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In 1971, Hawking suggested [1] that there may be a very large
number of gravitationally collapsed charged objects of very low
masses, formed as a result of fluctuations in the early Universe.
A mass of 1014 kg of these objects could be accumulated at the
centre of a star like the Sun. The masses of these collapsed ob-
jects are from 10−8 kg and above and their charges are up to ±30
electron units [1].

Tracing the evolution of such objects, we propose a mechanism
that accounts for the cosmic inflation, takes us into a period of
reheating phases, and, finally, into the expansion of a radiation-
dominated Universe. In a nut-shell, the inflation mechanism is
based on the accumulative effects of Coulomb repulsion at very
short range, initially completely “cocooned” by Reissner–Nordström
gravitational effects and subsequently unleashed by quantum tun-
neling.

Consider the Reissner–Nordström geometry [2,3] in Boyer–
Lindquist coordinates [4]:

ds2 = −Δ

r2
dt2 + r2

Δ
dr2 + r2 dθ2 + r2 sin2 θ dφ2 (1)

where: Δ = r2 − 2Mr + Q 2, M is the mass of the centre, and Q
— the charge of the centre. We will be interested in the case of a
naked singularity only, namely: |Q | > M .

The radial motion of an ultra-relativistic test particle of mass
m and charge q in Reissner–Nordström geometry can be mod-
eled by an effective one-dimensional motion of a particle in non-
relativistic mechanics with the following equation of motion [5–7]
(see also [8] for Schwarzschild geometry):

ṙ2

2
+ U (r) = ε2 − 1

2
, (2)

where
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U (r) = 1

2

(
1 − q2

m2

)
Q 2

r2
−

(
1 − q

m

Q

M
ε

)
M

r
≡ − a

r2
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is the effective non-relativistic one-dimensional potential per unit
mass (Fig. 1), E = (ε2 − 1)/2 is the specific energy of the effective
one-dimensional motion, and ε = kT /m + 1 is the specific energy
of the three-dimensional relativistic motion. In Eq. (3), the con-
stant a = −Q 2(1 − q2/m2)/2 is positive in view of the very high
charge-to-mass ratio q/m for all charged elementary particles and
the parameter b = −M[1 − (qQ ε)/(mM)] depends on the temper-
ature via ε . Motion is allowed only when the kinetic energy is real.
Eq. (2) determines the region (r−, r+) within which classical mo-
tion is impossible. The turning radii are given by [5–7]:

r± = M

ε2 − 1

[
ε

q

m

Q

M
− 1

±
√(

ε
q

m

Q

M
− 1

)2

− (
1 − ε2

)(
1 − q2

m2

)
Q 2

M2

]
. (4)

There is no inner turning radius r− for particles of specific
charge q/m such that sign(Q )q/m < 1. For particles such that
sign(Q )q/m < −1, there is neither inner turning radius, nor outer
turning radius [5–7]. Such particles will fly unopposed into the
centre. Barrier with two turning radii is present only for particles
for which sign(Q )q/m � 1. We will consider only such particles.
Thus the parameter b will be taken as positive.

There is no classical analogue of this effect: a charged centre
being able to capture particles of the same charge within the in-
ner turning radius r− , despite of the Coulomb repulsion. We make
the following assumption: the pre-inflationary Universe is an ideal
quantum gas in thermal equilibrium with constant volume densi-
ties of the positive and the negative charges. Under minute density
fluctuation in the volume density of one type of charges at some
point, the domain of all other like charges within radius r− are
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Fig. 1. The effective potential U (r) = 1
2 (1 − q2

m2 ) Q 2

r2 − (1 − q
m

Q
M ε) M

r ≡ − a
r2 + b

r .

trapped gravitationally into a cluster. We will call this domain a
daemon (for dark electric matter objects, as introduced by [9], and
in line with our previous work [5,6] on Reissner–Nordström ex-
pansion). There will be no charges of this type between r− and r+ ,
while charges of this type on the outside of r+ would be strongly
repelled. As a result, the pre-inflationary Universe nucleates into
such domains (daemons). Domains of different charge can, obvi-
ously, overlap: an oppositely charged particle, approaching a dae-
mon, will not experience turning radii, will fly into the daemon
and freely interact with the particles in it. As our aim is to give a
qualitative description, we also assume that m is the typical mass
of an elementary particle, while q is its typical charge.

It should be noted that when both turning radii are present,
they are always real, that is, that they are real for any value of
ε (or any temperature). The discriminant (4Q 2/M2)(1 − q2/m2)×
(Q 2/M2 − 1) of the quadratic expression in ε under the root
must then be negative and, indeed, it always is — for all charged
elementary particles, q/m � 1. Also, an arbitrary accumulation
of elementary particles of like charge, trapped by the Reissner–
Nordström field, necessarily leads to |Q | > M . A daemon is, there-
fore, a naked singularity.

We now turn to the study of quantum tunneling of trapped
particles through the classically forbidden region between the two
turning radii r± .

The Schrödinger equation of one-dimensional motion along the
r-axis in potential (3) is:

d2ψ

dr2
+

(
A

r2
− B

r

)
ψ = −2mE

h̄2
ψ(r), (5)

where A = (2m/h̄2)a = −mQ 2(1 − q2/m2)/h̄2 = const > 0 and B =
(2m/h̄2)b = −2mM[1 − (qQ ε)/(mM)]/h̄2 > 0.

We are not considering the radial part of a three-dimensional
Schrödinger equation as we no longer have three-dimensional mo-
tion, but an effective one-dimensional problem (the difference be-
tween the two in our setup is in the parameter B , anyway).

Essin and Griffiths [10] study very thoroughly the potential
−1/x2 in quantum mechanics and its pathologies. They analyze the
Shrödinger equation

d2ψ

dx2
+ α

x2
ψ = −2mE

h̄2
ψ(x). (6)

When the positive constant α is smaller than 1/4, there are no
bound states (E < 0) [10]. (Negative α would turn the potential
into a repulsive one.)

The procedure applied in [10,11] for 0 < α < 1/4, is not suit-
able for Eq. (5), due to the presence of the 1/r term. Near the
origin (r → 0), the term proportional to 1/r plays little role and
asymptotically Eq. (5) is the same as Eq. (6). However, in view of
the parameters involved, q/m � 1, thus A � 1/4, and such situa-
tion cannot be achieved.

To address the issue of bound states for Eq. (5) for the case
A > 1/4, we will follow the steps of [10]. We introduce k2 =√−2mE/h̄. Using the Frobenius method, we search for a solution
in the form of power series:

ψ(r) = rν
∞∑

i=0

air
i, (7)

where ai = const (with a0 �= 0) and ν is also a constant.
Substituting (7) into Eq. (5), gives:

∞∑
i=0

{
ai

[
(i + ν)(i + ν − 1) + A

]
ri−2 − ai Bri−1 − k2air

i} = 0. (8)

The coefficients in the different monomials in r must therefore
vanish.

Setting the coefficient of the 1/r2 term to zero yields ν(ν −1)+
A = 0 or

ν = 1

2
±

√
1

4
− A. (9)

Here A � 1/4 and thus ν is not real.
Setting the coefficient of the 1/r term to zero gives:

a1
[
ν(ν + 1) + A

] − a0 B = 0 or a1 = B

2ν
a0. (10)

Setting all other coefficients to zero leads to the recursion relation

an+2
[
(ν + n + 1)(ν + n + 2) + A

] − an+1 B − k2an = 0 (11)

from which an can be determined in terms of a0 for all n > 2.
As in the case of [10], near the origin (r → 0), the leading term

in the solution is a0rν = a0
√

r exp[±ig ln r], where g = √
A − 1/4

is real. The solution near the origin is real, finite (so that ψ → 0
when r → 0) and square-integrable — it is the same as the one
presented in [10] for Eq. (6):

ψk(r) = k

√
2 sinh(π g)

π g

√
rKig(kr), (12)

where Kig is the modified Bessel function of order ig .
The allowed energies are not quantized. The problem with this

solution is that there is no ground state. This means that the parti-
cle will cascade down with the release of an unlimited amount of
energy.

Regarding scattering states (E > 0), the general solution to the
Schrödinger equation (5) near the origin is, again, as the one given
in [10] for Eq. (6):

ψk(r) = √
r
[

F H (1)
ig (r) + G H (2)

ig (r)
]
, (13)

where k = √
2mE/h̄, H(1,2)

ig (r) are Hankel functions, and F and G
are constants. The pathology of this solution is in the fact that
the boundary condition at r = 0 imposes no constraint on the re-
flection coefficient and does not determine the amplitude of the
outgoing wave [10].
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Essin and Griffiths [10] propose a renormalization procedure in
which the potential U (x) = −a/x2 is replaced by the potential

Uσ (x) =
{∞, for x � σ ,

−a/x2, for x > σ.
(14)

The regularized potential has a non-problematic spectrum of dis-
crete bound states and a continuum of scattering states [10]. Upon
taking the limit σ → 0+ , all pathologies of the −1/x2 potential
resurface. However, if g also tends to zero, together with σ , then
all excited bound states are “squeezed out” into the continuum of
scattering states and one single bound ground state with undeter-
mined energy survives [10]. As mentioned earlier, in view of the
parameters of our daemon model, situation in which g → 0 is not
achievable.

Many other approaches have been considered for resolving the
pathologies of the −1/x2 potential, in particular, for maintaining
a well-defined vacuum. We will only mention two — that of Es-
sin and Griffiths [10], in which the non-Hermitian Hamiltonian is
made self-adjoint by the restriction of its domain, and the one of
de Alfaro et al. [12], in which a different combination of conserved
charges was chosen as Hamiltonian. The former introduces a free
parameter with the dimension of length, thus breaking the scale
invariance. The latter leads to breakdown of time-translational in-
variance. While a single particle in an −1/x2 potential does indeed
exhibit pathological properties, we believe that a proper interpre-
tation can rid us of the pathologies. The situation is very similar
to the case of a free particle in quantum mechanics. There is no
such thing as a free particle with definite energy [13] — the wave
function does not represent a physically realizable state as it is not
normalizable. The physical interpretation of free particles comes
in terms of wave packets, where interference of waves of differ-
ent particles leads to localization and localization leads, in turn,
to normalizability. In the case of the −1/x2 potential, the patholo-
gies can be resolved with a likewise many-particle interpretation
— when packets or, rather, ensembles of particles are trapped by
the potential. Consider a particle cascading down towards unlim-
ited negative energies. It releases huge amounts of energy which,
through particle interactions, excite the other particles of the en-
semble. The excited particles, in turn, stop the cascade of the origi-
nal particle by exciting it with the deposition of positive energy. In
other words, the energy exchange between different particles does
not allow any particle to “shoot down” towards hugely negative
energies and, in result, the particles “bubble up” at bound states of
finite energy.

In any case, we are interested not in the bound states, but in
the continuum of scattering states (E > 0). Using the Wentzel–
Kramers–Brillouin (WKB) approximation method (see [13], for ex-
ample), we will determine the transmission coefficient for tun-
neling through the classically forbidden region between the two
turning radii r± . The picture is very similar to the Gamow theory
of alpha-decay (see [13] again).

The Schrödinger equation (5) can be re-written as:

d2ψ

dr2
= − p2

h̄2
ψ(r), (15)

where p(r) = √
2m[E − U (r)] is the classical momentum of a par-

ticle with energy E moving in potential U (r) (with E > U (r), so
that p(r) is real). For tunneling through a potential barrier (namely,
across the classically forbidden region between the two turning
radii r±), the WKB-approximated wave function is given by:

ψ(r) � D√|p(r)|e
± i

h̄

∫ r+
r− |p(r)|dr

, (16)

where D = const and |p(r)| = √
2m[U (r) − E].

The amplitude of the transmitted wave, relative to the ampli-
tude of the incident wave, is diminished by the factor e2γ , where

γ = 1

h̄

r+∫
r−

∣∣p(r)
∣∣dr = 2m

h̄

r+∫
r−

√−Er2 + br − a

r
dr. (17)

The tunneling probability P is proportional to the Gamow factor
e−2γ [13].

To solve the integral in (17), we first change the upper limit
of integration from r+ to r+ − τ , where τ is a small positive pa-
rameter. Next, we introduce a new variable x, using one of Euler’s
substitutions:√

−Er2 + br − a = (r − r+)x. (18)

Therefore, r = (Er− + r+x2)/(E + x2). (The introduction of τ does
not allow r to reach r+ where both sides of (18) would vanish and
the transformation will not be reversible.) Taking the limit τ → 0+ ,
allows us to express the original integral as in integral over the x-
axis from 0 to −∞. Having in mind that the integrand is an even
function of x, we get:

γ =
√

8m

h̄

E2(r+ − r−)2

r+

∞∫
0

x2 dx

(x2 + E)2(x2 + Er−/r+)
. (19)

The integration gives:

γ = π

h̄

√
2mE

(
r− + r+

2
− √

r−r+
)

. (20)

Substituting the turning radii (4) into this equation gives:

γ = −π

h̄

√
m|Q |

√
q2

m2
− 1 + π

h̄

√
mM

ε q
m

Q
M − 1√

ε2 − 1
. (21)

With the drop of the temperature (that is, when ε starts falling
from ∞ towards 1), the inner turning radius r− tends to a fi-
nite value, while the outer turning radius r+ tends to infinity. The
width of the forbidden classical region, δ = r+ − r− , also tends to
infinity in the limit ε → 1 (Fig. 2).

In the very early Universe, at extremely high temperatures
(regime ε � 1), the two turning radii are approximated by:

r± = qQ ± m|Q |
kT

(22)

and γ is not temperature-sensitive:

γ |ε�1 = −π

h̄

√
m|Q |

√
q2

m2
− 1 + π

h̄

qQ√
m

. (23)

As the emitted particles have charge with the same sign as that
of the daemon, the absolute value |Q | of the total charge of the
daemon diminishes. The mass M of the daemon diminishes as well
with each emission, but |Q |/M � const > 1 at all times.

It is, of course, natural to expect that a particle that has
just tunneled through the potential barrier of one daemon (and
emerged on the “outer” side at r+), would tunnel through into the
“inner” side of a neighbouring daemon with the same charge. This
happens of course, but not at the rate at which particles tunnel
out. In the case of standard α-decay, an α-particle is not emit-
ted every time it “knocks” on the “inside wall” of the nucleus. The
α-particle “rattles” inside the nucleus and the rate of tunneling is
given by the Gamow factor, multiplied by the factor v/2r, where v
is the particle’s speed and r is the radius of the nucleus [13]. The
“bigger” the nucleus — the smaller the rate of tunneling. In our
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Fig. 2. Two perspectives of the three-dimensional plot of width of the forbidden classical region, δ = r+ − r− , as a function of the daemon charge |Q | and ε (both |Q | and ε
diminish with time). The dashed curve on the left graph indicates a possible history line obtained by following a path in the (|Q |, ε)-plane. Initially, there is a drop in the
width of the barrier followed by a rapid increase to infinity.

Fig. 3. Two perspectives of the three-dimensional plot of the tunneling probability P as a function of the daemon charge |Q | and ε . Again, both |Q | and ε (or the
temperature T ) diminish with time. The dashed curve on the left graph indicates a possible history line.

model, three objects with the same sign of their charges must be
involved in the process of α-like emission and re-capture — two
daemons and a particle that tunnels out of one and into the other.
The two daemons are very strongly repelled due to the Coulomb
interaction between them. In result, the distance between the dae-
mons is much larger than the inner turning radius r− of each of
them. Thus, an emitted particle will have to oscillate between two
repelling daemons over distance much greater than the inner turn-
ing radius r− and the rate of re-capture will be much lower than
the rate of decay. We will disregard the effect of re-capture of ejec-
tiles on the rate of decrease of |Q | and M .

We next expand the first term on the right-hand side of Eq. (23)
up to first order over the small parameter m/q. This gives the prob-
ability for tunneling P as proportional to exp[−(π/h̄)m

√
m|Q |/|q|]

in the very early Universe (regime ε � 1) and growing expo-
nentially with the decrease of |Q |. Over (dimensionless) time dt ,
the charge of the daemon will decrease by the amount d|Q |
proportional to −P dt and, therefore, in the very early Universe,

|Q (t)| � ln(C − t), where C = const and t is dimensionless time.
This gives P (t) � 1/(C − t) (Fig. 3). In alpha-decay, the daughter
nucleus recoils after the emission. In view of the analogies be-
tween alpha-decay and the current case, we make the following
assumption. A particle of kinetic energy E inside the daemon, tun-
nels through. Tunneling in itself does not change the energy of
the particle (otherwise, it would “resurface” at point different from
the outer turning radius). The recoil energy (needed for conserva-
tion of momentum) however, does: the particle’s kinetic energy
after the emission will be E , diminished by the recoil kinetic en-
ergy E R . The relativistically correct relation between the linear
momentum p of particle of rest mass m and the kinetic energy
E of the particle is given by [14]: p2 = 2mE + 4E2/c2 and the re-
coil kinetic energy E R is [14]: E R = (m/M)E + 2(1 − m2/M2)E2/M
where M is the mass of the daughter nucleus. Let us first disre-
gard the relativistic (quadratic in E) corrections. Then, if E0 is the
total kinetic energy of all particles inside the daemon before the
first emission and if we denote M/m by n (figuratively, we have n
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Fig. 4. Graph of the temperature T as function of time t . The scale factor of the
Universe, a(t), is proportional to r+ and inversely proportional to T . The scale factor
grows with positive second derivative as T decreases.

“equivalent” ingredients inside the daemon), then after the first
emission, the ejectile will have energy E1 = E0/n − E(1)

R , where

E(1)
R = E1m/(M − m) = E1/(n − 1). The energy of the first ejec-

tile is therefore E1 = E0(n − 1)/n2. At the same time, as a result
of the loss of m/M of the daemon, the total kinetic energy inside
the daemon is decreased from E0 to E0 − E0/n = E0(n − 1)/n. The
second ejectile will have 1/(n − 1) of this energy, or energy E0/n
prior to leaving the daemon. After tunneling, its energy E2 will be
E0/n − E(2)

R , where E(2)
R = E2m/(M − 2m) = E2/(n − 2). Thus E2 =

E0(n − 2)/[n(n − 1)]. The energy inside the daemon is decreased
from E0(n − 1)/n to E0(n − 2)/n. The energy of the third ejectile
prior to leaving the daemon will be 1/(n − 2) of the inside energy,
or E0/n. Thus the energy carried away by the third ejectile will be
E3 = E0(n−3)/[n(n−2)]. The kth projectile will therefore have en-
ergy Ek = E0(n−k)/[n(n−k+1)] = E0(m/M)[1−1/(M/m−k+1)].
We now take a continuum limit and re-write this as E(t) =
E0m/M − E0/[(m/M)(m/M − k(t) + 1)], where k(t) is the number
of particles emitted after time t . The charge inside a daemon de-
creases in time from its initial value Q 0 as Q (t) = Q 0 −k(t)q. Thus
k(t) = Q 0/q − (1/q) ln(C − t) � M/m − (1/q) ln(C − t). This gives
E(t) � E0(m/M){1−1/[1+(1/q) ln(C −t)]}. The temperature drops
at least as square root of E(t). The outer turning radius r+ (which
is inversely proportional to the temperature) has an accelerated
increase with time. In result, the scale factor of the Universe, a(t),
which is proportional to r+ and, therefore, inversely proportional
to the temperature grows with time. The second derivative of a(t)
is positive. Therefore we have inflation (Fig. 4).

If the relativistic corrections [14], mentioned earlier, were in-
cluded, than the rapid drop in T would be even more pronounced.

Note that in the regime ε � 1, the width r+ − r− = 2m|Q |/(kT )

of the classically forbidden region initially even decreases with
time (as the drop of the temperature T is not, initially, as fast as
the drop of the charge |Q | of the daemon — tunneling is prac-
tically temperature-independent). This is when huge amounts of
particles gush out of the daemons. The extremely rapid drop in
the temperature that follows leads to an extremely rapid growth
of r+ , together with that of a(t). The “graceful exit” of the infla-
tion occurs when the width r+ − r− = 2m|Q |/(kT ) of the barrier
grows large enough so that quantum tunneling is switched off. This
happens before daemons become fully depleted (bound states in-
side the daemons should also not be forgotten). In other words,
when the temperature T drops sufficiently and the second term in
expression (21) for γ , namely (π/h̄)M

√
m[εqQ /(mM) − 1](ε2 −

1)−1/2, takes control, a break is put on the tunneling (the lower
limit of this term is (π/h̄)qQ /

√
m when ε � 1). As the proba-

bility for tunneling is brought down very rapidly towards 0 and
particles are no longer ejected by the daemons, the medium out-
side the daemons is no longer cooled by the tunneling process.
Without quantum tunneling, the charges of the daemons remain
practically constant. However, the temperature of the outside frac-
tion of the Universe continues to drop after the rapid accelerated
expansion as a different expansion mechanism has naturally taken
over. This is the recently proposed Reissner–Nordström expansion

Fig. 5. Thermal history of the Universe according to the proposed model. The infla-
tion (ä(t) > 0) is followed by radiation-dominated epoch characterized by Reissner–
Nordström expansion with series of weaker and weaker reheatings after supercool-
ing phases. Overall, during radiation domination: T � t−1/2,a � t1/2.

mechanism [5,6]: with constant charges of daemons, the Universe
continues to cool: T � t−1/2, and expand: a � t1/2. This is the start
of the radiation dominated epoch. It is also characterized as the
beginning of a supercooling phase. At the end of the inflation, the
daemons are still much hotter than the outside fraction of the Uni-
verse. A daemon will now cool not through quantum tunneling,
but through interaction with the particles of oppositely charged
daemons, which, in turn interact with the particles outside the
original daemon. In view of the low densities, this does not happen
as fast as the Universe expands. Eventually, the temperature of the
daemons and the temperature of the “free” fraction of the Universe
will equalize and, in result, the Universe will have reheated, but
not enough to reignite the inflation (as the daemon temperature
now is lower than the one at the end of the inflation and quan-
tum tunneling cannot start). During the reheating, the scale factor
a(t) of the Universe does not decrease as there is no mechanism to
draw particles, blown away by the growth of the daemons’ outer
radii, back towards the daemons: the decrease in the outer turn-
ing radius r+ of a daemon simply means that particles of the outer
fraction will penetrate deeper and deeper into the repulsive field
of the daemons. The Universe then enters into another supercool-
ing phase followed by another reheating. This process is repeated
until daemons cool down to the temperature of the surrounding
fraction and cannot re-ignite further reheatings. Then the temper-
ature drop will simply follow T � t−1/2 and the expansion will be
at the rate of

√
t (Fig. 5).

The particles ejected by the daemons, together with all other
outside particles, can be viewed as a separate fraction of the Uni-
verse, additional to that of the daemons. From the viewpoint of an
incoming non-daemon particle, such that sign(Q )q/m � −1, the
field of the daemon is characterized by three regions [6]. The first
one is the attractive region — from infinity down to the radius
rc = M(Q 2/M2 − 1)[1 − (q/m)(Q /M)]−1, where attraction and re-
pulsion interchange. There is no gravitationally attractive region
for incoming particles such that qQ > Mm. The second region is
the repulsive region — between rc and the outer turning radius
r+ . Disregarding tunneling back into daemons (as described ear-
lier), the third region — between r+ and r = 0 — can be viewed
as impenetrable. The Universe can therefore be modelled as a
van der Waals gas [6] in view of the deep analogies between
the physical picture behind motion in Reissner–Nordström field
and the classical van der Waals molecular model: atoms are sur-
rounded by imaginary hard spheres and the molecular interaction
is strongly repulsive at close proximity, mildly attractive at inter-
mediate range, and negligible at longer distances. The laws of ideal
gas should then be corrected to account for the increased pres-
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sure, due to the additional repulsion, and the decreased available
volume, due to the presence of the daemons.

We would like to address now the issue of structure formation.
This is, essentially, an initial-data problem. While the proposed in-
flation model can indeed accommodate a very wide range of initial
data, the need of fine tuning with the quantity and composition of
matter in the Universe and the nature of primeval inhomogeneities
is essential for the study of structure formation. On the other hand,
it is important to point out that the study of structure formation
for the proposed model is analogous to the study of density per-
turbations in a van der Waals gas that has undergone accelerated
expansion.

Replacing the perfect fluid equation of state in cosmology with
a van der Waals equation of state has been considered by many
authors. The van der Waals quintessence scenario [15,16] achieves
exact accelerated expanding solutions. The van der Waals equa-
tion of state allows only observed fluids to be taken into account;
phase transitions to occur in the framework of the same evolu-
tion; accelerated and decelerated periods to depend on the relative
values of the parameters of the state equation with respect to
the pressure and matter energy density which are functions of
time [17]. Additionally, the van der Waals equation of state fits
the available astrophysical data with the same accuracy [18] as
the perfect fluid description which works only for very particu-
lar conditions and scales and which is just a rough approxima-
tion of cosmic epochs capable of describing stationary situations
where phase transitions (which do occur during the evolution of
the universe) are not considered. The complicated task of study-
ing structure formation in a van der Waals universe is addressed
by Capozziello et al. in [17]. In the redshift range for the van
der Waals quintessence model, where presumably structure for-
mation takes place, the baryons energy density dominates over
that of the van der Waals fluid that, in this period, is very well
approximated by a cosmological constant-like term for all val-
ues of the model parameters [17]. In the far past, the van der

Waals quintessence model, is formally equivalent to the �CDM
model with the baryons and the Van der Waals dark matter
playing the roles of CDM and Λ, respectively [17]. This result
suggests that structure formation could evolve in a very similar
way.
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