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a b s t r a c t

A fractionation method was used to extract phenolic compounds from apple pomace (AP) involving a first
extraction with water and subsequent extractions of the same residue with two different organic sol-
vents. The water extracts obtained contained high amounts of phenolic compounds with high antioxidant
capacity. However, the second and third extractions of the same residue still extracted considerable
amounts of remaining phenolic compounds, both with significant antioxidant capacities. Liquid chroma-
tography–electrospray ionisation mass spectrometry (LC–ESI/MS) studies showed water to be a good sol-
vent to extract hydroxycinnamic acids, flavonols, flavanols, dihydrochalcones and flavones present in the
AP. However, water was not the ideal solvent to extract the quercetin glycosides.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Apple pomace (AP) is the main by-product of the cider indus-
try and represents a serious environmental concern due to the
vast amounts (millions of tonnes-EU) produced every year
(Kennedy et al., 1999). AP is a heterogeneous mixture consisting
of peel, core, seed, calyx, stem and soft tissue. Its composition
varies according to the apple variety, agricultural practises, fruit
maturity and the extraction process used to make cider (Kennedy
et al., 1999) and particularly depends on the number of times the
fruits are pressed (Vendruscolo, Albuquerque, Streit, Esposito, &
Ninow, 2008).

Whole apples and their by-products such as AP are good
sources of phenolic compounds (Schieber, Keller, & Carle, 2001;
Tsao, Yang, Young, & Zhu, 2003). Phenolic compounds are known
as free radical scavengers and therefore can act as potential dis-
ease-preventing agents against a range of degenerative diseases
such as cardiovascular disease, cancer, inflammation, arthritis, im-
mune system decline, brain dysfunction and cataracts (Lu & Foo,
1997, 2000). The phenolic compounds present in AP are mainly
phenolic acids and flavonoids. To date, the major class of com-
pounds identified in AP are flavonoids, where flavonols are the
largest sub-class followed by flavanols, flavanones, flavones,
dihydrochalcones and anthocyanins. The phenolic acids identified
are primarily hydroxycinnamic acid derivatives and lesser of
hydroxybenzoic acids (Cam & Aaby, 2010; Cetkovic et al., 2008;

Diñeiro García, Valles, & Picinelli Lobo, 2009; Foo & Lu, 1999; Lu
& Foo, 1997, 2000; Sanchez-Rabaneda et al., 2004; Schieber et al.,
2003; Suárez et al., 2010).

Typical extraction procedures of phenolic compounds from AP
are mostly carried out using organic solvents, such as 70% acetone
or 80–100% methanol (Cetkovic et al., 2008; Diñeiro García et al.,
2009; Foo & Lu, 1999; Lu & Foo, 1997, 2000; Schieber et al.,
2003; Suárez et al., 2010). Sanchez-Rabaneda et al. (2004) have
used fractionation extraction with ethyl acetate and dichlorometh-
ane. Some recent studies have reported extraction of the phenolic
compounds using alternatives to organic solvents, such as sub-crit-
ical extraction (Adil, Cetin, Yener, & Bayindirli, 2007), pressurised
liquid extraction (Wijngaard & Brunton, 2009) and water (Cam &
Aaby, 2010). The latest review (Wijngaard, Hossain, Rai, & Brunton,
2012) provides an excellent overview of various solvents/tech-
niques used to date in the extraction of phenolic compounds from
by-products of food plants.

Analytical techniques used for separation and identification are
an important aspect of a successful study of phenolic compounds.
The liquid chromatography–diode array detector (LC–DAD) is the
most common method, but it has the drawback of requiring known
standards (not available for all phenolics) to validate identification
(Cetkovic et al., 2008; Diñeiro García et al., 2009; Schieber et al.,
2003; Suárez et al., 2010). Use of a mass spectrometer, which is a
universal detector, coupled to the LC–DAD can bypass the need
for standards, especially for simple phenolic compounds (Cam &
Aaby, 2010). As many as 60 phenolic compounds have been iden-
tified in AP using LC–MS/MS (Sanchez-Rabaneda et al., 2004).
MS/MS, or tandem mass spectrometry, is a powerful analytical
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technique that can provide primary structural information of
molecules and can further aid in establishing the chemical identity
of molecules. Identification of phenolic compounds is achieved
based on three different parameters, namely the m/z ratio, the
retention time and the fragmentation pattern; thus identification
is no longer limited by the availability of commercial standards.
NMR spectroscopy has also been used in the identification of phe-
nolic compounds in AP, but it inherently requires purified com-
pounds of adequate concentration (Foo & Lu, 1999; Lu & Foo,
1997).

Some phenolic compounds identified in AP have been corre-
lated with antioxidant capacities using various methods (DPPH,
hydroxyl and superoxide anion radical scavenging activity, FRAP)
thus establishing the fact that AP is a valuable source of antiox-
idants. High correlations between the antiradical activities, total
phenolics, total flavonoids, total flavanols and some individual
phenolic compounds have been reported (Cetkovic et al., 2008).
A predicted model has also been developed to predict antioxi-
dant activity as a function of the phenolic profile. The antioxidant
activity measured by DPPH and FRAP assays could be predicted
by the contents of phloridzin, procyanidin B2, rutin, isoquerce-
trin, protocatechuic acid and hyperin (Diñeiro García et al.,
2009). It has been shown that epicatechin, polymers of procyani-
din, quercetin glycosides, chlorogenic acid, phloridzin and 3-
hydroxyphloridzin showed DPPH radical scavenging activities
2–3 times and superoxide anion radical scavenging activities
10–30 times higher than those of vitamins C and E (Lu & Foo,
2000). This study also reported that the presence of lower molec-
ular weight procyanidins and the quercetin glycosides showed
excellent activity in the DPPH and superoxide anion radical scav-
enging activity assays.

Much work has been done on phenolic compounds of AP and ef-
forts are being made to improve the extraction of phenolic com-
pounds by using healthy and environmentally friendly methods
(Adil et al., 2007; Cam & Aaby, 2010; Wijngaard & Brunton, 2009,
2010). The use of water is a good choice for the extraction of phe-
nolic compounds due to its safety, accessibility and low cost. Some
research has been reported evaluating the extraction of phenolic
compounds with water at 100 �C (Cam & Aaby, 2010), although it
must be noted that using high temperatures adds significant cost
for industry. Therefore, the aim of this work was to evaluate the
efficiency of water at room temperature for the extraction of AP
phenolic compounds.

2. Materials and methods

2.1. Chemicals

Acetic acid, aluminium chloride, ascorbic acid, b-carotene, cate-
chin, 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric chloride, Folin
Ciocalteu’s phenol reagent, gallic acid, linoleic acid, sodium acetate,
sodium carbonate, sodium nitrite, quercetin, 2,4,6-Tris(2-pyridil)-
s-triazine (TPTZ), Tween 20 and vanillin were purchased from Sig-
ma–Aldrich. Hydrochloric acid was purchased from AlfaAesar and
sodium hydroxide from Applichem. All organic solvents were of
analytical grade and obtained from Fisher Chemical. The solvents
used for sample preparation of LC–MS studies were HPLC grade,
and the water (18.2 MX) was purified on a Millipore Direct-Q sys-
tem (Millipore Ireland, Cork, Ireland). Fifteen standard phenolic
compounds (>97% purity), namely chlorogenic acid, epicatechin,
isorhamnetin, rhamnetin, kaempferol luteolin, procyanidin trimer
C, phloretin, phloridzin, quercetin, quercetin-3-O-arabinoside,
quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-
O-rhamnoside and rutin were purchased from Sigma Ireland
(Arklow, Co. Wicklow, Ireland).

2.2. Apple pomace

Apple pomace (AP) was provided by Bulmers Limited (Clonmel,
Ireland). On arrival, the samples were packed under vacuum to
prevent oxidation and fermentation and stored at �20 �C until
being freeze dried. The freeze dried AP was coarsely ground and
passed through 250 lm sieve and stored in polyethylene bags at
�20 �C for further analysis.

2.3. Extraction of phenolic compounds

The extraction of phenolic compounds was performed by a frac-
tionation method based on a method previously described (Ferre-
ira et al., 2002). This method was modified according to the nature
of the sample and the aim of the study. The freeze dried and
ground samples (3 g) were stirred with 40 mL water three times
(40 min, 40 min, 10 min) at room temperature. In each extraction,
the water extracts were filtered and the three collected filtrates
were combined. The residual pomace was then reconstituted in
methanol (20–100%) and stirred as above. The procedure was re-
peated with acetone (20–100%) on the residue left after the meth-
anol extract. All extractions were carried out in acidic conditions
(addition of glacial acetic acid at 5 mL/L) to prevent oxidation of
the phenolic compounds. The resultant three crude extracts were
classified as water extract (WE), methanol extract (ME) and ace-
tone extract (AE). Solid phase extraction (SPE) with C18 cartridges
(DSC-18, Supelco) was performed to select the organic compounds
from the crude extract and to remove the sugars from each extract
which would otherwise have interfered with the Folin assay. The
sugars were eluted from the cartridge with 300 mL of 2% acetic
acid and the phenolic-rich fractions were eluted with methanol
containing 0.1% HCl. The phenolic fractions from WE, ME and AE
were concentrated using a rotary evaporator at 40 �C, frozen at
�70 �C and freeze dried.

2.4. Determination of phenolic compounds

2.4.1. Total phenolic content (TPC)
Total phenolics were determined using the Folin–Ciocalteu as-

say (Ganesan, Kumar, & Bhaskar, 2008). The reaction mixture
was prepared by mixing 100 lL extract with 2 mL of 2% Na2CO3.
The mixture was allowed to stand for 2 min at room temperature
followed by the addition of 100 lL of Folin Ciocalteu’s phenol re-
agent (1:2). After 30 min incubation at room temperature in the
dark the absorbance was measured at 720 nm and the results were
expressed in gallic acid equivalents.

2.4.2. Total flavonoid content (TFC)
Total flavonoids were estimated according to the method pre-

viously described (Liu, Lin, Wang, Chen, & Yang, 2009). An ali-
quot of 250 lL extract was mixed with 1.25 mL of distilled
water and 75 lL of 5% NaNO2. After 6 min, 150 lL of 10% AlCl3

was added. Finally, 500 lL of 1 M NaOH was added and the total
volume was made up to 2.5 mL with distilled water. Absorbance
was measured at 510 nm. Results were expressed in quercetin
equivalents.

2.4.3. Proanthocyanidins content (PAC)
Proanthocyanidins were determined using the vanillin assay

previously described (Sun, Ricardo-da-Silva, & Spranger, 1998).
An aliquot of 0.5 mL extract was mixed with 3 mL of 4% vanillin–
methanol solution and 1.5 mL HCl. Absorbance was measured after
15 min at 500 nm. Results were expressed in catechin equivalents.
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2.5. Antioxidant capacity evaluation

2.5.1. DPPH radical scavenging activity
The DPPH assay was performed in a 96-well round-bottom

microplate (Sarstedt, Inc, USA) according to the method previously
described by other authors (Yen & Chen, 1995). Three wells of the
microplate were loaded with 50 lL of extract and 200 lL of DPPH
(test), another three wells were filled with 50 lL of solvent and
200 lL of DPPH (control) and one well with 50 lL of extract and
200 lL of extractant solvent (blank). DPPH solution (0.5 mg/mL)
was freshly prepared each day and a dilution of 1:10 from this
solution was used in the reaction mixture. The microplate was
incubated in a microplate reader (Synergy HT, Biotek, VT, USA)
for 30 min at 25 �C and the absorbance was measured at 517 nm
every 5 min. The ability to scavenge the DPPH radical was calcu-
lated using the following equation: ((Abscontrol –Abstest) x 100)/
Abscontrol. Different concentrations of some extracts were tested
to determine the EC50 value. EC50 value is defined as the concentra-
tion of extract required for 50% scavenging of DPPH radical under
the experimental conditions employed (Cetkovic et al., 2008).

2.5.2. Ferric reducing antioxidant power (FRAP)
FRAP assay was performed according to the method described

by Diñeiro García et al. (2009). An aliquot of 30 lL of extract was
mixed with 90 lL of distilled water and 900 lL of the FRAP reagent.
This reaction mixture was incubated at 37 �C for 2 h. Absorbance
was measured at 595 nm and the results expressed as ascorbic acid
equivalents. The FRAP reagent was prepared freshly each day by
mixing 2.5 mL of TPTZ (10 mM in 40 mM hydrochloric acid),
2.5 mL of ferric chloride (20 mM) and 25 mL of sodium acetate buf-
fer (300 mM, pH 3.6).

2.5.3. b-Carotene/linoleic acid system
b-Carotene/linoleic acid assay was carried out according to the

method described by Lu and Foo (2000). 1 mL of b-Carotene in
chloroform (3.34 mg/mL) was added into a round-bottom flask
containing 40 mg linoleic acid and 400 mg Tween 20. The chloro-
form was removed by rotary evaporation and 100 mL of oxygen-
ated distilled water was added slowly with vigorous agitation
and placed in an ultrasound bath to form an emulsion. An aliquot
of 1.44 mL emulsified solution was added into a microtube con-
taining 60 lL extract. The absorbance was measured immediately
at 470 nm against a blank consisting of the emulsion without b-
carotene. The microtubes were placed in a water bath at 40 �C
and the absorbance was measured every 15 min.

2.6. Liquid chromatography–electrospray ionisation mass
spectrometry (LC–ESI/MS)

LC–ESI/MS was performed on a Q-Tof Premier mass spectrome-
ter (Waters Corp., Micromass MS Technologies, Manchester, UK),
coupled to an Alliance 2695 HPLC system (Waters Corp., Milford,
MA). The Q-Tof Premier was equipped with a lockspray source
where an internal reference compound (leucine–enkephalin) was
introduced simultaneously with the analyte for accurate mass
measurements. Compounds were separated on an Atlantis T3 C18

column (Waters Corp., Milford, MA; 100 mm � 2.1 mm; 3 lm par-
ticle size) using 0.5% aqueous formic acid (solvent A) and 0.5% for-
mic acid in 50:50 (v/v) acetonitrile:methanol (solvent B). Column
temperature was maintained at 38 �C. A stepwise gradient from
10 to 95% solvent B was applied at a flow rate of 0.2 mL/min for
30 min. Electrospray mass spectra data were recorded on a nega-
tive ionisation mode for a mass range from m/z 100 to 1600. Cap-
illary voltage and cone voltage were set at 3 kV and 30 V,
respectively. Collision-induced dissociation (CID) of the analytes

was achieved using 10–30 eV of energy using argon as the collision
gas.

Primary stock solutions of the 15 standard phenolic compounds
were prepared in methanol at concentrations of 1 mg/mL and
stored at �20 �C. Four groups of intermediate working standard
mix solutions: (Group 1) 500 lg/mL each of chlorogenic acid, epi-
catechin, quercetin, quercetin-3-O-galactoside and quercetin-3-O-
rhamnoside; (Group 2) 200 lg/mL each of kaempferol, quercetin-
3-O-arabinoside, quercetin-3-O-glucoside and rutin; (Group 3)
100 lg/mL each of kaempferol, luteolin, phloretin and phloridzin
and (Group 4) 50 lg/mL each of isorhamnetin and rhamnetin were
prepared in methanol and stored at �20 �C. Accordingly seven cal-
ibrants of 2, 5, 8, 10, 12, 15, 20 lg/mL (Group 1); 0.8, 2, 3.2, 4, 4.8, 6,
8 lg/mL (Group 2); 0.4, 1, 1.6, 2.0, 2.4, 3, 4 lg/mL (Group 3); 0.2,
0.5, 0.8, 1.0, 1.2, 1.5, 2.0 lg/mL (Group 4) and 2, 4, 10, 16, 20, 24
and 30 lg/mL of procyanidin C were prepared. A low and a med-
ium concentrated standard samples each was prepared as controls.
Quanlynx software supplied with the mass spectrometry software
Masslynx 4.1 (Waters Corporation, Milford, USA) was used to aid
the quantification of the phenolic compounds in the analytes.

2.7. Response surface methodology (RSM)

A central composite rotatable design was used to investigate
the effects of two independent variables, concentration of solvent
(X1) and extraction time (X2), on AP total phenolic content (TPC),
total flavonoid content (TFC) and the antioxidant capacity mea-
sured by DPPH and FRAP. Results from preliminary trials were used
to select suitable values for the independent variables. A second or-
der polynomial Eq. (1) for the dependent variables was established
to fit the experimental data. An analysis of variance (ANOVA) was
carried out using STATGRAPHICS (Centurion XV.II 2006) to deter-
mine the significance levels of variables.

Y ¼ b0þ b1X1 þ b2X2 þ b11X2
1 þ b22X2

2 þ b12X1X2 ð1Þ

where X1, X2. . .X1X2 are the independent variables with their linear,
quadratic and interactive models, b0, b1, b2. . .b12 are the regression
coefficients of responses.

2.8. Statistical analysis

All TPC, TFC, DPPH and FRAP measurements were carried out in
three independent extractions and performed in triplicate for each
extraction. Data were reported as mean ± standard deviation (SD).
To test the significance of differences between means, analysis of
variance (ANOVA) was used. Differences were considered to be
statistically significant at p 6 0.05.

3. Results and discussion

3.1. Preliminary results

The phenolic compounds of AP were extracted by a fraction-
ation method involving a first extraction with water and a second
and third extraction of the same residue with organic solvents,
namely methanol and acetone. The aim was to see if after the
extraction with water there were any phenolic compounds
remaining in the residue responsible for significant antioxidant ef-
fects. To achieve this, preliminary work was done to optimise the
water extraction and the subsequent extractions of the residue
with methanol and acetone. Water extraction was optimised for
amount of sample, solvent and extraction time in the range 3–7 g
of AP, 40–60 mL of water and 50–90 min of extraction. The data
(not shown) revealed by ANOVA that the values obtained for yield
using different amounts of sample and solvent were not
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significantly different (p 6 0.05). For that reason, the lower
amounts of sample and solvent (3 g of AP and 40 mL of water, rep-
ectively) were chosen. The best yields were obtained with an
extraction time of 90 min.

The subsequent extractions with methanol and acetone were
also optimised for solvent concentration and extraction time. The
optimisation was carried out using RSM and the experimental de-
sign for both extractions and corresponding response values are
presented in Table 1. A regression analysis was carried out to fit
mathematical models to the experimental data and the regression
coefficients for the uncoded variables are shown in Table 2. The
regression models fit significantly (R2) for all independent vari-
ables except yield of acetone. The result obtained for yield of ace-
tone is probably due to this being the final extraction of the residue
and so the residual quantities of compounds are too small for accu-
rate analysis. The p-values of regression and ANOVA analysis
showed that solvent concentration is the main variable for all the
responses. Extraction time also affects significantly TFC in both
methanol and acetone extracts and DPPH and FRAP in methanol
extracts. The quadratic factor of solvent concentration affects
TPC, TFC and FRAP in acetone extracts and DPPH in methanol ex-
tracts. The interactions affected TFC in both methanol and acetone
extracts.

The estimated response surfaces based on the experimental
data are represented in Fig. 1 for each response for both methanol
and acetone extraction. It can be seen that yield of extraction in-
creases with the increase of solvent concentration. Inverse results
were obtained for the content of phenolics (TPC, TFC) and for the
antioxidant capacities (DPPH, FRAP). Therefore, if concentrations
of methanol and acetone are increased, this may lead to the
extraction of unknown compounds without antioxidant capacity.
Combining the optimum value for each response, making use of
the predicted equations and aiming for high content of phenolic
compounds and antioxidant capacity we choose 90 min for both
extractions and 40% methanol and 40% acetone to extract the
residue left after water extraction.

3.2. Quantification of phenolic compounds

Fractionation of 1 kg of dried AP yielded extracts equivalent to
2.566 g of gallic acid, 6.696 g of quercetin and 837 mg of catechin
(Fig. 2). Water first extracted 67% of the total phenolic compounds,
72% of the total flavonoids and 51% of PAC. This was followed by
additional extraction of 17% and 16% TPC, 10% and 18% of TFC
and 21% and 28% of the PAC when using 40% methanol and 40%
acetone, respectively.

The results obtained for TFC in ME were lower than those ob-
tained for AE, though TPC was similar (p 6 0.05) to AE, thus sug-
gesting the extraction of other types of phenolic compounds. The
higher TFC extracted with AE when compared to ME may be ex-
plained by the higher efficiency of flavonoid extraction as reported
by Suárez et al. (2010) which could be flavanols as indicated by the
higher values obtained for PAC.

In this fractionation method, water extracted the highest
amount of TPC, TFC and PAC. However, subsequent extractions
using aqueous solutions (40%) of methanol and acetone continued
to extract the remaining TPC, TFC and PAC in considerable
amounts.

3.3. Antioxidant capacity evaluation

The % inhibition of DPPH after 30 min reaction with different
concentrations of WE, ME and AE is presented in Fig. 3. The results
showed that DPPH radical scavenging activity efficiencies were in
the order of WE P ME > AE. The EC50 values were 82.0 ± 8.0 lg/
mL for WE; 94.1 ± 10.0 lg/mL for ME and 115.4 ± 18.0 lg/mL for
AE. These results are quite low when compared to previously re-
ported figures (6.33–15.72 mg/mL) for 80% methanol extracts of
AP (Cetkovic et al., 2008). The results suggest that extracts ob-
tained in this study exhibit a high antioxidant capacity at lower
concentrations.

Table 1
Experimental design and corresponding response values for methanol (ME) and
acetone (AE) extracts.

ME X1 X2 Y1 Y2 Y3 Y4 Y5

1 88 (2) 70 (0) 0.95 48 250 21 14
2 60 (0) 98 (2) 0.12 267 659 95 468
3 60 (0) 70 (0) 0.08 231 630 93 411
4 40 (�1) 90 (1) 0.06 393 1036 100 557
5 60 (0) 42 (�2) 0.12 152 391 88 263
6 40 (�1) 50 (�1) 0.06 277 588 85 299
7 32 (�2) 70 (0) 0.13 1711 852 90 549
8 60 (0) 70 (0) 0.07 226 645 94 328
9 80 (1) 50 (�1) 0.25 46 355 41 32

10 80 (1) 90 (1) 0.23 50 301 53 54

AE
1 60 (0) 42 (�2) 0.15 73 416 38 22
2 88 (2) 70 (0) 0.04 51 287 25 9
3 60 (0) 70 (0) 0.15 59 331 36 17
4 60 (0) 70 (0) 0.12 66 325 41 24
5 40 (�1) 50 (�1) 0.11 311 735 87 379
6 32 (�2) 70 (0) 0.17 319 960 99 368
7 60 (0) 98 (2) 0.11 79 369 81 27
8 80 (1) 90 (1) 0.49 43 165 11 0
9 40 (�1) 90 (1) 0.12 319 810 100 376

10 80 (1) 50 (�1) 0.42 51 277 16 6

Y1 = Yield (%); Y2 = TPC (lg gallic acid/mg dry extract); Y3=TFC (lg quercetin/mg
dry extract); Y4 = DPPH (% inhibition at 1 mg/mL after 30 min); Y5 = FRAP (lg
ascorbic acid/mg dry extract).

Table 2
Regression coefficients and analysis of variance of uncoded units for dependent variables methanol (ME) and acetone (AE) extracts.

b0 b1 b2 b11 b12 b22 R2

Y1 0.873 �0.046 0.008 0.000 0.000 0.000 77.8
Y2 1846 �84.6 40.2 0.593 �0.070 �0.244 70.8

ME Y3 �1244 21.2 40.5 �0.088 �0.314 �0.121 99.3
Y4 �63.0 4.93 1.02 �0.050 �0.002 �0.005 98.9
Y5 �815 20.6 20.8 �0.165 �0.147 �0.060 95.1

Y1

Y2 1262 �27.2 �6.13 0.185 �0.010 0.048 94.1
AE Y3 2318 �48.1 �3.94 0.362 �0.117 0.073 99.5

Y4 256 �3.85 �1.93 0.025 �0.011 0.022 92.2
Y5 1710 �39.2 �7.93 0.262 �0.002 0.057 92.1

Y1 = Yield (%); Y2 = TPC (lg gallic acid/mg dry extract); Y3 = TFC (lg quercetin/mg dry extract); Y4 = DPPH (% inhibition at 1 mg/mL after 30 min); Y5 = FRAP (lg ascorbic acid/
mg dry extract).
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The results obtained for FRAP in WE, ME and AE showed that
1 kg of dried AP had FRAP equivalent to 1.718 g of ascorbic acid
which is the equivalent to 1.169 g, 0.288 g and 0.261 g of ascorbic
acid upon using water, methanol and acetone extraction, respec-

tively (Fig. 4). ME and AE showed lower FRAP values than did the
WE and there were no significant differences (p 6 0.05) between
the FRAP values of ME and AE. The total FRAP value was lower than
has been reported in other studies, where 70% acetone extracts

Fig. 1. Estimated response surfaces for the effect of solvent concentration and extraction time on (a) yield, (b) TPC, (c) TFC, (d) DPPH and (e) FRAP in methanol and acetone
extracts.
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resulted in 4.1–14.5 g ascorbic acid/kg dried AP (Diñeiro García
et al., 2009; Suárez et al., 2010) and 80% methanol extracts resulted
in 7.73 g ascorbic acid/kg dried AP (Suárez et al., 2010). The

variations in the results could be due to the different methods of
phenolic extraction.

The % of preservation of b-carotene in a b-carotene/linoleic acid
system during 90 min reaction with WE, ME and AE is shown in
Fig. 5. WE after 90 min reaction showed the highest b-carotene
preservation capacity (60%) when compared to ME and AE (25–
30%).

The highest antioxidant capacity of WE measured by FRAP and
by the b-carotene/linoleic acid system can be explained by the
higher amounts of phenolic compounds found in WE. The similar
results observed for DPPH in WE and ME suggest that the type of
compounds extracted in the second step of the fractionation meth-
od are very efficient against DPPH radical scavenging activity.

3.4. Identification of phenolic compounds by LC–ESI/MS

Phenolic acids and flavonoids were the two main families of
phenolic compounds identified in the AP extracts, as previously re-
ported (Cam & Aaby, 2010; Cao, Wang, Pei, & Sun, 2009; Cetkovic
et al., 2008; Diñeiro García et al., 2009; Sanchez-Rabaneda et al.,
2004; Schieber et al., 2003; Suárez et al., 2010). Accurate mass
measurements and tandem mass spectrometry were applied to
identify each of the phenolic compounds (Table 3). Phenolic acids,
in particular hydroxycinnamate derivatives (i.e. chlorogenic acid or
caffeoylquinic acid and feruloylquinic acid), were found largely in
WE. As far as we are aware this is the first report on the presence
of feruloylquinic acid in AP. Flavonoids in AP were composed of
seven flavonols, five flavanols, three dihydrochalcones and one
flavone. The seven flavonols were found in all the three extracts.
The flavanols were, however, distributed unequally in the three
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Fig. 2. Results of (a) TPC, (b) TFC and (c) PAC in water, methanol and acetone
extracts.
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Fig. 3. DPPH radical scavenging activity for different concentrations of water,
methanol and acetone extracts using optimum conditions of RSM.
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solvent extracts. The three dihydrochalcones and flavone (kaempf-
erol) were present in all the three solvent extracts.

In order to obtain an understanding of the effect of various sol-
vent constituents on the extraction of the major types of phenolic
compounds, a majority of the phenolic compounds identified were
quantified using a set of standard calibrants, as described earlier
(Section 2.6). Due to identical elution time, procyanidin trimer C
was used as a calibrant for the quantification of procyanidin dimer
B. For the quantification of feruloylquinic acid, a similar structure
and a compound from the same class of the phenolic acids, i.e.,

chlorogenic acid, was used as the calibrant. The results of the quan-
tification study are presented on Table 4. The low and medium
control standards in general showed acceptable range of concen-
tration except for those compounds with elution times close to
one another and with broad peaks such as procyanidins/epicate-
chin and rutin/quercetin-3-O-glucoside. The findings from this
quantification study showed that water is the best extractant for
phenolic acids and epicatechin, while 40% methanol is best for
extracting flavones, flavonols and dihydrochalcones. The data fur-
ther support previous reports where chlorogenic acid was

Table 3
List of identified compounds in AP.

Compound MW Obs m/z Calcd m/z Major fragments m/z Molecular formula

Phenolic acids
Hydroxycinnamic acids
Chlorogenic acida,b 354 353.0872 353.0873 191.1, 179.0, 173.0 C16H18O9

Feruloylquinic acid 368 367.1030 367.1029 179.0, 135.0 C17H20O9

Flavonoids
Flavonols
Quercetina,b 302 301.0341 301.0348 227.1, 151.1 C15H10O7

Isorhamnetina,b 316 315.0497 315.0505 300.0, 151.0 C16H12O7

Quercetin 3-O-arabinosidea,b 434 433.0762 433.0771 300.1 C20H18O11

Quercetin 3-O-glucosidea,b 464 463.0878 463.0877 300.0, 151.0 C20H18O11

Quercetin-3-O-rhamnosideb 448 447.0925 447.0927 300.1, 151.0 C21H20O11

Quercetin 3-O-galactosidea,b 464 463.0878 463.0877 300.0, 151.0 C21H20O12

Quercetin-3-O-rutinoside (rutin) ab 610 609.1456 609.1456 463.1, 300.1 C27H30O16

Flavanols
Epicatechina,b 290 289.0715 289.0712 C15H14O6

Procyanidin dimer A2b 576 575.1167 575.1190 C30H23O12

Procyanidin dimer B1 or B2b 578 577.1334 577.1346 289.1, 407.1, 125.0 C30H26O12

Procyanidin trimer Ca,b 866 865.1970 865.1980 C45H38O18

Procyanidin tetramer Db 1154 1153.2655 1153.2614 C60H50O24

Dihydrochalcones
Phloretina,b 274 273.0758 273.0763 273.1, 167.0 C15H14O5

Phloridzina,b 436 435.1287 435.1291 273.0, 167.0 C21H24O10

Phloretin 20-O-xylosil-glucosideb 568 567.1702 567.1714 273.1, 167.0 C26H32O14

Flavones
Kaempferola,b 286 285.0392 285.0399 285.0 C15H10O6

a Confirmed with commercial standards.
b Already identified in AP.

Table 4
Quantities of phenolic compounds in various extracts.

RT (min) Compound R2 Controls M40 (lg/mL) Water (lg/mL) A40 (lg/mL)

Low lg/mL (expected) Medium lg/mL (expected)

Phenolic acids
Hydroxycinnamic acids

1.95 Chlorogenic acid 0.9908 3.5 (4.0) 5.5 (6.0) 5.32 7.28 –
4.04 Ferluoylquinic acid 0.9908 – – 1.69 2.83 –

Flavonoids
Flavonols

12.95 Isorhamnetin 0.9924 0.47 (0.4) 0.95 (0.8) 0.46 0.11 0.47
11.01 Quercetin 0.9835 0.87 (0.8) 1.9 (1.5) 3.96 0.99 0.13
8.59 Quercetin-3-O-rhamnoside 0.9854 3.88 (4.0) 8.14 (8.0) 2.88 – –
7.52 Quercetin 3-O-arabinoside 0.9733 1.57 (1.6) 3.37 (3.0) 0.71 – –
6.13 Quercetin 3-O-glucoside 0.9896 1.4 (1.6) 3.4 (3.0) 3.71 0.23 0.78
5.4 Quercetin-3-O-rutinoside (rutin) 0.9722 1.59 (1.6) 3.71 (3.0) 8.92 1.57 1.51

Flavanols
2.28 Epicatechin 0.9798 4.2 (4.0) 10.0 (8.0) 3.7 5.39 4.3
2.02 Procyanidin trimer C 0.9981 4.8 (5.0) 11.2 (12.0) – 2.84 3.15
2.02 Procyanidin dimer B 0.9981 – – – 6.99 5.6

Dihydrochalcones
12.14 Phloretin 0.9863 0.9 (0.8) 1.9 (1.5) 3.43 0.1 1.87
9.36 Phloridzin 0.9777 0.86 (0.8) 2 (1.5) 2.38 0.61 0.16
8.18 Phloretin 2’-O-xylosil-glucoside – – – – +++ +

Flavones
12.51 Kaempferol 0.9863 0.9 (0.8) 1.8 (1.5) 1.98 0.21 0.36
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observed as the main phenolic acid (Diñeiro García et al., 2009;
Schieber et al., 2003; Suárez et al., 2010). The quantification results
also showed that water readily extracted quercetin, but was a poor
extractant of quercetin-mono-glycosides. Instead, 40% aqueous
methanol (M40) proved to be the best solvent to extract querce-
tin-mono-glycosides. This suggests that the quercetin-mono-gly-
cosides are probably linked by hydrophobic interactions to cell
walls and therefore are more difficult to extract from the AP with
water. Similarly, of the flavonols, epicatechin was found in high
amount in the water extract, while the polymers of procyanidins
were present in water and 40% acetone extracts in almost equal
amounts. This confirms the ability of acetone to extract procyani-
dins efficiently (Suárez et al., 2010). Only phloretin 20-O-xylosyl-
glucoside could not be quantified due to its low levels, however,
its presence in water extracts was 3� the amount present in the
40% acetone extracts. Phloretin constituted the major form of the
two dihydrochalcones quantified in AP which is in agreement with
findings from other authors (e.g., Diñeiro García et al., 2009; Schie-
ber et al., 2003; Suárez et al., 2010).

The other interesting observation from the quantification
studies is that the phenolic acids and flavanols in Table 4 showed
a similar trend to the TPC and PAC respectively (data shown in
Fig. 2). The only major difference was that the TFC in water extract
(Fig. 2b) was highest, in contrast to the low levels of flavonol-
mono-glycosides of the same water extract compared to those in
the methanol and acetone extracts. One viable argument could
be that the TFC represents generally the aglycone flavonoids.

Water showed to be the best solvent to extract hydroxycin-
namic acids and flavanols and showed reasonable extracting abili-
ties for dihydrochalcones and flavones present in AP. However,
subsequent extractions with aqueous solutions of methanol and
acetone maximise the extraction of the same compounds, particu-
larly flavonols and flavanols.

4. Conclusion

Phenolic compounds of AP, mainly phenolic acids and flavo-
noids, that display antioxidant activity are readily extracted with
water and with food-compatible aqueous organic solutions. Water
was shown to be a good solvent to extract the considerable amount
of phenolic compounds present in AP and the major compounds
extracted were chlorogenic acid, feruloylquinic acid, epicatechin,
and procyanidins. Feruloylquinic acid has been identified for the
first time in AP. Water is environmentally friendly and cheap, mak-
ing it an ideal solvent for the extraction of AP phenolic compounds.
However, in order to maximise the recovery of phenolic com-
pounds from AP, the subsequent use of aqueous organic solvents
such as methanol and acetone is suggested. The use of 40% aqueous
methanol and 40% aqueous acetone proved to be more efficient
extractants for quercetin mono-glycosides and flavanols respec-
tively. Nevertheless, the content of organic and less environmen-
tally friendly solvents can be minimized to 40%, unlike
previously reported use of as high as 70% acetone and 80%
methanol.
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