed for clustering, group separation and any differentiating spectral 

markers. The dataset used contained only the samples that were filtered and 

depleted. The scatter plot, shown in Figure 4-9, reveals a distinct separation 

between the filter-control and the depleted medium exposed line map 

averaged cellular spectra. The mean spectra of the depleted medium cells, 

however, do not cluster according to the exposure dose of the medium before 

filtering (Figure 4-9). 



112 

-800 -600 -400 -200 0 200 400 600 800
-400

-300

-200

-100

0

100

200

300

 

 

PC1 (69%)

PC
2 

(1
4%

)

filter control
1.56 mg/L
3.25 mg/L
6.25 mg/L
25 mg/L
100 mg/L
400 mg/L
800 mg/L

 

Figure 4-9 Scatterplot of the mean spectra of the depleted medium exposed cells after PCA, 
with PC1 describing 69% of the total variance and PC2 describing 14% total variance of the 
dataset. 
 

The elongation or stretching of the cluster of the spectra of the depleted 

medium exposed cells is predominantly along the dimension of principal 

component one, which represents 69% of the total variance of the dataset. 

The separation between the filtered-control and the spectra of the depleted 

medium exposed cells mainly derives from the second principal component, 

which describes 14% of the overall variance in the data set. 

Prior to the analysis of the loadings of each principal component, it becomes 

obvious that the medium depletion caused by single walled carbon nanotubes 

exposure altered the cellular spectra, although it appears that the multivariate 

nature of the variance is not systematically dependent on the exposure dose. 

Derivatization of the spectral data prior to PCA did not result in any improved 
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dose dependent classification of the data. Taking the mean density of the data 

cloud per concentration into account, however, the data suggest that, 

although hugely influenced by some outliers, with increasing concentration 

above 6.25 mg per litre, the data sets for each dose become more spread, 

possibly indicating that the SWCNTs were less well dispersed with increasing 

concentration [101]. Indeed, it has been demonstrated that, in aqueous 

surfactant as well as organic solvent dispersions of SWCNTs, the degree of 

exfoliation of bundles and therefore the variation of aggregation state is 

strongly concentration dependent  [188, 189]. 

The loadings plots of the first two principal components describe about 84% of 

total variance (Figure 4-10). They display the first two orthogonal dimensions 

of the variance of the total dataset and, due to their relation to the spectral sub 

space, the information can be interpreted in a similar way to spectral data. 

The first principal component loading represents, roughly, an inverted average 

cellular spectrum (Figure 3-3(a)). This seems to indicate that the filter-control 

spectra, which consistently score negatively in PC1, are spectroscopically 

closer to healthy cells, whereas most of the spectra of particularly higher 

doses score positive on PC1, indicating a reduced state of health.  
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Figure 4-10 Loadings plot of the first two PC's of the depleted medium dataset (PC1 
describing 69% variance and PC2 describing 14% variance) with shaded regions of interest. 
 

The second principal component loading features some sharp first derivative-

like features over the whole spectral range indicating for example a slight shift 

of the phenylalanine ring breathing at ~1003 cm-1. The variance of the filter-

control cells, compared to the depleted medium spectra, is negative in the first 

and second principal component and thus anti-correlated to PC1 and PC2. In 

terms of PC1, this indicates stronger cellular spectral features of the filter 

control cells compared to the exposed cells. 

On the other hand, most of the spectra of the depleted medium exposed cells 

score positive in the first and second principal component. Therefore the 

variance represented by PC1 and PC2 describe the difference between the 

spectra of the depleted medium exposed cells and the filter-control spectra 
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well, but the separation between both groups is predominantly caused by the 

different scoring with respect to PC2.  

In PC2, five regions of interest (ROI) are highlighted due to their inverse 

occurrence and their intrinsic cellular relevance. These features are already 

notable, though obscured in the overview of the average spectra in Figure 4-4. 

Within the first ROI, there is a strong component of variance associated with 

the feature at ~781 cm-1, which is attributed to DNA-base vibrations of 

cytosine and thymine [93]. In the second region of interest, 830-863 cm-1, the 

ring breathing mode of tyrosine and polysaccharide structural vibrations [190] 

are present in an inverse sense. The phenylalanine feature caused by ring 

breathing vibrations at ~1003 cm-1, is seen to shift to lower frequencies, which 

could indicate a biological response to the depletion of the culture medium. 

Alternatively, this unusually very sharp feature is also very prone to shifts as a 

result of changes in intensity of overlapping tails of neighbouring broader 

features of the neighbouring C-O vibrations of RNA Ribose at 960 cm-1 and 

1056 cm-1 and a C-N stretching vibration at 965 cm-1 (Table 2-4). This can 

induce variance in the x direction, which effectively broadens or shifts the 

phenylalanine feature and phenyl group features of any of the aromatic amino 

acids. In the spectral region between 1100-1150 cm-1, the negative 

occurrence of the symmetric phosphate stretching vibration at ~1110 cm-1 and 

the inverse appearance of the saccharide stretching vibration at  -1139 cm-1 

are obvious. The last region of interest in the second PC-loading is the 

spectral region just before the Amide I band. Between 1550 cm-1 – 1610 cm-1 

lies the inversely varying peak attributed to tryptophan [190] and, similarly 

oriented, the nucleic acid attributed features of guanine and adenine at 1578 
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cm-1and the tyrosine and phenylalanine contributed ring breathing vibration at 

1607 cm-1. The latter two have already been identified as markers for cell 

death in previous studies [191]. Another marker for cell death along with the 

Amide I and Amide II bands is an increase in the ester carbonyl bond vibration 

at ~1743 cm-1 [192] which is present in the loading of the first PC. Projecting 

this information onto the negative scoring of the filter controls in the second 

dimension generally suggests a better preservation of the cells after fixation 

than the exposed cells. By extrapolation, as the filter controls score negative, 

the first areas of interest might be understood in terms of better ‘health’ before 

fixation. Although it has been reported that the fixation of A549 cells with 

formalin has minimal impact on the spectra [182], the fixation step during 

sample preparation has some impact on the spectra and therefore probably 

not all previous markers can be employed as markers for cell death due to 

starvation as such. Though all of the spectra show this behaviour, it is obvious 

that the spectra of the exposed cells are more strongly affected.  

Finally, the unfiltered control and filter control spectral data were subjected to 

PCA. Surprisingly, the filtering of the unexposed medium itself had an effect 

on the clustering of these two control sets (Figure 4-11) represented here by 

their (line-map) means. Predominantly the datasets are separated along the 

first principal component. The corresponding loading (Figure 4-12), although 

inverted, displays a number of similarities to the previous loading of principal 

component two (Figure 4-10), whereas markers for dead cells at for example 

1587, 1607, 1743, cm-1 [93, 191, 192] are not in evidence. 
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Figure 4-11 Scatterplot of the mean spectra of the control and filter control medium exposed 
cells after PCA, with PC1 describing 66% of the total variance and PC2 describing 18% total 
variance of the dataset.  
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Figure 4-12 First PC describing 66% of variance of the control and filter control medium 
exposed cells after PCA.  
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Thus, the filter control cells score positively throughout. It can be assumed 

that the filtering process itself has an influence on the medium constituents. 

This links the filtering process in both PCA to the outcome separation between 

the groups, indicating that the filtering process has an influence on the cell 

culture medium. As the first principal component does not show any 

similarities with a common spectrum of A549, the influence on the health of 

the analysed cells is not fatal. Whereas the specifically depleted medium 

created variance in the PCA of Figure 4-10, the most variance was captured 

along a negative cellular spectrum. Therefore, filtering of the medium clearly 

changes the spectral characteristics of the cells after 96h but the changes are 

less prominent than those in the SWCNT induced depletion. The health of the 

cells exposed to the filtered medium is different but comparable to the health 

of the unfiltered controls, although significantly different to the SWCNT 

exposed.  

Filtering the medium appears to deplete the medium to a small extent, 

although in terms of the protein content, this depletion appears to be minimal 

(Figure 4-3). Exposure of the medium to SWCNTs and subsequent filtration 

results in a significant, dose dependent medium depletion, to a maximum 

concentration of ~100mg/L. However, over a 96hr period, the unexposed cells 

deplete the medium as a result of their natural metabolism, and it is likely that 

this natural depletion of the medium occurs at rates which are dependent on 

the initial state of the medium. Such a process can be illustrated schematically 

as in Figure 4-13 which suggests how the change in health of the cells due to 

exposure to depleted medium might evolve with time. Despite the fact that all 
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cultures suffer from medium depletion to different degrees, after 96 h, the 

difference may be minimal.  
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Figure 4-13 Illustration of suggested viability response in dependence of starvation time and 
intensity expressed in % of viability (96h time point highlighted). 
 

Reduction of the proliferative capacity of a cell culture by starvation as a result 

of medium depletion is known to result in cell cycle arrest [184, 185] or 

apoptosis [186]. Noting the markers for changing protein content and poly 

saccharide alteration [103], it can be understood that all cells including control 

suffered some degree from nutrient deficiency over 96h of exposure, but the 

cells exposed to the SWCNT depleted medium were probably starved earlier, 

and thus the signals of death are more prominent. This argument supports the 

depletion aspect of the experiment, although no direct concentration 

dependence is apparent. Similar to the toxicological study, only the very high 

concentrations above 100 mg/l were seen to indicate a significant result in the 

colorimetric analysis with Alamar Blue [101].  
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In an additional attempt to uncover a possible but unlikely dose dependent 

response, the dataset was fed into a partial least squares regression, 

employing the Alamar Blue assay data for 96 h, obtained by Casey et al. 

[101], as the regression targets, serving as markers for starvation induced by 

culture medium depletion due to SWCNT exposure (Figure 4-14). 

 

Figure 4-14 Cytotoxicity of Arc Discharge SWCNT filtered medium to A549 cells after 24, 48, 
72 and 96 h exposures determined by the AB assay. Data are expressed as percent of 
control mean ± S.D. of three in dependent experiments. (*) Denotes significant difference 
from control (p≤0.05). (taken from Casey et al., 2008)  
 
The possibility of building a simple PLS regression model with the full dataset 

as training and cross validation set, finally presenting the unknown 

concentration of 3.12 mg per litre to the model, was investigated. Therefore, 

the dataset was reduced to 748 spectra by removing 99 spectra (3.12 mg per 

litre), each with 1153 data points. For the initial construction of the model, in 

order to obtain a qualified number of latent variables, 100 % of the mean 

centred dataset were used. The calibration model was rigorously cross-

validated. The optimal number of latent variables was found to be 10 out of 20 

possible, with a maximum R2 of 0.39, and consequently the modelling of the 

data via PLS regression was abandoned due to the maximum improvement of 
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R2 to 0.59 by employing 20 LV’s, falling short of a good result with an R2 

above 0.95. Employing high numbers of latent variables additionally makes 

the model prone to severe over fitting which further removes actual predictive 

capabilities. This lack of additional explanatory power supports the initial 

impression, indicated by PCA, in which no clear dose dependent indirect 

response is observable. Indeed, it is notable that the Alamar Blue results of 

Casey et al. only indicate a significant metabolic reduction due to starvation at 

the highest exposure doses.   

4.4 Discussion and Conclusions 

Although Raman spectroscopy, in combination with multivariate analysis, has 

proven to be a valid tool to assess and analyse cytotoxic responses [170], in 

the present study it is shown to have had limited utility. In the univariate 

analysis, it becomes apparent that the statistical variations in the spectral data 

are very large. Whereas in the study of chapter 3 much of the variation can be 

attributed to insufficient dispersion of nanotubes, Figure 4-3 indicates that the 

medium depletion because of SWCNT exposure was systematically 

dependent on exposure dose. The filtration process itself was seen to 

minimally impact on the protein content of the medium, as represented by the 

strength of the Amide I band compared to the control. Nevertheless, this small 

change in the medium content appears to influence the state of health of the 

cells after 96 h exposure, as indicated by the PCA of Figure 4-11. The 

spectral loading of the PC, which differentiates the filter control and the 

control, also differentiates the filter control from the cell cultures grown in the 

SWNT exposed media, indicating that this multivariate fingerprint is a 

signature of cell starvation. However, no systematic dose dependence is 
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observed. The increasing spread of the data sets according to PC1 in Figure 

4-9, indicates that although the overall protein content may be systematically 

dependent on exposure dose, as in Figure 4-3, more subtle variations in 

medium composition may result from variable dispersion of the SWCNTs in 

the exposure medium dispersions.  

The data spread according to PC1 in Figure 4-9, indicates variations in the 

state of the cellular health, as represented by the loadings plot of Figure 4-10. 

In the clonogenic study of Casey et al., medium depletion appears to affect 

the proliferative capacity of the cells rather than the viability of the culture. The 

Alamar Blue assay confirms the effects on the cellular metabolism. It appears 

that such effects are not manifest spectroscopically as distinct cytotoxicity 

markers, as observed by Perna et al. for the case of mercury toxicity [107] and 

in chapter 3 for the case of the toxic response as a result of direct exposure to 

SWCNTs.  

In comparison to controls, the effect of incubation for 96 h in filtered medium is 

manifest in the spectral profile of PC2. This spectral signature also 

differentiates the cultures grown in SWNT exposed media from the filtered 

controls, although not in a dose dependent fashion. It appears therefore that 

this signature is an extremely sensitive marker of cell metabolism in the early 

stages of exposure to cell depletion. While the clonogenic and AB assays only 

differentiated the high dose exposures, Raman spectroscopy, with the aid of 

multivariate analysis, can differentiate the effects of weakly depleted media. It 

appears, however, that the effect determined is saturated at higher dose 

points. This may be because of the duration of the exposure, at the end of 



123 

which the medium is significantly depleted even under normal cell growth 

conditions.  

PLS regression failed to establish a model of the spectroscopic signatures as 

a function of exposure dose or metabolic response, as determined by the AB 

assay. The PLS regression process is a linear model and so assumes a linear 

relationship between the multivariate features and the target. Given the 

indications that the spectroscopic response saturates at relatively low doses, 

the inability of PLS regression to construct a statistically viable model may not 

be surprising. Notably, it has previously been observed for the case of the 

effect of ionising radiation in vitro, that the physiological response as 

measured by the AB assay is quadratically related to the variation in identified 

spectroscopic peak ratios [Aidan D. Meade, PhD Thesis, DIT, (2010)]. 

Inversely, the spectroscopic response is related to the square root of the 

assay response and so while sensitive at low doses, saturates at high doses. 

It is also noted that the univariate and multivariate analyses were performed 

on spatial averages over the cytoplasm and nucleus. Changes in metabolic 

activity resulting in changes in proliferative capacity are most likely initially 

manifested as changes in the cytoplasm. However, a spatial average will be 

dominated by the features of the dense nuclear region and so may not best 

represent the subtle changes associated with secondary toxicity. A more 

sensitive study could probe the effects over a shorter exposure, timeframe 

concentrating only on the cytoplasmic components. 
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Chapter 5 : Study of toxic responses as a result of Reactive 

Oxygen Species 

5.1 Introduction 

Nanoparticle toxicity has been proposed to have origin in the induction of 

oxidative stress by free radical formation [1, 43, 66, 193, 194]. SWCNTs result 

in increased levels of Reactive Oxygen Species (ROS) in cell cultures, as 

previously demonstrated for A549 lung cells [1]. ROS are secreted as a first 

immune response of cells to threatening stimuli such as for example bacteria 

[46] and are a general cellular stress messengers [195]. They are also 

generated and neutralized in peroxisomes during metabolisation of fatty acids 

and by highly specific enzymes [47]. Excess amounts of ROS are however 

known to have a strong potential to damage cells [196]. ROS easily migrate 

through cellular membranes [46] and are known to have various detrimental 

effects on cellular viability [197]. They can induce DNA damage by modifying 

the desoxyribose-complex or individual nucleic bases, leading to strand 

breaks or causing deletions and oxidative modifications. In proteins, drastic 

changes can be induced by ROS, including limitation of the activity of 

elastase, which is connected to the development of  lung emphysema [196]. 

Lipids, especially unsaturated lipids, are prone to lipid peroxidation [198], 

which in itself can become autocatalytic [46]. Oxidative stress may have a role 

in the induction of inflammation through up regulation of redox sensitive 

transcription factors, NF-κB and activator protein-1 (AP-1), and kinases 

involved in inflammation [199, 200].  
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In order to further explore the potential of Raman spectroscopy as a 

toxicological screening tool, the increased ROS levels produced by exposure 

to nanoparticles are mimicked by a time dependent exposure to hydrogen 

peroxide at the cytotoxic level of ≥ 50 µM [201, 202]. Hydrogen peroxide is a 

strong oxidant that generates ROS in Fenton like reactions with for example 

metal ions [197, 203] and is a byproduct of cellular metabolism, as well as 

being a cytokine in its own right [44, 46]. It will be demonstrated that Raman 

spectroscopy is capable of picking up the different responses of A549 lung 

cells as a result of exposure to hydrogen peroxide in vitro, and a correlation to 

the mode of action by univariate and multivariate analysis will be established. 

The concentration of hydrogen peroxide applied in this study is that of the 

reported critical level of cytotoxicity ≥ 50 µM [201, 202]. Therefore, it is 

assumed that this level is an appropriate sensitivity level for Raman 

spectroscopy as a probe to access cytotoxicity. 

5.2 Materials and Methods 

5.2.1 Sample preparation 

A549 cells were cultivated as previously described in section 2.4.3, and 

harvested at ~85% confluence. As substrate for spectroscopy, round, surface 

modified (polished) quartz slides (Crystran Ltd. Poole, UK) were washed with 

hydrochloric acid and ethanol and air dried under laminar flow, then loaded 

into six well plates (Nunc A/S, USA) and covered with 3 mL cell culture 

medium as described in chapter 2.4.5. The chambers then received 5x104 

cells, each, in the center of the quartz substrate and were incubated for 48 

hours to allow the cells to attach to the substrates. After 48 hours, the medium 

was removed and the cells were washed with PBS three times before 



126 

exposure. The exposure solution consisted of cell culture medium with 

hydrogen peroxide added at a final concentration of 50 µM. The control cells 

received unmodified cell culture medium. After one, three and six hours of 

exposure, the slides were rinsed with PBS and then fixed in 4% formalin in 

PBS solution for 10 minutes, and subsequently rinsed three times with 

deionised water. They were finally stored, immersed in dH2O at 4°C, before 

the measurements were conducted. The control cells were fixed in the 

described manner six hours after medium change. 

5.2.2 Spectroscopy 

Raman Spectroscopy was carried out with a Labram 800HR Raman confocal 

microscope using a 532 nm (frequency doubled Nd3+: YAG) laser as source 

with a grating of 300 l/mm, providing a spectral dispersion of about 1.43 cm-1 

per pixel. Cellular spectra were recorded using a water immersion lens 

(Olympus Lum-Plan FL x100) from elevated substrates immersed in water in a 

sealable Petri dish with an opening for the lens to prevent evaporation of 

deionised water. The x100 water immersion objective produced a spot size of 

approximately 1µm in diameter at the sample. The system was calibrated to 

the spectral line of crystalline silicon at a constant room temperature of 21°C. 

The recording window was set to ~348-1752 cm-1 in order to detect spectra 

within the fingerprint region of the cell samples [91].  Each measurement was 

integrated over 90 seconds at a measured laser power of 37 mW at the 

sample. The substrate spectrum per slide was measured before and after 

acquiring the cellular spectra, in order to have an indicator for any possible 

spectral shift during the measurement. Eleven acquisition points per cell were 

defined, evenly spread along a straight line across the nucleus and the 
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adjacent cytoplasm in order to capture co-localised changes of spectra. All 

recordings were performed as an average of three individual measurements 

of one point to reduce the influence of spectral noise. 

5.2.3 Data analysis 

In total, 528 spectra were recorded, arranged in groups of [4 4 4], separately, 

in order to afford sufficient samples prior to outlier detection. The 

preprocessing regime applied comprised of the same steps as used in the 

depletion study of chapter 4. First, data were loaded into Matlab 7.3. After 

linearisation of the substrate recordings, the background was removed with 

the rubberband function. Any drift between spectral measurements was 

analysed by cross correlating the pre- and post- recorded scaled substrate 

spectra per slide. Where drift was present, it was linearly interpolated over the 

time between the measurements and then integrated into the sample spectra 

by shifting the abscissae accordingly. Afterwards, the background of the 

sample spectra was removed with the rubberband function and finally the 

spectra were linearised. The substrate spectra, scaled to the characteristic 

quartz feature at 486 cm-1 [144], were then deconvoluted by a number of 

combined Gaussian and Lorentzian functions to model the substrate as 

described in section 2.4.8.7.3. This model of the substrate was then 

calculated per scaled spectrum and subtracted. As all measurements were 

recorded in water immersion and the contribution of water inside the confocal 

volume might be variable, the Amide I region at about 1656 cm-1 was 

deconvoluted using a series of combined Gaussian and Lorentzian functions, 

to remove the water contribution at about 1640 cm-1. It was decided not to 

crop the spectral window ab initio, possibly leaving substrate residues caused 
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by the variance of the quartz feature and the influence of the varying Rayleigh 

scattering in the recorded spectra. Thus, the performance of the selected 

preprocessing showed no influence on the cellular spectra. Outlier detection 

was again performed manually after the preprocessing of the spectra by 

analysing each mean spectrum per cell and 440 spectra were found valid for 

analysis (Table 5-1).  

 
Table 5-1 Sample numbers (ROS study) after recording the measurements and outlier 
removal 

Recorded 

Replicates 

Validated 

Replicates 

Sample 

ROS (50μmol) 

Exposure I II III I II III 

Control 44 44 44 44 33 33 

1h 44 44 44 33 44 33 

3h 44 44 44 33 33 44 

6h 44 44 44 33 33 33 

 

5.3 Results 

5.3.1 Visual Changes 

In comparison to the control samples, the microscopic images of the A549 

cells which were exposed to the H2O2, showed significant morphological 

changes (Figure 5-1). Whereas in the control cells the nucleus plus the 

nucleoli are clearly visible, in the exposed cells a clear distinction is not 

possible. The exposed cells seem to be packed with granules or small 

spherical vesicles. The cells appear more contracted and the cross section 

appears to be smaller. Overall, the exposed cells can be immediately 
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identified as they have an abnormal morphology after exposure to hydrogen 

peroxide. Even though the samples were washed after fixation, the clear 

presence of cellular debris, visible outside of the cells, gives an indication of 

induced membrane instability and the tendency to rupture even in a fixed 

state. Visual inspection does not identify any distinct exposure time dependent 

responses, but clear signs of intracellular oxidative stress induced by 

externally applied hydrogen peroxide are evident. 
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Figure 5-1 Microscopic images of A549 cells exposed to 50μM H2O2 for different intervals 
(A=0h,B=1h,C=3h,D=6h ). The overlaid lines indicate the positions of the spectral line maps 
measured from a=1 to b=11 
 

The cellular responses evident in Figure 5-1 are well described in literature, as 

the intracellular H2O2 is detoxified in peroxisomes [47] inside a cell suffering 

from oxidative stress [197]. The primary way in which the cell detoxifies 

external agents is to envelop them in intracellular vesicles. Thus the high 

number of vesicles observed in Figure 5-1 may be explained [46].  
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A similar observation was made by Davoren et al., whereby exposure to 

SWCNT dispersions led to an increased number of intracellular surfactant 

storing lamellar bodies [43, 75]. Spectroscopic measurements were recorded, 

as line maps, along the radial axis of each cell, as indicated in Figure 5-2, and 

therefore provide additional collocational information. Figure 5-2 shows a 

control cell microscopic image, indicating the regions of the spectroscopic line 

scan and the corresponding eleven spectra along the line scan. The line map 

shows the characteristic features of A549 cells in the denser regions of the 

nucleus, roughly in the center of the map, dominated by the Amide I band at 

1590cm-1. Notable are the weak spectral contributions in locations of 

membrane away from the centre of the cell. A spectral average of the line 

scan will thus be dominated by the spectra recorded in the region of the 

nucleus. 
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Figure 5-2 Line map from (a) to (b) of an untreated, fixed A549 lung cell. The corresponding 
microscopic image indicates the direction and positioning of the line scan on the cell  
 
After only 1hr exposure of the cells to H2O2, however, the spectral profile of 

the cell changes significantly. There is now no discernible transition from 

membrane to nucleus. Strong spectral features in the region of the Amide I 

band are seen across the cell, and their intensities are relatively higher, than 

those of the nuclear region of the unexposed cells. As the scale of the images 

are similar, it is suggested that the cellular cross section is reduced upon 

exposure to ROS, which might be explained by the increased rounding of the 

cell membrane, a known strong effect in A549 cells exposed to oxidative 

a 

b



132 

stress [204]. This rounding up of cells changes the strength of adhesion to the 

extracellular matrix, here the quartz slide, and alters the spatial distribution of 

cell organelles inside the cytoplasm. In the process of ROS induced cell death 

strong vesicularisation or cell blebbing is observable. Prior to membrane 

rupture, cell organelles and fragments of the condensed nucleus are 

encapsulated in membranes, which might further decrease the cell membrane 

surface area and increase the rounding up of the exposed cell, leading to 

possible rupture [205] and subsequent cell death.  
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Figure 5-3 A549 cell exposed to ROS for 1h (line map) and the corresponding microscope 
image, illustrating the location of the spectral map. 
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5.3.2 Spectroscopic Changes 

The line averaged spectra of the three different exposure durations plus 

control show significant differences (Figure 5-4). These differences are 

manifest as a series of sharp peaks, so pronounced that they could be noted 

already during the measurement and could have been mistaken as artefacts. 

These appear in the lipid, protein and DNA attributed regions of the average 

spectra of ROS exposed A549 cells. 

  

 
Figure 5-4 Average cellular spectra of ROS (induced by H2O2) exposed A549 lung cells 
(control, 1h, 3h, 6h) 
 
In detail, seven different regions of interest can be easily identified. Left to 

right, the first feature is the ring breathing vibration of RNA at ~782 cm-1 
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(thymine, cytosine, uracil) [129]. The second feature cluster includes the out of 

plane ring breathing vibration of proteins and the phosphate backbone 

asymmetric stretching vibration of DNA & RNA at 832cm-1. In the third ROI, 

the ring-breathing mode of phenylalanine at 1003 cm-1 features strongly. The 

fourth cluster comprises of the C-O stretching vibration inside the ribose of 

RNA at ~1056cm-1 [91], the phosphate symmetric stretching vibration at 1100 

cm-1 of nucleic acids and the C-C stretching vibration of proteins, lipids and 

carbohydrates at ~1126 cm-1. Another lipid attributed feature set is prominent 

at ~1302 cm-1 (CH2 twisting vibration) and the feature at ~1342cm-1 originates 

from poly nucleic chain vibrations in DNA and C-H stretching vibrations of 

proteins [129]. The last two ROI’s feature the strong C=C bending vibration of 

proteins at ~1607cm-1 and the C=O (ester) stretching vibration in lipids at 

~1740 cm-1 [190].   

It seems that, upon exposure to hydrogen peroxide, between 1-3 h, the overall 

intensity of the spectra increases, whereas after 6 h this intensity seems to 

drop to control levels. The spectrally integrated intensity of the measured 

spectrum increases nearly 2.5 fold for 1 h exposure whereas for 3 h exposure 

the intensity increase is twofold, finally dropping to nearly the original values 

of the control after 6h exposure, as shown in Figure 5-5. Notably, the intensity 

variation of individual features such as the ring breathing vibration of the 

Phenylalanine ring at 1003 cm-1 show similar, although not identical, 

responses (Figure 5-6). It seems that the A549 cells respond strongly during 

the first three hours of exposure and return to a state, which is 

spectroscopically similar to the control after six hours. This is manifest as 
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strong features that seem to initially increase and subsequently decay with 

increased exposure duration. 
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Figure 5-5 Integrated signal intensity response of A549 in time dependence to the exposure 
to ROS 
 
As described in the previous chapter, the feature of CH2 at ~1449 cm-1 may 

be attributed to bending and scissoring vibrations in proteins and 

phospholipids [105, 182], and as CH and CH2 are the most common groups 

inside a biological compound [183] the feature can be used to normalize the 

spectra for their overall biological content [93]. Notably, this feature displays 

similar effects (Figure 5-7) to the integrated intensity of ROS exposed 

samples (Figure 5-5) and therefore it is difficult to justify its use as a scaling 

parameter. 
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Figure 5-6 Intensity of the fitted Phenylalanine response of A549 in time dependence to the 
exposure to ROS 
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Figure 5-7 CH2 feature at ~1449 cm-1 (fitted) in dependence of ROS exposure time. 
 
Considering the co-locational aspects of the CH2 feature at ~1449 cm-1 along 

a spectral line map of short-term exposed cells (1 h), its intensity (among 

others) is strongly varying in comparison to that of the control (Figure 5-2, 

Figure 5-7). The features that were eye catching in the spatial averages are 

evident in the spatial profile, but are not limited to a specific location. 

Moreover, as illustrated in Figure 5-3, these features are present along the 
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extent of the line map, indicating a response that takes place in or close to the 

cellular membrane.  

A potential explanation of the observations is lipid-peroxidation, after Fenton–

like reactions, in the cell membrane, due to the ease of abstraction of single 

hydrogen atoms in an unsaturated fatty acid e.g. oleoyl chain of one 

membrane phospholipid [46].  Auto peroxidation is a possible result that leads 

to the creation of vast numbers of lipid-peroxides wherever a ROS is capable 

of abstracting a hydrogen atom from an unsaturated fatty acid. Secondly, as 

catalase and superoxide dismutase (SOD), cellularly located in peroxisomes 

[46], are the active form of the ROS reduction response of cells, it is quite 

possible that the presence of primarily extracellular ROS triggers the 

peroxisome biogenesis genes [195], thereby inducing DNA associated 

spectral changes, possibly represented by the spectral changes in the DNA 

and RNA attributed ROI’s. This may be due to actual damage of DNA and its 

ongoing repair process. Before lipid peroxidase can be degraded in 

peroxisomes, a process which is not coupled to ATP generation, the fatty 

acids are esterified to fatty acyl coenzyme A [206], possibly explaining the rise 

in the last spectral ROI at ~1740 cm-1 (Figure 5-8), representing the ester 

bond (C=O) [207]. The large error bars indicate the strong variance in 

response to ROS threat and the collocational aspects of this response.   
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Figure 5-8 Variation of Ester bond at ~1740 cm-1 as a function of ROS 

exposure time 

 

Previously identified markers of cytotoxicity within the Amide III [107] band, 

namely the CH2 twisting mode vibration at 1302 cm-1, the Amide III α-helix 

attributed CH bending vibration, at ~1287 cm-1 and the CH deformation 

vibration at ~1338 cm-1, normalized to the intensity of the Amide III random 

coil feature at ~1238 cm-1 do not show a clear decrease in intensity with 

exposure time, as shown in Figure 5-9. 
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Figure 5-9 Variation in time of toxicity markers (from Perna et. al.) of A549 lung cells exposed 
to 50 μM ROS (0-6 h) 
 

The ratios display similar results for the control and 3 h exposure and similar 

results for the 1 h and 6 h exposure. The lack of correlation with the identified 

toxicity markers, as in the case of the medium depletion in the previous 

chapter, can be understood in the sense of ROS not being toxic, in a 

biological sense, but having a strong influence on certain chemical moieties 

(e.g. CH2) in lipids and proteins. Alternatively, the lack of correlation could be 

due to the masking influence of strongly varying neighbouring features, which 

leak into the Amide III spectral region. Overall, the complex spectral variations 
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observed are difficult to resolve by univariate analysis, but provide a promising 

starting point for subsequent multivariate analysis.   

5.3.3 Multivariate Analysis 

In a multivariate approach, all of the ROS exposed spectral data were 

subjected to principal component analysis after preprocessing. The 

preprocessing, similar to that used for the univariate analysis, consisted only 

of substrate and water removal by fitting with multiple Gaussian and 

Lorentzian functions and manual sample outlier rejection. With the assumption 

that the major effects of reactive oxygen species take place all across a line 

map of the cell, no spatial averaging was applied, and thus each measured 

spectrum, delivers one data point.  
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Figure 5-10 Scatterplot of scorings of the first 3 PC’s 
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The first three principal components represent a total of 92% of the variance, 

the first 73%, the second 15% and the third 4% of the total variance. The 

scatter plot, colour-coded for each time point, (Figure 5-10), does not show a 

clear separation of distinct clusters associated with exposure times. It shows a 

dense cloud of data points for the control group and four differently scattered 

data clouds. The data points representing the six hour exposed samples are 

grouped in two distinct clusters. One of them is located close to the cluster of 

the control samples and is relatively dense. The data points of the 1 h and 3 h 

exposed samples, as well as the second group of 6h exposed samples, are 

diffusely spread predominantly along PC1, and are separated from the control 

and the first group of 6 h exposed samples by PC3. Principal component two, 

does not contribute to this slight separation, but broadens the data cloud of 

the 1 h and 3 h exposed samples, as shown in Figure 5-11. 
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Figure 5-11 Scatterplot of scorings of the first 3 PC’s rotated around the y-axis  
 
The data points representing the samples that were exposed to reactive 

oxygen species for one and three hours describe a much larger and less 

dense data distribution which is not only separated along the third principal 

component but predominantly along the first principal component. Notably, the 

majority of samples that were exposed for one-hour score higher on the third 

principal component than the samples that were exposed for three hours, 

whereas the samples that were exposed for 6 hours score similar to the 

controls, though slightly higher. 
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Figure 5-12 Principal component loading plot of PC1, PC2 and PC3 of ROS exposed A549 
 

None of the loadings of the first three principal components displays features 

similar to a typical cellular spectrum, although they display variations that 

were previously identified in the univariate analysis (section 5.3.2 ). This 

implies that the variances of the typical cellular spectral features are minor 

and are obscured by the strong changes induced by ROS. The close co-

localisation of many of the 6 h exposed spectra indicate that these recover 

almost completely to the level of the controls. 

The spectra of the 1 h, 3 h and the second grouping of 6 h exposed samples 

are primarily separated by PC3. The loading of PC3 shows considerable 

resemblance to that of common intracellular lipids, such as 

phosphatidylcholine, as shown in Figure 5-14. The dominance of such 

features in the principal components of the variance is consistent with the 

observed increase in lipidic bodies in the micrographs of Figure 5-1. It is 
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furthermore understandable that the features are distributed across the spatial 

extent of the cell. 
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Figure 5-13 Ramam spectrum of dried phosphatidylcholine recorded with 514.5nm excitation 
for 10s with a grating of 1800 lines / cm 
 
It is notable that the loading of PC1 (Figure 5-12) also exhibits similarities to 

the spectrum of phosphatidylcholine (Figure 5-13). However, in the scatter 

plot of Figure 5-10, it is seen that this PC does not differentiate between 

exposure times, but more likely differentiates sampling positions with 

particularly high densities of lipidic bodies. Similarly, the loadings of the 

second PC exhibits features which may be lipidic in origin, but do not 

contribute to the separation of datasets.  

In an attempt to simplify and elucidate this further, one can translate the data 

into a combined separation order, the mean distance of the data points, by 

describing the data points by a coordinate system along the separating 

dimensions. This method is commonly referred to as independent component 

analysis (ICA), a dimensionality reduction technique that rotates the 

independent dimensions into the sample space, as described in chapter 2. In 
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ICA, the dimensions are the independent components, comparable to the 

loadings of the PCA, but these dimensions are not orthogonal to each other, 

in contrast to PCA but totally independent. Furthermore, in a necessary 

process for ICA, called whitening, the covariance within each spectrum is 

removed so each dimension samples the same independent event or source, 

facilitating blind source separation. Therefore, ICA can improve the separation 

of clusters due to its capability to separate variances and remove less relevant 

covariances. 
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Figure 5-14 ICA scatterplot after whitening of scores on IC1 - IC3 
 

The number of possible independent components is determined by the 

number of eigenvectors and thus, similar to PCA, the fewer components 

necessary to describe the majority of the captured variance, the better the 

model. Unfortunately, the importance of the independent components is not 
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ordered, as is the case for PCA, and therefore it can be problematic to find the 

most appropriate independent components. The data that were previously fed 

into PCA were subsequently fed into ICA with the aim of rotating the 

dimensions towards the visible separation of the data in order to identify the 

dominating independent effect due to ROS exposure over time. In simple 

terms, the analysis attempts to isolate ROS induced changes in the cellular 

spectrum, without the other sample covariances in the identical spectral 

region that are caused by additional non-ROS dependent influences. The 

independent component scatterplot (Figure 5-14) shows a similar separation 

between each group observable in Figure 5-10. The only difference is that 

each cloud is extended horizontally and it seems that the order in the vertical 

direction is slightly altered. It seems that the spectra of the cells that were 

exposed to reactive oxygen species for 1 and 3 hours predominantly share 

the same subspace, whereas in the PCA scatter plot a slight separation 

between one and three hour exposed spectra could be observed. Thus, 

predominantly the 1 and 3 hour exposed samples are scattered along the 

horizontal axes. Notably, the samples that were exposed for 6 hours are again 

separated into two subgroups, one that is far away (in the vertical direction) 

from the control group and another which is close to the control group. Such a 

separation, into two groups, is indicative of a temporally defined critical 

recovery mechanism, the temporal anticipation of cellular damage. The 

separation of this dataset may prove difficult for further analysis due to the 

distortion of any training set for example, in partial least squares regression or 

even artificial neural networks (ANN), as the control group as the anchor for 

the targets will be distorted by the long time exposure samples that collocate 
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in PCA and ICA. Therefore it is suggested that the samples of the 6h 

exposure that collocate with the controls are relabelled or excluded (e.g. 

selected with linear discriminant analysis (LDA) or manually). 
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Figure 5-15 Independent component loading plot of IC1, IC2 and IC3 of ROS exposed A549 
 

The loadings plots of the three components of the independent component 

analysis, which are the basis for the separation or spreading of the data points 

in Figure 5-14, are shown in Figure 5-15. A huge similarity to the principal 

components one to three is observable. Similar to the PCA scatter plot, the 

data of the ICA scatterplot separate primarily along dimension three. In a 

comparison between PC3 and IC3, the overall similarity is marked, but small 

features of PC3 become more prominent or even inverted as shown in Figure 

5-16. 
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Figure 5-16 Comparison between PC3 and IC3 
 

The difference loading of IC3 and PC3 (IC3 - PC3) shares several features with 

those of average healthy A549 cells (Figure 5-16) and proteins, whereas IC1, 

though inverted, and IC2 share several features with common phospholipids 

like phosphatidylcholine (Figure 5-13). Notably, however, the CH2 rocking 

vibration at ~721 cm-1 of proteins and lipids does not show up as a 

pronounced feature in any component or spectrum. However, strong spectral 

indicators are given that demonstrate that the dominant cellular response to 

oxidative stress induced by H2O2 occurs in the functional groups of lipids. 

ROS in the form of hydrogen peroxide can turn unsaturated fatty acids into 

reactive oxygen species themselves (auto peroxidation), predominantly 

targeting the CH and CH2 bonds attempting to abstract single hydrogen. 

However, not only lipids are exposed to the oxidative threat (lipid 

peroxidation), proteins and DNA/RNA are also affected. Due to the nature and 
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design of the experiment, the externally introduced ROS predominantly 

interacts with the surface of the cell and the strong spectral changes are 

detectable across the surface (Figure 5-4). The cell membrane and its lipids 

and proteins seem to be the primary target of the ROS. The cellular 

membrane is a bi-layered structure that consists predominantly of 

phosphatidylcholine and a number of floating active complexes [46], 

comprised of three dimensionally shaped proteins. It is not surprising 

therefore, that most of the variation of the cellular spectra can be ascribed to 

features that can be found in the spectrum of phosphatidylcholine itself 

(Figure 5-13). Reactive oxygen species target several functional groups of this 

phospholipid as a key constituent of cell membranes and phosphatidylcholine 

has also been shown to play an active role in the decomposition of H2O2 

[208]. Secondly, membrane proteins, especially those with metal ion 

functional groups, can also be damaged due to the generation of ROS in 

Fenton-like reaction with H2O2 [209].  

It appears, however, that the process and effect of oxidative damage on the 

cellular level is reversible to a certain extent and membrane damage can be 

repaired. The primary membrane repair or segmentation capabilites are the 

probable cause of the clearly time dependent intensity response, notable 

already in the average spectra (Figure 5-4) and the total integrated signal 

intensity (Figure 5-5). Within the first three hours of exposure, the 

phospholipids of the cell membrane seem to be the primary targets indicated 

by the dispersion of the samples along IC2. Afterwards the permanent 

alteration of the e.g. membrane protein and DNA may be evident as IC1 is in 

some areas an inverse of IC2. Regions within the Amide III band (~1287 cm-1) 
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seem to be more prominent in the IC2 as well as the Amide I band at ~1656 

cm-1 and the CH2 band at ~1450 on the other hand is less striking. IC2 and IC3 

share most of the features though IC3 is of significant lower intensity and 

adverse in the region around Amide I. Therefore, it seems that although the 

membrane damage might be reversed within six hours (along IC1), damage to 

the membrane proteins and ongoing repair mechanisms can be of a long term 

or permanent nature indicated by the split of the 6 hour exposure group along 

IC3. As a final reaction to reactive oxygen species, the cell undergoes 

autophagic cell death, sometimes described as the very similar process of 

apoptosis. This kind of cell death involves the separation of cell components 

in membrane-enclosed vesicles, which are visible in all exposed cells (Figure 

5-1). It couples the increase in vesicles with the selective autophagic 

degradation of peroxisomes, therefore the strong response in these 

membrane related features can be explained further. This membrane 

influence, the vesicularisation of cells as a precursor to cell death, here 

autophagy, could in a similar manner describe some features of the spectra 

from the depleted medium study, which point towards a similar increased 

vesicularisation (Figure 5-17). The changes in the tri-feature cluster between 

1000 cm-1 and 1200 cm-1 (O-P-O backbone stretching at 1070cm-1, the C-C 

stretching vibration at 1100cm-1 and the C-C skeletal stretching at 1124 cm-1) 

observable in Figure 4-4 could be the result of similar increases in lipidic 

activity. In the study of Davoren et al., [75], although no internalisation of 

SWCNTs was observable by  
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Figure 5-17 Micrograph of filter control medium exposed cells after 96 h exposure showing 
clear vesicularisation. 
 

TEM, a significant change in cellular morphology was observed, associated 

with increases in lamellar bodies and microvilli, which was interpreted as a 

cellular response to nutrient deficiency and oxidative stress, as a result of 

medium depletion. Both aspects corroborate the above explanation of a lipid 

modulated response to ROS.  

5.3.4 Multivariate PLS regression modeling 

In an attempt to create a model for prediction of oxidative stress, the data 

were fed into PLS regression, taking the exposure time as the target. The 

preprocessing for this purpose consisted of vector normalisation, mean 

centring and smoothing with a Savitzky-Golay filter of second order and 

window size of 15 nodes. A quarter of the dataset was randomly selected as 

the unseen dataset and the other 75 % formed the calibration and validation 

dataset. In order to choose the optimum number of LV’s to be retained, ‘leave-

one-out’ cross validation was carried out on the calibration set. Seven LV’s 
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were retained for model construction, as the RMSECV did not decrease 

significantly after this point. After building the model, the unseen data were 

presented, revealing that the prediction of exposure time did not deliver 

acceptable prediction precision. The maximum RMSEP 2.98 was achieved 

with R2 = 0.568 as shown in Figure 5-18. 
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Figure 5-18 PLS regression prediction result for exposure time to ROS (full dataset) 
 

In a second PLS regression model the data points from the six-hour exposure 

that co-localized with the control were removed from the dataset completely, 

and a second PLS regression model similar to the first one was constructed. 
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Figure 5-19 PLS regression prediction result for exposure time to ROS (corrected dataset) 
 
By doing this, a lower RMSEP of 2.15 with a R2 = 0.73 could be achieved 

which only indicates prediction for control or long-term exposure. This 

indicates that the targets are still problematic for a linear PLS regression 

model, because of the introduction of the highly nonlinear influences that are 

introduced via the common cellular quadratic linear responses to external 

influences discovered already using colorimetric assays [Aidan D. Meade, 

PhD Thesis, DIT, (2010)]. Therefore, it is understandable that a linear 
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approach does only converge, and deliver a reasonable result, whilst the 

cellular response approaches a linear behaviour.  

Based on the observations of the micrographs, Figure 5-1, which seem to 

indicate increased vesicle formation and the scatter plot, Figure 5-14, which 

seems to indicate time dependent changes, in a different approach the data 

were regressed against a manually created target termed ‘permanent 

membrane damage towards autophagy’, that basically is configured as a set 

of stages, as a precursor to autophagic cell death of just three groups [0 1 2]. 

For this purpose, the recorded spectra were regrouped into the group of 

spectra recorded from control, and those that collocate in ICA and PCA after 

six-hour exposure to ROS. The second group consisted of the spectra of one 

and three hour exposed samples, and the last group was comprised of the 

spectra that were exposed for six hours and did not co-localise with the 

control spectra. The PLS regression then was rerun with the same basic 

parameters in terms of cross validation and sample numbers as the previous, 

and much better prediction results could be generated. A predictive model 

with a RMSEP of 1.14 with an R2= 0.855 with only four latent variables could 

be achieved Figure 5-20. 
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Figure 5-20 PLS regression - prediction result for predicted membrane protein damage to 
ROS (corrected & regrouped dataset) 
 

Although the prediction accuracy and the model stability improved 

dramatically, it is still problematic to classify or differentiate each group 

correctly. It seems that the best differentiation can be made between the intact 

and the defect membrane or higher number of sub membrane vesicles, as a 

consequence of compartmentation of the defect membrane fragments or 

peroxidised phospholipids. The centre group could probably be described as 

those recordings where membrane repair is still ongoing either towards an 

intact, cell membrane without an increased number of vesicles, or towards 

autophagic programmed cell death [47]. Generally, it should be considered 

that nonlinear PLS regression in future might improve the construction of a 

predictive model.  
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5.4 Discussion and Conclusions 

This chapter explored the strong influence of reactive oxygen species on the 

physiology of A549 lung cells. Oxidative stress has been identified as a 

primary mechanism of the toxic response of cells to nano-particulate 

exposure. The cellular changes associated with oxidative stress can be 

monitored with Raman spectroscopy. Single and multi variate analysis 

indicate a broad range of effects at a molecular level. A primary effect of 

damage to the phospholipid bilayer of the cell membrane, which is at least 

partially reversible, is suggested.  A secondary effect of non-reversible protein 

damage is also suggested. Reactive oxygen species cannot be understood as 

toxins in themselves, however and the cellular responses cannot be 

monitored in terms of common spectroscopic markers of acute toxicity of 

chemical species as shown in Figure 5-9.  

Multivariate analyses corroborate the assumption that predominantly 

membrane damage is the mode of action. In the scatter plots, the samples 

that were exposed for one and three hours co-occupy the same space, though 

they are spread along the first and second dimension indicating that between 

one and three hours, similar biochemical courses of events take place. Along 

the third dimension, the data separate differently, with a clear split of the six 

hour exposed ones, indicating that after six hours, the initial influence of 

reactive oxygen species is reversed. Dimension three in either PCA or ICA, 

are very similar and indicate subtle changes over the complete spectral range 

(Figure 5-16). As independent components can be understood as covariance 

free, the difference between both can be understood as a blurring function as 

described in section 2.4.8.5.1. between PCA and ICA. Not surprisingly, this 
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difference, among others, shares similarities with the average spectrum of a 

healthy A549 cell. As in this study mainly spectra of the cell membrane and 

the underlying cell organelles are taken, independent component three 

therefore, as the dimension of separation, becomes the most important and 

exhibits mainly changes in protein and carbohydrate attributed spectral 

regions.  

In the attempt to model the data via PLS regression, it becomes obvious that 

the inclusion of the full dataset makes it impossible to achieve an accurate 

prediction. Only by altering the targets towards three classes of arbitrary 

character, for the ongoing membrane damage and repair, can improvement 

be made. This again demonstrates the huge variability of cellular spectra, but 

still explains what is going on in the cell membrane exposed to oxidative 

threat.  

The strong responsiveness of the A549 cells to oxidative stress was 

demonstrated and a timeframe for this response was outlined. Overall, the 

capability of Raman spectroscopy to detect and identify biological changes in 

the cell membranes induced by oxidative stress was demonstrated and an 

additional building block for the understanding of the toxicity of single walled 

carbon nanotubes was established. 
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Chapter 6 : Discussion and conclusion  

6.1 Introduction 

In this chapter, the results and conclusions of the previously described work 

will be put into context and the relationship between each single experiment 

and the overall framework will be established. The interplay of the three major 

components of this study, the nano particle induced toxicity, Raman 

spectroscopy and cellular responses will be elucidated. The direct and indirect 

toxicological aspects of nano particle exposure will be discussed using the 

example of single walled carbon nanotubes inducing a toxic threat to alveolar 

cells in vitro as a model of occupational exposure by respiration. The diverse 

range of cellular responses to a variety of influencing threats, monitored by 

Raman spectroscopy, enhanced with adapted preprocessing methods and 

holistic analytical approaches will be demonstrated. Finally, it will be 

concluded that Raman spectroscopy can outperform common colorimetric 

approaches to cellular toxicity, although the need to revisit key aspects of the 

broad application of Raman spectroscopy in terms of signal processing and 

the overall explanatory power of this technology and experimental design is 

highlighted.  

6.2 Nano-toxicity and Spectroscopy  

Evaluation of the toxicology of nano materials is of critical importance, as 

materials that might appear non-toxic on the micro scale can change their 

toxicological behaviour on the nano scale [2, 64]. In assessing the toxicology 

of nanoparticles, common colorimetric dyes have proven to be problematic 

due to their ability to interact with the employed toxin [171]. Furthermore, in 
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vitro colorimetric cytotoxicity assays capture only partial aspects of the cellular 

reaction to the threat of the toxic agent. Although the clonogenic assay was 

introduced as a holistic approach to assess the toxicity of nano particles [99], 

it is a phenomenological rather than mechanistic assay. The toxic effect can 

be a combination of direct and indirect influences [101, 170] and even worse, 

can be dependent on the metabolic or cell cycle stage [92, 210]. The assay 

sheds little light on the mechanism of interaction with the cells or the process 

of cellular response. As an alternative technology, spectroscopy seems to be 

a valid method to assess the cellular changes as a consequence of exposure 

to toxins [170].  

Biospectroscopy as such is an exciting field and from the beginning of this 

work in November 2006 until today, the number of scientific articles dealing 

with Raman spectroscopy for analysis of biological systems alone, that are 

listed in Pub MED, doubled. Spectroscopic analysis can potentially capture 

the total chemical composition of the sample in the measured spot or area 

[211]. Therefore, it offers the same holistic result as the cytotoxicity assays 

with the advantage of molecular scale information which may lead to further 

understanding of the mechanism of response. However, spectroscopic 

responses are very rich in detail. They are prone to the influence of the 

necessary spectral preprocessing in order to extract features of value [122]. 

Generally, it is very important to understand the source of any influences that 

obscure the actual meaningful signal [123, 212]. For example, in infrared 

spectroscopy, only by truly understanding the origin of the so-called 

dispersion artefact can it accurately be removed [213-215]. Raman 

spectroscopy suffers from similar influences. Although it has proven to be a 
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valuable tool in material sciences, Raman spectra are likely to be obscured by 

strong features such as the excitation source that may be outside the spectral 

window [133]. The strong background often observed for tissue samples is 

frequently interpreted as sample fluorescence, but an origin in diffuse 

scattering is more likely [216]. Raman has the advantage that it can be 

applied in situ [217], with an increasing number of miniaturised systems on the 

market [218], but a significant amount of data preprocessing is usually 

required. The potential danger of preprocessing in general is the capability to 

introduce artefacts into the data which can lead to misinterpretation of 

experimental results, thus the benefits of optimising the signal to noise from 

the outset cannot be overstated. 

6.3 Improved Methods  

In chapter 2 the various influences of preprocessing and postprocessing were 

illustrated and discussed [122]. A whole battery of preprocessing tools was 

introduced, each designed to tackle individual aspects of the recorded 

spectra. The majority of the preprocessing methods introduced are commonly 

used in differing combinations in the field of spectroscopy [219, 220]. The 

preprocessing methods were tested regarding their ability to improve spectral 

data without introducing additional features that might influence the 

explanatory power of the spectra [219]. While sometimes the effects are 

subtle, they can at other times be very strong. In assessing work in the field, it 

is crucial to know that the described effects are not the result of artefacts 

introduced by preprocessing. In Raman spectroscopy, the intensity and the 

frequency of a feature are employed to determine the chemical composition 

[123] or changes to it as a result of physical, chemical or biological processes. 
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In a number of reference tables, known features are listed with similar but 

different bandwidths [93, 105, 221], sometimes even at different positions, 

without mentioning which preprocessing methods led to the assignment. 

Therefore, it is difficult to properly and with precision, pinpoint the true change 

in a spectrum. Furthermore, effects are described that do not influence the 

spectra linearly [219]. It becomes clear that sharp features can be easily 

shifted by underlying or neighbouring broad features. Broad features can 

comprise of wanted and unwanted contributions. Thus, depending on the 

background or baseline removal that was applied, feature shifts can be 

introduced by preprocessing, which can render any information derived from 

spectral shifts somewhat questionable in the application of Raman 

spectroscopy for biological investigations. It is therefore suggested that the 

preprocessing should be limited, meticulously documented and disclosed 

entirely. It is suggested that any removal of baseline or substrate [117, 121] 

should be performed in a noise free manner in order not to induce further 

variance of features. The processing methods employed target the spectral 

signal quality, endeavouring to employ the complete knowledge of the 

experimental setup. Therefore, it is important to record the signals with the 

maximum signal to noise ratio available, while maintaining sample integrity. 

Data analysis methods employed obviously suffer in various ways from the 

variance that is induced by the pre and post-processing. Residual baseline not 

only results in altered intensity of spectra, but also the broadening of features 

in multivariate analysis.  Excessive noise filtering can remove features 

completely. The simple subtraction of background can induce additional noise, 

inverse substrate features and other unwanted effects. Ultimately, it is 
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desirable to optimise the signals themselves to minimise the need for 

preprocessing. Therefore, it becomes clear that overinterpretation as a result 

of either the preprocessing or the analysis has to be minimised. 

6.4 Implications of the direct exposure 

The direct exposure experiment presented in chapter 3, in which lung 

epithelial cells are exposed to single walled carbon nanotubes directly, 

establishes Raman spectroscopy as a valid technology to assess toxicity. 

Measured effects can be correlated directly with toxicological endpoints 

derived from clonogenic assays, and previously identified markers for direct 

toxicity [99, 170]. Although the results of this study indicate that Raman 

spectroscopy can pick up spectral changes that are relatable to cytotoxic 

markers and clonogenic endpoints, it is not clear whether the induced spectral 

changes as markers of toxicity are of primary or secondary character, as 

previous studies suggest that the mode of action could be, among others, a 

consequence of starvation and/or the direct exposure to nanotubes [101]. The 

overall experimental design, wich led to the results shown, mimics the real 

world exposure scenario of nano material dust inhalation and indicates the 

complexity of the toxicity of nano particles. Not only do the nano particles in 

themselves elicit a complex response, but it is clear that the ill defined 

dispersion leads to an unpredictable actual exposure, adding another 

dimension of variance. The cells themselves and the data processing 

probably added their share of variance to the spectroscopic measurements. 

Thus, although the results as such look very promising, the influence of 

aspects of sample dispersion and extensive data filtering, pre and post 

processing, should be assessed.  
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Consequently, the influences of data preprocessing were targeted in the 

subsequent studies, by separating the direct presence of single wall carbon 

nanotubes and their known influences from the exposed cells. Though the 

experiment mimicked the real world exposure, and the results partially match 

the expectations, on the one hand, Raman spectroscopy was demonstrated 

as a capable technology to access toxicity of SWCNT. On the other hand, it 

was shown that especially the use of single wall carbon nanotubes, to mimic 

occupational risks of NP exposure, strongly influence the necessary 

experimental design.  

6.5 Consequences of indirect exposure 

In the subsequent study, the potential influence of ill defined dispersion of and 

cellular exposure to SWCNTs was minimised by medium filtering prior to 

exposure, mimicking the indirect exposure study of Casey et al. [101]. In the 

spectroscopic study, no gelatin coating was employed to minimise any 

potential variance due to inhomogeneous coating of the substrate. In terms of 

data preprocessing only the noise free rubberband baseline and the modelled 

substrate was removed which made no filtering necessary. Chapter 4, 

displays the results of the exposure of A549 lung cells to medium that was 

nutrient depleted by various doses of single wall carbon nanotubes, as it was 

suggested from previous studies that depletion as a secondary toxic effect 

can be the primary mode of action  when cells are exposed to single wall 

carbon nanotubes [101]. Therefore, it was attempted to model this starvation 

as a single effect. With univariate analysis and the previously employed 

markers for toxicity, no clear systematic dose dependence could be 

established. In all cases, substantial variation in the cellular spectral response 
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was observable, and thus subtle changes could not be identified. It could be 

shown, however, that the filtering of the SWCNT exposed medium 

systematically reduced the protein content of the culture medium, as shown 

by the concentration dependent reduction of the intensity of the Amide I band 

in figure 4-3. Thus the dispersion difficulties that emerged in the direct 

exposure study of chapter 3 should be eliminated or minimised. However, the 

process of adsorption of components from the medium and indeed the 

filtration process itself may entail more subtle effects which affect the 

composition of the medium and thus the impact on the cells after chronic 

exposure. 

Multivariate analysis showed similar results for all exposed spectra, indicating 

no direct depletion response. The multivariate analysis of control medium and 

filter control medium exposed cells show differences in addition to those of the 

SWCNT depleted medium exposed cells. The cellular response as a result of 

starvation is suggested to be not only caused by the medium depletion by 

SWNT exposure, but also by the long exposure time. It is suggested that all 

cell samples show signs of reduced health, although the control, incubated in 

complete medium, suffered less from the effects.  

In the clonogenic assay, such long exposure times are required for colony 

formation, and the clonogenic study was employed as colorimetric assays 

were deemed to be in accurate due to the interaction of the dyes with the 

SWNTs. Overall, however, the exposure time of the initial study of Casey et 

al. ref no. was appraised as being inappropriately long for an accurate 

assessment of the spectroscopic response. This gives rise to consideration of 

the overall experimental design.  
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 The absence of a systematic dose dependence of the cellular spectra may 

suggest that the cells as such have various ways of action to evade starvation 

[46]. The similarity between all exposed cells may indicate that the cells are in 

a similar state of health after 96 h which might be due to cell synchronisation, 

as A549 can be synchronized by serum withdrawal, and in this case the 

experiment might only show that all samples are at a similar stage prior to cell 

death induced by starvation [222]. As compared to colorimetric assays 

commonly employed to analyse the effects of medium depletion by SWCNT, 

however, it appears that Raman spectroscopy can identify responses at lower 

concentrations.  

Retrospectively, it could be argued that the experimental design was too 

simplistic to capture all varieties of modes of action and cellular response. 

Therefore, it seems that the question ” What happens to A549 cells when they 

are starved? ” is too vague to be answered by Raman spectroscopy, although 

the observed results share similarities to a parallel study employing 

colorimetric assays as a viability test [101]. 

6.6 Implications of hydrogen peroxide exposure 

In a further approach to elucidate another specific toxic effect of single wall 

carbon nanotubes, in chapter 5 the same cell type as in the previous studies 

was exposed to an immuno cytokine [46], the common toxic mediator 

hydrogen peroxide. This agent is involved in cell signalling and oxidative 

stress, but also known to be involved in nano particle toxicity [43, 66]. 

Exposure to this agent resulted in significant and clearly observable spectral 

responses. The spectroscopic data suggest that the targeted structures of the 

cell are the membranes [208, 223], either involved in peroxidation of lipids or 
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the generation of vesicles. The importance of lipids in this process is obvious, 

as unsaturated fatty acids are prone to peroxidation [46] a process which in 

itself induces oxidative stress, and the fact that multiple unsaturated fatty 

acids can act as scavengers of ROS [46]. It seems that changes to the 

contributions of phospholipids are the main spectroscopic fingerprint of 

hydrogen peroxide induced oxidative stress to the cell. The A549 lung cell in 

itself seems likely to respond to H2O2. It produces a phosphatidylcholine (PC) 

based surfactant , namely DPPC, in lamellar bodies to clear particular surface 

threats [75]. The presence of this surfactant and SWCNT induces drastic 

changes in the generation of ROS of exposed A549 [45]. Secondly, the time 

dependence of this oxidative threat could be visualised. It is suggested that 

the cells respond to the exposure to hydrogen peroxide in a time dependent 

fashion, possibly indicating the presence of permanent damage or the 

inevitability of pending autophagic cell death [47]. Although hydrogen peroxide 

is a relatively unreactive oxygen species, it might be understood that the cells 

are suffering from Fenton-like reactions that turn H2O2 into a internal ROS 

threat [45]. Additionally as hydrogen peroxide is the first messenger of an 

immune response, secreted by neutrophils, the lung cells themselves could 

prepare for the release of DPPC responding to the extracellular H2O2 as a 

sign of external threat, requiring additional surfactant to sustain the lung 

epithelium. Remarkably, a significant proportion of the cell population recover 

to the control state after 6 h.  

Although the spectroscopic changes indicate a systematic evolution of 

phospholipids in the cellular response to oxidative stress, it seems to be 

difficult to create a multivariate model to describe the response. PLS 
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regression are linear models however, and thus choice of target is critical to 

the accuracy of the model. Unfortunately, the kernels of nonlinear PLS 

regression models are not easily accessible such that an arbitrarily nonlinear 

dependence of spectral response on a target response or external dose can 

be more accurately modelled. A model still could be generated in an 

alternative approach exploiting the permanent damage to the cell membrane, 

which might be present after overcoming the direct oxidative stress.  

Nevertheless, the study shows that the response of A549 cells to an externally 

applied oxidative stress as well as the time evolution of the response can be 

identified and characterised by Raman spectroscopy, rendering this 

technology as a valid tool to detect oxidative stress.     

6.7 Conclusion and future aspects 

As a result of this study, the selective applicability of Raman spectroscopy, for 

the analysis of cellular toxicity, is clear. This work clearly displays that 

nanoparticles can interact with the cell in various ways and that the cell itself 

can respond in similarly varied manner. The toxicity of carbon nanotubes can 

be quantified, on the basis of a holistic approach by Raman spectroscopy. 

More specific mechanistic aspects of the exposure to nano particles can be 

detected and modelled, as long as the cellular response is not diverse.  

The overall conclusion therefore is that the validity of Raman spectroscopy for 

the analysis of toxicity is established. Much work is required however to 

optimise sample responses and minimise effects of data processing. As a 

model system, carbon nanotubes are notoriously difficult to disperse in 

aqueous media and efficient dispersion can only be achieved by significant 

processing (sonication, chemical functionalisation) or through use of a 



168 

dispersion agent [188]. Efficient dispersion is highly concentration dependent, 

and thus dose dependence would be effectively of a material whose 

properties vary across a range. In the studies of Davoren et al., Herzog et al., 

and Casey et al.,[45, 75, 99, 101, 102] minimal dispersion was employed to 

mimic occupational exposure by dust inhalation, and this study was designed 

to build on these studies to explore the potential of Raman spectroscopy. In 

future work, some aspects should be revisited, as it would be beneficial to 

have backward comparable results by updated processing techniques and 

their consequent disclosure. In future experiments a better defined material, 

with a known systemic toxic response and mechanism could serve as an 

appropriate model system to establish the potential of Raman spectroscopy in 

this field. Such a model system could explore variations in size and surface 

chemistry, as it is available for example in functionalised quantum dots [224-

227]. With the developed methods and the immense progress in signal 

processing the true value of Raman spectroscopy might now even more serve 

as a viable tool to investigate intact living cells or its fractions on the exposure 

to a broader variety of stimuli, capturing the total chemical response. 

Therefore it can be well integrated into the field of Systems Biology as it adds 

complimentary, colocational and purely chemical, information as an additional 

dimension to it.  
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Fundamental Matlab code snippets 

intensity calibration algorithm 

function[corrected]=srmcal_pk(signal,srm,factor,wn) 

% srmcal_pk 

% 

% Version 2.1 last modified 06.07.09 

% 

% Copyright (C) Peter Knief 2009 

%  

% 

% This routine is intended to deliver a luminescence corrected sample 

% signal according to the NIST SRM 2243,2242 & 2241 procedures see  

% https://srmors.nist.gov/view_cert.cfm?srm=2243 (2241) 

% 

% Usage : function[corrected]=srmca_pk(signal,srm,factor,wn) 

% 

% 'signal' is the x,y columnvector of the sample signal 'srm' is the x,y 

% columnvector of the srm spectrum at the same settings the 

% 'factor' is the multiplier for measurement time of data/srm  

% 'wn' is the excitation wavenumber 

% 

% measurements were conducted x(signal) & x(srm224x) must be the same ! 

if nargin < 3 

   factor=1 

end 

if nargin < 4 

   wn=514; 

end 

% Coefficients for SRM Correction 

% pd(m/p) positive +2sigma or negative -2sigma coefficients 

if wn==488  

   p=[1.28418E-21 -1.56901E-17 5.75429E-14 -6.11522E-11 6.06655E-08 0 6.9146E-03]; 

   pd=[3.09685E-22 -4.64692E-18 2.65081E-14 -7.49851E-11 1.20287E-07 -1.08459E-04 0.0490337]; 

end 

if wn==514 

   p=[-1.16921E-21 2.38545E-17 -1.70340E-13 4.90077E-10 -4.84706E-07 3.17690E-04 -0.0244612]; 

   pd=[6.87758E-23 -7.06238E-19 1.93433E-15 -1.49980E-12 1.08168E-08 -3.17886E-05 0.0284858]; 

end 

if wn==532 

   p=[9.76795E-18 -9.04836E-14 2.19705E-10 -4.21311E-8 1.22531E-04 0.037014]; 

   pdp=[9.36292E-18 -8.55445E-14 1.99942E-10 -1.16688E-8 1.0795E-04 0.040358]; 

   pdm=[1.01730E-17 -9.54227E-14 2.39468E-10 -7.25933E-8 1.37112E-04 0.03367]; 

end 

if wn==785 

   p=[1.3535E-01 2.1658E-04 0 1.8936E-10 -9.837E-14 1.2414E-17 0]; 

   pdp=[1.4221E-01 2.2349E-04 0 1.9434E-10 -1.0331E-13 1.3532E-17 0]; 

   pdm=[1.2916E-01 2.1016E-04 0 1.8034E-10 -9.099E-14 1.0948E-17 0]; 

end 



VI 

if length(signal(:,1))~=length(srm(:,1)) 

   errordlg('SRM signal does not match the sample spectrum, exiting ') 

   Break 

end 

I_srm=polyval(p,signal(:,1)); 

S_srm=(srm(:,2))*factor; 

I_corr=I_srm./S_srm; 

I_srm=polyval(p,signal(:,1)); 

S_srm=(srm(:,2))*factor; 

I_corr=I_srm./S_srm; 

[x,ys]=size(signal); 

for i=2:ys 

    signal(:,i)=signal(:,i)./I_corr; 

end 

corrected=signal; 

 

 

linearization of spectra 

function[newosig]=linearize_pk(isignal,precision,plotoff) 

% 

% linearize_pk 

% 

% File Version 2.4 02.07.2010  

% 

% Copyright (C) Peter Knief 2010 

% 

% Function to linearize spectral data by linear interpolation between the 

% measured datapoints and reduction to full decimals dependent on the targeted precision.     

%  

% usage : function[newosig]=linearize_pk(isignal,precision,plotoff) 

% 

% plotoff = 1 no visual output 

% precision = 1 if not given otherwise 

% isignal=[wavenumber spectrum_1 ... spectrum_n] as columnvector 

% newosign is returned the same way 

%  

newsig=zeros(1,2); 

if nargin < 2 

   precision = 1; 

end 

if nargin < 3 

   plotoff=1; 

end 

s=0; 

%yn = new y value 

% p = new x position 

%ya = last y value 

%yb = next y value 

%xb = next x value 

%xa = last x value 
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for j=2:size(isignal,2); % inputsignal more than one 

    signal=[isignal(:,1) isignal(:,j)]; 

xn=ceil(signal(1,1)):precision:floor(signal((size(signal,1)),1)); 

% xn number of nodes after linearization 

for i=1:size(xn,2) 

p=xn(i); 

    xa=(find(signal(:,1) > p,1)-1); % find xa of signal from the second segment on 

    if xa == 0 

       xa=signal(1,1); 

    end 

    xb=(find(signal(:,1) > p,1));   % find xb of signal 

   if xb == 0 

      xb=signal((size(signal,1)),1); 

   end 

ya=signal(xa,2); 

yb=signal(xb,2); 

xa=(signal(xa,1)); 

xb=(signal(xb,1)); 

x=p-xa; 

y0=ya; 

a=(yb-ya)/(xb-xa); 

yn=a*x+y0; 

newsig(i,1:2)=[p yn]; 

end 

% set last value 

newsig(size(newsig,1),2)=signal(size(signal,1),2); 

if plotoff == 0 

    fig1=figure('name','linearistion Result'); 

    hold on; 

    plot (newsig(:,1),newsig(:,2),'r'); 

    plot (signal(:,1),signal(:,2)); 

    hold off; 

end 

% assining the linearized spectra 

newosig(:,1)=newsig(:,1); 

newosig(:,j)=newsig(:,2); 

end 

 

dynamicss assisted moving average noise filtering 

function[osignal,SNR]=denoise_pk(isignal,plotoff) 

%  

% Version 1.3 last modified 19.02.2010  

% 

% Copyright (C) Peter Knief 2010 

% 

% This denoise filter is basically a weighted median filter over 3 elements 

% used to denoise a signal, by measuring the noiseband of a signal 

% reducing the maximum signal by half of the noise band value, increasing the minimum 

% band by half, leaving peaks out that are over or under the band 

% and where the band is broarder than the mean of the band and therefore 
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% employing the signals dynamics as refinement for true signal 

%  

% Usage : [osignal,SNR]=denoise_pk(isignal,plotoff) 

% 

% isignal is the matrix of spectra to denoise   

% the first column can be the abscisse if so the program will find it ! 

% 

% plotoff = 1 switches plotting of spectra off (default =0) 

% 

if nargout < 1 

plotoff = 0; 

end 

if nargin < 2 

   plotoff=1; 

end 

nr_spectra=size(isignal,2); 

if continuous_pk(isignal(:,1)) >= 1 

   wavenumber=isignal(:,1)'; 

   nr_spectra=nr_spectra-1; 

   k=1; 

   l=1; 

end 

if continuous_pk(isignal(:,1)) == 0 

   wavenumber=1:size(isignal(:,1),1); 

   nr_spectra=nr_spectra-1; 

   k=0; 

   l=1; 

end 

for j=k:nr_spectra 

signal=[wavenumber' isignal(:,j+l)]; 

% lsignal=signal; 

maxima=maxima_pk(signal(:,2)); 

minima=minima_pk(signal(:,2)); 

minimasig=(interfill_pk(signal(:,2)',minima,1))'; 

maximasig=(interfill_pk(signal(:,2)',maxima,1))'; 

maximasig=[signal(:,1) maximasig(:,2)]; 

minimasig=[signal(:,1) minimasig(:,2)]; 

noise=(maximasig(:,2)-minimasig(:,2)); 

noisemean=mean(noise,1); 

noise(minima)=noise(minima)*-1; 

for i=1:size(noise,1) 

    if abs(noise(i))>noisemean 

       noise(i)=0; 

    end 

    if signal(i,2) > maximasig(i,2) 

       noise(i)=0; 

    end 

    if signal(i,2) < minimasig(i,2) 

       noise(i)=0; 

    end 

end 

signal(minima,2)=signal(minima,2)-noise(minima)/2; 
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signal(maxima,2)=signal(maxima,2)-noise(maxima)/2; 

%signal(:,2)=signal(:,2)-min(signal(:,2)); 

SNR=abs(10*log10(noisemean/max(signal(:,2)))); 

if plotoff == 0 

    fig1=figure('name','denoise Result'); 

    hold on; 

    plot (wavenumber,isignal(:,j+1),'r'); 

    plot (wavenumber,signal(:,2),'g'); 

    legend('original','filterd'); 

    if nr_spectra > 3 

       pause 

       close all; 

    end 

end 

osignal(:,1)=wavenumber; 

osignal(:,j+1)=signal(:,2); 

end 

end 

function[steady]=continuous_pk(data) 

[x,y]=size(data); 

if y > x 

   data=data'; 

end 

[x,y]=size(data); 

if y >= 2 

   f = errordlg('Input vector was not single', 'Input error', 'modal'); 

   return 

end 

stf=0; 

stc=0; 

cstf=0; 

cstc=0; 

for i=2:size(data(:,1),1) 

    if data(i-1,1) >= data(i,1) 

       stf=stf+1; 

    end 

    if data(i-1,1) <= data(i,1) 

       stc=stc+1; 

    end 

    if data(i-1,1) > data(i,1) 

       cstf=cstf+1; 

    end 

    if data(i-1,1) < data(i,1) 

       cstc=cstc+1; 

    end 

end 

steady=0; 

if stf+1 == i 

   steady=1; 

end 

if stc+1 == i 

   steady=2; 
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end 

if cstf+1 == i 

   steady=3; 

end 

if cstc+1 == i 

   steady=4; 

end 

end 

function[res]=interfill_pk(signal,nodes,plotoff) 

% 

% interfill_pk 

% 

% sequence to bild a signal based on nodes of the original signal eg to 

% create a baseline 

%      

% file Version 1.0  

% 

% usage : function[res]=interfill_pk(signal,nodes,plotoff) 

% 

% plotoff = 1 no visual output 

% signal  = is the y data only 

% nodes   = matrix of locations in the signal 

% res     = signal based on nodes of the original signal 

% 

if nargin < 3 

    plotoff=0; 

end 

xystart=[1 signal(1)];res=xystart; 

for i=1:length(nodes) 

        xi=[xystart(1,1)+1:1:(nodes(i)-1)]; 

        y=[xystart(1,2);signal(nodes(i))]; 

        x=[xystart(1,1);nodes(i)]; 

        yi=interp1(x,y,xi); 

        out=[xi' yi']; 

        xystart=[nodes(i) signal(nodes(i))]; 

        res=[res;out;xystart]; 

end; 

        xleft=[nodes(i)+1:1:length(signal)]; 

        sigleft=[xleft;signal(xleft)]; 

        res=res'; 

        res=[res sigleft]; 

        clear 'yi';clear 'y';clear 'xystart';clear 'xleft';clear 'xi';clear 'x';clear 'sigleft';clear 'out';clear 

'i';  

if plotoff==0 

        plot(res(1,:),res(2,:)); 

end 

end 

function[minima]=minima_pk(signal) 

%find Minima value left & right are bigger than value  

j=1; 

for i=2:(length(signal)-1) 

    c(i,1)=i ; 



XI 

    if signal(i-1) > signal(i) && signal(i) < signal(i+1)  

       minima(j)=i; 

       j=j+1; 

    end 

end 

end 

function[maxima]=maxima_pk(signal) 

maxima=[]; 

%find Maxima value left & right are bigger than value  

j=1; 

for i=2:(length(signal)-1) 

    c(i,1)=i ; 

    if signal(i-1) < signal(i) && signal(i) > signal(i+1)  

       maxima(j)=i; 

       j=j+1; 

    end 

end 

end 

 

histogram assisted noise removal 

function[output]=hdenoise_pk(isignal,bin,plotoff) 

% 

% hdenoise_pk 

% 

% sequence to remove noise by asessing the historamm of areas underneth 

% the peaks 

%      

% file Version 1.4 last modified 04.05.2010 

% 

% Copyright (C) Peter Knief 2009 

% 

% usage : function[output]=hdenoise_pk(signal,bin,plotoff) 

% 

% plotoff = 1 no visual output default = 1 

% signal  = is the [x y0 y1 ... ] (spectral) data  

% bin     = startparameter to bin in histogramm to use for filtering 

% (default = 2) 

% output  = signal after noisereduction 

% 

% 

if nargin < 3 

   plotoff = 1; 

end 

if nargin < 2 

   bin = 2; 

end 

output(:,1)=isignal(:,1); 

for w=2:size(isignal,2) 

    signal=[isignal(:,1) isignal(:,w)]; 
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min_p=(minima_pk(signal(:,2))); 

% assuming a peak is between two local minima ! 

background=interfill_pk(signal(:,2)',min_p,1); 

spikysignal= signal(:,2)-background(2,:)'; 

locations=(minima_pk(spikysignal))';% find(spikysignal==0); 

npeaks=size(locations,1)-1; 

for i=1:(npeaks) % Area of the peaks 

    peak_a(i)=abs(sum(spikysignal(locations(i,1):locations(i+1,1),1))); % Area of the peaks 

end 

if bin >= npeaks 

   bin = npeaks; 

end 

 s_peak_a=sort(peak_a); 

 [n,xout]=hist(peak_a,npeaks); 

 bins=sum(n(1:bin)); 

 for i=1:npeaks % for each peak 

    if peak_a(i) <= s_peak_a(bins) 

       sps_mean(i)=peak_a(i)/(locations(i+1,1)-locations(i,1)); 

       spikysignal(locations(i,1):locations(i+1,1),1)= sps_mean(i) ; 

%mean(spikysignal(locations(i,1):locations(i+1,1),1)); 

    end 

 end 

output(:,w)=(background(2,:)'+spikysignal); 

if plotoff==0 

    h=figure(); 

    subplot(211);hold on;hist(peak_a,npeaks); 

    xlabel('peak area [a.u.]');ylabel('occurrence [counts]'); 

    axis('tight'); 

    [x1]=axis; 

    nb=size(xout,2); 

    plot([(x1(1,2)/nb)*bin (x1(1,2)/nb)*bin],[x1(1,3) x1(1,4)],'r'); 

    legend('original','bin level'); 

    subplot(212);plot(signal(:,1),[signal(:,2) output(:,w)]); 

    xlabel('Wavenumbers [cm^-^1]');ylabel('Intensity [a.u.]'); 

    legend('original','filtered'); 

%   background(1,:)=((background(1,:))'+min(signal(:,1)))'; 

%   hold on;plot(background(1,:),background(2,:),'g'); 

%   % [SNR(w-1,:),nbin] 

end 

End 

end 

function[res]=interfill_pk(signal,nodes,plotoff) 

% 

% interfill_pk 

% 

% sequence to bild a signal based on nodes of the original signal eg to 

% create a baseline 

%      

% file Version 1.1  

% 

% Copyright (C) Peter Knief 2010 

% 
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% usage : function[res]=interfill_pk(signal,nodes,plotoff) 

% 

% plotoff = 1 no visual output 

% signal  = is the y data only 

% nodes   = matrix of locations in the signal 

% res     = signal based on nodes of the original signal 

% 

if nargin < 3 

    plotoff=0; 

end 

if nodes(1) == 1; 

   nodes=nodes(2:end); % startvalue is 1 anyway ! 

end 

xystart=[1 signal(1)];res=xystart; 

for i=1:length(nodes) 

        xi=[xystart(1,1)+1:1:(nodes(i)-1)]; 

        y=[xystart(1,2);signal(nodes(i))]; 

        x=[xystart(1,1);nodes(i)]; 

        yi=interp1(x,y,xi); 

        out=[xi' yi']; 

        xystart=[nodes(i) signal(nodes(i))]; 

        res=[res;out;xystart]; 

end; 

        xleft=[nodes(i)+1:1:length(signal)]; 

        sigleft=[xleft;signal(xleft)]; 

        res=res'; 

        res=[res sigleft]; 

        clear 'yi';clear 'y';clear 'xystart';clear 'xleft';clear 'xi';clear 'x';clear 'sigleft';clear 'out';clear 

'i';  

if plotoff==0 

     

        plot(res(1,:),res(2,:)); 

end 

end 

function[minima]=minima_pk(signal) 

%find Minima value left & right are bigger than value  

j=1; 

maxnode = max(size(signal)); 

for i=2:(length(signal)-1) 

    c(i,1)=i ; 

    if signal(i-1) > signal(i) && signal(i) < signal(i+1)  

       minima(j)=i; 

       j=j+1; 

    end 

    if signal(i) > signal(i-1) && i == 2 

       minima(j)=(i-1); 

       j=j+1; 

    end 

    if signal(i) > signal(i+1) && (i+1) == maxnode  

       minima(j)=(i+1); 

       j=j+1; 

    end 
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end 

end 

 

rubberband baseline removal 

function[nsignal,rubber,nodes]=rubberband_pk(isignal,precision,plotoff,debug) 

 

% rubberband_pk 

% 

% Version 1.7 last modified 06.05.2010 

% 

% Copyright (C) Peter Knief 2010 

% 

% This function is intended to remove a baseline in a rubberband fashion 

% 

% that isstretched over the nodes representet by the minima 

% 

% it works only if the signal is to some extent v-shaped 

%  

% Usage : [osignal,rubber,nodes]=rubberband_pk(signal,precision,plotoff,debug) 

% 

% isignal   = the is the signal to be treated [x y] 

% 

% precision = the precision the fit default = .01 

% 

% nsignal   = the new signal after baseline removal   

% 

% rubber    = the removed baseline 

% 

% nodes     = the locations where the rubberband adheres to the signal 

% 

 

if nargin < 4 

debug=0; 

end 

 

if nargin <3 

   plotoff=1; 

end 

 

if nargin <2 

   precision=.01; 

end  

 

clear rubber osignal nodes nnodes; 

 

if size(isignal,1) > size(isignal,2) 

 

   isignal=isignal'; 
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end 

 

signal=isignal(2,:)'; 

 

if max(match_pk(signal,min(signal))) > 1 && max(match_pk(signal,min(signal))) < length (signal) 

% minimum is somewhere in the middle     

             

      if debug == 1 

      'in the middel' 

      end 

       

        cnodes=match_pk(signal,min(signal)); 

        lsignal=signal(1:min(cnodes),:); 

       [lnodes]=lrubberband_pk(lsignal,precision,debug); 

       lnodes=lnodes(1,2:size(lnodes,2)); 

       rsignal=flipdim(signal(max(cnodes):size(signal,1)),1); 

       [rnodes]=lrubberband_pk(rsignal,precision,debug); 

        rnodes=size(rsignal,1)-rnodes+max(cnodes); 

        % the right nodes are flipped too 

        % rnodes=rnodes(1,1:(size(rnodes,2)-1)) 

         

        nnodes=[lnodes cnodes' rnodes]; 

        nnodes=delduplicates(nnodes); 

        nnodes=sort(nnodes); 

 

       

end 

if max(match_pk(signal,min(signal))) == 1  

% minimum is left 

    if debug==1 

       'minimum is left' 

    end 

     

   rsignal=flipdim(signal,1); 

   [nnodes]=lrubberband_pk(rsignal,precision,debug); 

   nnodes=length(signal)-nnodes+1; 

   nnodes=delduplicates(nnodes); 

end 

 

if max(match_pk(signal,min(signal))) == length (signal)  

% minimum is right 

   if debug == 1 

      'minimum right' 

   end 

    

   [nnodes]=lrubberband_pk(signal,precision,debug); 

   nnodes=sort(nnodes); 

   nnodes=delduplicates(nnodes); 

end 

 

nnodes=nnodes(2:(length(nnodes))); 
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try  

   rubber=interfill_pk(signal',nnodes); 

catch 

   precision=precision/10; 

   [nsignal,rubber,nnodes]=rubberband_pk(isignal,precision,plotoff); 

end 

 

nsignal=(signal'-rubber(2,:)); 

 

if abs(min(nsignal)) > (1e-12) 

% precision was to little 

  if debug==1 

   'precision too little' 

  end 

   precision=precision/10; 

   [nsignal,rubber,nnodes]=rubberband_pk(isignal,precision,plotoff); 

end 

 

nsignal=nsignal(size(nsignal,1),:); 

 

nsignal=nsignal-(min(nsignal)); 

 

signal=signal'; 

 

if plotoff==0 

   plot(signal,'r'); 

   hold on; 

   plot(rubber(2,:)'); 

end 

 

 

if size(rubber,1) > size(rubber,2) 

 

    rubber=rubber'; 

     

end 

     

rubber(1,:)=isignal(1,:); 

rubber=rubber'; 

nodes=nnodes'; 

 

end 

 

 

function[lnode]=lrubberband_pk(signal,precision,debug) 

 

if debug == 1 

'lrubberband' 

end 

if nargin<2 

   precision=.01; 

end 
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% remove y offset 

signal=signal-min(signal); 

 

%finding startpoint  

 

xs= max(match_pk(signal,min(signal))); 

 

% defining left part 

xl=1; 

 

 

%% stretch rubberband left 

% a=slope (left side negative ! 

a=0; 

% i=counter 

i=1; 

lnode(1)=xs; 

% yl=signal amplitude 

% xm= pisition of minimum 

% xn=position of new node 

xm=xs; 

xn=xm; 

% difference = signal-linefit 

 

while xm~= xl 

       

      % as long as no new node (xn) is found 

      while xn == xm 

      % increase slope 

      a=a+precision; 

       

      yl=(-a*[xl:xm])'; 

      difference=signal(xl:xm)-yl; 

      xn=match_pk(difference,min(difference)); 

       

      end 

       

 i=i+1; 

 a=0; 

 lnode(i)=xn(1); 

  

 if debug==1 

 lnode(i) 

 end  

 xm=xn; 

end 

end 

 

function[bestmatch,error]=match_pk(source,lookfor) 

tmp=source-lookfor; 

bestmatch=find (abs(tmp)==min(abs(tmp))); 

error=source(bestmatch)-lookfor; 
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end 

 

function[res]=interfill_pk(signal,result) 

xystart=[1 signal(1)];res=xystart; 

for i=1:length(result) 

        xi=[xystart(1,1)+1:1:(result(i)-1)]; 

        y=[xystart(1,2);signal(result(i))]; 

        x=[xystart(1,1);result(i)]; 

        yi=interp1(x,y,xi); 

        out=[xi' yi']; 

        xystart=[result(i) signal(result(i))]; 

        res=[res;out;xystart]; 

end; 

        xleft=[result(i)+1:1:length(signal)]; 

        sigleft=[xleft;signal(xleft)]; 

        res=res'; 

        res=[res sigleft]; 

        clear 'yi';clear 'y';clear 'xystart';clear 'xleft';clear 'xi';clear 'x';clear 'sigleft';clear 'out';clear 

'i';  

end 

function[data]=delduplicates(inpdata) 

j=1; 

data(1,j)= inpdata(1,1); 

 

for i=2:size(inpdata,2) 

     

    if inpdata(1,i-1) ~= inpdata(1,i) 

        j=j+1; 

        data(1,j)=inpdata(1,i); 

    end 

end 

end 

 

automated simultaneous curve fitting with multiple mixed G-L curves 

function[output,par]=msglfit_pk(signals,peaks,preknown,plotoff,sf) 

% msglfit_pk 

% 

% Function to fit multiple Gaussian &  a Lorenzian peaks to a set of signals  

% version 4.1 Copyright by Peter Knief last modified 06.06.2010 now 

% optional including a linear + a exponetial + offset function 

% 

% USAGE [output,par]=msglfit_pk(signals,peaks,preknown,plotoff,sf) 

% 

% signals is columnvector [x y1 y2 ...] 

% peaks is the peaks to fit to 

% preknown is a vector of precnown facts [up ua uc ug lp la lc lg] margins  

% plotoff plotting of the results 

% sf toggles supportfunction 

%  

% output = [p1 a1 c1 g1 .... pn an cn gn q r s u v] 
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% 

% pn = fitted peak position 

% an = amplitude parameter 

% cn = width of peak 

% gn = weight between G/L 

%  

% q  = slope of linear function 

% r  = multiplyer of exponential function 

% s  = exponential fraction numerator coefficient  

% u  = exponential fraction denominator  

% v  = offset 

%  

%  

% par = all fit parameters in structure 

% 

if nargin < 5 

   sf=0 ; 

end 

if nargin < 4 

   plotoff = 0; 

end 

if nargin < 3 

   preknown = 5; 

end 

for k = 2: size(signals,2) 

    j=(k-1); 

    signal=([signals(:,1) signals(:,k)]); 

result=[]; 

    [cfun,gof,my]=sglfit_pk(signal,peaks,preknown,plotoff,sf); 

    par(j).gof=gof; 

    par(j).cfun=cfun; 

% collecting the fit parameters        

for i=1:size(peaks,2) 

    a=cfun.(strcat('a',num2str(i))); 

    c=cfun.(strcat('c',num2str(i))); 

    g=cfun.(strcat('g',num2str(i))); 

    p=cfun.(strcat('p',num2str(i))); 

    result=[result p a c g];  

end 

% assing the support function paramaters 

if sf ==1 

result=[result cfun.q cfun.r cfun.s cfun.u cfun.v]; 

end 

output(j,:)=result; 

if sf==0 && plotoff == 0 

    glfunc(signal(:,1),result,plotoff); 

end 

if sf==1 && plotoff == 0 

    glfunc(signal(:,1),result(1,1:end-5),plotoff); 

end 

end 

end 
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function[cfun,gof,my]=sglfit_pk(signal,peaks,preknown,plotoff,sf) 

t0=clock; 

x=signal(:,1); 

my=min(signal(:,2)); 

y=signal(:,2);%-my; 

if size(preknown,2)== 8 && size (preknown,1) == 1 

   % parameter valid for all peaks 

   for i=1:size(peaks,2) %size(peaks,2)==1 

      ul(1,i)=preknown(i,2);% upper limit amplitude 

      ul(2,i)=preknown(i,3);% upper limit width 

      ul(3,i)=preknown(i,4);% upper limit weighting g/l 

      ul(4,i)=preknown(i,1);% upper limit position 

      ll(1,i)=preknown(i,6);% lower limit amplitude 

      ll(2,i)=preknown(i,7);% lower limit width 

      ll(3,i)=preknown(i,8);% lower limit weighting g/l 

      ll(4,i)=preknown(i,5);% lower limit position 

      sp(1,i)=y(match_pk(x,peaks(i)));% amplitude starting point 

      sp(2,i)=mean([preknown(i,7) preknown(i,3)]);% starting point width 

      sp(3,i)=mean([preknown(i,8) preknown(i,4)]);% starting point weighting g/l 

      sp(4,i)=peaks(i);% starting point position 

%    ll(1,i)=0;% lower limit amplitude 

%    ll(2,i)=0;% lower limit width 

%    ll(3,i)=0;% lower limit weighting g/l 

%    ll(4,i)=peaks(i)-precision;% lower limit position 

%    sp(1,i)=y(match_pk(x,peaks(i)));% amplitude starting point 

%    sp(2,i)=50;% starting point width 

%    sp(3,i)=.5;% starting point weighting g/l 

%    sp(4,i)=peaks(i);% starting point position 

%    ul(1,i)=inf;% upper limit amplitude 

%    ul(2,i)=inf;% upper limit width 

%    ul(3,i)=1;% upper limit weighting g/l 

%    ul(4,i)=peaks(i)+precision;% upper limit position 

   end 

   multiplier=500;% limited knowledge about the curve 

end 

if size(preknown,2)== 1 && size (preknown,1) == 1 

   % parameter is just precision 

   for i=1:size(peaks,2) 

    ll(1,i)=0;% lower limit amplitude 

    ll(2,i)=0;% lower limit width 

    ll(3,i)=0;% lower limit weighting g/l 

    ll(4,i)=peaks(i)-preknown;% lower limit position 

    sp(1,i)=y(match_pk(x,peaks(i)));% amplitude starting point 

    sp(2,i)=50;% starting point width 

    sp(3,i)=.5;% starting point weighting g/l 

    sp(4,i)=peaks(i);% starting point position 

    ul(1,i)=inf;% upper limit amplitude 

    ul(2,i)=inf;% upper limit width 

    ul(3,i)=1;% upper limit weighting g/l 

    ul(4,i)=peaks(i)+preknown;% upper limit position 

   end 

   multiplier=1000;% totaly no knowledge about the curve 
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end 

if size(preknown,1) == size(peaks,2)% && size(preknown,1) ~= size(preknown,2) 

   % diffrent parameter for every peak 

   % display('good knowledge'); 

   for i=1:size(peaks,2) 

        %preknown (up ua uc ug lp la lc lg) 

        ul(1,i)=preknown(i,2);% upper limit amplitude 

        ul(2,i)=preknown(i,3);% upper limit width 

        ul(3,i)=preknown(i,4);% upper limit weighting g/l 

        ul(4,i)=preknown(i,1);% upper limit position 

        ll(1,i)=preknown(i,6);% lower limit amplitude 

        ll(2,i)=preknown(i,7);% lower limit width 

        ll(3,i)=preknown(i,8);% lower limit weighting g/l 

        ll(4,i)=preknown(i,5);% lower limit position 

        sp(1,i)=y(match_pk(x,peaks(i)));% amplitude starting point 

        sp(2,i)=mean([preknown(i,7) preknown(i,3)]);% starting point width 

        sp(3,i)=mean([preknown(i,8) preknown(i,4)]);% starting point weighting g/l 

        sp(4,i)=peaks(i);% starting point position 

   end 

   multiplier=250;% good knowledge about the curve 

end 

%% fitting the curve 

sglfit=[]; 

for i=1:size(peaks,2) 

j=num2str(i); 

sglfit=strcat(sglfit,'+((1-g',j,')*(a',j,'/(1+(x-p',j,')^2/c',j,'^2))+(g',j,'*(a',j,'*exp(-((x-

p',j,')/c',j,')^2))))'); 

end 

% adding support fit 

if sf==1 

sglfit=strcat(sglfit,'+(q*x)+ r*exp((x-s)/u)+ v'); 

end 

ffun = fittype(sglfit); 

foptions = fitoptions(ffun); 

%  

foptions.Algorithm='Trust-Region'; 

foptions.Robust='LAR'; 

% parameter          a       c        g       p        

foptions.Lower=     [ll(1,:) ll(2,:)  ll(3,:) ll(4,:)]; 

foptions.StartPoint=[sp(1,:) sp(2,:)  sp(3,:) sp(4,:)]; 

tions.Upper=     [ul(1,:) ul(2,:)  ul(3,:) ul(4,:)]; 

%extend f.options by support f.options; 

%parameter          a c g p             q    r    s        u    v  

if sf==1 

foptions.Lower=     [foptions.Lower      -inf -inf 1        0    -inf]; 

foptions.StartPoint=[foptions.StartPoint 0    0    0        2    0 ]; 

foptions.Upper=     [foptions.Upper      +inf +inf 2*max(x) 500  +inf]; 

end 

foptions.MaxFunEvals=size(peaks,2)/2*multiplier; 

foptions.MaxIter=foptions.MaxFunEvals/2; 

foptions.Display='Off'; 
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ffun = fittype(sglfit,'options',foptions); 

[cfun,gof] = fit(x,y,ffun); 

% etime(clock,t0) 

if plotoff == 0 

 h=figure; 

 plot(x,[y  cfun(x)]);hold on 

 legend('signal','fit'); 

 bt1=strcat('sse  =',num2str(gof.sse)); 

 bt2=strcat('R^2   =',num2str(gof.rsquare)); 

 bt3=strcat('dfe   =',num2str(gof.dfe)); 

 bt4=strcat('aR^2   =',num2str(gof.adjrsquare)); 

 bt5=strcat('rmse =',num2str(gof.rmse)); 

 annotation('textbox',[0.157 0.7962 0.09844 0.09613],'String',{bt1,bt2,bt3,bt4,bt5},... 

     'FontName','Fixed Miriam Transparent',... 

     'FitBoxToText','on'); 

 end 

end 

function[bestmatch,error]=match_pk(source,lookfori) 

for i=1:size(lookfori,2) 

tmp=source-lookfori(i); 

bestmatch(i)=find (abs(tmp)==min(abs(tmp))); 

error(i)=source(bestmatch(i))-lookfori(i); 

end 

en 
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