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Figure 3 Measured filter response for narrow the bandwidth to 2/3 of the
original LCFBG. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com]

When the chirped FBG bandwidth is narrowed to 1.02 nm with
fixed centre wavelength at 1564.44 nm, the CD values of the
chirped FBG becomes 630 ps/nm, which is 1.5 time of the original
CD values of the LCFBG. Based on Eq. (6), it shows that the
envelope response, sin(d,ws,A*/4c), will increase. Figure 3 shows
the calculated result and the measured filter response in dot line
and solid line, respectively. Further, when the bandwidth is almost
half of the original LCFBG, the CD value of the LCFBG is almost
doubled. The envelope response of the filter is even stronger, as
shown in Figure 4.

4. CONCLUSIONS

Bandpass photonic microwave filter has been demonstrated using
a section of Hi-Bi fiber and a tunable LCFBG. The LCFBG serves
as a tunable dispersion element, together with the phase modulator
to eliminate the baseband resonance. The bandpass filter is free
from the problem of optically coherent interference and phase
noise. And the adjustment of the bandpass filter response by tuning
the CD values of the LCFBG has also been achieved. Measured
results agree with the theoretical analysis.
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Figure 4 Measured filter response for narrow the bandwidth to half of
the original LCFBG. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]
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ABSTRACT: An investigation of macrobending loss characteristics of
a standard single mode fiber (SMF28) for small bend radii is presented
theoretically and experimentally, which includes the bend loss of the
SMF28 with coating layers and the bare SMF28 after stripping the
coating layers and chemical etching of partial cladding. The significant
influence of reflection occurring at the interface between the cladding
and coating layer or the cladding layer and air on the bend loss is in-
vestigated theoretically and experimentally. © 2007 Wiley Periodicals,
Inc. Microwave Opt Technol Lett 49: 2133-2138, 2007; Published on-
line in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/
mop.22671

Key words: fiber macrobending loss; single mode fiber; whispering gal-
lery mode

1. INTRODUCTION

Optical fiber has been used in a range of optical sensing applica-
tions involving microbending or macrobending [1-6]. Examples
include displacement sensing [1], pressure sensing [2, 4], wave-
length referencing sensing [3], temperature sensing [6], and so on.
Theoretical investigations about macrobending loss of fibers
started in 1970s. The models developed by Marcuse [7, 8] treated
the fiber as a core-infinite cladding structure. For the core-clad-
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ding-infinite coating structure, a number of theoretical modeling
and corresponding experimental investigations of macrobending
loss have been presented in Refs. [9-13], which considered the
impact of the whispering-gallery mode (WGM) caused by the
reflection of the radiated field at the interface between the cladding
and coating layer. Previous published investigations of fiber bend
losses have been focused on some special fibers (particularly fibers
with small numerical apertures) rather than standard single mode
fibers (such as SMF28) that are widely used in optical communi-
cations [9-12].

Recently, the macrobending loss properties of SMF28 (bend
radius ranges from 8.5 to 12 mm) were investigated theoretically
and experimentally and optimized as an edge filter for wavelength
measurements [14, 15]. However, a bending fiber with a smaller
bend radius, e.g., substantially less than 10 mm, is useful for
sensing applications, particularly when the fiber bend is optimized
as a small optical probe. Therefore, it is necessary to study the
characteristics of macrobending loss with smaller bend radii. In
practice, after stripping the polymer coating layers, the bare fiber
is easily broken without any protection. To reduce the bending
induced internal stress and allow for smaller bending fiber struc-
tures, the fiber cladding is etched partially by using HF acid, which
will be presented in Section 4.

A thorough investigation of the fiber bend loss with small bend
radii is presented theoretically and experimentally, which includes
(1) theoretical modeling analysis for fiber bend loss; (2) macro-
bending loss of the SMF28 with coating layers; (3) macrobending
loss for the bare SMF28 fiber after stripping the coating layers
(core-cladding structure only) and partially etching the cladding
layer; (4) macrobending loss of the bare etched SMF28 fiber after
coating with an absorbing layer. The theoretical results agree with
the measured bend losses for SMF28 with or without polymer
coating layers. Through comparison between the first two cases
and the third case, it is found that the WGM caused by reflection

Y

Y

Figure 1 The cross section view of the bend fiber with core-cladding-
infinite coating structure
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TABLE 1 Parameters of the Standard Corning SMF28 Fiber;
(the Refractive Index Values are Defined At a Wavelength of
1550 nm)

SMF28 fiber Refractive index Radius (um)
Core n; = 1.4504 a=4.15
Cladding n, = 1.4447 b =625
Inner coating ny = 1.4786 c =280
Outer coating n, = 1.5294 d=125

at the interface between the cladding and coating layer (Case 1) or
between the cladding layer and air (Case 2) have a significant
impact on the bend loss.

2. THEORETICAL MODELING FOR FIBER BEND LOSS

There are different approaches developed for the prediction of the
macrobending loss of single mode fibers with coatings [10-12].
For example, a theoretical model based on weak perturbance of the
guide field has been presented in Ref. [10—12]. Figure 1 illustrates
the cross section of a bend fiber with a core-cladding-infinite
coating layer structure. Based on the weak-guidance approxima-
tion theory, when the fiber is bent, the Fourier transform scalar
field in the cladding and infinite coating regions in both x and
y-direction can be expressed as a Fourier series as follows [10]:

W(x,y)

DACBIlX,,(x)] + RAI[X,,(x)]{ cosBy a=x=ux,

p=1

Y. Dp{B[X;,(x)] — Al X; (0]} cosBy  b=x<

p=1

(eY)

Assuming that bending takes place in the x-plane, B, is the
conjugate variable for the Fourier transform in the restricted
narrow y-region, and @, could be expressed as: B, = (2p
— 1)@/2h (p is positive integer, p = 1, 2, ... ), and h is

————— Modeling curve by h=20 pm
| Modeling curve by h=40 ym
184  ----Modeling curve by h=27.8 ym
1% ——Modeling curve by D. Marcuse [7]

Bend loss (dB/Turn)

Bend radius (mm)

Figure 2 Theoretical modeling bend loss curves from Ref. [7] (solid
line) and Ref. [10] (the dashed line is with 2 = 27.8 wm; the dash-dot line
is with # = 20 um; the dotted line is with 4~ = 40 wm) for SMF28 fiber
with different bend radii at the wavelength is 1500 nm
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defined in Figure 1. In our calculations, it is found that the
calculated bend loss differs with the & value. A simple and
practical method to find out a suitable A-value can be (1) assume
the refractive index of the coating to equal to that of the
cladding, i.e., core-infinite cladding structure, (2) calculate the
bend loss with the above method and the method developed by
Marcuse in Ref. [7], separately under different bending radii,
(3) determine a suitable i-value so that the two results match.

For the Corning standard SMF28 fiber considered in this arti-
cle, the refractive indices (for wavelength 1550 nm) and radii of
the core, cladding, and coating layers are shown in Table 1.

Figure 2 shows the calculated fiber bend loss results from
Ref. [7] and [10] for standard SMF28 fiber. For illustration,
values of h equal to 20, 27.8, and 40 uwm for the y-direction are
shown. From Figure 2, one can see that the calculated result
with 2 = 27.8 um (dashed line) from Ref. [10] is in agreement
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Figure 3 (a) Modeling and measured macrobending losses for bend radius ranging from 6 to 8.5 mm at the wavelength of 1500 nm. (b) Modeling and
measured macrobending losses for bend radius ranging from 6 to 8.5 mm at the wavelength of 1600 nm
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Figure 4 Photograph of etched thinned-cladding fiber contrasting
against standard stripped bare SMF28 optical fiber

with the modeling result (solid line) from Ref. [7] and this
yields a suitable value of / in the formula (1).

3. FIBER BEND LOSS WITH COATING LAYERS

As mentioned in the introduction, the existence of the coating layer(s)
will produce a so-called WGM for a bending fiber because of the
reflection of the radiated field at the interface between the cladding
layer and the coating layer. Previous published investigations of fiber
macrobending loss have developed a series of formulas for the cal-
culation of fiber macrobending loss, and when the effect of the coating
layer is included, the formulas presented in Ref. [10—12] are used. In
this experiment, the single mode fiber was wrapped on a mandrel
consisting of multiple sections, each providing a different usable
diameter. The bending fiber was connected to a tunable laser and an
optical spectrum analyzer. The bend losses of SMF28 fiber with an
absorbing layer (to remove the reflection occurring at the interface
between the coating layer and air) were measured for the bending
radii ranging from 6 to 8.5 mm when the wavelength is 1500 and 1600
nm, respectively [see Figs. 3(a) and 3(b)].

One can see that as the bend radius increases, the nonmono-
tonic decrease of both the experimental and theoretical results of
the bend loss confirms the impact of a strong WGM influence
caused by the coating layer as mentioned earlier. In Figure 3, the
modeling results agree well with the experimental data for a bend
radius in the range from 7 to 8.5 mm. When the bend radius gets
smaller, the agreement between the theoretical and experimental
results decreases. One reason is that in the experiment for such
cases, the bend loss is highly sensitive to the bend radius, for
example, the discrimination is about 40 dB between the bend
radius 5.5 and 6 mm in Figure 3(b), however, in practice it is
difficult to control the bend radius precisely.

4. BEND LOSS OF A BARE SMF28 AFTER STRIPPING
COATING LAYERS AND PARTIALLY ETCHING THE
CLADDING LAYER

In our experiments, the SMF28 fiber coatings were stripped by hot
concentrated sulfuric acid (H,SO,, wt > 95%, ~200°C). It is found
that the fiber is easily broken even when the bend radius is smaller
than 10 mm. To reduce the bending stress and retain the mechanical
flexibility of bare fiber, the fiber cladding is etched partly by using
hydrofluoric (HF) acid. After the etching process using HF acid and
cleaning by acetone and alcohol, the diameter of thinned-cladding
fiber was about 61 wm measured by a high-precision screw micro-
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meter. Both the bare SMF28 and the thinned-cladding fiber as seen
under a microscope are shown in Figure 4.

We measured the bend loss of the bare SMF28 fiber with a
diameter of 61 wm, for a bend radius of 5.5, 6.0, and 6.5 mm (the
bend length is one turn), in the wavelength range from 1500 to
1600 nm, and the corresponding results are presented in Figure 5.
For this case, the reflection of the radiated field at the interface
between the cladding layer and air has a significant impact on the
bend losses. When the bending etched fiber without an absorbing
layer coated at the outside, the radiated light is reflected back at the
interface between the cladding layer and air. The reflected light is
coupled with the propagating light within the core. As distinct
from the first case presented in Section 3, where the radiated field
is reflected at the interface between the cladding and coating layer,
the reflection occurring in the case of etched fiber is much stronger
because of the significant refractive index difference between the
cladding and air (the etched fiber can be regarded as a multimode
fiber when the cladding is treated as the core and the air is the
cladding). Because of the strong reflection and recoupling, which
can be seen from the simulation results by, for example, the beam
propagation method, there is no single quasi-guided mode propa-
gating within the core as the case of bending fiber with a polymer
coating. This is why the measured bend loss presented in Figure 5
seems “unusual,” for example, from Figure 5, one can see that the
bend loss at 5.5 mm which increases with wavelength to one at 6.5
mm which decreases, whilst at 6 mm the loss peaks at 1540 nm.

It should be noted that modeling behavior of the bare etched
fiber using the technique outlined in Section 2 is not possible. This
can be explained as follows for the case of core-cladding-infinite
coating presented in the earlier section, in which the refractive
index of coating layer is higher than that of the cladding there is
only a single quasi-guided mode propagating in the bending fiber.
However, for the bare etched SMF28, the refractive index of the
cladding layer is higher than that of the surrounding air and the
whole fiber can be regarded as a multimode fiber. The numerical
beam propagation method shows the reflected field by the interface
of cladding layer and air is strongly coupled with the guided mode
within the fiber core along the direction of propagation. No single
quasi-guided mode is observed as the case of core-cladding-coat-
ing structure (where the refractive index of coating is much higher
than that of the cladding layer). For this case, the existing analyt-
ical expressions shown in Section 2 are not suitable for modeling.
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Figure 5 Measured bend loss results of thinned-cladding SMF28 fiber
without absorbing layer in wavelength ranging from 1500 to 1600 nm for
bend radius is 5.5, 6.0, and 6.5 mm
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5. BEND LOSS FOR THE CORE-CLADDING-ABSORBING
LAYER STRUCTURE

To remove the impact of the reflection at the interface between the
cladding and air, the bare thinned-cladding fiber was coated with
an absorbing layer. This case is approximately equivalent to a
core-infinite cladding structure and the analytical expression for

20

calculating the fiber bend loss with an infinite cladding developed
by Marcuse [7, 8] is used.

In the experiment, the etched section coated with absorbing
layer was bent to form a small 360° bend in free space, with the
fiber overlapped in a “knot-like” fashion for mechanical stability,
and the ends of fiber were connected with a tunable laser and an
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Figure 6 (a) Measured and modeling bend loss results for thinned-cladding fiber at wavelength range from 1500 nm to 1600 nm with bend radius is 6.5
mm with and without absorbing layer. (b) Measured and modeling bend loss results for thinned-cladding fiber at wavelength range from 1500 nm to 1600

nm with bend radius is 6 mm with and without absorbing layer
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optical spectrum analyzer, respectively. The operating process is
the same as the experiment which has been described earlier in
Section 4. The theoretical and experimental macrobending loss
curves versus wavelength ranging from 1500 to 1600 nm for bend
radius of 6.5 and 6 mm are presented in Figures 6(a) and 6(b),
respectively, from which one can see that the theoretical bend loss
agrees with the experimental results. As a comparison, the mea-
sured bend losses of bare SMF28 in Figure 5 are also presented.
The difference of bend loss between the two cases, i.e., bare
SMF28 and the bare SMF28 with an absorbing layer, shows that
the reflection occurring at the interface between the cladding layer
and air has a significant effect on the bend loss.

6. CONCLUSION

In conclusion, we have presented a thorough theoretical and ex-
perimental investigation of the macrobending loss characteristics
of a standard single mode fiber with small bend radii, which
includes theoretical modeling analysis for fiber bend loss, for
SMF28 with coating layers and the bare SMF28 after stripping the
coating layers and chemical etching of partial cladding. Both
experimental and theoretical results have demonstrated the impact
of reflection occurring at the interface between the cladding and
coating layer or the cladding layer and air on the bend loss.
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ABSTRACT: A particle swarm optimization-based technique is applied
to design dividers that operate in two or more frequency bands at once.
The geometry of the dividers is optimized under specific requirements
concerning the impedance-matching bandwidth and the complex current
distribution on unmatched real or complex terminal loads for each one
of the resonant frequencies. The required current distribution on the
loads concerns not only the ratio between the current amplitudes but
also the phase difference between the currents. Several cases are stud-
ied to show the robustness of the particle swarm optimizer as well as
the ability of the technique to derive optimal multifrequency struc-
tures suitable for GSM/DCS/PCS/UMTS applications. © 2007 Wiley
Periodicals, Inc. Microwave Opt Technol Lett 49: 21382144, 2007;
Published online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/mop.22658

Key words: multifrequency dividers; multiband dividers; multiband mo-
bile antennas; mobile communications; particle swarm optimization

1. INTRODUCTION

Dividers are structures of great interest, especially for feeding
networks of wireless or mobile communications systems [1-3].
The two main purposes of a divider are splitting the signal accord-
ing to the desired split ratio and providing impedance matching
inside the frequency range of operation [4]. Of course, a well-
designed divider must satisfy an additional requirement concern-
ing the desired phase difference between the signals applied on the
terminal loads. So far, many methods have been proposed for the
designing of dividers that satisfy the above requirements [5-29].
Most of these methods consider dividers operating in a single
frequency band. However, the need for simultaneous operation in
two or more frequency bands led to the designing of dual-fre-
quency [28, 29] or multifrequency dividers.

A multifrequency divider must satisfy the earlier-mentioned
requirements concerning the desired impedance-matching band-
width and the desired signal-split ratio, including the phase differ-
ence between the signals applied on the terminal loads. The main
difficulty in designing such a divider results from the fact that all
the above requirements must be satisfied simultaneously in all the
frequency bands, considering that the terminal loads are not
matched to the main transmission line that feeds the divider. In
addition, a multifrequency divider that complies with the above
requirements must be easily implemented in practice.

To overcome the above difficulties, the present work introduces a
new technique, which makes use of a particle swarm optimization-
(PSO) based algorithm developed by the authors. The fundamentals
of PSO have been discussed in many papers [30—39] and many
problems have already been solved by applying PSO-based methods
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